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The main concern of this paper is to investigate some stability properties (namely Aubin property and isolated calmness) of a special non-monotone variational inclusion. We provide a characteri zation of these properties in terms of the problem data and show their importance for the design of electrical circuits involving nonsmooth and non-monotone electronic devices like DIAC (Dlode Altematîng Current). Circuits wîth other devices like SCR (Silicon Controlled Rectifiers), Zener diodes, thyristors, va.ractors and transistors can be analyzed in the same way.

Introduction and problem formulation

In this paper, we intend to analyze some qualitative stability properties for a non-monotone variational inclusion of the following form:

p E f(z) + B T [)J(Bz), (1) 
where f: R n -+ R n is a given mapping and BE R mxn , p E R n are a given matrix and a given vector with m ::::; n, respectively. Throughout the paper, we assume that B is surjective. The fonction J : !R m -IR, x = ( X1, .... , X m ) 1-+ J ( x) is defined by J(x) = j1 (x 1 ) + j2 (x 2 ) + .. • + jm (X m ), 'v x = (x i, ... ,x m ) E !R m , (2) where j i : lR -lR are supposed to be locally Lipschitz for every i = 1, 2, ... , m.

For a locally Lipschitz fonction <.p : JR N -IR, &<.p denotes its Clarke generalized gradient ( [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]) defined by 8 <.p (x) := {p E !R N : <.p 0 (x; y ) 2: (p, y), \/y E JR N }, where <.p 0 (x; y) stands for the Clarke generalized directional derivative of <.p at x in the direction y defined by . <.p(z + >.y) -<.p(z) <.p 0 (x; y):= hm sup--'----'----------.

À-+Û+

.,\ Z-+X [START_REF] Addi | Modelling and analysis of a non-regular electronic circuit via a variational inequality formulation[END_REF] Various problems arising in mechanical and electrical engineering can be formu lated in the form [START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF]. We will show in this paper that the model ( 1) is of particular interest in the theory of electrical circuits containing nonsmooth electronic devices like DIACs (Dlode Alternating Current), Silicon Controlled Rectifiers, thyristors, varactors and transistors.

Modeling of electrical circuits is usually performed by using Kirchhoff 's laws and the Ampere-Volt ( or I-V) characteristics for each involved electronic device which are graphs of mappings (possibly set-valued) relating the voltage V to the current i. Electrical devices like resistors, inductances and capacitors are usually described by a single-valued (1-V) mapping (linear or non-linear) and are called "smooth electrical devices". On the other hand, semiconductors like diodes, DIACs, Silicon Controlled Rectifiers (SÇR) and transistors are defined generally by means of set valued (I-V) characteristics and are called "nonsmooth electrical devices". The mathematical modeling of electronic circuits involving smooth electrical devices leads generally to algebraic/differential equations that can be studied by using classical mathematical analysis. On the other hand, mathematical modeling of electronic circuits involving nonsmooth electrical devices leads generally to varia tional/ differential inclusions that can be handled by using tools from variational and nonsmooth analysis. An efficient approach for the treatment of monotone set-valued maps in the framework of variational inequalities relies on the notion of convex superpotential introduced by J. J. Moreau [START_REF] Moreau | La notion de sur-potentiel et les liaisons unilatérales en élastostatique[END_REF] and generalized by P. D. Panagiotopoulos [START_REF] Panagiotopoulos | Non-convex superpotentials in the sense of F. H. Clarke and applications[END_REF] to the case of non-monotone set-valued maps by using the generalized gradient of F. H. Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] for locally Lipschitz fonctions. The usage of tools from variational and nonsmooth analysis for the study of elec trical circuits is a fairly recent and quite promising topic of research [START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF][START_REF] Addi | A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular cir cuits in electronics, Nonlinear Anal[END_REF][START_REF] Addi | A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems[END_REF]Il].

To the best of our knowledge, this paper is the first work dealing with the quali tative stability of electronic circuits containing nonsmooth electrical devices with non-monotone (I-V)-characteristics. For the monotone case, we can cite e.g. [START_REF] Addi | A sensitivity analysis of a class of semi coercive variational inequalities using recession tools[END_REF],

[4], [START_REF] Addi | Modelling and analysis of a non-regular electronic circuit via a variational inequality formulation[END_REF], [START_REF] Goeleven | Existence and uniqueness for a linear mixed variational inequality arising in electrical circuits with transistors[END_REF].

In electrical engineering, one usually uses a circuit simulator for predicting the behavior of an electronic circuit. Most used software, for the smooth case, are based on various versions of SPI CE (Simulation Program with Integrated Circuits Emphasis). The simulation of nonsmooth electronic circuits are well-known to be a difficult task. Due to the lack of smoothness, classical mathematical analysis is not applicable and requires natural extensions. This paper is devoted to qualitative stability analysis of ( 1) under the structural assumption that

J(x) = Mx -q, Vx E lR n , (4) 
where M E lR n x n and q E ]R n are a given matrix and a given vector. Without Joss of generality, we will suppose that q = O.

By stability analysis we mean a study of the local behavior of the solution map

S : ]R n =î ]R n defined by S(p) = {z E ]R n : p E Mz -q + B T [)J(Bz)}, around a reference point (p, z) E Gr(S). ( 5 
)
The structure of the paper is as follows: In Section 2 we recall the definitions of several basic notions from nonsmooth analysis and state some principal results, substantial in our development. Section 3 in devoted to characterizations and criteria (sufficient conditions) for the Aubin property of S, whereas in Section 4 we examine in the same way the isolated calmness of S. Section 5 deals then with the application of the derived conditions to concrete electronic devices, namely the DIAC.

The used notation is basically standard. For x, y E JR_ n , (x, y) stands for the Euclidean scalar product on lR n and llxll = ./(x,x) is the corresponding norm. lIB is the unit ball, ô n is the indicatory fonction of a set n and I n denotes the unit matrix in lR n . For a set-valued map (multifonction) <I>: JR. n =î JR. m , Gr(<I>) := {( x, y) E R n X lR.

m IY E <I>( x )} denotes its graph. The Kuratowski-Painlevé upper ( outer) limit of <I> as x ___. x, denoted by Limsup x --+x <I>(x), is defined by Limsup <I> (x) := {x* E lR n : :3xk ___. 

Mathematical tools

In this section, we provide definitions and properties of some essential notions from nonsmooth analysis that will be used throughout this paper. For more details we refer to [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. 1: Basic Theory[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF]].

• Aubin Property: Let S : R n � R m be a set-valued mapping and (x, y) E Gr(S ). S is said to have the Aubin property around (x, y) if there exists a constant K 2::: 0 and neighborhoods U C R n of x and V C R m of y such that S(x') n V C S(x) + Kllx' -xlllBI, for all x, x' EU.

(

The Lipschitz modulus of S at x for y, denoted by lip(S; (x, y)), is defined by lip(S; (x, y))= inf {/<i, ER + : ?J U E N (x), VE N (y)

such that condition (8) is satisfied},
where the notation N(x) stands the collection of all neighborhoods of x.

• Isolated calmness: The set-valued mapping S: R n � R m is said to be isolat edly calm at (x, y) if there exists a constant K-2::: 0 and neighborhoods U c ]R n of x and V C R m of y such that S(x) n V c y+ /<i,llx -xlllBI, for all x EU.

(

) 10 
We note that the linear mapping associated with every matrix A E R mxn is isolatedly calm at any point . The isolated calmness of its generalized inverse A-1 (-) is equivalent to its injectivity, i.e., A-1 (0) = { O } . More generally, for a fonction f : ]R n -+ lR m (supposed sufficiently smooth around x), the inverse 1-1 (-) is isolatedly calm at (f(x),x) if and only if the derivative mapping v' f(x) is injective.

In [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF] it is shown that a set-valued mapping S : JR. n � R m , whose graph is the union of finitely many polyhedral convex sets, is isolatedly calm at (x, y) if and only if y is an isolated point of S(x).

• Let A C R n be a nonempty subset of ]R n and i: E A. The Bouligand tangent (contingent) cone to A at x is defined by or equivalently,

A-x

TA(i:) = Limsup --, t-o+ t (11) 
• The regular (Fréchet) normal cone to a subset A C ]R n at i:, denoted by NA(x), is defined by 

NA(x) = {x* E JR.
• The limiting (Mordukhovich} normal cone to A at x, denoted by NA(x), is the cone

NA(x) = Limsup NA(x). (15) 
.,-,i,

xEA
Let us remark that if the set A is closed and convex, then the regular and the limiting normal cones coïncide with the normal cone in the sense of convex analysis defined by

N A (x) := { x * E JR. n : (x *, x -x ) � 0 for all x E A } . • A subset AC JR_ n is called normally regular at x E A provided N A (x) = N A (x).
• Let <I>: JR. n ::::t IR. m be an arbitrary set-valued mapping. For (x , y) E Gr(<I> ), the graphical (contingent) derivative of <I> at (x , y) is the mapping D<I>(x, y) IR. n 4 lR m defined by

D<I>(x,y)(z) = {w E IR. m : (z ,w ) E Tcr(�) (x,y) }, z E IR. n . ( 16 
)
• The limiting (Mordukhovich} coderivative of <I> at (x, y) is the multifonction D * <I>(x, y) : IR. m ::::t lR n defined for all y * E IR. m by

D*<I>(x, y)(y * ) := { x * E IR. n : (x *, -y * ) E N cr(�) (x , y) } .
For more details about these notions, we refer the reader to the monographs [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. 1: Basic Theory[END_REF] and [START_REF] Rockafellar | Variational Analysis[END_REF].

We recall now the following result for the characterization of the Aubin property, known in the literature as the Mordukhovich criterion.

Theorem 2.1 ([12]

). Let <I> : IR. n :::::::: lR m be a set-valued mapping and (x,y) E Gr(<I>). Suppose that Gr(<I>) is locally closed at (x, y). Then <I> has the Aubin property a round ( x, y) if and only if

D*<I>(x, y)(O) = {O}. ( 17 
)
Furthermore, the Lipschitz modulus of <I> at x for y is given by lip ( <I> ;(x , fï)) = IID* <I>( x , '!} ) 11

+ := sup {llx*II : x * E D*<I>(x, y)(y*) , IIY*II � 1} . (18) 
To unburden our notation, let us introduce the set-valued mapping Q : JR. n � JR_ n defined by

Q(z) := B77JJ(Bz). ( 19 
)
On the basis of Theorem 2.1 one can now obtain the following characterization of the Aubin property of S.

Theorem 2.2 ([14]

). Suppose that Q has a closed graph. Then the set-valued mapping S defined in [START_REF] Addi | A sensitivity analysis of a class of semi coercive variational inequalities using recession tools[END_REF] has the Aubin property around (p, z) if and only if the implication

0 E M T b + D*Q(z,j5-Mz)(b) ==> b = 0, ( 20 
) holds true.
The generalized equation on the left-hand sicle of ( 20) is usually called the adjoint generalized equation. For the isolated calmness of S we dispose with a similar characterization on the basis of the graphical derivative.

Theorem 2.3. Suppose that Q has a closed graph. Then the set-valued mapping S defined in (5) has the isolated calmness property at (p, z) if and only if the implication

0 E Mb + DQ(z,p -Mz)(b) � b = 0, (21) holds true.
Proof. The proof of Theorem 2.3 follows easily from [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF] (Corollary 4 C.2). In fact, by setting

F(z) = Mz + Q(z), one bas DS(p,z)(0) = {0} � ker DF(z ,p) = {O},
and [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF]. D

DF(z,p)(b) = Mb + DQ(z,p -Mz)(b) for all b E R n by virtue of Proposi tion 4 A.2 in
We conclude this preparatory session with a second order chain rule which enables us to compute the coderivative D*Q of the set-valued mapping Q defined in [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Fu.nctions[END_REF]. Finally assume that g is twice continuously differentiable, and on a neighborhood W of x E lR n we have 8( ip o g)( x ) = (v'g( x ) f âip(g(x)) for x E W.

( (23) where X E lR m is the unique vec tor satisfying (v'g(x)f>. = ii, i.e., X =

) 22 
Let ii E 8(<p o g)(x). If the Jacobian v'g(x) is surjective, then for all y• E ]R n one has D*â(<p o g)(x, v)(y*) � (t, X;V'g,(x)) y•+ ('vg(xW D'ÊJ,p(g(x), X)(Vg(x)y'),
['v'g(x)(v'g(x)f]- 1 v'g(x)v.
Remark 2.5. This statement was established in a slightly less general setting in [START_REF] Mordukhovich | On second-order subdifferentials and their applications[END_REF] (Theorem 3.4) as an inclusion with the remark that the reverse inclusion is easily seen to hold as well. For the reader's convenience, we provide the proof of the above theorem in the Appendix.

Clearly, the above statement applies, for instance, if 8 is the Clarke subdifferential and tp is locally Lipschitz.

Aubin property of the solution map

In this section we give a characterization of the Aubin property of the map S defined in (5) around the reference pair (p, z). Without any lack of generality we will assume that q = 0 and start with the general case without any additional assumptions on the problem data M, B and J. Thereafter we will try to specialize these conditions under additional assumptions.

In what follows TE !R mxn is the matrix defined by [START_REF] Yakubovich | Solution of certain matrix inequalities in the stability theory of nonlinear control systems[END_REF] Note that the product BB T is non-singular by virtue of the surjectivity of B. (

) 27 
Using the specific structure of J given in (2), we have for any x E IR "'

m 8J (x) = IJ 8j i(xi) and i=l Gr(tJJ) = { (x, y) E !R m x IR "' : (xi, Yi) E Gr(8ji), Vi = 1, 2, ... , m }. ( 28 
)
The second equality in (28) enables us to employ [START_REF] Rockafellar | Variational Analysis[END_REF] (Proposition 6.41 ), which leads for every b E !R m to the equivalences 

a E D•BJ ( x, u)(b) {=::> ai E D•aj i( xi, ui)(bi) Vi = 1,
) 33 
Then S has the Aubin property around (p, z).

Proof. Suppose by contradiction the existence of a nonzero vector c E lR m \ {0} such that the implication (31) is not satisfied. By virtue of (33), we have (c ;, (Rë)ï) ::.; 0, Vi = 1, 2, ... , m.

(34)

However, since Ris a P-matrix, it follows that for each vector c E lR m , there must be an index i E {1, 2, ... , m} such that (ci, (Rc)i) > 0, which contradicts (34) and ensures the validity of (31). D Remark 3.4. In this way, we have established the fact that the Aubin property holds whenever M is nonsingular, Ris a P-matrix and all fonctions j i are convex for i = 1, 2, ... , m. Observe that R can be a P-matrix even if M T is not. To see this consider e.g. the matrices

M T = (-1 2) 1 -1 '
In some situations the Aubin property of S around (p, z ) may be ensured via the (more restrictive) notion of strong metric regularity of the inversé map s-1 defined by s-1 (z) := Mz + B T 8J(Bz) at (z,p), cf. [ 9, Proposition 3G.l ] . This amounts to the statement that the mapping S has a single-valued Lipschitz localization around (p, z). Such a situation arises if, e.g., B = I n , Mi s symmetric positive definite and J is convex, cf. [ 23, Proposition 12.54 ] .

We conclude this section with an attempt to combine the positive semi-definitness of M with condition (25). and consider the reference point (p, z ) with j5 = (-1, -1 f and z = (0, Of. Here, one can easily show that, due to the small quadratic term in j 2 , condition (35) is fulfilled. Since M is positive semi-definite and condition (33) holds true by the convexity of j 1 and h, Theorem 3.5 applies and so the respective S has the Aubin property around (p, z ).

In some applications it might be useful to know the value of lip(S; (p, z)). By virtue of ( 18) and ( 27 If problem (38) possesses a solution, say (b, w), then it can be numerically solved by standard techniques and K = llbll. If (38) does not possess a solution and the suprémal value of its objective is finite, we get typically only a lower estimate of K. Finally, if there is a sequence of feasible points (b(k ) , w( k ) ) in (38) with ll b(k ) I l -+ +oo, then the respective S does not have the Aubin property around (p, z).

In Section 5 we will illustrate the nature of problem (38) by means of a simple academic example.

Isolated calmness of the solution map

In this section, we give a characterization of the isolated calmness of the map S defined in [START_REF] Addi | A sensitivity analysis of a class of semi coercive variational inequalities using recession tools[END_REF] in terms of the data (M, B, J) involved in problem [START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF].

We start with an auxiliary lemma which might be helpful also in other situati ons.

Lemma 4.1. Let 2 = A-1 (r) where r c JR. n is closed and A E JR. nXm is a surjec tive matrix. Let A = G( 2), where G E JR. lxm is an injective matrix, u E A and ïi be uniquely given by Gïi = u. Then one has T A (u) = {Gw : Aw E Tr(Av)}.

(39)

Proof. By virtue of the surjectivity of A, we have, cf. [START_REF] Rockafellar | Variational Analysis[END_REF] (Exercise 6.7) that Ts(v) = {w : Aw E Tr(Aïi)}.

We have, {Gw : w E Ts(ïi)} C T A (u).

(40) Indeed, let w E Ts (v). By definition of the tangent cone, there are sequences v i --+ v in 2 and ti L o + as i --+ +oo such that Vi -ÏÏ ----+ w as i --+ +oo. We : how now the boundedness of the sequence (h i ) defined by

W• -ïi hi = T•
Assume by contradiction that ( h i ) is unbounded. Hence there exists a subsequence (still denoted by (hi)) such that Jlhill --+ +oo as i --+ +oo. By passing to a subsequence if necessary, we have It follows that ll�:II --+ s with 11s11 = 1.

Gs=O, which contradicts the injectivity of G. Thus, the sequence (h i ) possesses a conver gent subsequence with the limit in Ts(ïi). We conclude that k E GTs(ïi), which com;:,letes the proof. 

D

Gr(8Ji) nui = LJ cyl, ( 42 
)
v=l where l i are given integers and the sets cS i ), v = 1, ... , l i , are closed and normally regular at ((Bz) i , ïi i) . Then the isolate.d calmness property of S at (p, z) holds true if and only if one has the implication 1,

((Bb)i, -(Wb)i) E LJ Td, i((Bz)i, v i) Vi = 1, 2, ... , m ==> b = 0, ( 4 3) 
v=l where ii is given by (26).

Proof. Our starting point is the implication (21) in Theorem 2.3. To compute the graphical derivative of Q, we observe that

Gr(Q) = { G [ ! ] : A[ ! ] E Gr(8J)},
where is injective and is surjective. By virtue of (28) one has generally only the inclusion

m Ta r �J)(Bz,v) C fITar&j; ((Bz) i ,v i ). ( 44 
)
i=l However, thanks to the structural assurnption ( 42), inclusion ( 44) becornes equality (cf. {23], Proposition 6.41). This enables us to invoke Lemma 4.1, according to which we have i.e.,

{ 1 ; } DQ(z,p -Mz)(b) = B T C : ((Bb)i, ci) E � Tdi) ((Bz)i, vi) ' Vi .
The implication [START_REF] Robinson | Sorne continuity properties of polyhedral multifonctions[END_REF] can thus be rewritten to the form

Mb+B T c=0 } ((Bb) i , Ci) E LJ�=l Tdil (( Bz ) i , 1Yï), Vi ===? b = O,
from which condition ( 43) follows because c = -Wb. This completes the proof of Theorem 4.3. D

Illustration in non-regular electrical circuits

The airn of this section is to develop a mathematical model of electronic circuits involving devices like diodes, Zener diodes, DIACs, Silicon controlled rectifiers that are characterized by set-valued monotone or non-monotone ampere-volt character istics.

Electrical devices like diodes are described in terms of Ampere-Volt characteristic (I, V) which is a multifonction expressing the difference of potential V across the de vice as a fonction of current i going through the device ( for more details we refer to [START_REF] Addi | A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular cir cuits in electronics, Nonlinear Anal[END_REF][START_REF] Addi | A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems[END_REF][START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with applications to friction problems[END_REF] and references therein).

An electronic circuit is formed by the interconnection of electronic components like generators, resistors, capacitors, inductors, diodes, transistors, etc. The behavior of a circuit is usually described in terms of currents and voltages that can be speci fied for each involved electrical device. An approach to state a mathematical model that can be used to determine these currents and voltages requires to formulate the ampere-volt characteristic of each electrical device, to write clown the Kirchoff ' s voltage law expressing that the algebraic sum of the voltages between successive nodes in all loops of the circuit are zero and to write down the Kirchhoff 's current law stating that the algebraic sum of the currents in all branches which flow to a common node equals zero.

Let A E JR. nX n' D E JR. nXm ' C E JR. mXn and E E JR. nX p be given matrices. Let J : JR. m -lR. be a given fonction. It is assumed that x f--+ J(x) is locally Lipschitz. Suppose that the state-space equations attain the form where u E IR." is a given vector (usually u is a control vector that drives the system).

This framework is particularly usefol for the study of non-regular circuits involving nonsmooth electrical devices. In this case, the matrices A, C, D and E are u.sed to state the Kirchhoff's voltage and current laws in matrix form. In general, A contains some electrical parameters like resistance, capacitance or inductance. The state x denotes a current vector and YL is a voltage vector corresponding to the electrical devices involved in the circuit.

Suppose that the following key assumption is satisfied:

there exists a symmetric and invertible matrix RE IR." xn such that: R 2 D = c r (45)

For the connection of assumption (45) with the positive realness (which may be seen as a generalization of the positive definiteness of a matrix to the case of a dynamical system) of the transfer fonction H(s) = C(sl n -A)-1 D, s E C asso ciated to problem (P), and the Kalman-Yakubovich-Popov lemma, see Lemma 1 in [START_REF] Addi | A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems[END_REF] and references therein. The Kalman-Yakubovich-Popov lemma has been a cornerstone in control and system theory due to its wide range of applications. It relates the frequency domain conditions for positive realness to a set of algebraic equations (Linear Matrix Inequalities describing the state-space representation of the system) and to the dissipativity of the storage fonction. For more details see [START_REF] Brogliato | Dissipative Systems Analysis and Control[END_REF].

Problem (P) is equivalent to the following variational inclusion: 0 E Ax + D8 J(Cx) + Eu.

Setting z = Rx, we have

0EAx+D8J(Cx)+Eu # 0ERAR-1 Rx+RD8J(CR-1 Rx)+REu # 0 E RAR-1 z + R-1 R 2 D8J(CR-1 z) + REu # 0 E RAR-1 z + R-1 crlJJ(CR-1 z) + REu.
This allows us to consider the problem

Q { Find z E IR." such that ( ) 0 E RAR-1 z + REu + R-1 craJ(CR-1 z).
We note that problem (Q) is of the form (1) with f(z) = RAR-1 z + REu and B = CR- Proof. We have seen above that if (x, YL) is a solution of Problem (P) then z = Rx is a solution of Problem Q. Suppose now that z is a solution of Problem Q. Then setting x = R-1 z, we see as above that: breakover voltage while / 1 (resp. / 2 = -/ 1 ) is the forward (resp. reverse) breakover current. For example, for a practical trigger DIAC, V 1 = 30 volts and /1 = 25 µA.

0 E Ax + D8J(Cx) + Eu.
It is clear that there exists a locally Lipschitz fonction j : R ---+ R such that the set-valued map in Figure 5.1 can be written as

VE 8j(i).

A DIAC clipper circuit can be used to limit the output voltage signal to a certain level. Let us consider the circuit from Figure 5.2 involving a load resistance R > 0, an input-signal source u and the corresponding instantaneous current i, a DIAC as a shunt element and a supply voltage E. Using Kirchho:ff's laws, we have

U= V R + V +E, ( 46 
)
where V R = Ri and V E 8j(i) is the voltage across the resistor and the diode respectively. Hence, 0ERi+E-u+8j(i), (p,z) = (-1,0) 

1] UR [ a � 1 ] U cone { [ �1] , [ a � 1]} } (b 1, b 2) ER [6 ] UR [ -\ -a] U cone { [6 ] , [ -\-a]} ( 
It is easy to show that if a > 0, then (60) 1s satisfied. Therefore, S satisfies the isolated calmness property at (p,z) with z = (0,0) and p= (-1 , -1).

• Suppose now that the reference point is (fi, z) with z = (z 1 , z 2 ), z 1 < 0 and . z 2 < 0, see Figure 5 In this case we conclude that since a > 0, the implication in (61) holds true.

Consequently, the map S has the Aubin property around (p, z).

By the way of conclusion

In this paper, we studied the Aubin property and the isolated calmness of the solution map to a non-monotone variational inclusion with respect to canonical perturbations. If, instead of canonical perturbations, we perturb the matrix M (in a sufficiently smooth way) then, as explained in the theory developed in [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF], the conditions in Theo rems 3.1, 4.1 will become only sufficient ( for the respective stability properties ) . We showed that our theoretical results are applicable to the mathematical analysis of nonregular circuits involving nonsmooth electrical devices like DIAC (whose I-V characteristic is nonmonotone) which is a topic of major importance in electrical engineering. Some other electronic devices like SCR.s, Zener diodes or transistors can be treated in the same way. In order to use the chain rules in subdifferential calculus, we have assumed that the matrix B is surjective; it would be interesting to relax this condition. Another interesting question is to study the (non-isolated) calmness of S. This is, however, out of the scope of this work and will probably be the subject of a forthcoming paper.
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Appendix

Proof of Theorem 2.4. By the assumption [START_REF] Rockafellar | Convex Analysis[END_REF], for all x around x one has

8(cp o g)(x) = (f o G)(x),

where G(x) := (x, G(x)) and the mappings f: ]R n x Ilr ----. R n , G: ]R n =t JR_ m in the latter representation are defined by f(x, >. ) := (v'g(x)f >., G(x) := Ô cp(g(x)).

Next we invoke [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. 1: Basic Theory[END_REF] (Lemma 1.126, Statement (1.64)), the assumptions of which are clearly fulfilled. One arrives for all y• E ]R n at the equality D*(f o G)(x, v)(y*) = (v' xf(x, X)f y*+ D*G(x, X)(v'g(x)y*) = ( t ,\; V 2 g,(X)) y• + D'G(x, À)(V g(X)y'),

  n 1 (x*,x} � 0 for all x E TA(x)} { ,. m,n I 1 . (x*, x -x} } = x E li'\. 11;1 �� P llx -xll � O • xEA[START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. 1: Basic Theory[END_REF] 

Theorem 2 . 4 .

 24 Consider the composition tp o g, with tp : lR m -lR and g : ]R n -lR m . Let 8 be an arbitrary subdiff erential such that 8 <p has a closed graph.

Theorem 3 . 1 .

 31 The mapping S in (5) has the Aubin property around (p, z) if and only if one has the implirotion((Tb)i, (Bb)i) E -Nar ( é j ,) ((Bz)i, vi) Vi = 1, 2, ... , m � b = 0, ( �'. 5 )where v is the unique solution of the linear system ('. :6) Proof. Our starting point is the implication (20) in Theorem 2.2. So the ta.sk is to compute the coderivative of the multifonction Q given by[START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Fu.nctions[END_REF]. To this aim, we invoke the second-order chain rule (23), whose assumptions are evidently satisfied because Bis surjective and Gr ( 8J) is closed (due to the assumed Lipschitz continuity of the fonction J). In this case, the adjoint general equation in[START_REF] Panagiotopoulos | Hernivariational lnequalities[END_REF] can be rewritten as o E M T b + B T D*8J ( B z, v)( Bb).

□Remark 3 . 2 .Theorem 3 . 3 .

 3233 2, ... , m {=::> (ai, -bi) E Nar(8j,)( xi, ui) \:/i = 1, 2, ... , m. The generalized equation (27) attains now the form of the system 0 = M T b+B T c ( e; ,( -Bb)i ) E Nar ( EJ j ,)(( B z)i,vi), Vi= 1,2, ... ,m. (29) It remains to express the vector c = (c1,c2, ... ,c,.,,,f E !R m in the form c = -Tb and the proof of Theorem 3.1 is thereby completed. (i) If n = m and B = I n (the identity matrix), then T = M7'. In this case, condition (25) takes the following form (ii) If M is nonsingular, we may use the equation in (29) in the reverse way to arrive at the condition ( Ci, ( Rc) i) E -Nac ( 8j;) ((Bz)i, vi) Vi = 1, 2, ... , m => c = 0, (31) where R := B(M T )-1 B T . Indeed, in this case b = -(M7')-1 B T c and the result follows easily from ( 29) because b=0�c = 0 due to the injectivity of B T .If, in addition, B = I n , then (31) reduces to the form Quite often in applications Mor Ris a P-matrix or a positive semi-definite matrix and then we can sometimes exploit these additional properties in connection with condition (30) and (31). We recall that a matrix ME R nxn is a P-matrix if all its principal minors are positive or equivalently (Vx E lR n ,x =/ 0)(3i E {1, ... ,n}): xi( Mx) i > O. Assume that M is nonsingular, R is a P-matrix and for all i = 1,2, ... ,m Nac ( /Ji,) ((B z)i, i\) C {( a ,b) E lR 2 : ab::_; 0}. (

Theorem 3 . 5 .

 35 Assume that M is symmetric and positive semi-definite, B = I n , condition (33) is fulfilled and Vb E ker M, :3i E { 1, 2, ... ,n} such that ( O,bi) <t -Nar(lJj;) ( zi,ïïi) .(35)Then S has the Aubin property around (p, z). Proof. Let us analyze a possible violaticn of condition (30) by a vector b. Assume first that b E ker ( M) \ { O}. Due to assumption (35) such a vector evidently cannot violate this condition. So let now b ft ke:r(M) so that ( b, Mb ) > O. However, the relations on the left-hand side of implication (30) imply that n (b, Mb ) = L bi ( \.1b ) i :S 0, i=l by virtue of (33). Consequently, this b cannot violate condition (30) as well , and thus the statement has been established. D We note that all the above conditions becc me really workable only in the case when we are given the functions ji and the reference point (p, z). A possible usage of Theorem 3.5 is now illustrated by the fol10wing academic example. Example 3.6. Let M= G �), B=h, i2 ( x2 ) = Jx2l + �x� with some E: > 0,

3 (

 3 ) we obtain that lip(S; (p, z)) = sup{llbll : M r b + B r D*8J(Bz, v)(Bb) n r& =I= 0}.To simplify the notation, let us denote lip(S; (p, z)) by K. Clearly, K equals the supremal value of the objective in the optimization problem maximize llbllsubject to M T b + B T w E B (w, -Bb) E N Gr ( 8J ) (Bz,v ) .Due to (2) the last constraint in (36) amounts to (w., (-Bb).) E N Gr ( 8i; ) (( Bz )i , v i ), i = 1, 2, ... , m.Since the fonctions j i have typically the form (36) (37) where r. is a closed interval and v. is piecewise C 2 in the sense defined in[START_REF] Mordukhovich | On second-order subdifferentials and their applications[END_REF], one can employ the results from [15, Section 4] and conclude that the normal cones in (37) can be expressed as unions of at most three convex polyhedral cones in IR 2 . So, if N Gr (8j; ) ( (Bz)i, vi) = u;= l A{ for all i, we can replace (36) by the disjunctive optimization problem maximize ll b ll subject to M7'b + B T w E B w i ,( -Bb ) i)E LJAi , i =l,2, ... ,m.

ti

  Clearly we have Gv i --+ Gv = u as i --+ +oo. Therefore, Hence, Gv--u • --+ Gw as i --+ +oo. ti It remains to prove that T A (ü) C {Gw : w E Ts(ïi)}, which can be conducted by a similar reasoning. Let k E T A (u), i.e., there are sequences k i --+ k, Àï L O such that u + Àiki = Gw i for some sequence (w i ) C 2. One has thus k-= G w iïi • Ài .

Remark 4 . 2 .Theorem 4 . 3 .

 4243 The surjectivity of A can be replaced by the weaker qualification condition A r z= 0 } z E Nr(Aïi) ==> z = O, provided r is normally regular at Av. On the basis of Theorem 2.3 and equality (39) we are now in a position to state the following characterization of the isolated calmness of S in terms of the problem data. Thereby we set (41) Assume that for each i = l, 2, ... , m there are neighborhoods Ui of the points ((Bz);,v i ) such that l;

(

  'P) {Ax + DyL + Eu = _ 0 y= Cx and YL E âJ(y),

  lt follows that there exists a vector y L E 8J ( Cx) such that:0 = Ax + DyL + Eu.By setting y= Cx, we have 0 = Ax+ DyL + Eu, y= Cx and YL E 8J(y).

Figure 5 . 1 :

 51 Figure 5.1: 1-V characteristic of a DIAC

1 K

 1 Its solution can be readily found in Figure 5.3, according to which . Using (49) and (43), it is easy to check that for the DIAC, S satisfies the isolated calmness property at (p, z) = (-1, 0) if and only if a=/= 1. The results about the Aubin property around and the isolated calmness at (p, z) = (-1, 0) for the DIAC circuit, depicted in Figure 5. 2, are summarized in Table 5. 1.

  59) => (b1, b 2) = (0, 0). with a = a 2 > 0 and /3 = a + l > 0, we observe that the Aubin property of the map S does not hold around (p, z) with z = (0, 0) and p = (l, -1 ). The isolated calmness property of S at ('\ z) is satisfied if and only if the following implication holds true }-(b1, b,) = (0, 0).

  .

  7. 

Figure 5 . 7 :

 57 Figure 5.7: A double DIAC Clipping circuit: Characteristics of the DIACs D1 and D2

  

a2, ... a,) -{ t À;a; À;� 0, i-1,2, ... ,p} • (7)

  

	x�x
	For more details see [23] (Definitions 4.1). Let a 1 ,a 2 , ... a P E JR. n some given vectors. The conical hull of {a 1 ,a 2 , ... a p } is
	defined by
	cone{o1,

x, xk ___. x* with xk E <I>(x1o) Vk EN}.

[START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with applications to friction problems[END_REF] 

1 •

 1 Proposition 5.1. Suppose that assumption (45) is satisfied. If (x,yL) is a solu tion of Problem (P) then z = Rx is a solution of Problem ( Q). Conversely, if z is a solution of Problem (Q) then there exists a function YL such that (R-1 z,YL) is a solution of Problem (P).

which is an inclusion of the form [START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF] with the variable z := i. For simplicity, we assume that R = 1. We will describe all situations concerning the Aubin property and the isolated calmness of the DIAC by using Theorem 3.1 and Theorem 4.3. In this case the operators T and W defined in [START_REF] Yakubovich | Solution of certain matrix inequalities in the stability theory of nonlinear control systems[END_REF] and (41) are equal to 1 and the matrix B = 1 . Therefore, the mapping S defined in [START_REF] Addi | A sensitivity analysis of a class of semi coercive variational inequalities using recession tools[END_REF] and associated to (47) has the Aubin property around a point (p, z) if and only if the following condition holds true

(48) Since the graph in Figure 5.1 is symmetric, we have to discuss only the following three situations:

• Suppose that z = 0 and j5 = -1. Using the (I-V)-characteristic of the DIAC in Figure 5.1, it is clear that the Aubin property will depend on the slope of the curve at x = o-. Let us suppose that J"(o-) = -a and we restrict ourselves to the nonmonotone case i.e. a > O. By definitions of the contingent and the limiting normal cones (11)- [START_REF] Mordukhovich | On second-order subdifferentials and their applications[END_REF], we have

Therefore, condition ( 48) is satisfied for (z, p) = (0, -1) if and only if 0 < a < 1.

Consequently, for the DIAC, the map S satisfies the Aubin property around (-1, 0)

if and only if O < a < 1.

In this case problem (38) attains the simple form Let us consider the circuit depicted in Figure 5.4 with a resistor R > 0, two DIACs, an input-signal source u(t) and two supply voltages E1 < E 2 • The current through the resistor is denoted by i = i 1 +i2 . Using Kirchhoff's laws, we have the following system

where ½ E â j 1(-i 1 ) and½ E âj2(i2) are the differences of potential across the DIACs D 1 and D 2 respectively. We suppose that the graphs of âj 1 and âj 2 are of the form depicted in Figure 5.1. In this case, it is easy to see that âj 1 ( -i 1 ) = -âj 1 (i 1 ). Setting M= ( � � ), p = (�=�:), z= ( !: ) (52)

and J(z) := j1 (i i ) -j2 (i 2 ), we see that the system in (51) is equivalent to the variational inclusion

which is of the form (1) with B = 1 2 . We note that here the matrix Mis symmetric and positive semidefinite. We will thus apply Theorem 3.1 and Remark 3.2 (i).

Let j�'(o-) = -a and j; ( o-) = a with a > 0 and assume that R = l .

• Suppose that the reference point (p, z) is given by z = (0, 0) and j5 = (l , 1), see Figure 5.5. which is equivalent to

A simple computation shows us that the limiting normal cones are given by and

In this case , equation ( 54) is equivalent to

=? ( b1, b2) = (0, 0).

A simple computation shows us that {57) does not hold. In fact, with a = a + l > 0 and /3 = l.

Consequently, the Aubin property of S around the point (p, z) with z = (0, 0) and p = (-1, 1) does not hold.

By Theorem 4.3, the isolated calmness property of S at (p, z) is satisfied if and only if the following implication holds true

which is equivalent to x* = (Vg(x)f a with a E D* âcp (g(x) ,>, )(Vg(x)y*),

and we are done.