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The FO 2 alternation hierarchy is decidable

We consider the two-variable fragment FO 2 [<] of first-order logic over finite words. Numerous characterizations of this class are known. Thérien and Wilke have shown that it is decidable whether a given regular language is definable in FO 2 [<]. From a practical point of view, as shown by Weis, FO 2 [<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO 2 [<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids.

Our result implies that there are many different ways of climbing up the FO 2 [<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J -trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Thérien, and Vollmer.

Introduction

The investigation of logical fragments has a long history. McNaughton and Papert [START_REF] Mcnaughton | Counter-Free Automata[END_REF] showed that a language over finite words is definable in firstorder logic FO [<] if and only if it is star-free. Combined with Schützenberger's characterization of star-free languages in terms of finite aperiodic monoids [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF], this leads to an algorithm to decide whether a given regular language is first-order definable. Many other characterizations of this class have been given over the past 50 years, see [START_REF] Diekert | First-order definable languages[END_REF] for an overview. Moreover, mainly due to its relation to linear temporal logic [START_REF] Kamp | Tense Logic and the Theory of Linear Order[END_REF], it became relevant to a large number of application fields, such as verification.

Very often one is interested in fragments of first-order logic. From a practical point of view, the reason is that smaller fragments often yield more efficient algorithms for computational problems such as satisfiability. For example, satisfiability for FO[<] is non-elementary [START_REF] Stockmeyer | The complexity of decision problems in automata theory and logic[END_REF], whereas the satisfiability problem for first-order logic with only two variables is in NP, cf. [START_REF] Ph | Expressiveness and succinctness of first-order logic on finite words[END_REF]. And on the theoretical side, fragments form the basis of a descriptive complexity theory inside the regular languages: the simpler a logical formula defining a language, the easier the language. Moreover, in contrast to classical complexity theory, in some cases one can actually decide whether a given language has a particular property. From both the practical and the theoretical point of view, several natural hierarchies have been considered in the literature: the quantifier alternation hierarchy inside FO[<] which coincides with the Straubing-Thérien hierarchy [START_REF] Straubing | A generalization of the Schützenberger product of finite monoids[END_REF][START_REF] Thérien | Classification of finite monoids: The language approach[END_REF], the quantifier alternation hierarchy inside FO[<, +1] with a successor predicate +1 which coincides with the dot-depth hierarchy [START_REF] Cohen | Dot-depth of star-free events[END_REF][START_REF] Thomas | Classifying regular events in symbolic logic[END_REF], the until hierarchy of temporal logic [START_REF] Thérien | Temporal logic and semidirect products: An effective characterization of the until hierarchy[END_REF], and the until-since hierarchy [START_REF] Thérien | Nesting until and since in linear temporal logic[END_REF]. Decidability is known for the levels of the until and the the until-since hierarchies, and only for the very first levels of the alternation hierarchies, see e.g. [START_REF] Diekert | A survey on small fragments of first-order logic over finite words[END_REF][START_REF] Pin | Syntactic semigroups[END_REF].

Fragments are usually defined by restricting resources in a formula. Such resources can be the predicates which are allowed, the quantifier depth, the number of quantifier alternations, or the number of variables. When the quantifier depth is restricted, only finitely many languages are definable over a fixed alphabet: decidability of the membership problem is not an issue in this case. When restricting the number of variables which can be used (and reused), then first-order logic FO 3 [<] with three variables already has the full expressive power of FO [<], see [START_REF] Immerman | Definability with bounded number of bound variables[END_REF][START_REF] Kamp | Tense Logic and the Theory of Linear Order[END_REF]. On the other hand, first-order logic FO 2 [<] with only two variables defines a proper subclass. The languages definable in FO 2 [<] have a huge number of different characterizations, see e.g. [START_REF] Diekert | A survey on small fragments of first-order logic over finite words[END_REF][START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Tesson | Logic meets algebra: The case of regular languages[END_REF]. For example, FO 2 [<] has the same expressive power as ∆ 2 [<]; the latter is a fragment of FO [<] with two blocks of quantifiers [START_REF] Thérien | Over words, two variables are as powerful as one quantifier alternation[END_REF].

Turtle programs are one of these numerous descriptions of FO 2 [<]-definable languages [START_REF] Th | Partially-ordered two-way automata: A new characterization of DA[END_REF]. They are sequences of instructions of the form "go to the next a-position" and "go to the previous a-position". Using the term ranker for this concept and having a stronger focus on the order of positions defined by such sequences, Weis and Immerman [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF] were able to give a combinatorial characterization of the alternation hierarchy FO The algebraic approach to the membership problem of logical fragments has several advantages. In favorable cases, it opens the road to decidability procedures. Moreover, it allows a more semantic comparison of fragments; for example, the equality FO 2 [<] = ∆ 2 [<] was obtained by showing that both FO 2 [<] and ∆ 2 [<] correspond to the same variety of finite monoids, namely DA [START_REF] Pin | Polynomial closure and unambiguous product[END_REF][START_REF] Thérien | Over words, two variables are as powerful as one quantifier alternation[END_REF].

Building on previous detailed knowledge of the lattice of band varieties (varieties of idempotent monoids), Trotter and Weil defined a sub-lattice of the lattice of subvarieties of DA [START_REF] Trotter | The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue[END_REF], which we call the R m -L m -hierarchy. These varieties have many interesting properties and in particular, each R m (resp. L m ) is efficiently decidable (by a combination of results of Trotter and Weil [START_REF] Trotter | The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue[END_REF], Kufleitner and Weil [START_REF] Kufleitner | On the lattice of sub-pseudovarieties of DA[END_REF], and Straubing and Weil [START_REF] Straubing | An introduction to finite automata and their connection to logic[END_REF], see Section 3 for more details). Moreover, one can climb up the R m -L mhierarchy algebraically, using Mal'cev products, see [START_REF] Kufleitner | On the lattice of sub-pseudovarieties of DA[END_REF] and Section 2 below; language-theoretically, in terms of alternated closures under deterministic and co-deterministic products [START_REF] Pin | Propriétés syntactiques du produit non ambigu[END_REF][START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF]; and combinatorially using condensed rankers, see [START_REF] Kufleitner | On FO 2 quantifier alternation over words[END_REF][START_REF] Lodaya | Marking the chops: an unambiguous temporal logic[END_REF] and Section 2.

We relate the FO 2 [<] quantifier alternation hierarchy with the R m -L mhierarchy. More precisely, the main result of this paper is that a language is definable in FO . This result was first conjectured in [START_REF] Kufleitner | On FO 2 quantifier alternation over words[END_REF], where one inclusion was established. Our proof combines a technique introduced by Klíma [START_REF] Klíma | Piecewise testable languages via combinatorics on words[END_REF] and a substitution idea [START_REF] Kufleitner | Languages of dot-depth one over infinite words[END_REF] with algebraic and combinatorial tools inspired by [START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF]. The proof is by induction and the base case is Simon's Theorem on piecewise testable languages [START_REF] Simon | Piecewise testable events[END_REF]. 
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Let A be a finite alphabet and let A * be the set of all finite words over A.

The length |u| of a word

u = a 1 • • • a n , a i ∈ A, is n and its alphabet is alph(u) = {a 1 , . . . , a n } ⊆ A. A position i of u = a 1 • • • a n is an a-position if a i = a. A factorization u = u -au + is the a-left factorization of u if a ∈ alph(u -)
, and it is the a-right factorization if a ∈ alph(u + ), i.e., we factor at the first or at the last a-position.

Rankers

A ranker is a nonempty word over the alphabet {X a , Y a | a ∈ A}. It is interpreted as a sequence of instructions of the form "go to the next a-position" and "go to the previous a-position". More formally, for u = a 1 • • • a n ∈ A * and x ∈ {0, . . . , n + 1} we let Here, both the minimum and the maximum of the empty set are undefined.

The modality X a is for "neXt-a" and Y a is for "Yesterday-a". For r = Z s,

Z ∈ {X a , Y a | a ∈ A}, we set r(u, x) = s(u, Z(u, x)), r(u) = s(u, Z(u)).
In particular, rankers are executed (as a set of instructions) from left to right. Every ranker r either defines a unique position in a word u, or it is undefined on u

. For example, X a Y b X c (bca) = 2 and X a Y b X c (bac) = 3 whereas X a Y b X c (cabc) and X a Y b X c (bcba) are undefined.
A ranker r is condensed on u if it is defined and, during the execution of r, no previously visited position is overrun [START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF]. One can think of condensed rankers as zooming in on the position they define, see Figure 1. More formally r =

Z 1 • • • Z k , Z i ∈ {X a , Y a | a ∈ A}, is condensed on u if there exists a chain of open intervals (0; |u| + 1) = (x 0 ; y 0 ) ⊃ (x 1 ; y 1 ) ⊃ • • • ⊃ (x n-1 ; y n-1 ) ∋ r(u)
such that for all 1 ≤ ℓ ≤ n -1 the following properties are satisfied:

• If Z ℓ Z ℓ+1 = X a X b , then (x ℓ ; y ℓ ) = (X a (u, x ℓ-1 ); y ℓ-1 ). • If Z ℓ Z ℓ+1 = Y a Y b , then (x ℓ ; y ℓ ) = (x ℓ-1 ; Y a (u, y ℓ-1 ). • If Z ℓ Z ℓ+1 = X a Y b , then (x ℓ ; y ℓ ) = (x ℓ-1 ; X a (u, x ℓ-1 )). • If Z ℓ Z ℓ+1 = Y a X b , then (x ℓ ; y ℓ ) = (Y a (u, y ℓ-1 ); y ℓ-1 ). For example, X a Y b X c is condensed on bca but not on bac.
The depth of a ranker is its length as a word. A block of a ranker is a maximal factor of the form

X a 1 • • • X a k or of the form Y b 1 • • • Y b ℓ .
A ranker with m blocks changes direction m -1 times. By R m,n we denote the class of all rankers with depth at most n and with up to m blocks. We write R X m,n for the set of all rankers in R m,n which start with an X a -modality and we write R Y m,n for all rankers in R m,n which start with a Y a -modality. We define

u ⊲ m,n v if the same rankers in R X m,n ∪R Y m-1,n-1 are condensed on u and v. Similarly, u ⊳ m,n v if the same rankers in R Y m,n ∪ R X m-1,n-1
are condensed on u and v. The relations ⊲ m,n and ⊳ m,n are finite index congruences [START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF]Lem. 3.13].

The order type ord(i, j) is one of {<, =, >}, depending on whether i < j, i = j, or i > j, respectively. We define u ≡ m,n v if

• the same rankers in R m,n are defined on u and v,

• for all r ∈ R X m,n and s ∈ R Y m,n-1 : ord(r(u), s(u)) = ord(r(v), s(v)), • for all r ∈ R Y m,n and s ∈ R X m,n-1 : ord(r(u), s(u)) = ord(r(v), s(v)), • for all r ∈ R X m,n and s ∈ R X m-1,n-1 : ord(r(u), s(u)) = ord(r(v), s(v)), • for all r ∈ R Y m,n and s ∈ R Y m-1,n-1 : ord(r(u), s(u)) = ord(r(v), s(v)).
Remark 1. For m = 1, each of the families (≡ 1,n ) n , (⊲ 1,n ) n , and (⊳ 1,n ) n defines the class of piecewise testable languages, see e.g. [START_REF] Klíma | Piecewise testable languages via combinatorics on words[END_REF][START_REF] Simon | Piecewise testable events[END_REF]. Recall that a language L ⊆ A * is piecewise testable if it is a Boolean combination of languages of the form

A * a 1 A * • • • a k A * (k ≥ 0, a 1 , . . . , a k ∈ A).

First-order Logic

We denote by FO[<] the first-order logic over words interpreted as labeled linear orders. The atomic formulas are ⊤ (for true), ⊥ (for false), the unary predicates a(x) (one for each a ∈ A), and the binary predicate x < y for variables x and y. Variables range over the linearly ordered positions of a word and a(x) means that x is an a-position. Apart from the Boolean connectives, we allow composition of formulas using existential quantification ∃x : ϕ and universal quantification ∀x : ϕ for ϕ ∈ FO[<]. The semantics is as usual. A sentence in FO[<] is a formula without free variables. For a sentence ϕ the language defined by ϕ, denoted by L(ϕ), is the set of all words u ∈ A * which model ϕ.

The fragment FO 2 [<] of first-order logic consists of all formulas which use at most two different names for the variables. This is a natural restriction, since FO with three variables already has the full expressive power of FO.

A formula ϕ ∈ FO 2 [<] is in FO 2 m [<] if
, on every path of its parse tree, ϕ has at most m blocks of alternating quantifiers.

Note that FO 2 1 [<]-definable languages are exactly the piecewise testable languages, cf. [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF]. For m ≥ 2, we rely on the following important result, due to Weis and Immerman [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF]Thm. 4.5].

Theorem 2. A language L is definable in FO 2 m [<] if and only if there exists n ∈ N such that L is a union of ≡ m,n -classes.
Remark 3. The definition of ≡ m,n above is formally different from the conditions in Weis and Immerman's [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF]Thm. 4.5]. A careful but elementary examination reveals that they are actually equivalent.

Algebra

A monoid M recognizes a language L ⊆ A * if there exists a morphism ϕ :

A * → M such that L = ϕ -1 ϕ(L). If ϕ : A * → M is a morphism, then we set u ≡ ϕ v if ϕ(u) = ϕ(v). The join ≡ 1 ∨ ≡ 2 of two congruences ≡ 1 and ≡ 2 is the least congruence containing ≡ 1 and ≡ 2 . An element u is idempotent if u 2 = u.
The set of all idempotents of a monoid M is denoted by E(M ). For every finite monoid M there exists ω ∈ N such that u ω is idempotent for all u ∈ M . Green's relations J , R, and L are an important concept to describe the structural properties of a monoid M : we set u

≤ J v (resp. u ≤ R v, u ≤ L v) if u = pvq (resp. u = vq, u = pv) for some p, q ∈ M . We also define u J v (resp. u R v, u L v) if u ≤ J v and v ≤ J u (resp. u ≤ R v and v ≤ R u, u ≤ L v and v ≤ L u). A monoid M is J -trivial (resp. R-trivial, L-trivial) if J (resp. R, L
) is the identity relation on M . We define the relations ∼ K , ∼ D , and ∼ LI on M as follows:

• u ∼ K v if and only if, for all e ∈ E(M ), we have either eu, ev < J e, or eu = ev.

• u ∼ D v if and only if, for all f ∈ E(M ), we have either uf, vf < J f , or uf = vf . • u ∼ LI v if
and only if, for all e, f ∈ E(M ) such that e J f , we have either euf, evf < J e, or euf = evf . The relations ∼ K , ∼ D and ∼ LI are congruences [START_REF] Krohn | Homomorphisms and semilocal theory[END_REF]. If V is a class of finite monoids, we say that a monoid M is in

K m V (resp. D m V, LI m V) if • • • • • • • • • • • • . . . DA R 1 = L 1 = J J = R 2 ∩ L 2 R = R 2 L 2 = L R 2 ∨ L 2 R 3 ∩ L 3 R 3 L 3 R 4 L 4 R 3 ∨ L 3 R 4 ∩ L 4 Figure 2: The R m -L m -hierarchy M/∼ K ∈ V (resp. M/∼ D ∈ V, M/∼ LI ∈ V). The classes K m V, D m V
and LI m V are called Mal'cev products and they are usually defined in terms of relational morphisms. In the present context however, the definition above will be sufficient [START_REF] Krohn | Homomorphisms and semilocal theory[END_REF], see [START_REF] Hall | On radical congruence systems[END_REF]. We will need the following classes of finite monoids:

• J 1 consists of all finite commutative monoids satisfying x 2 = x.

• J (resp. R, L) consists of all finite J -trivial (resp. R-trivial, L-trivial) monoids. • A consists of all finite monoids satisfying x ω+1 = x ω . Monoids in A are called aperiodic. • DA consists of all finite monoids satisfying (xy) ω x(xy [START_REF] Pin | Varieties of Formal Languages[END_REF]. The R m -L m -hierarchy is depicted in Figure 2.

) ω = (xy) ω . • R 1 = L 1 = J, R m+1 = K m L m , L m+1 = D m R m . It is well known that DA = LI m J 1 , R 2 = R, L 2 = L, R ∩ L = J, and R m ∪ L m ⊆ R m+1 ∩ L m+1 ⊂ DA ⊂ A see e.g.

The variety approach to the decidability of FO 2 m [<]

Classes of finite monoids that are closed under taking submonoids, homomorphic images and finite direct products are called pseudovarieties. The classes of finite monoids J 1 , J, A, DA, R m and L m introduced above are all pseudovarieties. If V is a pseudovariety of monoids, the class V of languages recognized by a monoid in V is called a variety of languages. Eilenberg's variety theorem (see e.g. [START_REF] Perrin | Infinite words[END_REF]Annex B]) shows that varieties of languages are characterized by natural closure properties, and that the correspondence V → V is onto. Elementary automata theory shows in addition that a language L is recognized by a monoid in a pseudovariety V if and only the syntactic monoid of L is in V. It follows that if V has a decidable membership problem, then so does the corresponding variety of languages V.

Simon's Theorem on piecewise testable languages [START_REF] Klíma | Piecewise testable languages via combinatorics on words[END_REF][START_REF] Simon | Piecewise testable events[END_REF] is an important instance of this Eilenberg correspondence: a language L is recognizable by a monoid in J if and only if L is piecewise testable (and hence, as we already observed, if and only if L is definable in FO 2 1 [<]). Simon's result implies the decidability of piecewise testability.

It immediately follows from the definition that membership in R m and L m is decidable for all m since membership in J is decidable (see Corollary 10 for a more precise statement). Many additional properties of the pseudovarieties R m and L m , and of the corresponding varieties of languages were established by the authors [START_REF] Kufleitner | On the lattice of sub-pseudovarieties of DA[END_REF][START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF][START_REF] Trotter | The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue[END_REF]. We will use in particular the following results, respectively [14, Cor. Let x 1 , x 2 , . . . be a sequence of variables. For each word u, we denote by ū the mirror image of u, that is, the word obtained by reading u from right to left. Let G 2 = x 2 x 1 , I 2 = x 2 x 1 x 2 and, for m ≥ 2, G m+1 = x m+1 G m and I m+1 = G m+1 x m+1 I m . Finally, let ϕ be the substitution given by

ϕ(x 1 ) = (x ω 1 x ω 2 x ω 1 ) ω , ϕ(x 2 ) = x ω 2 , and, for m ≥ 2, ϕ(x m+1 ) = (x ω m+1 ϕ(G m G m ) ω x ω m+1 ) ω . Proposition 5. R m (resp. L m ) is the class of finite monoids satisfying (xy) ω x(xy) ω = (xy) ω and ϕ(G m ) = ϕ(I m ) (resp. ϕ(G m ) = ϕ(I m ).
Straubing [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF] We refer the reader to [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF] for the definition of the two-sided wreath product, which is also called the block product in the literature. As discussed by Straubing, this exact algebraic characterization of FO 2 m implies the decidability of FO 2 2 but not of the other levels of the hierarchy. Straubing however conjectured that the following holds [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF]Conj. 10].

Conjecture 7 (Straubing). Let u 1 = (x 1 x 2 ) ω , v 1 = (x 2 x 1 ) ω and, for m ≥ 1, 

u m+1 = (x 1 • • • x 2n x 2n+1 ) ω u n (x 2n+2 x 1 • • • x 2n ) ω v m+1 = (x 1 • • • x 2n x 2n+1 ) ω v n (x 2n+2 x 1 • • • x 2n ) ω .

Then a monoid is in

Theorem 8. If a language L is recognized by a monoid in the join

R m ∨ L m , then L is definable in FO 2 m [<]; and if L is definable in FO 2 m [<], then L is recognized by a monoid in R m+1 ∩ L m+1 .

The FO 2 alternation hierarchy is decidable

We tighten the connection between the alternation hierarchy within FO 2 [<] and the R m -L m -hierarchy and we prove the following result. We now turn to the proof of Theorem 9. One implication was established in Theorem 8. To prove the reverse implication, we prove Proposition 11 below, which establishes that every language recognized by a monoid M ∈ R m+1 ∩ L m+1 is a union of ≡ m,n -classes for some integer n depending on M . Theorem 9 follows, in view of Theorem 2.

Theorem 9. A language L ⊆ A * is definable in FO 2 m [<] if
Proposition 11. For every m ≥ 1 and every morphism ϕ : A * → M with M ∈ R m+1 ∩ L m+1 there exists an integer n such that ≡ m,n is contained in ≡ ϕ .

Before we embark in the proof of Proposition 11, we record several algebraic and combinatorial lemmas. Proof. The map alph : A * → P(A) can be seen as a morphism, where the product on P(A) is the union operation. Since M ∈ DA, we have M/∼ LI ∈ J 1 ; let π : M → M/∼ LI be the projection morphism. It is easily verified that there exists a morphism ψ :

A collection of technical lemmas

P(A) → M/∼ LI such that ψ • alph = π • ϕ, see Figure 3.
By assumption, ϕ(x) = ϕ(xyt) for some t ∈ A * , and hence ϕ(x) = ϕ(x)ϕ(yt) ω . Since alph((yt) ω ) = alph((yt) ω z(yt) ω ), we have ϕ(yt) ω ∼ LI ϕ(yt) ω ϕ(z)ϕ(yt) ω . Applying the definition of ∼ LI with e = f = ϕ(yt) ω , it follows that ϕ(yt) ω = ϕ(yt) ω ϕ(z)ϕ(yt) ω and we now have

ϕ(x) = ϕ(x)ϕ(yt) ω = ϕ(x)ϕ(yt) ω ϕ(z)ϕ(yt) ω = ϕ(x)ϕ(z)ϕ(yt) ω . A * M P(A) M/∼ LI ϕ π alph ψ Figure 3: M ∈ DA = LI m J 1 Therefore ϕ(x) R ϕ(xz), which concludes the proof.
A proof of the following lemma can be found in [START_REF] Kufleitner | On logical hierarchies within FO 2 -definable languages[END_REF]Prop. 3.6 and Lem. 3.7]. Proof. We first show u -≡ m-1,n-1 v -. Consider a ranker r ∈ R m-1,n-1 , supposing first that r ∈ R X m-1,n-1 . Then r is defined on u -if and only if r is defined on u and ord(r ′ (u), X a (u)) is < for every nonempty prefix r ′ of r. By definition of ≡ m,n , this is equivalent to r being defined on v -. If instead r ∈ R Y m-1,n-1 , then r is defined on u -if and only if X a r ∈ R m,n is defined on u and ord(X a r ′ (u), X a (u)) is < for every nonempty prefix r ′ of r. Again, this is equivalent to r being defined on v -since u ≡ m,n v. Thus, the same rankers in R m-1,n-1 are defined on u -and v -. Now consider rankers r ∈ R X m-1,n-1 and s ∈ R Y m-1,n-2 , which we can assume to be defined on both u -and v -. Then the order types induced by r and s on u -and v -are equal, since ord(r(u -), s(u

Lemma 14. Let m ≥ 2, u, v ∈ A * , a ∈ A. 1. If u ⊲ m,n v and u = u -au + and v = v -av + are a-left factorizations, then u -⊲ m,n-1 v -and u + ⊲ m,n-1 v + . 2. If u ⊲ m,n v and u = u -au + and v = v -av + are a-right factorizations, then u -⊲ m,n-1 v -and u + ⊳ m-1,n-1 v + . Dual statements hold for u ⊳ m,n v.
-)) = ord(r(u), X a s(u)) = ord(r(v), X a s(v)) = ord(r(v -), s(v -)) and X a s ∈ R X m,n-1 . The same reasoning applies if r ∈ R Y m-1,n-1 and s ∈ R X m-1,n-2 (resp. if r ∈ R X m-1,n-1 and s ∈ R X m-1,n-2 , if r ∈ R Y m-1,n-1 and s ∈ R Y m-2,n-2 ) since in that case, ord(r(u -), s(u -)) = ord(X a r(u), s(u)) (resp. ord(r(u), s(u)), ord(X a r(u), X a s(u))). Therefore, u -≡ m-1,n-1 v -.
We now verify that u + ≡ m,n-1 v + . The proof is very similar to the first part and deviates only in technical details. Consider a ranker r ∈ R m,n-1 , say, in R X m,n-1 . Then r is defined on u + if and only if X a r ∈ R m,n is defined on u and ord(X a r ′ (u), X a (u)) is > for every nonempty prefix r ′ of r. Again, this is equivalent to r being defined on v + since u ≡ m,n v. If instead r ∈ R Y m,n-1 , then r is defined on u + if and only if r is defined on u and ord(r ′ (u), X a (u)) is > for every nonempty prefix r ′ of r, which is equivalent to r being defined on v + . Thus, the same rankers in R m,n-1 are defined on u + and v + . Now consider rankers r ∈ R X m,n-1 and s ∈ R Y m,n-2 , both defined on u + and v + . Then the order types induced by r and s on u + and v + are equal, since ord(r(u + ), s(u + )) = ord(X a r(u), s(u)) and X a r ∈ R X m,n . Again, a similar verification guarantees that the order types induced by r and s on u + and v + are equal also

if r ∈ R Y m,n-1 and s ∈ R X m,n-2 , or if r ∈ R X m,n-1 and s ∈ R X m-1,n-2 , or if r ∈ R Y m,n-1 and s ∈ R Y m-1,n-2 . This shows u + ≡ m,n-1 v + which completes the proof. Lemma 16. Let m, n ≥ 2 and let u = u -au 0 bu + and v = v -av 0 bv + describe b-left and a-right factorizations (that is, a ∈ alph(u 0 bu + ) ∪ alph(v 0 bv + ) and b ∈ alph(u -au 0 ) ∪ alph(v -av 0 )). If u ≡ m,n v, then u 0 ≡ m-1,n-1 v 0 . Proof. A ranker r ∈ R X m-1,n-1 is defined on u 0 if and only if Y a r ∈ R m,n is defined on u and ord(Y a r ′ (u), Y a (u)) is > and ord(Y a r ′ (u), X b (u)) is < for every nonempty prefix r ′ of r. Similarly, a ranker r ∈ R Y m-1,n-1 is defined on u 0 if and only if X b r ∈ R m,n is defined on u and ord(X b r ′ (u), Y a (u)) is > and ord(X b r ′ (u), X b (u)
) is < for every nonempty prefix r ′ of r. Thus, if u ≡ m,n v, then the same rankers in R m-1,n-1 are defined on u 0 and v 0 .

Now consider rankers r ∈ R X m-1,n-1 and s ∈ R Y m-1,n-2 (resp. r ∈ R Y m-1,n-1 and s ∈ R X m-1,n-2
), defined on both u 0 and v 0 . Then ord(r(u 0 ),

s(u 0 )) = ord(Y a r(u), X b s(u)) (resp. ord(X b r(u), Y a s(u)). Since u ≡ m,n v, Y a r ∈ R Y m,n and X b s ∈ R X m,n 1 (resp. X b r ∈ R X m,n and Y a s ∈ R Y m,n 1 )
, the order types defined by r and s on u 0 and v 0 are equal.

If m = 2, we are done proving that

u 0 ≡ m-1,n-1 v 0 . We now assume that m ≥ 3. Let r ∈ R X m-1,n-1 and s ∈ R X m-2,n-2 (resp. r ∈ R Y m-1,n-1
and s ∈ R Y m-2,n-2 ) be defined on both u 0 and v 0 . Then ord(r

(u 0 ), s(u 0 )) = ord(Y a r(u), Y a s(u)) (resp. ord(X b r(u), X b s(u)))
. By the same reasoning as above, the order type defined by v on u 0 and v 0 is the same since

Y a r ∈ R Y m,n and Y a s ∈ R Y m-1,n-1 (resp. X b r ∈ R X m,n and X b s ∈ R X m-1,n-1
). This concludes the proof of the lemma.

A * M M/∼ D M/∼ K A * /(≡ ρ ∨ ≡ λ ) A * /⊲ m,n A * /⊳ m,n A * /≡ m-1,n ϕ ρ λ π D π K Figure 4: A commutative diagram

Proof of Proposition 11

The proof is by induction on m. We already observed that L is FO 2 1 [<]definable if and only if it is piecewise testable, if and only if it is accepted by a monoid in J. Since J = R 2 ∩ L 2 , Proposition 11 holds for m = 1. We now assume that m ≥ 2.

Let ϕ : A * → M be a morphism with M ∈ R m+1 ∩ L m+1 . We note that it suffices to prove Proposition 11 for the morphism ϕ ′ : A * → M × 2 A given by ϕ ′ (u) = (ϕ(u), alph(u)). Observe that, for u, v ∈ A * ,

ϕ ′ (u) ∼ D ϕ ′ (v) (resp. ϕ ′ (u) ∼ K ϕ ′ (v)) implies alph(u) = alph(v). (1) Indeed we have ϕ ′ (u)ϕ ′ (u) ω = ϕ ′ (u) ω (since M is aperiodic): then ϕ ′ (u) ∼ D ϕ ′ (v) implies that ϕ ′ (v)ϕ ′ (u) ω = ϕ ′ (u)ϕ ′ (u) ω
and by definition of ϕ ′ , alph(v) is contained in alph(u). By symmetry, u and v have the same alphabetical content and the same holds for ∼ K .

To lighten up the notation, we dispense with the consideration of ϕ ′ and we assume that ϕ satisfies Property [START_REF] Almeida | Profinite categories and semidirect products[END_REF].

Let π D : M → M/∼ D and π K : M → M/∼ K be the natural morphisms. By definition of R m+1 and L m+1 , we have

M/∼ D ∈ R m and M/∼ K ∈ L m . Let ρ = π D • ϕ and λ = π K • ϕ, see Figure 4. The monoid A * /(≡ ρ ∨ ≡ λ ) is a quotient of both M/∼ D and M/∼ K , so A * /(≡ ρ ∨ ≡ λ ) ∈ R m ∩ L m and there exists n ≥ 1 such that • ⊲ m,n is contained in ≡ ρ and ⊳ m,n is contained in ≡ λ (by Proposition 4), • ≡ m-1,n is contained in ≡ ρ ∨ ≡ λ (by induction).
We show that ≡ m,n+2|M | is contained in ≡ ϕ . Let u ≡ m,n+2|M | v. Consider the R-factorization of u, i.e., u = s 1 a 1 • • • s k a k s k+1 with a i ∈ A and s i ∈ A * such that 1 = ϕ(s 1 ) and for all 1 ≤ i ≤ k:

ϕ(s 1 a 1 • • • s i ) > R ϕ(s 1 a 1 • • • s i a i ) R ϕ(s 1 a 1 • • • s i a i s i+1 ). Since the number of R-classes is at most |M |, we have k < |M |. Similarly, let v = t 1 b 1 • • • t k ′ b k ′ t k ′ +1 with b i ∈ A and t i ∈ A * be the L-factorization of v such that ϕ(t k ′ +1 ) = 1 and for all 1 ≤ i ≤ k ′ : ϕ(t i b i t i+1 • • • b k ′ t k ′ +1 ) L ϕ(b i t i+1 • • • b k ′ t k ′ +1 ) < L ϕ(t i+1 • • • b k ′ t k ′ +1 ).
As before, we have k ′ < |M |. By Lemma 13 (applied with x = s 1 • • • s i-1 a i-1 , y = s i and z = a i ), we have a i ∈ alph(s i ); and similarly, b i ∈ alph(t i+1 ). Therefore, the positions of the a i 's in u are exactly the positions visited by the ranker r = X a 1 • • • X a k , and the positions of the b i 's in v are exactly the positions visited by the ranker

s = Y b k ′ • • • Y b 1 . Since u ≡ m,n+2|M | v,
each of the rankers r and s is defined on both u and v, and all the positions visited by the rankers r and s occur in the same order in u as in v. We call these positions special. Let

u = u 1 c 1 • • • u ℓ c ℓ u ℓ+1 v = v 1 c 1 • • • v ℓ c ℓ v ℓ+1
be obtained by factoring u and v at all the special positions. We have ℓ ≤ k + k ′ < 2 |M |. We say that a special position is red if it is visited by r, and that it is green if it is visited by s. Some special positions may be both red and green, which means that more than one of the cases below may apply.

For u the above factorization is a refinement of the R-factorization; and for v it is a refinement of the L-factorization. In particular, ϕ(u 1 ) = 1, ϕ(v ℓ+1 ) = 1 and

ϕ(u 1 • • • u i-1 c i-1 ) R ϕ(u 1 • • • u i-1 c i-1 u i ) for 1 < i ≤ ℓ + 1, (Eq(R)) ϕ(v i c i v i+1 • • • c ℓ ) L ϕ(c i v i+1 • • • c ℓ ) for 1 ≤ i ≤ ℓ. (Eq(L))
In order to prove u ≡ ϕ v, we show that we can gradually substitute

u i for v i in the product v 1 c 1 • • • v ℓ c ℓ v ℓ+1 = v, starting from i = 1
, while maintaining ≡ ϕ -equivalence. Namely we show that, for each i, it holds

u 1 • • • u i-1 c i-1 u i c i v i+1 • • • v ℓ+1 ≡ ϕ u 1 • • • u i-1 c i-1 v i c i v i+1 • • • v ℓ+1 . (Eq(i))
Let h 0 be the leftmost red position: then c h 0 = a 1 and s 1 = u 1 c 1 • • • u h 0 . Since ϕ(s 1 ) = 1 and M is aperiodic, the ϕ-image of every letter in s 1 is 1. Applying Lemma 15 to the a 1 -left factorizations of u and v, we find that

u 1 c 1 • • • u h 0 -1 ≡ m-1,n-1 v 1 c 1 • • • v h 0 -1
and in particular, these words have the same alphabet. It follows that ϕ(u i ) = ϕ(v i ) = 1 for all i ≤ h 0 , and hence (Eq(i)) holds for all i ≤ h 0 .

The right-left dual of this reasoning establishes that ϕ(u i ) = ϕ(v i ) = 1 for all the u i , v i to the right of the last (rightmost) green position, say j 0 . In particular, (Eq(i)) also holds for all i > j 0 .

We now assume that h 0 < i ≤ j 0 and we let h-1 be the first red position to the left of i and j be the first green position to the right of i: we have

h 0 < h ≤ i ≤ j ≤ j 0 . Case 1: h = i (i -1 is red) We have u ⊲ m,n+2|M | v. By Lemma 14 (1), a sequence of at most i -1 left-factorizations yields u i c i • • • u ℓ+1 ⊲ m,n+2|M |-i+1 v i c i • • • v ℓ+1 . If i is
red, then by Lemma 14 (1), after one c i -left-factorization, we see that u i ⊲ m,n+2|M |-i v i . If i is not red, then i is green and by Lemma 14 (2), after at most ℓ -i right-factorizations, we find that u i and v i are ⊲ m,n+2|M |-i-(ℓ-i) -equivalent. In any case, we have u i ⊲ m,n v i and thus u i ≡ ρ v i (i.e., ϕ(u i ) ∼ D ϕ(v i )) by the choice of n. In view of (Eq(L)), Lemma 12 now implies

u i c i v i+1 • • • c ℓ v ℓ+1 ≡ ϕ v i c i v i+1 • • • c ℓ v ℓ+1
and left multiplication by u 1 c 1 • • • c i-1 yields (Eq(i)).

Case 2: j = i (i is green) As in Case 1, we see that u i ≡ λ v i . (Eq(R)) and Lemma 12 then imply

u 1 c 1 • • • u i-1 c i-1 u i ≡ ϕ u 1 c 1 • • • u i-1 c i-1 v i ,
and right multiplication by c i v i+1 • • • v ℓ+1 yields (Eq(i)). Case 3: h < i < j (i -1 is not red and i is not green) By Lemma 15, after at most h -1 left factorizations and ℓ -j + 1 right factorizations, we obtain

u h c h • • • u j ≡ m,n+j-h v h c h • • • v j (since n + j -h ≤ n + 2 |M | -(h - 1) -(ℓ -j + 1)
). Lemma 16, applied with a = c i-1 and b = c i , then yields u i ≡ m-1,n v i . Since ≡ m-1,n is contained in ≡ λ ∨ ≡ ρ , there exist words w 1 , . . . , w d such that

v i = w 1 ≡ ρ w 2 ≡ λ w 3 ≡ ρ • • • ≡ λ w d-2 ≡ ρ w d-1 ≡ λ w d = u i .
After the discussion at the beginning of this section, we have alph(v i ) = alph(w 2 ) = • • • = alph(w d-1 ) = alph(u i ). Thus, by Lemma 13, we have ϕ(pu i ) R ϕ(p) if and only if ϕ(pw g ) R ϕ(p), and ϕ(v i q) L ϕ(q) if and only if ϕ(w g q) L ϕ(q) for all p, q ∈ A * . As in Cases 1 and 2, we conclude that for each 1 ≤ e < d,

• if w e ≡ ρ w e+1 , then

w e c i • • • c ℓ v ℓ+1 ≡ ϕ w e+1 c i • • • c ℓ v ℓ+1
, and thus

u 1 c 1 • • • u i c i-1 w e c i • • • c ℓ v ℓ+1 ≡ ϕ u 1 c 1 • • • u i c i-1 w e+1 c i • • • c ℓ v ℓ+1 ;
• and if w e ≡ λ w e+1 , then

u 1 c 1 • • • c i-1 w e ≡ ϕ u 1 c 1 • • • c i-1 w e+1
, and thus

u 1 c 1 • • • c i-1 w e c i v i+1 • • • c ℓ v ℓ+1 ≡ ϕ u 1 c 1 • • • c i-1 w e+1 c i v i+1 • • • c ℓ v ℓ+1 .
It follows by transitivity of ≡ ϕ that (Eq(i)) holds.

Concluding the proof have now established (Eq(i)) for every 1 ≤ i ≤ ℓ + 1. It follows immediately, by transitivity, that u ≡ ϕ v.

Conclusion

We have shown that for each m ≥ 1, it is decidable whether a given regular language is FO 2 m [<]-definable. Previous results in the literature only showed decidability for levels 1 and 2 of this quantifier alternation hierarchy. Our decidability result follows from the proof that FO 2 m (the pseudovariety of finite monoids corresponding to the FO 2 m [<]-definable languages) is equal to the intersection R m+1 ∩ L m+1 , which was known to be decidable.

This result implies the decidability of the levels of the hierarchy given by V 1 = J and V m+1 = V * * J, since Straubing showed that V m = FO 2 m [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF]. Straubing used general results of Almeida and Weil on two-sided semidirect products to deduce from this that FO 2 2 is decidable, but these results do not extend to FO 2 m when m > 2 ( [START_REF] Almeida | Profinite categories and semidirect products[END_REF][START_REF] Weil | Profinite methods in semigroup theory[END_REF], see [START_REF] Straubing | Algebraic characterization of the alternation hierarchy in FO 2 [<] on finite words[END_REF]Sec. 5] for a discussion). We also showed that the decision procedure whether a regular language L is FO 2 m -definable, is in Logspace on input the multiplication table of the syntactic monoid of L, and in Pspace on input the minimal automaton of L. The result behind this statement is the fact that membership in R m and in L m is characterized by a small set of (rather complicated) identities. Straubing conjectured a different and simpler set of identities (Conjecture 7 above). Our results do not confirm this conjecture, which it would be interesting to settle.
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  a (u, x) = min {y | y > x and a y = a} , X a (u) = X a (u, 0), Y a (u, x) = max {y | y < x and a y = a} , Y a (u) = Y a (u, n + 1).

  3.15] and [10, Thms. 2.1 and 3.5]. Proposition 4. An A-generated monoid M is in R m (resp. L m ) if and only if there exists an integer n such that M is a quotient of A * /⊲ m,n (resp. A * /⊳ m,n ).

FO 2 m

 2 if and only if it satisfies x ω+1 = x ω and u m = v m . If established, this conjecture would prove the decidability of each FO 2 m . The authors on the other hand proved the following [14, Thm. 5.1].

Lemma 12 .

 12 Let M be a finite monoid. If s R sx and x ∼ K y, then sx = sy. If s L xs and x ∼ D y, then xs = ys. Proof. Let z ∈ M such that sxz = u. We have (xz) ω x J (xz) ω . Now, x ∼ K y implies (xz) ω x = (xz) ω y. Thus sx = s(xz) ω x = s(xz) ω y = sy. The second statement is left-right symmetric. The following lemma illustrates an important structural property of monoids in DA. Lemma 13. Let ϕ : A * → M , with M ∈ DA and let x, y, z ∈ A * such that ϕ(x) R ϕ(xy) and alph(z) ⊆ alph(y). Then ϕ(x) R ϕ(xz).

Lemma 15 .

 15 Let m, n ≥ 2 and let u = u -au + and v = v -av + be a-left factorizations. If u ≡ m,n v, then u -≡ m-1,n-1 v -and u + ≡ m,n-1 v + . A dual statement holds for the factors of the a-right factorizations of u and v.

  2 m [<] inside FO 2 [<]. Straubing [27] gave an algebraic characterization of FO 2 m [<]. But neither result yields the decidability of FO 2 m [<]-definability for m > 2. In some sense, this is the opposite of a previous result of the authors [14, Thm. 6.1], who give necessary and sufficient conditions which helped to decide the FO 2

m [<]-hierarchy with an error of at most one. In this paper we give a new algebraic characterization of FO 2 m [<], and this characterization immediately yields decidability.

  2 m [<] if and only if it is recognized by a monoid in R m+1 ∩L m+1 , thus establishing the decidability of each FO 2

m [<]

  and Kufleitner and Lauser[START_REF] Kufleitner | Lattices of logical fragments over words[END_REF] Cor. 3.4] established, by different means, that for each m ≥ 1, the class of FO 2 m [<]-definable languages forms a variety of languages, and we denote by FO 2 m the corresponding pseudovariety. In particular, FO 2 1 = J. Our strategy to establish the decidability of FO 2 m [<]-definability, is to establish the decidability of membership in FO 2 m . It is to be noted that neither Straubing's result, nor Kufleitner's and Lauser's result implies the decidability of FO 2 m . Straubing's result is the following [27, Thm. 4].

	Theorem 6. For m ≥ 1, FO 2 m+1 = FO 2 m * * J, where * * denotes the two-
	sided wreath product.

  and only if it is recognizable by a monoid in R m+1 ∩ L m+1 . Corollary 10. For each m ≥ 1, it is decidable whether a given regular language L is FO 2 m [<]-definable. This decision can be achieved in Logspace on input the multiplication table of the syntactic monoid of L, and in Pspace on input its minimal automaton. Moreover, given a FO 2 [<]-definable language L, one can compute the least integer m such that L is FO 2 m [<].Proof. We already observed that the R m and L m are decidable, and that each is described by two omega-term identities (Proposition 5).

	The de-
	cidability statement follows immediately. The complexity statement is a
	consequence of Straubing and Weil's [28, Thm. 2.19]. The computability
	statement follows immediately.
	Theorem 9 immediately yields a decidability result.
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