
HAL Id: hal-00683113
https://hal.science/hal-00683113

Submitted on 27 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of Turing machines with the Scufl
data-flow language

Tristan Glatard, Johan Montagnat

To cite this version:
Tristan Glatard, Johan Montagnat. Implementation of Turing machines with the Scufl data-flow
language. Workshop on Workflow Systems in e-Science, May 2008, Lyon, France. pp.1-10. �hal-
00683113�

https://hal.science/hal-00683113
https://hal.archives-ouvertes.fr

Implementation of Turing machines with the Scufl data-flow language

Tristan Glatard1,2∗, Johan Montagnat1

1. CNRS / UNSA, I3S laboratory, Rainbow team
2. INRIA Sophia-Antipolis, Asclepios team

glatard@i3s.unice.fr ; johan@i3s.unice.fr

Abstract

In this paper, the expressiveness of the simple Scufl

data-flow language is studied by showing how it can

be used to implement Turing machines. To do that,

several non trivial Scufl patterns such as self-looping

or sub-workflows are required and we precisely explicit

them. The main result of this work is to show how

a complex workflow can be implemented using a very

simple data-flow language. Beyond that, it shows that

Scufl is a Turing complete language, given some re-

strictions that we discuss.

1. Introduction

Workflows are increasingly used by scientists in the
field of e-Science as a way to set up in-silico experi-
ments [6]. They are used as a glue to compose inde-
pendent services, allowing their seamless integration in
an application. Many different workflow models and
languages have been proposed. In particular, data-
flow and control-flow languages are classically distin-
guished. The former is said to be principally used in
scientific applications, where the logic of the applica-
tion is mainly driven by data dependencies, whereas the
latter is more suited to business applications, which are
likely to exhibit more complicated patterns, requiring
sophisticated control operators.

Scufl is a simple data flow language which has been
defined inside the myGrid UK eScience project and is
used through the Taverna workflow manager by a large
community of bioinformaticians [5]. In the context of
grid applications running on high performance comput-
ing platforms, we developed MOTEUR, an optimized
engine that interprets the Scufl language [1].

Because of its simplicity, it is often said that this
language is not able to describe complex workflows
and that it is bound to be used exclusively for sim-
ple pipeline applications. The goal of this paper is to
study the expressiveness of the Scufl language, in or-

der to determine whether it has theoretical limitations
for the description of applications and if a shift to a
more complete language has to be planned. Methods
to study the expressiveness of a workflow language in-
clude workflow patterns [8] (the ability of the language
to describe a set of pre-defined patterns is studied),
schema relations [4] (the XML schema of the languages
are semantically compared) and the study of the Tur-
ing completeness [2], which is the method we investi-
gate here. Section 2 introduces the Scufl language and
Section 3 overviews Turing machines. We then present
the global principle of implementing a Turing machine
using a Scufl workflow (Section 4). We show how it
could be possible to expand it to a universal Turing
machine workflow (Section 5) before discussing the re-
maining limitations of Scufl.

2. The Scufl language

Scufl is a data flow-oriented language that basically
describes the pipeline of an application. Processors,
sources and sinks of the workflow are first described
and then chained using data links. A simple con-
trol link representing a coordination constraint with-
out data transfer can also be used. Data composition
operators allow to define iteration strategies between
the input ports of a processor. Fig. 2 presents a sum-
mary of the graphical notations used to represent Scufl
workflows.

Processors: Processors are actors of Scufl work-
flows. A processor is typically a Web Service embed-
ding some user code but many other kinds of proces-
sors are defined in Scufl. For instance, string con-
stants fire only once and return a single string value
and Beanshells processors1 embed a piece of Java code.
No control constructs are available in Scufl. Yet, the

1http://www.beanshell
∗ Now affiliated to the University of Amsterdam

1

Processors Links

Data composition operators

source sink

Fail if true/false

port

Beanshell

Data link Control link:
coordination constraint

Dot product Cross product

Figure 1. Graphical notations for Scufl

FailIfFalse and FailIfTrue processors are special
actors of the language defined to implement conditional
branching in a workflow. Those processors fail or suc-
ceed depending on their Boolean input value, thus dis-
carding or enabling the processors depending on them
in the workflow. Sources and sinks correspond to the
inputs and outputs of the workflow. Each of them may
contain several data segments on which the workflow
is iterated. Their content is not specified inside the
Scufl document: it is independent from the workflow
description and it is only known at runtime. The exe-
cution of a Scufl workflow is data driven: at start-up,
sources deliver data to processors they are connected
to through data links. These processors process their
inputs and in turn pipe the processed data further into
the workflow until sinks are reached.

Data composition operators: Attached to each
processor with at least 2 input ports is an iteration
strategy. Iteration strategies are used to control how
multiple data items arriving in the input ports of a
processor are combined to cause multiple invocations
of the processor code. Two binary data composition
operators may be used to compose an iteration strat-
egy: the dot and cross products. Fig. 2 pictures the
behavior of those operators. Given two input ports
containing n data items, the dot product combines the
items pairwise, leading to n invocations of the proces-
sor. Conversely, the cross product combines all the
items of the first port with all the ones of the second
port, leading to n

2 processor firings. If a processor has
more than 2 input ports, cross and dot products have
to be combined to define the whole iteration strategy.
Brackets have to be properly set to define arithmetic
priorities between operators.

Data and control links: Processors have input and
output ports that can contain several data items and
are connected to other ones with data links. A data
link is just a pipe between an output port of a processor
and an input port of another one. An output port can

...
.
.. ...

.

..

A

A

A

0

1

n

B 0
B 1

B n

A

A

A

0

1

n

B 0
B 1

B n

A B A B

Figure 2. Dot (left) and cross (right) product.

be connected to several input ports. In this case, the
data items are broadcast to all the connected input
ports. Similarly, several output ports can be linked
to a single input port. In this case, data items are
buffered into the input port according to their order
of arrival. Coordination constraints can be specified in
Scufl and provide elementary control links. Such a link
specifies that a processor has to wait for another one
before starting its execution, even if there are no data
dependency between them.

Looping in Scufl: No control constructs such as for

or while are available. Apart from the basic control
link, the workflow is completely driven by the presence
or absence of data in the input ports of a processor: a
processor will fire if and only if all of its input ports
contain adequate data. Moreover, a severe limitation
of Scufl is that it is not possible to define variables nor
evaluate expressions contrarily to more elaborated lan-
guages like BPEL [7]. In particular, global variables are
not available and it may thus be difficult to maintain
the state of a process. A consequence of the absence of
variables is the absence of expressions and operators.
Yet, implementing a loop is still possible in a data flow
oriented way.

3. Turing machines

This Section provides a minimal and informal de-
scription of Turing machines. A complete presentation
is provided e.g in [2]. A Turing machine is made of a
tape, a head, a state and a transition function. The
tape contains cells where symbols belonging to a finite
alphabet are printed. The set of states is finite too.
Particular states of the machine are the initial one and
the set of final ones. The head is positioned on a given
cell of the tape. At each iteration: (1) the head reads
the current symbol on the tape ; (2) he transition func-
tion produces a new state, a new symbol and a head
shift from the current state and symbol ; (3) the head
writes the new symbol on the tape and moves one cell
left or right depending on the shift given by the tran-

sition function and (4) the state of the machine is up-
dated with the new state. If the new state is final, then
the machine halts. Else, a new iteration starts.

Although this machine is very simple, the Church-
Turing hypothesis states that every computable func-
tion can be computed by a Turing machine. Therefore,
every language that is as expressive as a Turing ma-
chine is said to be Turing complete and would be able
to implement any algorithm. A direct way to show
that a language is Turing complete is to implement a
Turing machine with it, as done for instance in [9] to
show that C++ templates are Turing complete.

Following this line, the remainder of the paper de-
tails an implementation of a Turing machine in Scufl.
We make the restrictive hypothesis that the tape of
the implemented Turing machine is finite, thus pre-
venting the algorithm to use an unbounded amount of
resources.

4. A Turing machine in Scufl

4.1. Data flow description

Fig. 3 presents the implementation of a Turing ma-
chine in Scufl. The three sources Ribbon, initState
and stopState respectively contain the input tape of
the Turing machine, the initial state of the machine
and the final states.

The ReadInitSymbol processor is used to initial-
ize the machine with the first symbol to be inter-
preted. It has two parameters, the tape and the
initial index. It simply extracts the correspond-
ing character of the string obtained from the tape
(symbol=ribbon[index]). The following symbols will
be read by the readSymbol processor whose enactment
is conditioned by the failure of the halting test. The
obtained symbol is piped to the Transition proces-
sor which combines it with the current state of the
machine to produce a new state (outState), a new
symbol (outSymbol) and a movement of the head.
The new state produced is looped back to the input
of the Transition processor. Self-looping allows the
Transition processor to maintain the state of the Tur-
ing machine. Remember that the use of global variables
is not possible in Scufl. At a given iteration of the
machine, the current state is obtained by proper data
composition on the inputs of the Transition proces-
sor. This processor is the core of the Turing machine,
as it implements the transition rules. In this Section,
we assume that it is implemented with a Beanshell pro-
cessor, which capture the whole logic with a piece of
Java code. We will present a detailed Scufl implemen-
tation of this processor in the next Section.

The movement output of the Transition processor
is passed to the moveHead processor. This processor
only computes a new value of the head index from
the shift passed by Transition and the current index
value (newIndex=index+shift). Here again, the cur-
rent value of the index variable is maintained thanks
to self-looping: the output of the moveHead processor
is connected to its index input. The zero string con-
stant is also connected to the index input of moveHead
to initialize the index value to 0.

The new index generated by moveHead is piped
to the write processor as well. This proces-
sor also takes as input the outSymbol returned
by Transition and the current tape of the ma-
chine. It replaces the character located at
index on the current tape by outSymbol and re-
turns the obtained new tape (newRibbon=ribbon;
newRibbon[index]=symbol;). The state of the cur-
rent tape is kept thanks to a self-looping.

Transition also returns the new state of the ma-
chine (outState parameter) which is passed to the
testHalt processor. testHalt compares it to the final
states provided as input of the workflow and returns
a Boolean string piped to the Fail if true condi-
tional processor (bool=(stopState==state)). Thus,
if the current state of the machine corresponds to a
final state, then the conditional processor fails and
readSymbol does not fire, which makes the whole work-
flow stop because of the lack of symbols to consume.
Else, readSymbol reads the next symbol and the ma-
chine iterates once again.

Finally, the result output of the workflow contains
a history of the values of the tape, the last one being
the result of the Turing machine.

The data composition operators of all the processors
of the workflow except testHalt are dot products. In-
deed, the processors have to correctly match the cur-
rent values of the tape, head index and/or symbol over
the successive iterations and it has to be done with
a dot product. The testHalt processor has to test
the value of the current state of the machine with all

the final states, which justifies the presence of a cross
product between its input ports.

4.2. Example on string length computation

The above-described workflow was implemented in-
side the Taverna workbench and executed with MO-
TEUR. It was tested on examples described with the
Turing Machine Markup Language (TMML2) which

2http://www.unidex.com/turing/index.htm, (c) 2001
Unidex, Inc.

http://www.unidex.com/turing/index.htm

Figure 3. A Turing machine in Scufl

provides an easy-to-parse XML description of Turing
machines.

In particular, a string length computation Turing
machine was implemented. Its initial state is start

and it has 2 final states, namely string is null and
stop. 7 other states can be reached. At the end of the
computation, the tape contains only an integer, which
represents the length of the initial string.

The right of figure 4 displays this Turing machine ex-
ecuted with MOTEUR. The initial tape was the string
ab. A total amount of 20 symbols have been read by
the machine and passed to the Transition processor.
The testHalt processor run 42 times. Indeed, includ-
ing the initial state, 21 states have had to be tested by
this processor and for each state to test, 2 invocations
are required because there are 2 final states to compare
with. The conditional processor only failed once (fig-
ured by red color), the last time it was invoked. The
left of figure 4 shows the corresponding tape obtained
for each iteration. The last one effectively only contains
the length of the initial tape.

4.3. Limitations of this implementation

Parallelism exploitation: Scufl is intrinsically a
parallel language: it allows processors to be iterated
on several data sets. Given a suitable engine, data
parallelism and pipelining can be exploited from the
Scufl representation to obtain an efficient execution [1].

However, in our Turing machine implementation, en-
abling parallelism would completely puzzle the execu-
tion. For instance, if several different tapes are pro-
vided as input, the current state, index and tape of the
machine could not be properly maintained. The use
of a sub-workflow wrapping the Turing machine could
help to cope with this problem.

Synchronization between conditional test and

readSymbol: A more fundamental limitation of this
Turing machine implementation is the synchronization
between the conditional Fail if true processor and
the readSymbol one. The firing of the readSymbol de-
termines the firing of the Transition and subsequent
processors. In Scufl, in absence of coordination con-
straints, the firing of a processor is determined by the
availability of data items in its input ports. Because
of the loops included in the workflow of our imple-
mentation of the Turing machine, data items are al-
ways available in the inputs ports of the readSymbol

processor. Therefore, one should guarantee that the
conditional processor is fired before each invocation of
the readSymbol processor. Otherwise, the readSymbol
processor could fire several times between two consec-
utive invocations of the Fail if true processor. This
would certainly lead to some errors because of wrong
stop condition detection. We solved this problem by
firing the processors in a fixed order in our MOTEUR
workflow engine, thus ensuring that the Fail if true

processor is always fired before the readSymbol one.
However, this kind of behavior is not specified in the
Scufl document and is not handled by Taverna, the
seminal Scufl enactor. A specification of the behav-
ior of the engine should probably be included in the
Scufl language, as it is done for instance in the MoML
data-flow language through the definition of specific
directors [3].

Code wrapping: As every workflow language, Scufl
is able to define invocations to services, whose im-
plementation is external to the workflow specification.
Thus, one should keep in mind that some logic of the
Turing machine implementation is embedded into those
processors whose code is written using a traditional
programming language such as Java. To properly as-
sess the expressiveness of Scufl, one should be aware of
that and limit the amount of non-Scufl code included
inside the processors. In particular, the Transition

processor includes a whole set of tests to implement the
transition rules. Exaggeratedly, putting all the Turing
machine logic inside a single processor would produce a
correct implementation but would not prove anything
about the expressiveness of the Scufl language. In the

1: ab
2: ab
3: 0 ab
4: 0 ab
5: 0 ab
6: 0 ab
7: 0 ab
8: 0 a
9: 0 a
10: 0 a
11: 1 a
12: 1 a
13: 1 a
14: 1 a
15: 1
16: 1
17: 2
18: 2
19: 2
20: 2

Figure 4. Right: Run of the Turing machine
on a string length algorithm. Left: corre-
sponding states of the tape for each iteration.
Spaces are figured by ’ ’.

next section, we show how the Transition processor
can be implemented in Scufl, using only Beanshells
made of Boolean tests (==) and variable assignment
(=). Thus, apart from those operators, the implemen-
tation of the Turing machine only requires the use of
the array access operator [] (for the readSymbol and
write processors) and of the incrementation (for the
moveHead processor).

5. A universal Turing machine in Scufl

The above-described implementation of the Turing
machine is not universal because the Transition pro-
cessor has to be implemented for every set of rules.
Moreover, as already suggested, it embeds a signifi-
cant amount of code, which limits the evaluation of
the expressiveness of the Scufl language. To cope with
those limitations, we expanded the implementation of
the Transition processor in Scufl.

The corresponding workflow of this processor is
depicted on Fig. 5. It is made of a sub-workflow
(Nested Workflow) which tests the matching between
a given transition rule and the current state and sym-
bol of the machine. This sub-workflow has 7 differ-
ent inputs. currentState and currentSymbol denote
the current parameters of the machine. They must
be compared to the conditions of the tested transi-

tion rule. Those sources respectively correspond to the
state and symbol inputs of the Transition processor
on Fig. 3. The 5 remaining inputs of the processor are
new sources of the workflow. They define the rules of
the Turing machine. inState and inSymbol are the
conditions of the tested transition rule. outSymbol,
outState and movement are the consequences of the
transition rule. These are the value that must be
returned by the sub-workflow if the tested transition
rule matches the current parameters of the machine.
The sub-workflow first tests the equality of the cur-
rent parameters of the machine with the conditions of
the tested transition rule. This is done through the
isEqual1 and isEqual2 processors that just compare
two strings and return a Boolean, which is tested by
the conditional Fail if false1 and Fail if false2

processors. If both of the conditions are true, then the
outputs of the rule are piped to the outputs of the
sub-workflow through nop processors. Otherwise, the
sub-workflow fails and does not return anything.

The Nested Workflow sub-workflow is embedded
into a global workflow. This is required (i) to allow to
define iteration strategies between the different inputs
of the sub-workflow even if they are not all connected
to the same processor and (ii) to allow the nop pro-
cessors to return only the correct output parameters
of the transition rule. Indeed, if the sub-workflow was
alone iterated on the whole transition rules, the nop

processor would produce the complete set of outState
parameters as soon as the Fail if false1 processor
would succeed. nop processors only correspond to a
variable assignment (output=input) and isEqual pro-
cessors implement a Boolean test (a==b). These are the
only pieces of Java code required.

The iteration strategy of the Nested Workflow is
depicted on the bottom of Fig. 5. On the left side of
the picture, the current state and symbol of the ma-
chine are composed with a dot product, to be able to
associate only the right symbol with the right state.
Similarly, on the right side of the picture, all the items
of the transition rules are composed with dot products.
The two terms in brackets are composed with a cross
product, in order to test the current state and symbol
with all the transition rules of the machine.

6. Conclusions

A universal Turing machine was implemented using
the Scufl data-flow language. Clearly, this implemen-
tation would not have been possible without the use of
data composition operators (cross and dot products)
that introduce minimalist but sufficient control on the
Scufl data-flow. Moreover, our implementation makes
an intensive usage of loops, which are not prohibited

isEqual1 isEqual

Fail_if_false1 Fail_if_falseFail_if_falseFail_if_falseFail_if_false

nop nop1 nop2

newState newSymbol newMovement

outState currentSymbol inSymbol outSymbol currentState inState movement

outState1 currentSymbol1 inSymbol1 outSymbol1 currentState1 inState1 movement1

Nested_workflow

newState1 newSymbol1 newMovement1

outState currentSymbol inSymbol outSymbol currentState inState movement

Figure 5. Top: the transition processor in
Scufl. Bottom: iteration strategy of the
Nested Workflow.

by Scufl, as opposed to Direct Acyclic Graphs often
used for scientific workflows. In particular, coupled
with dot products iteration strategies, the use of self-
looping enables a given processor to maintain a global
variable in the workflow, whereas it is not possible to
declare any variable in Scufl. Even if Scufl does not
provide any conditional operator such as if or switch,
the usage of the Fail if true and Fail if false pro-
cessors provided by the language is sufficient for the
implementation. The ability to define sub-workflows
in Scufl documents is also required in our implemen-
tation. Sub-workflows allow a proper segmentation of
the data sets and the use of data composition opera-
tors to define iteration strategies over the sources of
a workflow, even if they are not connected to a single
processor. This implementation includes pieces of Java
code inside the Beanshell processors it uses. Neverthe-
less, those Beanshells only use a very restricted subset
of Java. Only four operators are used: =, ==, [] and +.
These operators could easily be implemented as Scufl
processors without loss of generality of the language.

Even if some restrictions remain, it is thus possi-
ble to conclude that Scufl is a Turing complete lan-
guage. Therefore, it would theoretically be possible to
implement any algorithm in Scufl. It highlights the
fact that the expressiveness of such a data-flow ori-
ented language is not as limited as expected, even if
the language remains very simple and easy to manip-

ulate. Moreover, a direct consequence of this result
is that it is not possible to determine whether a Scufl
workflow will complete or not.

Beyond those theoretical considerations, we pre-
sented an example of a development of a complex work-
flow exhibiting strong control requirements with a sim-
ple data flow oriented language. It exemplifies the use
of specific patterns (in particular sub-workflows and
self-looping) to solve expressiveness problems such as
the definition of global variables. Thus, in spite of its
simplicity, Scufl seems to be sufficiently expressive to
describe complex applications. Adopting more com-
plex languages including a whole set of control con-
struct does not seem to be mandatory.

However, being able to implement a universal Turing
machine in Scufl does not imply the ability to imple-
ment every algorithm in a user-friendly way. Imple-
menting the workflow patterns described in [8] in Scufl
would thus be an interesting perspective to this work.

7. Acknowledgments

We thank the Taverna developers for their devel-
opment and maintenance. This work is funded by
the French research program “ACI-Masse de données”
(AGIR project) and the French ANR GWENDIA
project (ANR-06-MDCA-009).

References

[1] T. Glatard, J. Montagnat, and X. Pennec. Efficient ser-
vices composition for grid-enabled data-intensive appli-
cations. In HPDC’06, pages 333–334, Paris, June 2006.

[2] H. Lewis and C. Papadimitriou. Elements of the theory

of computation. Prentice-Hall, Englewood Cliffs, New
Jersey, 1981.

[3] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific Workflow Management and the Kepler Sys-
tem. Conc. and Comp.: Practice & Experience, 2005.

[4] J. Mendling and M. Müller. A Comparison of BPML
and BPEL4WS. In 1st Conference Berliner XML-Tage,
pages 305–316, Berlin, 2003.

[5] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composi-
tion and enactment of bioinformatics workflows. Bioin-

formatics journal, 17(20):3045–3054, 2004.
[6] I. Taylor, E. Deelman, D. Gannon, and M. Shields.

Workflows for e-Science. Springer-Verlag, 2007.
[7] BPEL4WS V1.1 specification, 2003.
[8] W. M. van der Aalst, A. H. ter Hofstede, B. Kie-

puszewski, and A. P. Barros. Workflow patterns. Dis-

tributed and Parallel Databases, 14(1):5–51, July 2003.
[9] T. Veldhuizen. C++ Templates are Turing Complete.

Technical report, Indiana University, 2003.

	. Introduction
	. The Scufl language
	. Turing machines
	. A Turing machine in Scufl
	. Data flow description
	. Example on string length computation
	. Limitations of this implementation

	. A universal Turing machine in Scufl
	. Conclusions
	. Acknowledgments

