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Channel flow LES with stochastic modeling of the
subgrid acceleration

By M. Gorokhovskit, R. Zamansky{ AND I. Vinkovicf}

In this paper, the non-filtered velocity field in a well-developed turbulent channel flow
is simulated in the framework of LES-SSAM (stochastic subgrid acceleration model)
approach. A novel stochastic SGS model is proposed. This model introduces explicitly
the cross-channel correlation of subgrid velocity gradients and includes two parameters:
the Reynolds number based on the friction velocity, and the channel half-width. The
objective was to assess the capability of this model in comparison to the standard LES
and to direct numerical simulation (DNS).

1. Introduction

The structure of well-developed turbulent wall layer in the channel flow is highly in-
termittent; close to the wall, the low-speed regions are interleaved with tiny zones of the
high-speed motion. The main role in this intermittency is attributed to quasi-streamwise
vortices formed in the near-wall layer (Kaftori et al. 1994; Adrian et al. 2000; Tomkins
& Adrian 2003). Their anisotropic dynamics are Reynolds-number dependent. Sweeps
from the outer layer toward the wall induce strong variations of the wall-normal velocity.
The cross-channel correlation in the turbulent velocity field is amplified by merging of
near-wall small-scale structures and their eruptions towards the outer region. (Jimenez et
al. 2004; Toh & Itano 2005; Hutchins & Marusic 2007). While the large-eddy simulation
(LES) of such flows may capture the near-wall flow physics (Moin & Kim 1982; Piomelli
1993; Perot & Moin 1995a 1995b), its accuracy greatly depends on details of the grid
and of its resolution near the wall (Piomelli 1999). As shown by Baggett et al. (1997),
the number of anisotropic modes to be resolved properly by LES in the near-wall region
scales roughly as the square of the Reynolds number. Then for a high Reynolds number,
the accurate prediction of turbulent wall layer requires CPU resources that are too ex-
pensive (Pope 2004). Among numerous approaches (reviewed, for example, in Meneveau
& Katz 2000; Kerstein 2001; Piomelli & Balaras 2002; Sagaut 2002; Spalart et al. 2006)
that aim to bypass such requirements, one of them consists in the combining of the LES
at moderate resolution with the subgrid scale (SGS) model of the non-resolved turbulent
motion. The majority of SGS models are focused on simulation of turbulent stresses gen-
erated by the non-resolved velocity field (Mineveau & Katz 2000; Domaradzki & Adams
2002; Park & Mahesh 2008). In these models the structure of subgrid flow is supposed
to be independent of the Reynolds number, i.e., to be not intermittent. The approaches
of Schmidt et al. (2003) and of Kemenov & Menon (2007) go beyond computation of the
filtered velocity field. The approach of Schmidt et al. (2003) is focused on the LES/ODT
coupling (Kerstein 1999; Kerstein et al. 2001), providing for stochastic simulation of the
fluctuating velocity field close to the wall. The approach of Kemenov & Menon (2007)
is based on computation of the synthetic velocity field, as superposition of large-scale
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and small-scale velocities. The last one is computed explicitly on subgrid scales by 1-D
motion equation (in three directions), in which the pressure gradient is omitted.

While in a high-Reynolds number intermittent flow, the acceleration on small spa-
tial scales is governed mainly by the pressure gradient (Monin & Yaglom 1981), the
explicit resolution of the pressure gradient on subgrid scales is too difficult. Therefore
the recently proposed approach by Sabelnikov et al. (2007) is focused directly on the
stochastic modeling of the subgrid acceleration (LES-SSAM). In fact, for a given fil-
ter width, the non-resolved acceleration may be substantially greater than the resolved
acceleration. In terms of classical Kolmogorovs scaling, this is seen from the following
estimation: (aay)/(alal) =~ (n/A)?/3, where @ and a, represent accelerations, respec-
tively, in resolved and non-resolved motions, A is the filter width, n = L/ Rei/ * is the
Kolmogorovs scale, L is the integral turbulent scale, Re;, = o,L/v , and o,denotes the
root mean squared (rms) velocity. This argument from Sabelnikov et al. (2007) implies
that in any SGS model, which is aimed to introduce the intermittency effects, the non-
resolved acceleration must be a key variable. In the LES-SSAM approach, the non-filtered
velocity field is simulated, instead of computation of the filtered velocity. This is done
by computation of the instantaneous model equation, in which the local acceleration in-
cludes two parts. The first one represents the filtered total acceleration, corresponding to
the classical LES approach. The second one is associated with the sub-grid acceleration,
which is modeled as stochastic in time process, in lines of the Kolmogorov-Oboukhov 62
theory and experimental observations of Mordant (2001, 2004). The non-resolved velocity
field, computed in this way, is updated in order to satisfy the continuity equation. Using
this approach, the computed statistics of the Lagrangian acceleration in the stationary
3-D box turbulence reproduced the experimental observations of Mordant (2001, 2004):
(i) non-Gaussian distribution with stretched tails; (ii) rapid de-correlation (of order of
Kolmogorovs time) of acceleration with increasing of time lag; (iii) a long memory (of or-
der of few integral times) of autocorrelation of the acceleration norm. This motivated us
to further develop this approach for computation of a well-developed turbulent channel
flow. During the CTR Summer Program, we proposed a novel stochastic subgrid scale
(SGS) model of the non-resolved acceleration. The stochastic model introduces expicitly
the cross-channel correlation of subgrid velocity gradients and includes two parameters:
the Reynolds number based on the friction velocity, and the channel half-width. The
objective was to assess the capability of this model in comparison to the standard LES
and to direct numerical simulation (DNS). The LES-SSAM approach from Sabelnikov et
al. (2007) is described in Sec. 2. The stochastic subgrid acceleration model is presented
in Sec. 3. The results are discussed in Sec. 4.

2. Formulation of the LES-SSAM approach

The total instantanous accelertion, governed by the Navier-Stokes equations, can be
represented by the sum of two parts: a; = @; + a;. The first part represents the spatially
filtered total acceleration:

_,L' = = —— A_z 2.1
“ dt p O0x; o (2.1)
T _ (2.2)

.
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where @; = 885;» ag;:", and Ug; = UpW; + wju; + Upul + upl; is the turbulent stress.
The second part is associated with the total acceleration in the residual field:
du;\" 0P
I g !
=(—) =- A 2.3
= (%) =50 +vad (23)
ouy,
=0 2.4
i (2.4)
where a; = aa—uté + %}“W. Both equations need to be modeled. In the LES-SSAM

approach, eq. (2.1) is modeled in the framework of the classical LES approach, and eq.
(2.3) is replaced by the following form:

du; ' 1 81/7\ ~/
=_= 4 2.
( dt ) p Oz; +a (2.5)

Here @} is considered as a stochastic variable governed by presumed stochastic process,
and the pressure p guarantiees the velocity vector to be solenoidal. A synthetic velocity
field corresponding to the sum of two modeled accelerations (filtred and residual) is
considered as an approximation of the non-filtered velocity field. The resulting model
equation writes:

%-ﬁ-ﬂkgz; z—%;i —l—%(u—i—wmb) (%‘LZZIZ)JF% (2.6)
where pressure p is governed by the continuity equation:
ou;
&ck

and vy 1S given by the Smagorinsky subgrid model.

(2.7)

3. A stochastic model of the non-resolved acceleration

In the modeling of the non-resolved acceleration, three main assumptions are as follows.
Following Gorokhovski & Chtab (2007) and Sabelnikov et al. (2007), the first proposal is
to separate the characteristic times in variation of the subgrid acceleration vector. The
fast process is associated with the rapid change of its orientation. The slow process is
attributed to the stochastic relaxation of the modulus of acceleration. Then the non-
resolved acceleration is written as:

a; = |af(t)es(t)
(3.1)
(ei(t)e;(t+ At)) =0

where e;(t) is a unit vector with direction defined at each time step by two random
angles 0 < 8 < 7 and 0 < < 27; and |a|(¢) is modulus of the non-resolved acceleration.
The second proposal is to emulate the modulus of the non-resolved acceleration by the
product of the mean velocity increment in the wall-normal direction and the frequency
of its variation, f; the last one is considered as stochastic variable

lal(t) = A(S)f. (3-2)

Here S = (2SijSij)1/2is the characteristic filtered rate of strain. The third assumption
concerns the stochastic evolution process for f from the wall to the outer flow. Let us
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introduce the evolution parameter, 7, using the normal to the wall distance, y:

H—
T=—ln(—Hy)
y=0:7=0 (3.3)
y=H:7=00

where H is the channel half-width. The near-wall region is characterized by strong ve-
locity gradients (high values of f), which are decreasing in mean toward the outer flow
through the highly intermittent boundary layer. Thereby we assumed that with increas-
ing of the normal distance from the wall, the frequency f is changmg by a random
independent multiplier a (0 < o < 1), governed by distribution ¢(« fo a)da = 1,
which is principle unknown. In other words, we apply the fragmentatmn stochasmc pro-
cess under scaling symmetry for the frequency f. The Fokker-Planck equation for the
normalized distribution function G(f,7), corresponding to this process, is (Gorokhovski
& Saveliev 2008):

0G(f,7) _

5y - <lna)

fG+ I f fG 3.4
where fol G(f)df =1, (In*a) fo a)infada ; k = 1,2. From eq. (3.4), we derive the
following stochastic equatlon in the Ito interpretation:

df = [(Ina) + (In*a) /2] fdr + /(In2a) /2 fdW (1) (3.5)

where dW () is the Wiener process and [dW (7)]? = 2dr. In the present paper, parameters
are chosen in the following form:

—(Ina) = (In*a) = In(Rey) (3.6)

where Re is the Reynolds number, based on the friction velocity U,. Equations (3.3)—
(3.6) constitute the random path of the frequency from the wall toward the center-line.
The starting condition, 7 = 0, for this stochastic process (the first grid cell on the wall)
is given as follows. We introduce the mean value of frequency fy = A\/U;, where X is
determined, as a Taylor-like scale, which can be estimated by the Kolmogorovs scaling in
the framework of definitions of wall parameters. The Reynolds number, based on friction
velocity, is Rey = UrH/v = H/yo = Reif where yo is the thickness of the laminar
layer, and Rep is the Reynolds number based on the center-line velocity. One then
yields: A = H ReHl/ >~ H Ref/ ®. Similar to Kolmogorov-Oboukhov 62, the starting
condition for random path (3.5) is sampled from the stationary log-normal distribution
of f/fu:

(in(5/$4)—1)?
202

Po(f/f+) = me

o2 = lnRei/?’ (3.7)
p=—z0°

Two ensembles of realizations of eg. (3.5)—(3.7), are presented in Fig. 1, in the near-wall
region, yT = 5 and in the outer flow ™ = 400. A highly intermittent and intensive process
is seen on the left, while on the right, the long small-frequency sequences are accompanied
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FIGURE 1. Frequency realizations by (3.5)-(3.7) at y* =5 (on the left) and y* = 400 (on the
right).

by very rare events of the high frequency (this may be attributed to ejection events of
small scale eddies toward the outer flow).

4. Numerical results and comparison

The computations of the channel flow are performed using the pseudo-spectral method
with integration in time by the explicit Adam-Basforth algorithm for convective terms,
and by the implicit Crank-Nicholson algorithm for diffusion terms. A skew-symmetric
form is used for non-linear terms in order to ensure the conservation of energy. The peri-
odic boundary condition in the streamwise and spanwise directions, and no-slip bound-
ary condition on the wall have been applied. The numerical approach is very similar
to one from Piomelli (1993, 1999). When the standard LES was performed, we used
the Van-Driest wall-damping function. In the LES-SSAM and in LES computations, the
computational mesh was 64 x 64 x 64, and the box size was 3nH x 2H x wH for the
streamwise, wall-normal and spanwise directions, respectively. So, in the wall unities,
for Rey = 590, the cell size is ranging from 86 x 0.7 x 29 at the wall, to 86 x 28 x 28
near the center-line. For the DNS computation, the mesh was 384 x 256 x 384, and the
box size was 3/2nH x 2H x 3/4mwH for the streamwise, wall-normal and spanwise di-
rections, respectively. The results from three approaches, LES-SSAM, classical LES and
DNS, are compared. Figures 2 and 3 show the mean streamwise velocity profile and the
standard deviation of the velocity fluctuation. It is seen that the LES-SSAM approach
improves notably the predictions (less visible for v, ). Using three approaches, we com-
pare in Fig. 4 the computation of turbulent and viscous stresses, 7., = —p(u'v’) and
Tvise = —pu<g—Z>, respectively. The results are presented as ratios Teurs/(Teurd + Tvisc)
and Tyise/(Tturd + Tvisc). Here again the advantage of the LES-SSAM approach wvs. the
classical LES is explicitly seen. The LES-SSAM approach with the model proposed also
provides a better representation of flow in the near-wall region. This is demonstrated in
Figs. 5 and 6, where the longitudinal spectra (for two distances from the wall, y* = 5 and
yT = 20) and the longitudinal spatial autocorrelation for velocity in the near-wall layer
(yT = 2.8) are presented. The last figures (Figs. 7 and 8) show distributions of the accel-
eration in comparison with DNS, and with the standard LES. It is seen that in agreement
with the DNS, the distributions for both components of the acceleration, obtained by
the LES-SSAM, expose the stretched tails, as a manifestation of intermittency.
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FIGURE 2. Streamwise mean velocity, Re4+ = 590. Square: LES; cross: LES-SSAM; dash: DNS;
dots: DNS Mother et al. 1999.

12

1

0.8

7 g |

LE LE 06t

= > s
0.4
0.2
0 ‘ ; ; ‘ ‘ 0 ‘ ; ; ‘ ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600
. .
y y

FIGURE 3. Rms of streamwise (on the left) and of normal (on the right) velocity, Re; = 590.
Square: LES; cross: LES-SSAM; dash: DNS; dots: DNS Mother et al. 1999.
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FI1GURE 5. Normalized longitudinal 1-D spectra of streamwise velocity for two distances normal
to the wall : y* = 20 and y* = 5, Rey = 590. Square: LES; cross: LES-SSAM; dash: DNS; dots:

DNS Del Alamo et al. 2004.
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FIGURE 6. Longitudinal correlation of streamwise, normal and spanwise velocity, respectively,
at yT = 2.8. Re; = 590. Square: LES; cross: LES-SSAM; dash: DNS.
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FIGURE 7. Distribution of normal component of acceleration for two distances to the wall :
yT =20 and y* = 5. Square: LES; cross: LES-SSAM; dash: DNS.

5. Conclusion

In the framework of the LES-SSAM approach, the new SGS model is proposed in order
to represent the intermittency effects in the near-wall region of a high-Reynolds number
channel flow. The assessment of this model is performed by comparison of computation
with the DNS (Re; = 590). This comparison shows explicitly the improvements of
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predictions provided by the new model. Future computation and analyses will investigate
whether this is also the case for the higher Reynolds number.
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