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1. Introduction and problem formulation

In this paper, we intend to analyze some qualitative stability properties for a 

non-monotone variational inclusion of the following form: 

p E f(z) + BT[)J(Bz), (1) 

where f: Rn -+ Rn is a given mapping and BE Rmxn, p E Rn are a given matrix 

and a given vector with m ::::; n, respectively. Throughout the paper, we assume 
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that B is surjective. The fonction J : !Rm - IR, x = ( X1, .... , Xm) 1-+ J ( x) is defined 
by 

J(x) = j1(x1) + j2(x2) + .. • + jm(Xm), 'vx =(xi, ... ,xm) E !Rm, (2) 

where ji : lR - lR are supposed to be locally Lipschitz for every i = 1, 2, ... , m. 
For a locally Lipschitz fonction <.p : JRN - IR, &<.p denotes its Clarke generalized 
gradient ([8]) defined by 

8<.p(x) := {p E !RN : <.p0(x; y) 2: (p, y), \/y E JRN},

where <.p
0(x; y) stands for the Clarke generalized directional derivative of <.p at x in 

the direction y defined by 

. <.p(z + >.y) - <.p(z) 
<.p

0(x; y):= hm sup--'----'----------. 
À-+Û+ .,\ 

Z-+X 

(3) 

Various problems arising in mechanical and electrical engineering can be  formu­
lated in the form (1). We will show in this paper that the model (1) is of particular 
interest in the theory of electrical circuits containing nonsmooth electronic devices 
like DIACs (Dlode Alternating Current), Silicon Controlled Rectifiers, thyristors, 
varactors and transistors. 
Modeling of electrical circuits is usually performed by using Kirchhoff 's laws and 
the Ampere-Volt ( or I-V) characteristics for each involved electronic device which 
are graphs of mappings (possibly set-valued) relating the voltage V to the current i. 
Electrical devices like resistors, inductances and capacitors are usually described 
by a single-valued (1-V) mapping (linear or non-linear) and are called "smooth 
electrical devices". On the other hand, semiconductors like diodes, DIACs, Silicon 
Controlled Rectifiers (SÇR) and transistors are defined generally by means of set­
valued (I-V) characteristics and are called "nonsmooth electrical devices". The 
mathematical modeling of electronic circuits involving smooth electrical devices 
leads generally to algebraic/differential equations that can be studied by using 
classical mathematical analysis. On the other hand, mathematical modeling of 
electronic circuits involving nonsmooth electrical devices leads generally to varia­
tional/ differential inclusions that can be handled by using tools from variational 
and nonsmooth analysis. An efficient approach for the treatment of monotone 
set-valued maps in the framework of variational inequalities relies on the notion 
of convex superpotential introduced by J. J. Moreau [16] and generalized by P. D. 
Panagiotopoulos [18] to the case of non-monotone set-valued maps by using the 
generalized gradient of F. H. Clarke [8] for locally Lipschitz fonctions. 
The usage of tools from variational and nonsmooth analysis for the study of elec­
trical circuits is a fairly recent and quite promising topic of research [1, 2, 4, Il]. 
To the best of our knowledge, this paper is the first work dealing with the quali­
tative stability of electronic circuits containing nonsmooth electrical devices with 
non-monotone (I-V)-characteristics. For the monotone case, we can cite e.g. [5], 
[4], [3], [11]. 
In electrical engineering, one usually uses a circuit simulator for predicting the 
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behavior of an electronic circuit. Most used software, for the smooth case, are 
based on various versions of SPI CE (Simulation Program with Integrated Circuits 
Emphasis). The simulation of nonsmooth electronic circuits are well-known to be 
a difficult task. Due to the lack of smoothness, classical mathematical analysis is 
not applicable and requires natural extensions. 
This paper is devoted to qualitative stability analysis of ( 1) under the structural 
assumption that 

J(x) = Mx - q, Vx E lRn, (4) 

where M E lRnxn and q E ]Rn are a given matrix and a given vector. Without Joss 
of generality, we will suppose that q = O. 
By stability analysis we mean a study of the local behavior of the solution map 
S : ]Rn =î ]Rn defined by 

S(p) = {z E ]Rn : p E Mz - q + BT[)J(Bz)}, 

around a reference point (p, z) E Gr(S). 

(5) 

The structure of the paper is as follows: In Section 2 we recall the definitions of 
several basic notions from nonsmooth analysis and state some principal results, 
substantial in our development. Section 3 in devoted to characterizations and 
criteria (sufficient conditions) for the Aubin property of S, whereas in Section 4 
we examine in the same way the isolated calmness of S. Section 5 deals then with 
the application of the derived conditions to concrete electronic devices, namely the 
DIAC. 

The used notation is basically standard. For x, y E JR_n, (x, y) stands for the 
Euclidean scalar product on lRn and llxll = ./(x,x) is the corresponding norm. lIB 
is the unit ball, ôn is the indicatory fonction of a set n and In denotes the unit 
matrix in lRn. For a set-valued map (multifonction) <I>: JR.n =î JR.m, 

Gr(<I>) := {(x,y) E Rn X lR.m 
IY E <I>(x)} 

denotes its graph. The Kuratowski-Painlevé upper ( outer) limit of <I> as x ___. x, 
denoted by Limsupx--+x <I>(x), is defined by 

Limsup <I>(x) := {x* E lRn : :3xk ___. x, xk ___. x* with xk E <I>(x1o) Vk EN}. (6) 
x�x 

For more details see [23] (Definitions 4.1). 
Let a1,a2, ... a

P 
E JR.n some given vectors. The conical hull of {a1,a2, ... a

p} is
defined by 

cone{o1,a2, ... a,) - { t À;a; À;� 0, i- 1,2, ... ,p} · (7) 

2. Mathematical tools

In this section, we provide definitions and properties of some essential notions from 
nonsmooth analysis that will be used throughout this paper. For more details we 
refer to [10, 13, 23]. 
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• Aubin Property: Let S : Rn � Rm be a set-valued mapping and (x, y) E
Gr(S). S is said to have the Aubin property around (x, y) if there exists a
constant K 2::: 0 and neighborhoods U C Rn of x and V C Rm of y such that

S(x') n V C S(x) + Kllx' - xlllBI, for all x, x' EU. (8) 

The Lipschitz modulus of S at x for y, denoted by lip(S; (x, y)), is defined by 

lip(S; (x, y))= inf {/<i, ER+ : ?J U E N(x), VE N(y) 
such that condition (8) is satisfied}, 

where the notation N(x) stands the collection of all neighborhoods of x. 

(9) 

• Isolated calmness: The set-valued mapping S: Rn � Rm is said to be isolat­
edly calm at (x, y) if there exists a constant K- 2::: 0 and neighborhoods U c ]Rn 

of x and V C Rm of y such that

S(x) n V c y+ /<i,llx - xlllBI, for all x EU. (10) 

We note that the linear mapping associated with every matrix A E Rmxn is 
isolatedly calm at any point . The isolated calmness of its generalized inverse 
A-1(-) is equivalent to its injectivity, i.e., A-1(0) = {O} . More generally, for
a fonction f : ]Rn -+ lRm (supposed sufficiently smooth around x), the inverse
1-1(-) is isolatedly calm at (f(x),x) if and only if the derivative mapping
v' f(x) is injective.
In [10] it is shown that a set-valued mapping S : JR.n � Rm , whose graph is
the union of finitely many polyhedral convex sets, is isolatedly calm at (x, y) 
if and only if y is an isolated point of S(x).

• Let A C Rn be a nonempty subset of ]Rn and i: E A. The Bouligand tangent
(contingent) cone to A at x is defined by

or equivalently, 

A-x
TA(i:) = Limsup --, 

t-o+ t (11) 

• The regular (Fréchet) normal cone to a subset A C ]Rn at i:, denoted by
NA(x), is defined by

NA(x) = {x* E JR.n 1 (x*,x} � 0 for all x E TA(x)}

{ ,. m,n I 1. (x*, x - x} 
} = x E li'\. 11;1��P llx - xll � O •

xEA 

(13) 

(14) 

• The limiting (Mordukhovich} normal cone to A at x, denoted by NA(x), is
the cone

NA(x) = Limsup NA(x). (15) 
.,-,i, 
xEA 
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Let us remark that if the set A is closed and convex, then the regular and the 
limiting normal cones coïncide with the normal cone in the sense of convex 
analysis defined by 

NA(x) := {x* E JR.n : (x*,x - x) � 0 for all x E A}.

• A subset AC JR_n is called normally regular at x E A provided NA (x) = NA(x).
• Let <I>: JR.n ::::t IR.m be an arbitrary set-valued mapping. For (x,y) E Gr(<I>),

the graphical (contingent) derivative of <I> at (x, y) is the mapping D<I>(x, y)
IR.n 4 lRm defined by

D<I>(x,y)(z) = {w E IR.m : (z,w) E Tcr(�)(x,y)}, z E IR.n . (16) 

• The limiting (Mordukhovich} coderivative of <I> at (x, y) is the multifonction
D*<I>(x, y) : IR.m ::::t lRn defined for all y* E IR.m by

D*<I>(x, y)(y*) := {x* E IR.n : (x*, -y*) E Ncr(�)(x, y)}. 

For more details about these notions, we refer the reader to the monographs [13] 
and [23]. 

We recall now the following result for the characterization of the Aubin property, 
known in the literature as the Mordukhovich criterion. 

Theorem 2.1 ([12]). Let <I> : IR.n ::::::::::; lRm be a set-valued mapping and (x,y) E 
Gr(<I>). Suppose that Gr(<I>) is locally closed at (x, y). Then <I> has the Aubin 
property a round ( x, y) if and only if 

D*<I>(x, y)(O) = {O}. (17) 

Furthermore, the Lipschitz modulus of <I> at x for y is given by 

lip(<I>;(x,fï)) = IID*<I>(x,'!})11+ 

:= sup {llx*II : x* E D*<I>(x, y)(y*), IIY*II � 1}. (18) 

To unburden our notation, let us introduce the set-valued mapping Q : JR.n � JR_n 

defined by 
Q(z) := B77JJ(Bz). (19) 

On the basis of Theorem 2.1 one can now obtain the following characterization of 
the Aubin property of S.

Theorem 2.2 ([14]). Suppose that Q has a closed graph. Then the set-valued 
mapping S defined in (5) has the Aubin property around (p, z) if and only if the 
implication 

0 E MTb + D*Q(z,j5- Mz)(b) ==> b = 0, (20) 

holds true. 
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The generalized equation on the left-hand sicle of (20) is usually called the adjoint 
generalized equation. For the isolated calmness of S we dispose with a similar 
characterization on the basis of the graphical derivative. 

Theorem 2.3. Suppose that Q has a c losed graph. Then the set-valued mapping 
S defined in (5) has the isolated calmness property at (p, z) if and only if the 
implication 

0 E Mb + DQ(z,p - Mz)(b) � b = 0, (21) 

holds true. 

Proof. The proof of Theorem 2.3 follows easily from [10] (Corollary 4 C.2). In 
fact, by setting 

F(z) = Mz + Q(z), 

one bas 
DS(p,z)(0) = {0} � ker DF(z,p) = {O},

and DF(z,p)(b) = Mb + DQ(z,p - Mz)(b) for all b E Rn by virtue of Proposi­
tion 4 A.2 in [10]. D 

We conclude this preparatory session with a second order chain rule which enables 
us to compute the coderivative D*Q of the set-valued mapping Q defined in (19).

Theorem 2.4. Consider the composition tp o g, with tp : lRm - lR and g : 
]Rn - lRm . Let 8 be an arbitrary subdiff erential such that 8<p has a closed graph. 
Finally assume that g is twice continuously differentiable, and on a neighborhood 
W of x E lRn we have 

8(ip o g)(x) = (v'g(x)f âip(g(x)) for x E W. (22) 

Let ii E 8(<p o g)(x). If the Jacobian v'g(x) is surjective, then for all y• E ]Rn one 
has 

D*â(<p o g)(x, v)(y*) 

� (t, X;V'g,(x)) y•+ ('vg(xW D'ÊJ,p(g(x), X)(Vg(x)y'),
(23) 

where X E lRm is the unique vector satisfying (v'g(x)f>. = ii, i.e., X =

['v'g(x)(v'g(x)f]- 1 v'g(x)v.

Remark 2.5. This statement was established in a slightly less general setting in 
[15] (Theorem 3.4) as an inclusion with the remark that the reverse inclusion is
easily seen to hold as well. For the reader's convenience, we provide the proof of
the above theorem in the Appendix.

Clearly, the above statement applies, for instance, if 8 is the Clarke subdifferential 
and tp is locally Lipschitz. 
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3. Aubin property of the solution map

In this section we give a characterization of the Aubin property of the map S 
defined in (5) around the reference pair (p, z). Without any lack of generality 
we will assume that q = 0 and start with the general case without any additional 
assumptions on the problem data M, B and J. Thereafter we will try to specialize 
these conditions under additional assumptions. 
In what follows TE !Rmxn is the matrix defined by 

(24) 

Note that the product BBT is non-singular by virtue of the surjectivity of B. 

Theorem 3.1. The mapping S in (5) has the Aubin property around (p, z) if and
only if one has the implirotion 

((Tb)i, (Bb)i) E -Nar(éj,) ((Bz)i, vi) Vi = 1, 2, ... , m � b = 0, (�'.5)

where v is the unique solution of the linear system 

('. :6) 

Proof. Our starting point is the implication (20) in Theorem 2.2. So the ta.sk 
is to compute the coderivative of the multifonction Q given by (19). To this 
aim, we invoke the second-order chain rule (23), whose assumptions are evidently 
satisfied because B is surjective and Gr (8J) is closed (due to the assumed Lipschitz 
continuity of the fonction J). In this case, the adjoint general equation in (20) 
can be rewritten as 

o E MTb + BT D*8J(Bz, v)(Bb). (27) 

Using the specific structure of J given in (2), we have for any x E IR"' 

m 

8J(x) = IJ 8ji(xi) and 
i=l 

Gr(tJJ) = { (x, y) E !Rm x IR"' : (xi, Yi) E Gr(8ji), Vi = 1, 2, ... , m }. (28) 

The second equality in (28) enables us to employ [23] (Proposition 6.41 ), which 
leads for every b E !Rm to the equivalences 

a E D•BJ(x, u)(b) {=::> ai E D•aji(xi, ui)(bi) Vi = 1, 2, ... , m
{=::> (ai, -bi) E Nar(8j,)(xi, ui) \:/i = 1, 2, ... , m. 

The generalized equation (27) attains now the form of the system 

0 = MTb+BTc 
(e;,(-Bb)i) E Nar(EJj,)((Bz)i,vi), Vi= 1,2, . .. ,m. 

(29) 

It remains to express the vector c = (c1,c2, ... ,c,.,,,f E !Rm in the form c = -Tb 
and the proof of Theorem 3.1 is thereby completed. □
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Remark 3.2. (i) If n = m and B = In (the identity matrix), then T = M7'. In 
this case, condition (25) takes the following form 

(ii) If M is nonsingular, we may use the equation in (29) in the reverse way to
arrive at the condition

(Ci, (Rc)i) E -Nac(8j;) ((Bz)i, vi) Vi = 1, 2, ... , m => c = 0, (31) 

where R := B(MT)- 1 BT . Indeed, in this case b = -(M7')-1 BT c and the result
follows easily from (29) because 

b=0�c = 0 

due to the injectivity of BT .
If, in addition, B = In , then (31) reduces to the form 

Quite often in applications Mor Ris a P-matrix or a positive semi-definite matrix 
and then we can sometimes exploit these additional properties in connection with 
condition (30) and (31). We recall that a matrix ME Rnxn is a P-matrix if all its 
principal minors are positive or equivalently 

(Vx E lRn,x =/ 0)(3i E {1, ... ,n}): xi(Mx)i > O. 

Theorem 3.3. Assume that M is nonsingular, R is a P-matrix and for all i = 
1,2, ... ,m 

Nac(/Ji,) ((Bz)i,i\) C {(a,b) E lR2 
: ab::_; 0}. (33) 

Then S has the Aubin property around (p, z). 

Proof. Suppose by contradiction the existence of a nonzero vector c E lRm \ {0} 
such that the implication (31) is not satisfied. By virtue of (33), we have 

(c;, (Rë)ï) ::.; 0, Vi = 1, 2, ... , m. (34) 

However, since Ris a P-matrix, it follows that for each vector c E lRm, there must 
be an index i E {1, 2, ... , m} such that (ci, (Rc)i) > 0, which contradicts (34) and 
ensures the validity of (31). D 

Remark 3.4. In this way, we have established the fact that the Aubin property 
holds whenever M is nonsingular, Ris a P-matrix and all fonctions ji are convex 
for i = 1, 2, ... , m. Observe that R can be a P-matrix even if MT is not. To see 
this consider e.g. the matrices 

MT = 
(-1 2) 

1 -1 '
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In some situations the Aubin property of S around (p, z) may be ensured via the 
(more restrictive) notion of strong metric regularity of the inversé map s- 1 defined
by 

s-
1 (z) := Mz + BT8J(Bz)

at (z,p), cf. [9, Proposition 3G.l]. This amounts to the statement that the mapping
S has a single-valued Lipschitz localization around (p, z). Such a situation arises if,
e.g., B = In , M is symmetric positive definite and J is convex, cf. [23, Proposition
12.54].

We conclude this section with an attempt to combine the positive semi-definitness 
of M with condition (25). 

Theorem 3.5. Assume that M is symmetric and positive semi-definite, B = I
n
,

condition (33) is fulfilled and
Vb E ker M, :3i E {1, 2, . . .  ,n} such that (O,bi) <t -Nar(lJj;) (zi,ïïi) . (35)

Then S has the Aubin property around (p, z).

Proof. Let us analyze a possible violaticn of condition (30) by a vector b. Assume 
first that b E ker(M) \ {O}. Due to assumption (35) such a vector evidently cannot 
violate this condition. So let now b ft ke:r(M) so that 

(b, Mb) > O. 

However, the relations on the left-hand side of implication (30) imply that 

n 

(b, Mb) = L bi( \.1b)i :S 0,
i=l 

by virtue of (33). Consequently, this b cannot violate condition (30) as well, and 
thus the statement has been established. D 

We note that all the above conditions becc me really workable only in the case 
when we are given the functions ji and the reference point (p, z). A possible usage 
of Theorem 3.5 is now illustrated by the fol10wing academic example. 

Example 3.6. Let 

M= G �), B=h, 

i2(x2) = Jx2l + �x� with some E: > 0,

and consider the reference point (p, z) with j5 = (-1, -1 f and z = (0, Of. Here, 
one can easily show that, due to the small quadratic term in j2 , condition (35) is 
fulfilled. Since M is positive semi-definite and condition (33) holds true by the 
convexity of j1 and h, Theorem 3.5 applies and so the respective S has the Aubin 
property around (p, z). 
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In some applications it might be useful to know the value of lip(S; (p, z)). By 
virtue of (18) and (27) we obtain that 

lip(S; (p, z)) = sup{llbll : Mrb + B r D*8J(Bz, v)(Bb) n r& =I= 0}. 

To simplify the notation, let us denote lip(S; (p, z)) by K. Clearly, K equals the 
supremal value of the objective in the optimization problem 

maximize llbll 
subject to MTb + B T 

w E B 
(w, -Bb) E NGr(8J)(Bz,v).

Due to (2) the last constraint in (36) amounts to 

(w., (-Bb).) E NGr(8i;)((Bz)i, vi), i = 1, 2, ... , m. 

Since the fonctions ji have typically the form 

( 36) 

(37) 

where r. is a closed interval and v. is piecewise C2 in the sense defined in [15], one 
can employ the results from [15, Section 4] and conclude that the normal cones in 
(37) can be expressed as unions of at most three convex polyhedral cones in IR2 .
So, if NGr

(8j;)( (Bz)i, vi) = u;=l A{ for all i, we can replace (36) by the disjunctive 
optimization problem 

maximize llbll
subject to M7'b + B T 

w E B 
3 

(wi,(-Bb)i)E LJAi, i=l,2, ... ,m. 
j=l 

(38) 

If problem (38) possesses a solution, say (b, w), then it can be numerically solved 
by standard techniques and K = llbll. If (38) does not possess a solution and the 
suprémal value of its objective is finite, we get typically only a lower estimate 
of K. Finally, if there is a sequence of feasible points (b(k), w(k)) in (38) with 
llb(k) Il -+ +oo, then the respective S does not have the Aubin property around
(p, z). 

In Section 5 we will illustrate the nature of problem (38) by means of a simple 
academic example. 

4. Isolated calmness of the solution map

In this section, we give a characterization of the isolated calmness of the map S 
defined in (5) in terms of the data (M, B, J) involved in problem (1). 
We start with an auxiliary lemma which might be helpful also in other situations. 
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Lemma 4.1. Let 2 = A-1(r) where r c JR.n is closed and A E JR.nXm is a surjec­
tive matrix. Let A = G(2), where G E JR.lxm is an injective matrix, u E A and ïi 
be uniquely given by Gïi = u. Then one has 

TA(u) = {Gw : Aw E Tr(Av)}. (39) 

Proof. By virtue of the surjectivity of A, we have, cf. [23] (Exercise 6.7) that 

Ts(v) = {w : Aw E Tr(Aïi)}. 

We have, 
{Gw : w E Ts(ïi)} C TA(u). (40)

Indeed, let w E Ts(v). By definition of the tangent cone, there are sequences 
vi --+ v in 2 and ti L o+ as i --+ +oo such that

Vi - ÏÏ -- --+ w as i --+ +oo.
ti 

Clearly we have Gvi --+ Gv = u as i --+ +oo.

Therefore, 

Hence, 

Gv--u • --+ Gw as i --+ +oo.
ti 

It remains to prove that TA(ü) C {Gw : w E Ts(ïi)}, which can be conducted by 
a similar reasoning. Let k E TA(u), i.e., there are sequences ki --+ k, Àï L O such 
that 

u + Àiki = Gwi 

for some sequence (wi) C 2. One has thus 

k- = G
w

i - ïi 
• 

Ài . 
We : how now the boundedness of the sequence (hi) defined by 

W· -ïi
hi = T· 

Assume by contradiction that ( hi) is unbounded. Hence there exists a subsequence 
(still denoted by (hi)) such that Jlhill --+ +oo as i --+ +oo. By passing to a 
subsequence if necessary, we have 

It follows that 
ll�: II 

--+ s with 11s11 = 1. 

Gs=O, 

which contradicts the injectivity of G. Thus, the sequence (hi) possesses a conver­
gent subsequence with the limit in Ts(ïi). We conclude that k E GTs(ïi), which 
com;:,letes the proof. D
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Remark 4.2. The surjectivity of A can be replaced by the weaker qualification
condition

Arz= 0 } z E Nr(Aïi) ==> z = O,

provided r is normally regular at Av.

On the basis of Theorem 2.3 and equality (39) we are now in a position to state
the following characterization of the isolated calmness of S in terms of the problem
data. Thereby we set 

(41) 

Theorem 4.3. Assume that for each i = l, 2, ... , m there are neighborhoods Ui
of the points ((Bz);,vi) such that 

l; 

Gr(8Ji) nui = LJ cyl, (42)
v=l 

where li are given integers and the sets cSi), v = 1, ... , li , are closed and normally
regular at ((Bz)i, ïii). Then the isolate.d calmness property of S at (p, z) holds true 
if and only if one has the implication 

1, 

((Bb)i, -(Wb)i) E LJ Td,i((Bz)i, vi) Vi = 1, 2, ... , m ==> b = 0, (43)
v=l 

where ii is given by (26).

Proof. Our starting point is the implication (21) in Theorem 2.3. To computethe graphical derivative of Q, we observe that 

Gr(Q) = { G [!] : A[!] E Gr(8J)},

where

is injective and

is surjective. By virtue of (28) one has generally only the inclusion
m 

Tar�J)(Bz,v) C fITar&j; ((Bz)i,vi). (44) 
i=l 
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However, thanks to the structural assurnption ( 42), inclusion ( 44) becornes equality (cf. {23], Proposition 6.41). This enables us to invoke Lemma 4.1, according to which we have 

i.e.,

{ 
1; 

} DQ(z,p - Mz)(b) = BT
C : ((Bb)i, ci) E � Tdi) ((Bz)i, vi) ' Vi .

The implication (21) can thus be rewritten to the form 
Mb+BTc=0

} ((Bb)i, Ci) E LJ�=l Tdil ((Bz)i, 1Yï), Vi ===? 
b = O,

from which condition ( 43) follows because c = -Wb. This completes the proof of Theorem 4.3. D 
5. Illustration in non-regular electrical circuits

The airn of this section is to develop a mathematical model of electronic circuits involving devices like diodes, Zener diodes, DIACs, Silicon controlled rectifiers that are characterized by set-valued monotone or non-monotone ampere-volt character­istics. Electrical devices like diodes are described in terms of Ampere-Volt characteristic (I, V) which is a multifonction expressing the difference of potential V across the de vice as a fonction of current i going through the device ( for more details we refer to [2, 4, 6] and references therein). 
An electronic circuit is formed by the interconnection of electronic components like generators, resistors, capacitors, inductors, diodes, transistors, etc. The behavior of a circuit is usually described in terms of currents and voltages that can be speci­fied for each involved electrical device. An approach to state a mathematical model that can be used to determine these currents and voltages requires to formulate the ampere-volt characteristic of each electrical device, to write clown the Kirchoff'svoltage law expressing that the algebraic sum of the voltages between successive nodes in all loops of the circuit are zero and to write down the Kirchhoff 's current law stating that the algebraic sum of the currents in all branches which flow to a common node equals zero. 
Let A E JR.nXn' D E JR.nXm' C E JR.mXn and E E JR.nXp be given matrices. Let J : JR.m - lR. be a given fonction. It is assumed that x f--+ J(x) is locally Lipschitz. Suppose that the state-space equations attain the form 

('P) {Ax + DyL + Eu =_0 y= Cx and YL E âJ(y), 
13



where u E IR." is a given vector (usually u is a control vector that drives the system). 
This framework is particularly usefol for the study of non-regular circuits involving 
nonsmooth electrical devices. In this case, the matrices A, C, D and E are u.sed 
to state the Kirchhoff's voltage and current laws in matrix form. In general, A

contains some electrical parameters like resistance, capacitance or inductance. The 
state x denotes a current vector and YL is a voltage vector corresponding to the 
electrical devices involved in the circuit. 
Suppose that the following key assumption is satisfied: 

there exists a symmetric and invertible matrix RE IR."xn 

such that: R2 D = cr
(45) 

For the connection of assumption (45) with the positive realness (which may be 
seen as a generalization of the positive definiteness of a matrix to the case of a 
dynamical system) of the transfer fonction H(s) = C(sln - A)-1 D, s E C asso­
ciated to problem (P), and the Kalman-Yakubovich-Popov lemma, see Lemma 1 
in [4] and references therein. The Kalman-Yakubovich-Popov lemma has been a 
cornerstone in control and system theory due to its wide range of applications. It 
relates the frequency domain conditions for positive realness to a set of algebraic 
equations (Linear Matrix Inequalities describing the state-space representation of 
the system) and to the dissipativity of the storage fonction. For more details see 
[7]. 

Problem (P) is equivalent to the following variational inclusion: 

0 E Ax + D8J(Cx) + Eu. 

Setting z = Rx, we have 

0EAx+D8J(Cx)+Eu # 0ERAR-1Rx+RD8J(CR-1Rx)+REu 
# 0 E RAR- 1z + R-1R2D8J(CR-1z) + REu 
# 0 E RAR-1z + R-1 crlJJ(CR-1z) + REu. 

This allows us to consider the problem 

Q { 
Find z E IR." such that 

( ) 
0 E RAR-1z + REu + R-1craJ(CR-1 z). 

We note that problem (Q) is of the form (1) with f(z) = RAR-1z + REu and
B = CR-1

• 

Proposition 5.1. Suppose that assumption (45) is satisfied. If (x,yL) is a solu­
tion of Problem (P) then z = Rx is a solution of Problem ( Q). Conversely, if z 
is a solution of Problem (Q) then there exists a function YL such that (R-1z,YL)

is a solution of Problem (P). 

14



Proof. We have seen above that if (x, YL) is a solution of Problem (P) then z = Rx 
is a solution of Problem Q. Suppose now that z is a solution of Problem Q. Then 
setting x = R-1z, we see as above that:

0 E Ax + D8J(Cx) + Eu. 

lt follows that there exists a vector y L E 8J ( Cx) such that: 

0 = Ax + DyL + Eu. 

By setting y= Cx, we have 

0 = Ax+ DyL + Eu, y= Cx and YL E 8J(y). 

Figure 5.1: 1-V characteristic of a DIAC 

□ 

Example 5.2. (A diode clipping circuit with a DIAC.) A DIAC is a two­
terminal four-layer semiconductor device that can permit the current to flow in 
either direction when properly activated. The curve in Figure 5.1 illustrates the 1-V 
characteristic of a DIAC. Here ½. (resp. ¼ = -½.) is the forward (resp. reverse) 
breakover voltage while /1 (resp. /2 = -/1 ) is the forward (resp. reverse) breakover 
current. For example, for a practical trigger DIAC, V1 = 30 volts and /1 = 25 µA. 
It is clear that there exists a locally Lipschitz fonction j : R ---+ R such that the 
set-valued map in Figure 5.1 can be written as 

VE 8j(i). 

A DIAC clipper circuit can be used to limit the output voltage signal to a certain 
level. Let us consider the circuit from Figure 5.2 involving a load resistance R > 0, 
an input-signal source u and the corresponding instantaneous current i, a DIAC 
as a shunt element and a supply voltage E. Using Kirchho:ff's laws, we have 

U= VR+ V +E, (46) 

where VR = Ri and V E 8j(i) is the voltage across the resistor and the diode 
respectively. Hence, 

0ERi+E-u+8j(i), (47)

15
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Figure 5.2: A DIAC Clipping circuit 

which is an inclusion of the form (1) with the variable z := i. For simplicity, we 
assume that R = 1. We will describe all situations concerning the Aubin property 
and the isolated calmness of the DIAC by using Theorem 3.1 and Theorem 4.3. 
In this case the operators T and W defined in (24) and (41) are equal to 1 and 
the matrix B = 1. Therefore, the mapping S defined in (5) and associated to (47)
has the Aubin property around a point (p, z) if and only if the following condition 
holds true 

Nor(8j) (z,j5- z) n {(x,x) : x E lR} = {0}. (48) 
Since the graph in Figure 5.1 is symmetric, we have to discuss only the following 
three situations: 
• Suppose that z = 0 and j5 = -1. Using the (I-V)-characteristic of the DIAC
in Figure 5.1, it is clear that the Aubin property will depend on the slope of the
curve at x = o-. Let us suppose that J"(o-) = -a and we restrict ourselves to 
the nonmonotone case i.e. a > O. By definitions of the contingent and the limiting 
normal cones (11)-(15), we have 

Tor(ài)(0, -1) = lR+ [ �
l

] U lR+ [�] (49) 

Nor(àj)(0, -1) = lR [�] U lR [ =�] U cone { [�], [ =�]} · (50) 

Therefore, condition ( 48) is satisfied for (z, p) = (0, -1) if and only if 0 < a < 1. 
Consequently, for the DIAC, the map S satisfies the Aubin property around (-1, 0)
if and only if O < a < 1. 
In this case problem (38) attains the simple form 

maximize lb! 
subject to -1 � b + w � 1 

(w, b) E lR [ � ] U lR [ -� ] U cone { [ � ] , [
-

� ] } .
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Its solution can be readily found in Figure 5.3, according to which 

. 1
K = hp(S; (-1,0)) = -

1 
-. 
-a

Using (49) and (43), it is easy to check that for the DIAC, S satisfies the isolated 
calmness property at (p, z) = (-1, 0) if and only if a=/= 1. 
The results about the Aubin property around and the isolated calmness at (p, z) =
(-1, 0) for the DIAC circuit , depicted in Figure 5.2, are summarized in Table 5.1. 

(p,z) = (-1,0) Aubin property Isolated calmness 
a=l No No 
a>l No Yes 

0<a<l Yes Yes 

Table 5.1: Aubin property and isolated calmness around (p,z) = (-1,0).

• Suppose now that z < 0 and set j5 = z+v with v E 8j(z). It is easy to show that
both conditions ( 48) as well as ( 43) are satisfied at (p, z) if and only if j"(z) =/= -1.
Consequently, the map S satisfies the Aubin property around and the isolated
calmness at (p,z) with z < 0 if and only if j"(z) E]- 1,0[.

• Finally, it is easy to check that S has always the Aubin property around and the
isolated calmness at (O,p) with j5 E] - 1, 1[.
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(p, .z) with z < 0 Aubin property 
j"(z) = -1 No 

j"(z) ER-\ {-1} Yes 

Isolated calmness 
No 
Yes 

Table 5.2: Aubin property and isolated calmness around (p, .z) with z < O. 

Remark 5.3. If the graph in Figure 5 .1 was a maximal monotone operator (which 
is the case of the practical diode model or the Zener diode .model or the complete 
diode model [2]), then the Aubin property around and the isolated calmness at 
(-1, 0) hold without any restrictions. 

Example 5.4. Double-DIAC clipper circuit. 

Figure 5.4: A double DIAC Clipping circuit 

Let us consider the circuit depicted in Figure 5.4 with a resistor R > 0, two DIACs, 
an input-signal source u(t) and two supply voltages E1 < E2• The current through 
the resistor is denoted by i = i1 +i2. Using Kirchhoff's laws, we have the following 
system 

{E1 + R(�1 +�2)-u = +½
E2 + R( i1 + i2) -u = -½ 

(51) 

where ½ E âj1(-i1) and½ E âj2(i2) are the differences of potential across the 
DIACs D1 and D2 respectively. We suppose that the graphs of âj1 and âj2 are 
of the form depicted in Figure 5.1. In this case, it is easy to see that âj1 ( -i1 ) = 
-âj1 (i1).
Setting

M=(� �), p =(�=�:), z=(!:) (52) 
and J(z) := j1(ii) - j2(i2), 

we see that the system in (51) is equivalent to the variational inclusion 

p E Mz + âJ(z), (53)
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which is of the form ( 1) with B = 12 . We note that here the matrix Mis symmetric and positive semidefinite. We will thus apply Theorem 3.1 and Remark 3.2 (i). Let j�'(o-) = -a and j;(o-) = a with a > 0 and assume that R = l.• Suppose that the reference point (p, z) is given by z = (0, 0) and j5 = (-l, 1),see Figure 5.5.

Figure 5.5: A double DIAC Clipping circuit: Characteristics of the DIACs D1 and D2 
By Theorem 3. 1, the map S has the Aubin property around (p, z) if and only if the following holds (b1 +b2,b1) E -Ncr(âii)(O,-l) } =? (bi, b2) = (0,0),(b1 + b2, �) E -Ncr(8i2J(0, 1 ) which is equivalent to (b1,b2) E -L��Ncr(8ii)(O,-l) } =? (bi,b2) = (0,0), (54) (b1, b2) E -L2 Ncr(8h)(0, 1) 
with L1 = G �), Lï1 = (� !

1
), L2 = (� U, L21 = G �1).A simple computation shows us that the limiting normal cones are given by 

and Ncr(ëj1)(0,- l) = R[�] UR[=�] Ucone{[�], [=;]},
Ncr(8j2)(0, 1 ) = R [�] UR [�a] Ucone {[�],[�a]}.In this case, equation (54) is equivalent to 

(55) 
(56) 

(bi, b2) E R [ � 
1
] UR [a � 1] U cone{ [ � 1] , [a � 1] } } (b1,b2) ER [�l] UR [1�/] Ucone{ [�l], [1�/]} (57) 

=? (b1, b2) = (0, 0).
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A simple computation shows us that {57) does not hold. In fact, 

with a = a + l > 0 and /3 = l. 
Consequently, the Aubin property of S around the point (p, z) with z = (0, 0) and 
p = (-1, 1) does not hold. 
By Theorem 4.3, the isolated calmness property of S at (p, z) is satisfied if and 
only if the following implication holds true 

{b1, -b1 - b2) E IR+ [ �l] U IR+ [�]
{b2, -b1 - b2) E IR+ [ =!] U IR+ [ � 

l]
which is equivalent to 

}- (b,, b,) - (0, 0), 

(b1, b2) EIR+ [
1
�1a] UR+ [�

1
]

(b1, b2) E IR+ [1 �/] U lR+ [�] }- (b,,b,) - (0, 0). (58) 

It easy to check that (58) is satisfied whenever a > O. Consequently, the isolated 
calmness of S at (p, z) is satisfied with j5 = {-1, 1) and .ï = (0, 0). 

• Suppose that the reference point (p, z) is given by z = (0, 0) and j.5 = (-1, -1 ),
see Figure 5.6.

Figure 5.6: A double DIAC Clipping circuit: Characteristics of the DIACs Di and 
D2 

Using the same analysis as before, it is easy to show that the map S has the Aubin 
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property around (p, z) if and only if the following holds 

Since, 

(b1,b2) ER [�1] UR [
a

� 1] Ucone { [�1], [
a � 1]} 

}
(b1, b2) ER [6] UR[-\- a] U cone { [6] , [-\-a]}

(59) 

=> (b1, b2) = (0, 0). 

with a = a2 > 0 and /3 = a + l > 0, we observe that the Aubin property of the 
map S does not hold around (p, z) with z = (0, 0) and p = (-l, 

-
1 ). 

The isolated calmness property of S at ('\ z) is satisfied if and only if the following 
implication holds true 

}- (b1, b,) = (0, 0). (60) 

It is easy to show that if a > 0, then (60) 1s satisfied. Therefore, S satisfies the 
isolated calmness property at (p,z) with z = (0,0) and p= (-1,-1). 
• Suppose now that the reference point is (fi, z) with z = (z1, z2), z1 < 0 and

. z2 < 0, see Figure 5.7. 

Figure 5.7: A double DIAC Clipping circuit: Characteristics of the DIACs D1 and 
D2 
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The map S has the Aubin property around (p, z) if and only if the following holds 

(b1 + b2,b1) E -Ncr(aj
1
)(z1,P1 - z1 - z2) = lR [�]

} 
(b1 + b2, b2) E -NGr(8h)(z2,P2 - Z1 - z2) = JR [-t] (5l) 

==> (b1, bi) = (0, 0).

In this case we conclude that since a > 0, the implication in (61) holds true. 
Consequently, the map S has the Aubin property around (p, z). 

6. By the way of conclusion

In this paper, we studied the Aubin property and the isolated calmness of the 
solution map to a non-monotone variational inclusion with respect to canonical 
perturbations. If, instead of canonical perturbations, we perturb the matrix M 
(in a sufficiently smooth way) then, as explained in the theory developed in [10], 
the conditions in Theo rems 3.1, 4.1 will become only sufficient ( for the respective 
stability properties). We showed that our theoretical results are applicable to 
the mathematical analysis of nonregular circuits involving nonsmooth electrical 
devices like DIAC (whose I-V characteristic is nonmonotone) which is a topic of 
major importance in electrical engineering. Some other electronic devices like 
SCR.s, Zener diodes or transistors can be treated in the same way. In order to 
use the chain rules in subdifferential calculus, we have assumed that the matrix B 
is surjective; it would be interesting to relax this condition. Another interesting 
question is to study the (non-isolated) calmness of S. This is, however, out of the 
scope of this work and will probably be the subject of a forthcoming paper. 

Acknowledgements. The authors would like to express their gratitude to the hand­
ling editor and to an anonymous reviewer for their important comments and suggestions. 

7. Appendix

Proof of Theorem 2.4. By the assumption (22), for all x around x one has 

8(cp o g)(x) = (f o G)(x), 

where G(x) := (x, G(x)) and the mappings f: ]Rn x Ilr ----. Rn, G: ]Rn =t JR_m in 
the latter representation are defined by 

f(x, >.) := (v'g(x)f >., G(x) := Ôcp(g(x)). 

Next we invoke [13] (Lemma 1.126, Statement (1.64)), the assumptions of which 
are clearly fulfilled. One arrives for all y• E ]Rn at the equality 

D*(f o G)(x, v)(y*) = (v' xf(x, X)f y*+ D*G(x, X)(v'g(x)y*) 

= ( t ,\; V2g,(X)) y• + D'G(x, À)(V g(X)y'), 
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where X E 8cp(g(x)) is the unique solution of the equation v = (Vg(x)f>.. It 

remains thus to compute D*G(x, >.). To this aim we observe that

Hence, by [23] (Exercise 6.7) due to the surjectivity of Vg(x) 

_ -
[ 

(V g( x) f o 
] 

_ -
Nc,(c)(x, .X)= 

0 lm NcdJ<p
(g(x), .X)

so that x* E D*G(x, >.)(V g(x)y*) amounts to

x* = (Vg(x)f a with a E D*âcp(g(x),>,)(Vg(x)y*), 

and we are done. 
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