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A Boundary Operator for Computing the

Homology of Cellular Structures

S. Alayrangues G. Damiand P. Lienhardt S. Peltier

Abstract

The paper focuses on homology computation over cellular structures
through the computation of incidence numbers. Roughly speaking, if two
cells are incident, then their incidence number characterizes how they are
attached. Having these numbers naturally leads to the definition of a
boundary operator, which induces a cellular homology. More precisely,
the two main families of cellular structures (incidence graphs and ordered
models) are studied through various models. A boundary operator is then
proposed for the most general structure, and is optimized for the other
structures. It is proved that, under specific conditions, the cellular bound-
ary operator proposed in this paper defines a cellular homology equivalent
to the simplicial one.

Keywords: cellular homology computation, incidence graph-based rep-
resentations, ordered models, boundary operator.

1 Introduction

Many simplicial and cellular structures have been defined in geometric model-
ing [AdFF85, Bau75, BD94, CMP06, CCM97, CR91, DFMMP03, DFMP03b,
DFMP03a, HC93, Lie89, Lie91, LL96, LL01, LL90, M8̈8, MH90, PBCF93,
PFL09, PFP95, Wei85, Wei86], image analysis [Bau75, BDF00, BDDV03, BG88,
BK03, DBF04, DCB03, DD08, BG88, GP90, MK05, PIK+09] and computa-
tional geometry [Bri89, DL89, Ede87, GS85, Spe91]. We focus here on cellular
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Université de Poitiers, Laboratoire XLIM, Département SIC, CNRS 6172;
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structures used to encode finite nD-space subdivisions. Schematically, such
structures are defined according to two main approaches. In both, the topology
of cellular objects is unambiguously defined as the topology of their simplicial
analog, i.e. it is possible to associate a simplicial object with any cellular object,
and this simplicial object is structured into cells (cf. Section 2).

Incidence graph based representations rely on an explicit definition of the
cells and their incidence relations whereas their associated abstract simplicial
complex is implicitly defined [Ber99, Ede87, RO89, Sob89]. Ordered models,
as cell-tuple and combinatorial map derived structures, explicitly provide the
simplicial interpretation of an object and implicitly encode the cells and their
incidence relations [Bri93, Lie94, Vin83]. Both approaches have specific advan-
tages and drawbacks. Incidence graphs intrinsically provide a direct access to
the cells and to their incidence relations. But they suffer from three major
limitations. First they are definitely not able to encode subdivisions with any
kind of multi-incidence (for instance a loop edge, in which the vertex is incident
twice to the edge). Then they do not make any assumption on the topology of
the cells. For instance, in such a representation, nothing prevents an edge to
be incident to more than two vertices. To tackle this difficulty, subclasses of
such structures have been exhibited (e.g. n-surfaces [Ber99, EKM96]). But the
properties they have to fulfill are expensive to check. Finally such cellular rep-
resentations have only been equipped with a few operations, because they are
not able to easily provide control over the evolution of their topology. Ordered
models overcome most drawbacks of incidence graphs: they are able to encode
subdivisions with multi-incidence, topological properties of cells are contained
in their very definition, and topological modifications induced by local opera-
tions are naturally monitored. As an expectable counterpart, the memory cost
of such representations is usually higher. Moreover though the topology of cells
is more constrained, there still may exist peculiar cells (e.g. cells which are not
homeomorphic to balls 1).

Many data structures based either on incidence graph or on ordered model
approaches have been designed, each with its own advantages and drawbacks.
They usually incorporate constraints either on the topology of the cells (e.g.
homeomorphic to balls, to cones) or on the way cells are glued together (e.g.
pseudo-manifolds, quasi-manifolds). Structures derived from incidence graphs
are usually completed with consistency properties and are more expensive to
handle than simple incidence graphs (e.g. n-surfaces). On the contrary, sub-
classes of ordered models as combinatorial maps generally provide optimizations
by taking advantage of the topological properties of the represented cellular ob-
ject. The choice of one structure rather than another essentially depends on
the requirements of the application. A compromise has often to be made be-
tween three kinds of complexity: space complexity to store the structure, time
complexity for handling them, and difficulty of algorithms design and imple-

1Note that speaking of cellular structures, we do not make any assumption either on the
topology of cells nor on the way they are glued together. More precisely, “cellular structures”
does not mean “CW -complexes” and n-dimensional cells do not have to be homeomorphic to
n-balls. The definition of cells for cellular structures will be precised in Section 2.
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mentation.
Many applications require the computation of topological properties of cel-

lular objects. We focus here on homology groups which contain meaningful
topological information and are computable similarly in any dimension [Ago76,
Hat02]. Intuitively these groups describe different kinds of “holes” of an object
(e.g. connected components, tunnels, cavities). Generators of these groups pro-
vide a representation of the homological information directly onto the structure.
Initially homology was only defined on abstract simplicial complexes but it has
been extended to other topological objects, such as semi-simplicial sets [May67]
and CW -complexes [FP90]. Algorithms have been designed to compute homo-
logical information, and their complexities are naturally highly related to the
number of cells of the studied object.

The topology of the cellular structures we previously mention is by definition
the topology of their simplicial analog. Their homology groups can hence be
computed on the associated simplicial structure but this representation generally
contains many more cells, in fact simplices, than the original cellular structure.
Therefore, we choose to study how to compute them directly on the cellular
structure.

To achieve this goal, a chain complex has to be constructed from the cellular
structure. It is composed of two types of elements: groups and homomorphisms
between them. Chain groups are naturally constructed as linear combinations of
cells of the object, with coefficients in a given abelian group (e.g. Z, Z/nZ). The
choice of a suitable coefficient group is guided by the properties of the cellular
object. The whole homology information is obtained when using Z and requires
each cell of the object to be orientable. When the object itself is orientable,
computing homology over Z/2Z is enough. Defining boundary homomorphisms
between chain groups is much more difficult and proving that they induce a
homology equivalent to the simplicial one is an even trickier challenge. The
design of suitable boundary homomorphisms relies on the characterization of
the incidence between any pair of cells having consecutive dimensions. Such
relations are expressed through incidence numbers which tell how many times
a cell is attached to another. For instance, a cylinder constructed by folding a
piece of paper and gluing opposite sides together contains an edge twice incident
to its face.

In this paper, we study the definition and the computation of incidence num-
bers for several cellular structures: for incidence graphs, orders in which the cells
are n-surfaces [Ber99, DCB05]; for ordered models, chains of maps, generalized
maps and maps [EL94, Lie94]. We choose these structures since they are repre-
sentative of structures which are usually handled in different fields of geometric
modeling, computational geometry and discrete geometry, for representing “non
manifold” or “manifold” objects. From the definition of incidence numbers, dif-
ferent algorithms can be deduced for computing them, and we propose some
algorithms which can be adapted for different structures.

More precisely the contributions of this paper are of two kinds. The first one
is related to combinatorial structures. We exhibit indeed a formal link between a
subclass of incidence graphs and a subclass of chains of maps (Section 6). Other
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contributions deal with the computation of homology on cellular structures. We
begin with defining boundary operators over Z/2Z and Z on suitable subclasses
of incidence graphs (Section 3) and chains of maps (Section 4). This extends the
results of [Bas10] and [APDL09] onto wider classes of, respectively, incidence
graphs and combinatorial maps. We give then a purely combinatorial proof
of the equivalence between the cellular homology induced by these boundary
operators and the simplicial one that can be computed on the simplicial inter-
pretation of both structures (Sections 5 and 6). The provided proof follows a
different path than the one developed for a more restricted subclass of incidence
graphs in [Bas10]. We also supply algorithms on both structures to compute the
matrices encoding the boundary operators. Finally we study the optimization
of these boundary operators on subclasses of chains of maps: generalized maps
(Section 7) and maps (Section 8) and give adapted computation algorithms.

The paper is organized as follows. Section 2 covers the whole background
of the paper. It briefly recalls essential notions about homology theory and
associated computation methods (Section 2.1 page 5). Then it presents both
families of cellular structures we are interested in (Section 2.2 page 7 and Sec-
tion 2.3 page 13). It concludes by an explanation of the motivations and the
ins and outs of this work (Section 2.4 page 17). Sections 3 and 4 respectively
focus on the definition and computation of boundary operators for incidence
graphs and chains of maps. They follow the same outline. The definition of
the studied structure is given (Sections 3.1 and 4.1 pages 19 and 25). Then a
notion of unsigned incidence number is provided which is proved to lead to a
consistent boundary operator over Z/2Z (Sections 3.2 and 4.2 pages 20 and 29).
Afterwards this notion is extended to obtain a signed incidence number which
in turn is proved to produce a sound boundary operator (Sections 3.3 and 4.3
pages 21 and 32). Finally an algorithm computing the matrix representation of
this boundary operator is given for each structure (Sections 3.4 and 4.4 pages 23
and 35). The proof of the equivalence between the cellular homology defined
on chain of maps and the classical simplicial one is detailed in Section 5 by
building a correspondence between cellular and simplicial chains and showing
that it preserves both cycles and boundaries. The proof of a similar equivalence
for the subclass of incidence graphs is given in Section 6. It is based on the
correspondence between this subclass and a subclass of chains of maps (proved
in Section 6.1). Sections 7 and 8 pages 54 and 60 present optimizations by fo-
cusing on more specialized structures, respectively generalized maps and maps.
We present in Section 9 some preliminary results, and finally we conclude and
give some insight into future works (Section 10 page 62).
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2 Background on cellular structures and homo-
logy

2.1 Homology

Characterizing subdivided objects regarding their topological structure is of in-
terest in different domains of computer graphics, discrete geometry or geometric
modeling (e.g. [LPR93, NSK+02, VL07]). More precisely, two topological spaces
are “equal” if there exists a homeomorphism between them. In general, it is very
difficult to prove that there exists or not an homeomorphism between two topo-
logical spaces. So topological invariants have been introduced. A topological
invariant is a property that is preserved by homeomorphisms. Otherwise said,
if a property is true on a topological space A, then it will also be true on B if A
is homeomorphic to B. There exists many topological invariants as the number
of connected components, the Euler characteristic, the fundamental group, the
homology groups or the orientability.

Among all the existing topological invariants, we are especially interested
in homology groups because they are classicaly studied in algebraic topology
([Mun30]), and known to be powerful. For each dimension i = 0..n, the homol-
ogy group Hi of an nD object characterizes its holes (connected components
for H0, tunnels for H1, cavities for H2...). Informally, homology groups can be
defined as the characterization of how the cells are glued together, and this is
done by studying the boundary of each cell. Moreover, from a computational
point of view, homology groups are defined in the same way in any dimension
and are directly linked to the cells of an object and their incidence relations.

2.1.1 Chain complex

In this part, the algebraic notions of chain, cycle, boundary, and homology
generator, are illustrated using Fig. 1.

Figure 1: A cellular subdivision having the following homology groups: H0 ≃
H1 ≃ Z, Hi ≃ 0 for i > 1. 3A − 6B and C + 2B are 1−chains. As examples,
A + B is a 1−cycle as (A + B)∂ = D − E + E − D = 0 and B − C is a
1−boundary as B − C = F∂. The 1−chains A + B and A + C are homologous
as A + C + F∂ = A + B. D is a generator for H0 and A + C is a generator of
H1.

5



Homology groups are defined from an algebraic structure called a chain com-

plex, i.e. a sequence Cn
∂n−→ Cn−1

∂n−1
−→ · · ·

∂1−→ C0
∂0−→ 0 of (boundary) homo-

morphisms of abelian groups satisfying ∂∂ = 0 2. A chain complex can be
associated with a subdivided object A in the following way: each chain group
Ci of dimension i, is generated by all the i−cells of A. The boundary homomor-
phisms are defined over chains of cells as linear extensions of the basic boundary
operators defined for each cell. For example, the boundary of the chain 2c1−3c2

(denoted (2c1 − 3c2)∂) is defined as 2c1∂ − 3c2∂. Thus, computing homology
groups over a combinatorial structure (abstract simplicial complex, orders, gen-
eralized maps...) requires a basic boundary operator over cells.

2.1.2 Cycles, boundaries, homology groups

Among all the possible chains, homology consider two particular kinds of chains:
cycles and boundaries. A cycle z is a chain satisfying z∂ = 0, a chain b is a
boundary if there exists a chain c satisfying c∂ = b. For each dimension i, the
set of i−cycles equipped with the addition is a subgroup of Ci, denoted Zi. The
set of all i−boundaries equipped with the addition is a subgroup of Zi, denoted
Bi (a boundary is a cycle as the property c∂∂ = 0 has to be satisfied for any
chain).

Homology groups Hi are defined as the quotient group Zi/Bi. So the ele-
ments of the homology group Hi are equivalence classes such that two cycles
are in the same equivalence class if they differ by a boundary.

Homology groups are finitely generated abelian groups, so the following the-
orem describes their structure [Hat02].

Every finitely generated abelian group G is isomorphic to a direct sum of the
form:

Z⊕ ...⊕ Z
︸ ︷︷ ︸

β

⊕Z/t1Z⊕ ...⊕ Z/tkZ.

where 1 < ti ∈ Z and ti divides ti+1.
The rank β of an homology group is also called its Betti number, and the ti

are also known as its torsion coefficients.

2.1.3 Homology generators

Depending on what is expected, “computing homology” may have different
meanings. For example, the number of i−dimensional holes of a given ob-
ject is completely defined by the Betti numbers and the torsion coefficients.
But if one is interested in computing homology generators, these numbers are
not sufficient, the computation of one representant cycle per homology class is
needed.

2Usually, we do not explicitly denote the dimensions of the boundary homomorphisms.
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2.1.4 Different coefficients

In the previous description of homology groups, it was implicit that all the
chains are considered with coefficients over Z. In a more general point of view,
homology groups can be computed with any coefficients (e.g. homology on Z/2Z

or Q).
The universal coefficient theorem [Hat02] ensures that all the homological

information is contained in homology groups with coefficients in Z. But for
optimisation purposes, it may be usefull to compute with other coefficients. In
particular, homology over Z/2Z is interesting for torsion-free objects, as in this
case, these groups are known to be isomorphic to the homology groups over
integer coefficients.

2.1.5 Computing homology

Several algorithms have been designed to compute Betti numbers, torsion co-
efficients and eventually homology groups generators. The most classical ap-
proach is based on incidence matrices reductions into the so-called Smith Nor-
mal Form [Ago76, Mun30, KB79, PAFL06a]. Generally the incidence ma-
trices of the whole object are handled, involving sometimes a high compu-
tational cost and memory issues since huge integers may occur during the
computational process [KB79]. Many works aim at optimizing this process
[DSV01, Gie96, Sto96]. Others aim at simplifying the structure while preserving
its topology [GDJMR09, KMS98, KMM04]. Some works follow an incremental
approach and intend to compute the homology of an object while construct-
ing it [DPF08, DE95]. More recently, persistence homology theory has been
introduced [ELZ02]. Informally, this original approach allows to describe the
topology of an object at different scales. In particular, persistent homology led
to the notion of localized homology for computing ”nice” generators [ZC08].

2.2 Cellular structures

2.2.1 Incidence graph based structures

aim at characterizing a subdivision through the incidence relations between its
cells. Roughly speaking the vertices of such a graph represent the cells of the
subdivision and an edge exists between two vertices when the corresponding
cells are incident. Note that such structures are not able to accurately represent
subdivisions containing multiply incident cells. But they are still generic because
their natural definitions include no other constraint on the subdivision than
mono-incidence and does not make any assumption on the topology of cells.

Many structures based on this approach have been designed and adapted to
different kinds of applications, e.g. [Sob89, RO89, Ede87]. Their differences lie
either on the way they are defined (e.g. with an explicit or implicit dimension
associated with each vertex of the graph) or on the kinds of subdivisions they
encode (e.g. n-surfaces). In the latter case, additional constraints are added in
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order to ensure some topological properties of the represented subdivisions (e.g.
to grant some similarities with manifolds).

We choose here an order-based representation of incidence graphs where the
dimension of cells is implicitly defined [Ber99]. It is a bit more restrictive than
some other definitions because there cannot be any “dimensional gap” between
two incident cells. More precisely whenever two cells of dimensions i and j are
incident, there exists at least one cell of each dimension between i and j which
is incident to both cells.

We first recall the definition of a locally finite order.

Definition 2.1 (CF -order [Ber99]) An order is a pair |X| = (X, α), where
X is a set and α a reflexive, antisymmetric, and transitive binary relation. We
denote β the inverse of α and θ the union of α and β. CF -orders are orders
which are countable, i.e. X is countable, and locally finite, i.e. ∀x ∈ X, θ(x) is
finite.

We introduce some vocabulary and notations (based on [DCB03, DCB05])
and carefully relate them to those classically defined on cellular subdivisions.
The set α(x) is called the α-adherence of x and represents the closure of cell
x, i.e. x and all cells of lower dimensions incident to x (i.e. the cells in the
boundary of x). The set β(x) is similary called β-adherence of x and encodes
the star of x, i.e. x and all cells of greater dimensions to which x is incident.
The θ-adherence of x is simply the union of the closure and of the star of x. The
strict α-, β- and θ-adherences are respectively denoted by α�, β�, and θ� and
contain all elements of the corresponding adherence except x itself. The notion
of α-closeness of x, denoted by α•(x), also proves useful. This set contains the
elements of the order which are the closest to x according to α. It is formally
defined as the set: {y ∈ α�(x), α�(x) ∩ β�(y) = ∅}. The β- and θ-closeness
are similarly defined.

There are many ways to visually represent orders. We choose here to use
simple Directed Acyclic Graphs (DAG), whose vertices are exactly the elements
of X and each oriented edge relates an element x to an element of α•(x). We
use hence the DAG (X, α•) to represent the order (X, α). The set α(x) is
naturally obtained from the DAG by extracting the transitive closure of α•(x)
(see Fig. 2(c) page 10).

If S is any subset of X, (S, α ∩ S × S) is a suborder of |X| and is denoted
by |S| = (S, α|S).

Finally a sequence x0, x1, . . . , xn such that xi belongs to θ�(xi+1) is called a
θ-chain of length n, n-θ-chain or simply a path. An order is said to be connected
if it is path-connected. Note that α-, α•-, β-, β•-chains are similary defined.
The rank of an element denoted by ρ(x, |X|) is defined as the length of the
longest α•-chain begining at it. The rank of an order is simply the highest rank
of its elements.

The rank of an element can be seen as its implicit dimension. To grant
that this implicit dimension is consistent with the dimension in the underlying
subdivision, we only deal with subdivisions which can be encoded by closed CF -
orders. The closeness condition prevents any “dimensional gap” from occuring
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in the subdivision and in its representative order. It yields hence to the equality
of the notions of dimension in both representations.

Definition 2.2 (closed order [Ber99]) Let |X| be an order of rank n, |X| is
said to be closed if for any x ∈ X and y ∈ α�(x):

∀i ∈]ρ(y, |X|), ρ(x, |X|)[, ∃z ∈ α�(x) ∩ β�(y), ρ(z, |X|) = i

The main cells are the cells the strict stars of which are empty. A pure order
is such that all main cells have the same dimension 3.

Usually any order is associated with a simplicial interpretation built on the
α-chains of the order. The order complex of an order |X|, denoted by ∆(|X|) is
an abstract simplicial complex and defines the topology of the order.

Definition 2.3 (abstract simplicial complex [Ago76]) An abstract simpli-
cial complex (V,∆) is a set of vertices V together with a family ∆ of finite
non-empty subsets of V , called simplices, such that ∅ 6= σ ⊆ τ ∈ ∆ implies
σ ∈ ∆.

The dimension of a simplex σ in ∆, dim∆(σ) is its cardinality less 1.

Vertices of the order complex are exactly the elements of the order. And
there is a bijection between the sets of k-simplices and the sets of k-α-chains.
Obviously the incidence relations between simplices are deduced from the inclu-
sion relations between α-chains. Moreover the order complex associated with a
closed order is a numbered abstract simplicial complex, i.e. there exists a num-
bering of the vertices such that the vertices of each main i-simplex are numbered
from 0 to i (see Figs. 2(c) and 2(b) page 10, where v1 and v2, e1 and e2, f1

and f2 respectively correspond to both vertices numbered 0, 1 and 2.). Label-
ing each element of a closed order with its implicit dimension provides such a
numbering. Note that when the closed order is also pure, all main simplices are
numbered from 0 to n.

The orders described so far are so little constrained that they would be able
to encode “pathologic subdivisions” where, for instance, three vertices could
be incident to a same edge. As such configurations should never appear, this
allowance is a serious drawback. More specialized orders have been defined to
avoid inconsistent configurations.

We focus here on two families of orders. The most constrained is made of n-
surfaces, which have manifold-like properties and constitute a subset of pseudo-
manifolds 4. The properties of the associated subdivisions, called cellular quasi-
manifolds, are described further. The other class of order is a generalization of

3These notions and many others as star, boundary, etc are also defined in a similar way
for other combinatorial models.

4A closed pseudomanifold is defined as follow:

• It is a pure, finite n-dimensional abstract simplicial complex (n ≥ 1) (purity condition);

• Each (n − 1)-simplex is a face of exactly two n-simplices (nonbranching condition);

• Every two n-simplices can be connected by means of a series of alternating n and (n−1)-
simplices, each of which is incident with its successor (strong connectivity condition).
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n-surfaces: i-cells have to be i-surfaces but the whole subdivision does not have
to. Otherwise said the topology of each cell is restricted but their attachment
can be achieved more loosely. This class is formally defined in Section 3.

Definition 2.4 (n-surface) Let |X| = (X, α) be a non-empty CF -order.

• The order |X| is a 0-surface if X is composed exactly of two elements x
and y such that y 6∈ α(x) and x 6∈ α(y);

• The order |X| is an n-surface, n > 0, if |X| is connected and if, for each
x ∈ X, the order |θ�(x)| is an (n− 1)-surface.

(a) (b) (c) (d)

Figure 2: (a) A cellular decomposition of the 2-sphere with 2 faces, 2 edges and 2
vertices. (b) Its associated numbered abstract simplicial complex. (c) The order
corresponding to (a) which is a 2-surface. (d) The 2-dimensional generalized
map associated with (a).

The definition of orders derived from n-surfaces provides a characterization
of a subclass of incidence graphs having manifold-like properties. But such
subdivisions are not easy to handle. First, checking if an incidence graph ful-
fills n-surface properties is expensive. Then modification operators should be
carefully designed in order to preserve n-surface properties.

To overcome such difficulties, structures have been designed whose definition
mechanisms convey natural restrictions on the kind of subdivisions they are able
to encode.

2.2.2 Combinatorial maps based structures

are by construction dedicated to the representation of cellular structures
whose cells have regularity properties close to manifold. They are used in
many applications related to geometrical modeling as well as image analy-
sis [BSP+05, BG88, BDDV03, DBF04, BDF00]. They are also known to be
equivalent to other combinatorial structures, such as cell-tuples, facet-edge,
quad-edge [Bri93, DL89, GS85, Lie91]. Several families of combinatorial maps
have been defined depending on the constraints imposed upon the arrangement
of such cells. These structures are not constructed directly from the cells of
the subdivision but from a more elementary object, namely a dart. The set
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of darts is structured through involutions that describe how they are linked to
each other. Such a representation provides an implicit description of cells as
sets of darts and conveys hence a more precise description of how the cells of
the subdivision are attached together.

We are more particularly interested in three families of combinatorial maps
based structures, because they are representative of optimization mechanisms
which are at the basis of the definition of commonly used data structures. Chains
of maps (described in Section 4) are the most general because they impose
only few constraints on the way cells are glued together. Then n-dimensional
generalized maps or n-gmaps (defined below) are a bit more restrictive. Not
only the cells have to look like manifolds but the whole subdivision also has
to. Finally, n-dimensional maps (defined in Section 8) are the most specialized
and provide an optimized representation of orientable manifold-like subdivisions
without boundaries.

We first recall the notion of n-gmap. Subdivisions encoded by such structures
are precisely what we have called so far “manifold-like” subdivisions and are
formally known as “cellular quasi-manifolds” (see page 15 and [Lie94])

Definition 2.5 (n-gmap) Let n ≥ 0, an n-gmap is defined by an (n+2)-tuple
G = (D,α0, · · · , αn) such that:

• D is a finite set of darts;

• ∀i, 0 ≤ i ≤ n, αi : D → D is an involution 5;

• ∀i, 0 ≤ i ≤ n− 2,∀j, i + 2 ≤ j ≤ n, αiαj is an involution.

We will see that it is possible to associate a simplicial object, more formally
a semi-simplicial set, with any n-gmap, and this simplicial object is structured
into cells. Two examples are displayed respectively on Figs. 2 and 3. The first
condition satisfied by the α operators grants that the simplicial object is a quasi-
manifold, and the second condition grants that all cells are quasi-manifolds (see
page 15). Contrary to incidence graphs, this cellular object is able to contain
multiply incident cells (see Fig. 3).

(a) (b)

Figure 3: (a) A 2-gmap representing a cylinder. (b) Its associated numbered
semi-simplicial set.

5i.e. αi = α−1

i .
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Darts of an n-gmap can be structured into subsets, which are defined through
the notion of orbit (see Fig. 4).

Definition 2.6 (orbit) Let Φ = {π0, · · · , πn} a set of permutations defined
on a set D. We denote 〈Φ〉 = 〈π0, · · · , πn〉 = 〈〉[0,n] the permutation group
of D generated by Φ. The orbit of an element d ∈ D relatively to 〈Φ〉, de-
noted 〈Φ〉 (d) is the set {dφ | φ ∈ 〈Φ〉}. It denotes also the structure (Dd =
〈Φ〉 (d) , π0/Dd, · · · , πn/Dd), where πi/Dd denotes the restriction of πi to Dd6.

(a) (b)

(c)

Figure 4: (a) Orbits 〈α1, α2〉 defining the ”neighborhood” of the vertices of
the subdivision. (b) Orbits 〈α0, α2〉 defining the ”neighborhood” of the edges.
(c) Orbits 〈α0, α1〉 defining the faces.

The connected component of gmap G incident to dart d is the orbit
〈α0, · · · , αn〉 (d). The i-dimensional cell incident to dart d is the orbit
〈α0, · · · , α̂i, · · · , αn〉 (d), where α̂i denotes that involution αi is removed7.

Whereas the cellular interpretation of an n-gmap is implicit, a semi-
simplicial set is more explicitly associated with an n-gmap. Such structures
are defined as a set of simplices equipped with operators expliciting the face
relations between simplices having consecutive dimensions [May67].

Definition 2.7 (semi-simplicial set) An n-dimensional semi-simplicial set S =
(K, (dj)j=0,...,n) is defined by:

• K =
⋃

i=0,...,n Ki, where Ki is a finite set the elements of which are called
i-simplices;

6We often omit to explicitly indicate the restriction, since it is usually obvious.
7In other words, an i-cell is a connected component of the (n − 1)-gmap

(D, α0, · · · , α̂i, · · · , αn).
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• ∀j ∈ {0, . . . , n}, dj : K −→ K, called face operator, is s.t.:

– ∀i ∈ {1, . . . , n},∀j ∈ {0, . . . , i}, dj : Ki −→ Ki−1 ; ∀j > i, dj is
undefined on Ki, and no face operator is defined on K0;

– ∀i ∈ {2, . . . , n}, ∀j, k ∈ {0, . . . , i}, djdk = dkdj−1 for k < j.

Each dart of an n-gmap corresponds to an n-simplex of the associated simpli-
cial set. Each orbit 〈〉[0,n]−{k0,··· ,ki} defines an i-simplex numbered (k0, · · · , ki),
and the face operators are deduced from the αi’s. For instance, each orbit
〈〉[0,n]−{i} corresponds to a 0-simplex numbered i, which identifies an i-cell, and
the darts of this orbit describe in fact the neighborhood of the i-cell (see Fig. 4).

2.3 Structural framework

We have seen in the previous sections two families of cellular structures: inci-
dence graphs and combinatorial maps. These structures have in common the
fact that they have a simplicial topological interpretation. More precisely in-
cidence graphs are interpreted as numbered abstract simplicial complexes and
combinatorial maps are interpreted as numbered semi-simplicial sets. The main
difference between these structures is related to multi-incidence. In this section,
we will precise all these notions.

2.3.1 Simplicial structures

Abstract simplicial complexes is a well known simplicial structure, which
geometric realization is a simplicial complex [Ago76]: such objects are widely
used in geometric modeling, computational geometry, etc. The word “abstract”
indicates that the structure is based on set theory. More precisely, in this
structure, a k-simplex is defined as a set of k + 1 vertices, and an abstract
simplicial complex is a set of simplices. This implies the fact that there is
no multi-incidence between simplices, i.e. both following properties hold (cf.
Fig. 5(a)):

• a k−simplex is incident to k + 1 distinct vertices;

• distinct simplices have distinct boundaries.

For instance, the abstract simplicial complex fully defined by its main
simplices: {{B}, {A, F}, {C, D, E}, {E,F, G}} is geometrically represented on
Fig. 5(a).

Semi-simplicial sets are more “flexible” than abstract simplicial complexes
in the sense that they allow multi-incidence (see Fig. 5(d)): a k-simplex can be
incident to less than k + 1 vertices (cf. Fig. 5(b)), distinct simplices can have
the same boundary (cf. Fig. 5(c)). So, it is not always possible to directly asso-
ciate an abstract simplicial complex with a semi-simplicial set, but the converse
is true: given an abstract simplicial complex, we can define an order on the
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(a) (b) (c) (d)

Figure 5: (a) An abstract simplicial complex. (b) The triangle is incident to two
vertices. (c) Two edges have the same boundary. These two subdivisions can
be described by semi-simplicial sets but not by abstract simplicial complexes.
(d) Semi-simplicial set associated with (b).

vertices, and associate a sequence of vertices with each simplex (note that this
induces an orientation for the simplices). An abstract simplex is then associ-
ated with each sequence of vertices, and the boundary operators can directly
be deduced from this ordering 8. At last, note that the geometric realization
of an abstract simplicial complex is a simplicial complex whereas the geometric
realization of a semi-simplicial set is a CW−complex [May67, Ago76].

2.3.2 Cellular structures defined as numbered simplicial structures

Abstract simplicial complexes associated with incidence graphs and semi-
simplicial sets associated with combinatorial maps correspond both to num-
bered simplicial structures. This numbering induces a notion of cell and cellular
objects correspond thus to simplicial objects structured into cells.

In an incidence graph, each node represents a k−cell. In the associated
simplicial complex, it corresponds to a vertex numbered k. More generally, any
sequence of incident cells corresponds to a simplex numbered by the dimensions
of the cells (so any k-simplex is incident to k+1 distinct vertices having different
numbers).

For example, Fig. 2(c) illustrates an incidence graph, Fig. 2(b) shows its
simplicial interpretation, and Fig. 2(a) shows its corresponding cellular decom-
position. In this example, 2−simplex σ is defined as the set {v1, e1, f2} and it
is numbered {0, 1, 2}.

Regarding n-dimensional generalized maps, each orbit 〈〉[0,n]−{i0,··· ,ip}(d) is
associated with a simplex numbered {i0, · · · , ip}. The semi-simplicial set asso-
ciated with the gmap has thus its vertices numbered from 0 to n, and, for a
given simplex, all its vertices have distinct numbers.

The main difference between combinatorial maps and incidence graphs is
the fact that in the case of gmaps, two simplices may have the same boundary

8More precisely, for any i, face operator di is defined in such a way that it corresponds
intuitively to remove the ith vertex of the simplex.
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(see Fig. 6(c)). Nevertheless, the principle of the topological interpretation
of incidence graphs and gmaps is the same and it is based on the following
definition:

Definition 2.8 (i−cell [Lie94]) In a numbered simplicial object, an i−cell is
defined by a vertex v numbered i and all the simplices of dimension 1 to i incident
to v which are numbered by integers lower than i.

It can be noticed that this definition of cells is very general: in particular, it
allows to have cells the geometric realization of which are not topological balls
(see Fig. 6(b)). To conclude, a cellular object is simply a numbered simplicial
object, where the numbering defines a partition of the simplices into cells.

(a) (b) (c)

Figure 6: (a)-(b) Two numbered semi-simplicial sets structured into cells. On
(a), each cell is a topological ball whereas on (b) the 2−cell is not even a
manifold. (c) An edge incident twice to a vertex: two 1−simplices share the
same boundary.

In order to restrict this generality, some authors have defined different sub-
classes of these cellular objects, in particular n−surfaces and cellular quasi-
manifolds (cf. below). A slightly more general class is that of numbered sim-
plicial quasi-manifold, which can be constructively defined in the following
way: starting with n−simplices numbered 0 to n (and their boundaries), (n −
1)−simplices are identified in such a way that at most 2 n−simplices are in-
cident to an (n − 1)−simplex. For example, the numbered semi-simplicial set
on Fig. 6(b) is not a numbered simplicial quasi-manifold, since its construction
needs to identify not only edges and their boundaries, but also single vertices.

Note that the representation can be simplified by keeping only the
n−simplices and by replacing faces operators by adjacency operators. We then
obtain a premap (D,α0, · · · , αn), where each dart of D corresponds to an n-
simplex, and all α operators correspond to adjacency relations of n-simplices.
One can notice that cells may not be quasi-manifolds (see Fig. 7(b)).

Cellular quasi-manifolds are a subclass of numbered simplicial quasi-
manifolds where the cells are also cellular quasi-manifolds. They can be char-
acterized through two different ways:
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(a) (b)

Figure 7: (a) A numbered simplicial quasi-manifold having a 1−cell which is
not a quasi-manifold. (b) Its associated premap.

• through a characterization of the cell neighborhoods, as it is done for
n−surfaces;

• constructively: a 0-dimensional cellular quasi-manifold is a collection of
sets of one or two vertices. An n-dimensional cellular quasi-manifold con-
taining isolated n-cells is obtained from an (n − 1)-dimensional cellular
quasi-manifold by cone operations over each connected component. The
n-cells can then be glued together by identifying (n− 1)−cells (and their
boundaries) in such a way that there is at most two n-cells around an
(n − 1)-cell. We then come up to the definition of generalized maps:
the fact that cells are cellular quasi-manifolds is ensured by the sec-
ond condition over the αi (i.e. αiαj is an involution for all i, j s.t.
0 ≤ i ≤ j − 2 < j ≤ n).

(a) (b) (c) (d)

Figure 8: (a) A non manifold. (b) A pseudo-manifold (non quasi-manifold).
(c) A quasi-manifold (non-manifold). This object can be obtained by gluing
two opposite triangular faces of a square based pyramid. (d) A manifold.

At last, note that a cellular quasi-manifold may not be a manifold (see
Fig. 8(c)), but it is a pseudo-manifold [Lie94].

So, we are now able to define cellular complexes in which the cells are cellular
quasi-manifolds. For map structures, we obtain the notion of chain of maps (cf.
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Section 4), whereas in the incidence graph context, we consider incidence graph
in which all the subgraphs restricted to the main cells (and their boundaries) are
i−surfaces (cf. Section 3). We can also consider a subclass, which corresponds
to orientable cellular quasi-manifolds without boundary(cf. Section 8).

2.4 Problem

2.4.1 Simplicial homology

The definition of homology for simplicial objects is well-known: it consists in
defining the chain groups (which is straightforward) and the boundary opera-
tors. These boundary operators are defined as linear extensions of basic bound-
ary operators which act on simplices. For abstract simplicial complexes, we can
define an homology on Z/2Z by defining the basic boundary operator in the fol-
lowing way: {v0, · · · , vi, · · · , vk}∂ =

∑

0≤i≤k

{v0, · · · , v̂i, · · · , vk} where v̂i means

that vertex vi is removed. For semi-simplicial sets, as said before when compar-
ing them with abstract simplicial complexes, simplices are implicitly oriented,
and we can define an homology on Z by defining the basic boundary operator
as: σ∂ =

∑
(−1)iσdi. We will follow this idea later for defining an homol-

ogy for cellular structures: first defining an homology on Z/2Z, then adding an
orientation of the cells for defining an homology on Z.

2.4.2 Cellular Homology

The homology of cellular objects (incidence graphs or ordered models) can be
simply defined as their simplicial homology, since a cellular object is a simplicial
object structured into cells. Our objective is to take advantage of this structura-
tion into cells. So we are looking for some optimization by defining a boundary
operator which acts directly on the cells (i.e. on sets of simplices). So the op-
timization acts on the number of elements that are considered as there are less
cells than simplices in the associated topological interpretation. A boundary
operator is commonly based upon the notion of incidence number: given two
cells ci (of dimension i) and ci−1 (of dimension i − 1), the incidence number
(ci : ci−1) is the number of times ci−1 appears in the boundary of ci. A bound-
ary operator is the linear extension of a basic boundary operator which acts on
cells, defined by:

Definition 2.9 (boundary operator) Let Ci−1 denote the set of (i − 1) −
cells, and ci be an i-cell; the boundary operator ∂ associates the (i− 1)−chain:

ci∂ =
∑

ci−1∈Ci−1

(ci : ci−1)ci−1

So, we just have to focus on the definition of incidence numbers. For example,
we have seen that we can define a boundary operator over abstract simplicial
complexes with coefficients in Z/2Z. In the same way, it is possible to define a
boundary operator with coefficients over Z/2Z for incidence graphs by setting
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(ci : ci−1) equals 1 if ci−1 is in the boundary of ci, and 0 if it is not. Then, we
need to study the conditions which have to be satisfied in order to define a true
boundary operator (i.e. such that ∂∂ = 0), and the relationships between the
cellular homology we have defined and the simplicial homology defined on the
associated abstract simplicial complex.

Moreover, we expect here to define an homology with coefficients over Z.
The idea here is to proceed in the same way as it has been classicaly done for
simplicial structures. In particular, we have to add an orientation of the cells.
For this we need to add the following constraints over cells:

• cells are cellular quasi-manifolds;

• cells have complete boundaries (or else, there is no chance we can define
a cellular boundary operator ∂ which satisfies ∂∂ = 0);

• cells are orientable (since it is necessary to define an orientation on them);

• the “canonical” boundary of each k−cell has the homology of a (k −
1)−sphere. Actually, from a simplicial point of view, a k−cell is a cone
over a (k − 1)−quasi-manifold. From a cellular point of view, a cell fills
its boundary. In order to have a chance to define a cellular homology
equivalent to its simplicial interpretation, the cone operation has to have
the same effects in the cellular structure as in the simplicial one. So, it is
expected that a cone kills all the homology groups (except H0), and the
only way to ensure this property in the cellular structure is to perform
cones over spheres.

In a first step, we detail this approach for incidence graphs where cells are
n−surfaces. This approach is then extended to chains of maps, which can rep-
resent multi-incidence. Finally, we study possible optimizations for subclasses
of chains of maps (gmaps and maps).

In the sequel, each boundary operator is denoted by the letter ∂ together with
a subscript corresponding to the initial of the name of the structure on which
it is defined, i.e. ∂S , ∂G and ∂M respectively stand for simplicial structures,
incidence graphs and maps. Note that no specific notation is used to distinguish
between boundary operators acting on Z or Z/2Z. The context is sufficient to
achieve this distinction.

3 Incidence graphs

We first describe in this section the subclass of incidence graphs we are interested
in and highlight some of their properties. We define then the notion of unsigned
incidence number and prove that it is consistent with the construction of a
boundary operator with coefficients belonging to Z/2Z. We go on explaining
how to detect whether a cell of such a subdivision is orientable or not and we
define a signed incidence number for any pair of oriented cells having consecutive
dimensions. We prove that this definition induces a boundary operator with
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coefficients in Z and hence a homology over Z. We provide then an algorithm
computing all incidence matrices of an incidence graph belonging to the subclass
we consider. The proof of the equivalence between this cellular homology and
the traditional simplicial one is postponed to Section 6.

3.1 Definition

Elementary notions related to incidence graphs have been recalled in Section 2.2.1.
We focus here on a subclass of incidence graphs more general than n-surfaces.
Such incidence graphs actually encode subdivisions that are not cellular quasi-
manifolds but whose cells are (see an example on Figure 9).

A B
C

D

EF
(a)

AB E F

AC D

AB DBC B

F

E B F E A F D E

B E D

B E

(b)

Figure 9: (a) Cell subdivision. (b) Its associated incidence graph which is a
2-dimensional chain of surfaces.

In the remaining of the paper, the symbol representing an element of an
order is superscripted by its rank whenever the dimension of the element has to
be taken into account.

Definition 3.1 (chain of surfaces) Let |X| = (X,α) be a non-empty con-
nected CF -order. |X| is a k-dimensional chain of surfaces if ∀xi main cell of
|X|, α�(xi) is an (i− 1)-surface.

This subclass of incidence graphs inherits some interesting properties of n-
surfaces. First, whenever a (k − 2)-cell is incident to a k-cell, there exists
exactly two (k − 1)-cells between them (diamond configuration). Similarly any
1-cell has exactly two incident 0-cells. To obtain an homogeneous definition of
this so-called switch-property [Bri93], a fictive element x−1 is added to X such
that x−1 belongs to the α-adherence of any element of X (i.e. x−1 is a sink for
|X|).

Property 3.2 (switch-property) Let |X| be a k-dimensional chain of sur-
faces.
∀(x, y) ∈ (X ∪{x−1})× (X ∪{x−1}), β•(x)∩α•(y) is either empty or made

of exactly 2 elements.

19



On n-surfaces, the switch-property also holds for (n − 1)-elements and a
fictive source xn+1. Moreover this property induces (n + 1) operators on n-
β•-chains, denoted by switchi, i ∈ {0, . . . , n}, each of which acts on the i-
dimensional element of the chain. The operator switchi actually transforms the
chain (x0, . . . , xi−1, xi, xi+1, . . . , xn) into (x0, . . . , xi−1, x′i, xi+1, . . . , xn), where
β•(xi−1) ∩ α•(xi+1) = {xi, x′i} (see [Bri93]).

Property 3.3 Let |X| be a k-dimensional chain of surfaces and xi be an el-
ement of X. The suborder built on all elements of α�(xi) having dimensions
(i− 2) and (i− 1) is connected.

Proof. |α�(xi)| is an (i− 1)-surface (see proof in [DCB05]). Then it is chain-
connected (see [ADLL08]), which means that any two (i − 1)-β•-chains
having k elements in common can be obtained from one another by a
composition of switch-operators involving elements that are not shared
by both chains.

Let y and z be two elements belonging to the suborder of |α�(xi)| built
on (i − 1)- and (i − 2)-elements . We show that there exists a path in
this very suborder linking both elements by building it step by step. Let
Cy and Cz be two (i− 1)-β•-chains respectively containing y and z. Note
that each such chain contains exactly two elements of the suborder. If
y ∈ Cz or z ∈ Cy, then y and z are connected. Else, as |α�(xi)| is
chain-connected, Cz is the image of Cy under a composition of switchk

operators. This composition of involutions contains at least one switchi−1

or one switchi−2 involution. Let C ′
y be the image of Cy by the subsequence

of consecutive involutions ending with the first involution whose index, k0,
is equal to i−1 or i−2. And let C0

y the chain obtained by applying the same
sequence of operators and ending with the involution preceding switchk0

.
In the following let us denote respectively by yi−3, yi−2 and yi−1 the
(i − 3)-, (i − 2)- and (i − 1)-cells of C0

y . Note that both yi−2 and yi−1

belong to the suborder of |α�(xi)| built on its (i−1)- and (i−2)-elements
and that y is either yi−1 or yi−2.

Let yk0 be the k0-dimensional element of C ′
y. If k0 is equal to i− 1, then,

yi−2 belongs both to C ′
y and to C0

y . And yk0 = α•(xi)∪ β•(yi−2)\{yi−1}.

The chain yi−1, yi−2, yk0 is a path in the suborder. If k0 is equal to i− 2,
then yi−1 still belongs to C ′

y. Moreover yk0 = α•(yi−1)∪β•(yi−3)\{yi−2}

and yi−2, yi−1, yk0 is a path in the suborder. There exists hence a path
between y and yk0 . If yk0 = z then we are done. Else we go on applying
involutions and building a path step by step. ✷

3.2 Unsigned incidence number

The unsigned incidence number counts the number of times a cell is incident
to another. As subdivisions encoded by incidence graphs cannot contain any
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multi-incidence, the value of the unsigned incidence number for any couple of
consecutive cells is either 1 or 0, depending on whether one cell belongs to the
boundary of the other or not.

Definition 3.4 (unsigned incidence number) Let |X| be a k-dimensional
chain of surfaces, let xi and xi−1 be two elements of X, the unsigned incidence
number, (xi : xi−1) is defined to be equal to 1 if xi−1 ∈ α•(xi), else it is equal
to 0.

Let us recall that ∂G denotes here the operator built from the unsigned
incidence number as a linear extension over Z/2Z of the basic operator described
in definition 2.9.

Theorem 3.5 ∂G is a boundary operator (i.e. ∂G∂G = 0).

Proof. Let xi be an element of a k-dimensional chain of surfaces:

xi∂G =
∑

xi−1∈α•(xi)

xi−1

xi∂G∂G =
∑

xi−1∈α•(xi)

(xi−1∂G)

=
∑

xi−1∈α•(xi)

∑

xi−2∈α•(xi−1)

xi−2

The switch-property says that each element xi−2 incident to xi, is in-
cident to exactly two (i − 1)-elements of α•(xi). It implies that each
(i− 2)-element involved in the double sum above is present exactly twice,
one for each (i− 1)-element it is incident to. As coefficients of ∂G belong
to Z/2Z, the sum is hence equal to 0. ✷

3.3 Signed incidence number

The signed incidence number describes not only the number of times a cell is
incident to another but also the relative orientations of both cells. It has hence
to be defined on subdivisions whose cells can have an orientation.

Definition 3.6 (oriented cell) Let |X| be a k-dimensional chain of surfaces,
and xi be an element of |X|, xi is oriented by adding a + or − mark on
each α•-relation. The marked α•-relation between xi and xi−1 is denoted by
sg (xi, xi−1)9. The inductive orientation process is:
∀i ≥ 2,∀xi−2 ∈ α(xi), let {xi−1, x′i−1} = β�(xi−2) ∩ α�(xi), then

sg (xi, xi−1).sg (xi−1, xi−2) = −sg (xi, x′i−1).sg (x′i−1, xi−2)

9According to the context, the value of sg (xi, xi−1) is + or −, or +1 or −1.
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All possible diamond configurations are displayed on Figure 10. If such a
mark cannot be consistently added on each α•-relation, then there exists at
least one cell of the subdivision which is not orientable. If a cell is orientable,
then it can be equipped with two different orientations.

On subdivisions represented by incidence graphs where cells cannot be mul-
tiply incident to each other, the value of the signed incidence number between
two cells is equal to either −1, 1, or 0.

Definition 3.7 (signed incidence number) Let |X| be a k-dimensional chain
of surfaces. Let xi and xi−1 be two oriented elements of X, the incidence num-
ber, (xi : xi−1) is equal to 0 if xi−1 6∈ α•(xi), else (xi : xi−1) = sg(xi, xi−1).

Let us recall that ∂G denotes here the operator built from the incidence num-
ber as a linear extension over Z of the basic operator described in definition 2.9.

Theorem 3.8 ∂G is a boundary operator (i.e. ∂G∂G = 0).

Proof. Let xi be an element of a k-dimensional chain of surfaces:

xi∂G =
∑

xi−1∈α•(xi)

(xi : xi−1)xi−1

xi∂G∂G =
∑

xi−1∈α•(xi)

((xi : xi−1)xi−1∂G)

=
∑

xi−1∈α•(xi)

(xi : xi−1)
∑

xi−2∈α•(xi−1)

(xi−1 : xi−2)xi−2

=
∑

xi−1∈α•(xi)

∑

xi−2∈α•(xi−1)

(xi : xi−1)(xi−1 : xi−2)xi−2

As previously, the switch-property says that each element xi−2 incident
to xi is incident to exactly two (i − 1)-elements of α•(xi). It implies
that each (i − 2)-element involved in the double sum above is present
exactly twice, one for each (i− 1)-element it is incident to. Let xi−1 and
x′i−1 be these two elements. The coefficient of xi−2 in xi∂G∂G is hence
(xi : xi−1)(xi−1 : xi−2) + (xi : x′i−1)(x′i−1 : xi−2) which by definition is
equal to 0, since the cells are oriented ones.

✷
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(a)

(b) (c) (d) (e)

(f)

(g) (h) (i) (j)

Figure 10: Diamond configurations related to switch-property.

3.4 Algorithm

The signed incidence number linking two incident cells is directly deduced from
their relative orientation. Hence such incidence numbers can be computed while
assigning an orientation to each cell of the subdivision. Therefore, the compu-
tations of orientations and of incidence matrices are achieved during the same
traversal of the graph. Note that if the algorithm detects a non orientable cell, it
stops immediatly with an error message. Moreover all diamonds configurations
have to be checked in order to be sure that a cell is orientable.

Detecting whether a cell xi of a k-dimensional chain of surfaces is orientable
or not and, in the first case, giving an orientation to it, is simply achieved by
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following definition 3.6:

• Fix a sign in the boundary of xi, i.e. mark an α•-relation with sign ′+′

for instance;

• Go through all (i− 1)-cells of α•(xi) by looking at all diamonds having at
least one signed branch (see Figure 10).

Two cases may occur:

1. One branch in the diamond has not yet been equipped with a sign.
Its sign is computed applying definition 3.6;

2. Both branches are already signed. If signs are not consistent, then a
non orientable cell has been detected.

This process is implemented by Procedure compute Ei Row (page 26), which
computes the orientation of an i-cell and the corresponding row of the ith inci-
dence matrix. It uses orientation information about (i−1)-cells belonging to the
boundary of the considered i-cell by looking at the (i − 1)th incidence matrix.
More precisely, for a given i-cell, xi, of the subdivision, an element, xi−1, of its
α•-adherence is arbitrarily picked and the corresponding incidence number is
set to 1. Then all diamonds rooted at xi are traversed, one after another.

The traversal has to grant that at least one branch of the current diamond
has already a sign (to be able to complete the signing) and that all diamonds
are traversed in a finite numberof steps. Note that each (i − 2)-element of
α(xi) belongs to exactly one such diamond in α(xi) (due to switch-property).
Moreover, property 3.3 guarantees that the suborder built on all these diamonds
is connected. Hence, traversing all diamonds is equivalent to going through the
set of (i − 2)-elements and examining each one of them exactly once. Both
previous properties allow thus to traverse all diamond configurations following
a suitable ordering by constructing step by step the set of (i − 2)-elements
belonging to α(xi) as the union of the α•-adherences of already hit xi−1 of
α•(xi). The algorithms ends when a fully signed diamond is hit and there is no
other (i− 2)-cell left.

For instance, the orientation process of cell ABEF belonging to the subdi-
vision displayed on Figure 11 is illustrated on Figure 12. Let us first suppose
the 0-cells and 1-cells oriented as indicated. Step 1 (Fig. 12(a)): Pick any cell in
the α•-adherence of ABEF and mark the corresponding relation with a +. Let
us choose, for instance, AB. The set of 0-cells is hence initialized with {A, B}.
Step 2 (Fig. 12(b)): Let us choose A as the first 0-cell to deal with. The α•-
relation between ABEF and AF is marked according to switch-property. And
the set of 0-cells to explore is updated: A is removed and F is added. Step 3
(Fig. 12(c)): One of these cells is arbitrarily chosen: F for instance. The miss-
ing mark on the diamond delimited by F and ABEF is added (on the relation
between ABEF and FE). F is removed from the set of 0-cells and E is added.
Step 4 (Fig. 12(d)): Let us choose B as the next 0-cell. The missing mark
on the diamond delimited by B and ABEF is added (on the relation between
ABEF and EB). Step 5 (Fig. 12(e)): No new cell is added to the set of 0-cells

24



as E already belongs to it. There is only one cell left in the set of 0-cells. The
diamond delimited by ABEF and E is already signed. The consistency of the
signing is checked and the algorithms comes to an end.

AB E F

AC D

AB DBC B

F

E B F E A F D E

B D E

B E

(a)

A B
C

D

EF
(b)

Figure 11: (a) Orientation of the cells of a 2-dimensional chain of surfaces.
(b) Corresponding orientation of the cells of the associated subdivision.

Then the algorithm, we provide to compute all incidence matrices of the
incidence graph (see Algorithm 1 page 28), begins with elements of rank 0 and
successively computes the incidence of every element of rank i for i growing
from 0 to the dimension of the subdivision.

To initialize the process, each 0-element is equipped with a positive orienta-
tion by assigning the value 1 to the incidence relation between each 0-element
and x−1. While traversing β•(x−1) to treat all 0-elements, the set of 1-elements
is also computed by aggregating the β•-adherences of every 0-element.

As previously the set of (i+1)-elements is built when dealing with i-elements
by aggregating their β•-adherences.

The cellular homology of a n-dimensional chain of surfaces computed with
the above defined cellular boundary operator is equivalent to the simplicial ho-
mology of the associated numbered simplicial complex. The proof is established
in Section 6 in two steps. First n-dimensional chains of surfaces are proved to be
equivalent to a subclass of chains of maps. Then results, obtained in Section 5,
about the equivalence of the cellular homology computed on chains of maps and
the simplicial homology of their associated semi-simplicial sets are applied.

4 Chain of maps

4.1 Definition

As for incidence graphs, we focus here on structures in which the main cells are
cellular quasi-manifolds: so, the cells are represented by generalized maps, and
they are linked by a face operator (cf. Fig. 13 and [EL94]).

Definition 4.1 (chain of maps) An n-dimensional chain of maps is a tuple
C = ((Gi)i=0,...,n, (σi)i=1,...,n) such that:
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Procedure compute Ei Row(ci, Ei−1) ;

Computation of the row of the ith incidence matrix of an n-dimensional
chain of surfaces corresponding to a given i-cell, ci. The algorithm de-
tects whether each cell is orientable. If this condition is not fulfilled the
algorithms stops with an information message.

Data:
GI = (X ∪ {x−1}, α•, β•) ;
ci: i-cell of GI ;
Ei−1: incidence matrix describing the incidence relations between (i− 1)-
and (i− 2)-cells;
Result:
Ei(ci, ∗): row of Ei describing the incidence relations of ci;
Variables:
ci−1, ci−1′

: (i− 1)-cells belonging to α•(ci) ;
lesser C: (i− 2)-cells belonging to the boundary of the current i-cell ;

1 ci−1 ←− pickCell(α•(ci)) ;
2 Ei(ci, ci−1)←− 1;
3 lesser C ←− α•(ci−1) ;
4 while (lesser C 6= ∅) do
5 ci−2 ←− pickCell(lesser C);

6 (ci−1, ci−1′

)←− β•(ci−2) ∩ α•(ci);
7 if Ei(ci, ci−1) not defined then

8 swap(ci−1, ci−1′

);
9 end

10 if Ei(ci, ci−1′

) not defined then

11 Ei(ci, ci−1′

)←−

(−1) ∗ Ei(ci, ci−1) ∗ Ei−1(ci−1, ci−2) ∗ Ei−1(ci−1′

, ci−2);

12 lesser C ←− lesser C ∪ α•(ci−1′

)\{ci−2});
13 else

14 if Ei(ci, ci−1′

) ∗Ei−1(ci−1′

, ci−2) 6= −Ei(ci, ci−1) ∗Ei−1(ci−1, ci−2)
then

15 exit(the cell is non orientable.) ;
16 end
17 lesser C ←− lesser C\{ci−2});
18 end

19 end
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(e) Step 5.
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(f) Oriented cell.

Figure 12: Orientation process of ABEF .

1. ∀i, 0 ≤ i ≤ n, Gi = (Di, αi
0, . . . , α

i
i−1, α

i
i = ω) is an i-dimensional

generalized map such that ω is undefined on Di;

2. ∀i, 1 ≤ i ≤ n, σi : Di −→ Di−1;
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Algorithm 1: Computation of incidence matrices of an n-dimensional
chain of surfaces. The algorithm detects whether each cell is orientable.
If this condition is not fulfilled the algorithms stops with an information
message.

Data: GI = (X ∪ {x−1}, α•, β•)
Result: Incidence Matrices: {Ei, i = 0 · · ·n}
Variables:
i: dimension of the current matrix ;
C: set of i-cells ;
greater C: set of (i + 1)-cells ;
ci: current i-cell whose boundary is computed ;

1 C ←− ∅;
2 foreach c ∈ β•(x−1) do
3 E0(c, x−1)←− 1;
4 C ←− C ∪ β•(c);

5 end
6 greater C ←− ∅;
7 i←− 1 ;
8 while (C 6= ∅) do
9 ci ←− pickCell(C) ;

10 C ←− C\{ci} ;
11 greater C ←− greater C ∪ β•(ci);
12 compute Ei Row(ci, Ei−1) ;
13 if C = ∅ then
14 C ←− greater C ;
15 i←− i + 1 ;

16 end

17 end

for i ≥ 2, σi satisfies, for any dart d of Di:

(a) σi is an isomorphism 10 between any orbit
〈
αi

0, · · · , α
i
i−2

〉
of Gi and

an orbit
〈
αi−1

0 , · · · , αi−1
i−2

〉
of Gi−1;

(b) dαi
i−1σ

iσi−1 = dσiσi−1.

Any connected component of an i-gmap is an i-cell: in fact, it describes
the interior of an i-cell, that is why αi

i = ω is undefined. This is consistent
with the simplicial interpretation defined with more details in Section 5: any
orbit 〈〉[0,i]−{j0,··· ,jk,i} is well defined, since αi

i is not taken into account, and it
corresponds to a simplex incident to the vertex representative of the cell (i.e.
corresponding to the orbit 〈〉I−{i}). Any i-cell can be structured into orbits

10i.e. σi is a one-to-one mapping between the darts of the orbits, such that for any j, 0 ≤
j ≤ i− 2, αi

jσi = σiαi−1

j . This condition is more restrictive than that given in [EL94], where

σi can be an homomorphism for instance.
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(a) (b)

(c) (d)

Figure 13: (a) First step for building a chain of maps of dimension 2: each chain
of map corresponding to a main cell and its boundary is built. (b) Second step:
vertex identifications. (c) The resulting chain of maps after edge identification.
(d) The associated semi-simplicial set.

〈
αi

0, · · · , α
i
i−2

〉
; these orbits are linked with (i−1)-cells by operator σi, defining

the boundary of the i-cell. For instance, the faces of the object represented
Fig. 13 are structured in order to correspond to the edges of their boundaries:
more precisely, the faces (i.e. orbits

〈
α2

0, α
2
1

〉
) can be partitionned into orbits

〈
α2

0

〉
, which are linked with edges (i.e. orbits

〈
α1

0

〉
) by σ2. The fact that ∀i,

σi restricted to an orbit
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism between this orbit

and an (i − 1)-cell implies that there is a strong correspondence between the
structure of the interior of a cell and the structure of its boundary, even when
cells are multi-incident ones to the others 11.

4.2 Unsigned boundary operator

We can define the incidence numbers in the following way: the number of times
an (i− 1)-cell ci−1 appears in the boundary of an i-cell ci is, given a dart di−1

of ci−1, the number of darts of ci which have di−1 as image by σi. Since σi

11From a practical point of view, it means that there exists some redundancy which can
be taken into account in order to reduce the amount of explicit information within a data
structure.
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restricted to an orbit
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism between this orbit and

an (i−1)-cell (cf. property 2a of definition 4.1), this number is the same whereas
the chosen dart di−1 is 12. So the following definition is consistent.

Definition 4.2 (unsigned incidence number) Let i ∈ {1, . . . , n}. Let ci

and ci−1 be two cells of the chain of maps C. The unsigned incidence num-
ber is

(ci : ci−1) = (ci(di) : ci−1(di−1)) = card((σi)−1(di−1) ∩ ci(di))

where di and di−1 are darts of respectively ci and ci−1.

Also due to property 2a of definition 4.1, this number is equal to the number
of orbits

〈
αi

0, · · · , α
i
i−2

〉
of ci which have ci−1 as image (since each dart which

image by σi is di−1 identifies such an orbit). An alternative definition of the
incidence number is then the following: let {pj}j=1···k be a set of darts such that
the orbits {

〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=1···k make a partition of ci; then (ci : ci−1)

= card({pj , j = 1 · · · k/pjσ
i ∈ ci−1}). Let ∂M be the corresponding boundary

operator, according to definition 2.9. So we have ci∂M =
∑

ci−1∈Gi−1

(ci : ci−1)ci−1

=
∑

pj ,j=1···k

ci−1(pjσ
i), and the sum is done upon Z/2Z. Operator ∂M is extended

upon any sum of cells by linearity.
A condition has to be added in order to get a boundary operator, i.e. such

that ∂M∂M = 0: the boundary of each cell has to be “complete”, and this
condition is expressed by the fact that α involutions are without fixed points 13.

Theorem 4.3 Let C be a chain of maps such that all involutions are without
fixed points. Then the corresponding operator ∂M is a boundary operator.

The proof of the theorem is based upon the following lemma.

Lemma 4.4 Let ci be any i-cell, and d be any dart of ci. Then
〈
αi

0, · · · , α
i
i−3

〉
(d) 6=

〈
αi

0, · · · , α
i
i−3

〉
(dαi

i−1).

Proof. The proof of the lemma is based upon the fact that involutions are
without fixed points, and on the properties 2a and 2b of the chain of
maps definition.

More precisely, we know that d 6= dαi
i−1, since all involutions are without

fixed points. Assume
〈
αi

0, · · · , α
i
i−3

〉
(d) =

〈
αi

0, · · · , α
i
i−3

〉
(dαi

i−1). So
〈
αi−1

0 , · · · , αi−1
i−3

〉
(dσi) =

〈
αi−1

0 , · · · , αi−1
i−3

〉
(dαi

i−1σ
i).

• Assume dαi
i−1σ

i = dσi. Since σi restricted to any orbit
〈
αi

0, · · · , α
i
i−2

〉

is an isomorphism, σi restricted to any orbit
〈
αi

0, · · · , α
i
i−3

〉
is also an

isomorphism, and we get a contradiction : dart dσi has two distinct
preimages which are d and dαi

i−1 in a single orbit
〈
αi

0, · · · , α
i
i−3

〉
(d);

12In fact, the property still holds for homomorphisms.
13i.e. ∀i, 0 ≤ i ≤ n,∀j, 0 ≤ j ≤ i − 1, ∀d ∈ Di, d 6= dαi

j .
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• So dαi
i−1σ

i 6= dσi. But we have dαi
i−1σ

iσi−1 = dσiσi−1 (cf. prop-
erty 2b of definition 4.1). Thus dσiσi−1 has two distinct preimages
dαi

i−1σ
i and dσi within a single orbit

〈
αi−1

0 , · · · , αi−1
i−3

〉
(dσi): contra-

diction with the fact that σi−1 restricted to any orbit
〈
αi−1

0 , · · · , αi−1
i−3

〉

is an isomorphism.

✷

Proof. In order to prove theorem 4.3, let ci =
〈
αi

0, · · · , α
i
i−1

〉
(d) be

an i-cell, and let {pj}j=1···k be a set of darts such that the or-
bits {

〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=1···k make a partition of ci. ci∂M =

∑

pj ,j=1···k

ci−1(pjσ
i), where ci−1(pjσ

i) =
〈
αi−1

0 , · · · , αi−1
i−2

〉
(pjσ

i). For

each pj , let {pj,m}m=1···lj be a set of darts such that the orbits

{
〈
αi−1

0 , · · · , αi−1
i−3

〉
(pj,m)}m=1···lj make a partition of ci−1(pjσ

i). So
ci∂M∂M =

∑

pj ,j=1···k

(ci−1(pjσ
i))∂M =

∑

pj ,j=1···k

∑

pj,m,m=1···lj

ci−2(pj,mσi−1),

where ci−2(pj,mσi−1) =
〈
αi−2

0 , · · · , αi−2
i−3

〉
(pj,mσi−1). Since σi

is a one-to-one mapping between orbits
〈
αi

0, · · · , α
i
i−2

〉
(pj) and

〈
αi−1

0 , · · · , αi−1
i−2

〉
(pjσ

i), let {p′j,m}m=1···lj be the set of darts

of
〈
αi

0, · · · , α
i
i−2

〉
(pj) such that p′j,mσi = pj,m. The orbits

{
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m)}m=1···lj make a partition of

〈
αi

0, · · · , α
i
i−2

〉
(pj)

and thus ci∂M∂M =
∑

pj ,j=1···k

∑

p′

j,m
,m=1···lj

〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mσiσi−1).

Moreover, the set of orbits {
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m)}j=1···k,m=1···lj

make a partition of ci. Since for all j,m,
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m)

6=
〈
αi

0, · · · , α
i
i−3

〉
(p′j,mαi

i−1) (cf. lemma 4.4), and p′j,mσiσi−1

= p′j,mαi
i−1σ

iσi−1 (cf. property 2b of definition 4.1),
〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mσiσi−1) +

〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mαi

i−1σ
iσi−1)

= 0, and thus ci∂M∂M = 0.

In fact, we can distinguish three possible configurations:

•
〈
αi

0, · · · , α
i
i−2

〉
(d) =

〈
αi

0, · · · , α
i
i−2

〉
(dαi

i−1), as for dart d in
Fig. 14(a);

•
〈
αi

0, · · · , α
i
i−2

〉
(d) 6=

〈
αi

0, · · · , α
i
i−2

〉
(dαi

i−1);

–
〈
αi−1

0 , · · · , αi−1
i−2

〉
(dσi) =

〈
αi−1

0 , · · · , αi−1
i−2

〉
(dαi

i−1σ
i), as for dart

d in Fig. 15(a);

–
〈
αi−1

0 , · · · , αi−1
i−2

〉
(dσi) 6=

〈
αi−1

0 , · · · , αi−1
i−2

〉
(dαi

i−1σ
i) as for dart

d in Fig. 16(a).

✷
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(a) (b)

Figure 14: (a) A chain of maps encoding a 2d−disk, where dart d satisfies
< α2

0 > (d) =< α2
0 > (dα2

1). (b) The corresponding cellular subdivision.

(a) (b)

(c)

Figure 15: (a) A chain of maps where dart d satisfies < α2
0 > (d) 6=< α2

0 >
(dα2

1) and < α1
0 > (dσ2) =< α1

0 > (dα2
1σ

2). (b) The corresponding cellular
subdivision. (c) The corresponding gmap.

4.3 Signed boundary operator

In order to define an homology with coefficients in Z, it is necessary to define
an orientation for any cell, and to take these orientations into account when
defining the boundary operator. We restrict here to chains of maps such that:

• as before, all involutions are without fixed points;

• For all i, all i-cells are orientable, i.e. there are two orbits
〈
αi

0α
i
1, α

i
0α

i
2, · · · , α

i
0α

i
i−1

〉
for any orbit

〈
αi

0, · · · , α
i
i−1

〉
(cf. [Lie94] and Sec-

tion 8).

The orientation condition corresponds to the fact that all darts of any cell
can be partitioned into two distinct subsets, such that if dart d belongs to one
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(a) (b)

Figure 16: (a) A chain of maps where dart d satisfies < α2
0 > (d) 6=< α2

0 >
(dα2

1) and < α1
0 > (dσ2) 6=< α1

0 > (dα2
1σ

2). (b) The corresponding cellular
subdivision.

of these subsets, all darts dαi
j belong to the other subset. A possible way for

representing this property consists in associating a sign (+ or −) with any dart
d (denoted sg(d)), such that sg(d) 6= sg(dαi

j)∀j. Let ci be the i-cell incident to

d: choosing an orientation for ci consists in choosing a sign for d, the signs of
the other darts of the cell are deduced from sg(d).

Definition 4.5 (signed incidence number) Let C be a chain of maps, and
let i ∈ {1, . . . , n}. Let ci(di) and ci−1(di−1) be two cells of C. The signed
incidence number, (ci(di) : ci−1(di−1)), is equal to n+ − n−, where:
n+ is the number of preimages (related to σi) of di−1 in ci whose sign is equal
to sg(di−1),
n− is the number of preimages (related to σi) of di−1 in ci whose sign is different
from sg(di−1).

The signed incidence number (ci : ci−1) is well defined, independently from
the chosen darts: since ci is orientable, any orbit

〈
αi

0, · · · , α
i
i−2

〉
of ci is ori-

entable. Since σi restricted to an orbit
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism, we can

show that for any darts d and d′ of this orbit, sg(d).sg(dσi) = sg(d′).sg(d′σi).
As for the unsigned boundary operator, we can provide an alternative defi-

nition: let {pj}j=1···k be darts of ci such that {
〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=1···k makes

a partition of ci. Then (ci : ci−1) =
∑

pj ,j=1···k/pjσi∈ci−1

sg(pj).sg(pjσ
i) (where,

by abuse of notations, the signs are identified with +1 or −1). This alternative
definition is equivalent to the original one, due to property 2a of definition 4.1.
The corresponding boundary operator ∂M acts on any i-cell ci in the following
way: ci∂M =

∑

ci−1∈Gi−1

(ci : ci−1)ci−1 =
∑

pj ,j=1···k

sg(pj).sg(pjσ
i)ci−1(pjσ

i). Op-

erator ∂M is extended on any sum of cells taken with any integer coefficients,
by linearity.

Notice that such an operator ∂M depends on the chosen cell orientations.
We will see in Section 5 that the corresponding homology is equivalent to the
simplicial homology of the semi-simplicial set associated with the chain of maps,
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independently of the cell orientations. The cellular homology defined by a par-
ticular operator ∂M is thus independent of the cell orientations which have been
chosen for defining this operator.

Theorem 4.6 Operator ∂M is a boundary operator, i.e. ∂M∂M = 0.

Proof. The proof is similar to the unsigned case, but we have to
take the orientations into account. Let ci =

〈
αi

0, · · · , α
i
i−1

〉
(d)

be an i-cell, and let {pj}j=1···k be a set of darts such that
the orbits {

〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=1···k make a partition of ci.

ci∂M =
∑

pj ,j=1···k

sg(pj)sg(pjσ
i)ci−1(pjσ

i), where ci−1(pjσ
i) =

〈
αi−1

0 , · · · , αi−1
i−2

〉
(pjσ

i). For each pj , let {pj,m}m=1···lj be a set of

darts such that the orbits {
〈
αi−1

0 , · · · , αi−1
i−3

〉
(pj,m)}m=1···lj make a parti-

tion of ci−1(pjσ
i). So ci∂M∂M =

∑

pj ,j=1···k

sg(pj)sg(pjσ
i)(ci−1(pjσ

i))∂M =

∑

pj ,j=1···k

sg(pj)sg(pjσ
i)

∑

pj,m,m=1···lj

sg(pj,m)sg(pj,mσi−1)ci−2(pj,mσi−1),

where ci−2(pj,mσi−1) =
〈
αi−2

0 , · · · , αi−2
i−3

〉
(pj,mσi−1). Since σi

is a one-to-one mapping between orbits
〈
αi

0, · · · , α
i
i−2

〉
(pj) and

〈
αi−1

0 , · · · , αi−1
i−2

〉
(pjσ

i), let {p′j,m}m=1···lj be the set of darts

of
〈
αi

0, · · · , α
i
i−2

〉
(pj) such that p′j,mσi = pj,m. The orbits

{
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m)}m=1···lj make a partition of

〈
αi

0, · · · , α
i
i−2

〉
(pj)

and thus

ci∂M∂M =
∑

pj

j=1···k

∑

p′
j,m

m=1···lj

sign(pj , p
′
j,m)

〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mσiσi−1)

where

sign(pj , p
′
j,m) = sg(pj)sg(pjσ

i)sg(p′j,m)sg(p′j,m)sg(p′j,mσi)sg(p′j,mσiσi−1)

Note that sg(pj)sg(pjσ
i)sg(p′j,m)sg(p′j,mσi) = 1, so ci∂M∂M =

∑

pj

j=1···k

∑

p′
j,m

m=1···lj

sg(p′j,m)sg(p′j,mσiσi−1)
〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mσiσi−1)

The set of orbits {
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m)}j=1···k,m=1···lj make a partition of

ci. Since for all j,m,
〈
αi

0, · · · , α
i
i−3

〉
(p′j,m) 6=

〈
αi

0, · · · , α
i
i−3

〉
(p′j,mαi

i−1)

(cf. lemma 4.4), and p′j,mσiσi−1 = p′j,mαi
i−1σ

iσi−1 (cf. prop-

erty 2b of definition 4.1), and sg(p′j,m) 6= sg(p′j,mαi
i−1) (the gmap

is orientable), sg(p′j,m)sg(p′j,mσiσi−1)
〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mσiσi−1) +

sg(p′j,mαi
i−1)sg(p′j,mαi

i−1σ
iσi−1)

〈
αi−2

0 , · · · , αi−2
i−3

〉
(p′j,mαi

i−1σ
iσi−1) = 0,

and thus ci∂M∂M = 0.

✷
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4.4 Algorithms

We present now Algorithm 2 which computes the signed incidence number (ci :
ci−1). Remember that cells in chain of maps are linked together by the σi

operator defined between Di −→ Di−1. When only σi operators are represented
in data structures, it is simpler in algorithms to run through darts in ci and to
count the number of times a dart belonging to ci−1 is found than to run through
darts in ci−1 and finding its number of antecedents.

For this reason, we use in our algorithm the second version of the
signed incidence number definition: let {di

j}j=1···k be darts of ci such that

{
〈
αi

0, · · · , α
i
i−2

〉
(di

j)}j=1···k makes a partition of ci. Then (ci : ci−1) =
∑

di
j
,j=1···k/di

j
∈ci−1

sg(di
j).sg(di

jσ
i).

Algorithm 2: Compute the signed incidence number (ci(d) : ci−1(d′)) for
a chain of maps.

Data: CM = (Gi)i=0,...,n, (σi)i=1,...,n): a signed nD chain of maps
i: a dimension , 1 ≤ i ≤ n
d, d′: two darts of CM such that d ∈ Gi and d′ ∈ Gi−1

Result: The signed incidence number (ci(d) : ci−1(d′))
1 res← 0;
2 foreach c ∈ ci(d) do
3 if c is not marked treated and cσi ∈ ci−1(d′) then
4 res← res + sg(c).sg(cσi);
5 mark treated all the darts of 〈αi

0, · · · , α
i
i−2〉(c);

6 return res;

To compute this sum, Algorithm 2 runs through all the darts of ci(d),
and test if dart c is marked. If this is the case, dart c belongs to an orbit
〈
αi

0, · · · , α
i
i−2

〉
already taken into account.

Otherwise, the partition is not already treated, thus we test if cσi ∈ ci−1(d′).
If it is not the case, the incidence number is not modified. Otherwise, we add
one or subtract one depending on if sg(c) is equal to sg(cσi) or not. Then we
mark treated all the darts belonging to 〈αi

0, · · · , α
i
i−2〉(c) since all these darts

must not be re-consider later.
At the end of this algorithm, we have considered all the darts belonging

to ci(d), and thus we have computed the sum
∑

di
j
,j=1···k/di

j
∈ci−1

sg(di
j).sg(di

jσ
i).

This is the signed incident number.
The complexity of this algorithm is linear in number of darts in ci(d). Indeed,

each dart of ci(d) is considered exactly once in the for loop, and in this loop, we
process only non marked darts. That ensure that each dart of ci(d) is marked
only once. Note that the test if cσi ∈ ci−1(d′) can be achieved in O(1) by
marking before the loop all the darts of ci−1(d′). During the loop, it is enough
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to test if cσi is marked.
This algorithm takes as input a signed chain of maps, i.e. each dart is marked

with a (+ or −) with any dart d (denoted sg(d)), such that sg(d) 6= sg(dαi
j)∀j.

Note that the same algorithm can be used to compute the unsigned incidence
number. The only difference being that the considered chain of maps is no
more signed since we do not use sg(di

j) and sg(di
jσ

i). Moreover, res is now
a Boolean initialized to false, and negated at each time the condition c is not
marked treated and cσi ∈ ci−1(d′) is satisfied since in Z/2Z, 1 + 1 = 1− 1 = 0 .

Now to compute the ith incidence matrix, we can use Algorithm 2 for each
pair of i-cells and (i − 1)-cells. However, it is possible to improve this basic
version by avoiding the test if cσi ∈ ci−1(d′). This is given in Algorithm 3
which compute the ith incidence matrix, i.e. incidence numbers between all
i-cells and (i− 1)-cells.

Algorithm 3: Computation of the ith incidence matrix

Data: CM = (Gi)i=0,...,n, (σi)i=1,...,n): a signed nD chain of maps
i: a dimension , 0 ≤ i ≤ n
Ci (resp. Ci−1) is the set of i-cells (resp. (i− 1)−cells)

Result: The incidence matrix Ei

1 if i=0 then
2 Ei ← zeroMatrix(card(C0),1);
3 else
4 Ei ← zeroMatrix(card(Ci),card(Ci−1));
5 foreach dart d ∈ Gi do
6 if d is not marked treated then
7 foreach dart d′ ∈ ci(d) do
8 if d′ is not marked treated then
9 Ei(ci(d), ci−1(d′σi))←

Ei(ci(d), ci−1(d′σi)) + sg(d′).sg(d′σi);

10 mark treated all the darts of
〈
αi

0, · · · , α
i
i−2

〉
(d′);

11 return Ei;

The case i = 0 is specific since there is no (−1)-cell thus the 0-incidence
matrix is a zero matrix having card(C0) columns, which is the number of 0-cells
and one line.

Otherwise, the incidence matrix Ei is initialized to a zero matrix having
card(Ci) columns and card(Ci−1) lines. Then we run through all the darts
d ∈ Gi. If d is not marked, its i-cell ci(d) is not yet processed. Thus we enter in
the second loop to compute all the incidence numbers between all the (i − 1)-
cells and ci(d). For that we only run through all the darts of d′ ∈ ci(d) and
consider each (i− 1)-cell ci−1(d′σi). Indeed, other (i− 1)-cells do not belong to
the boundary of ci(d) thus we know that the incidence number between these
cells and ci(d) is zero.
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For each (i− 1)-cell, we use the same principle than for Algorithm 2, adding
or subtracting one depending if d′ and d′σi have the same sign or not. After
having considered all the darts d′ ∈ ci(d), we have treated all the (i − 1)-cells
incident to ci(d) thus we have computed all the incidence numbers between ci(d)
and all the (i−1)-cells. At the end of Algorithm 3 we have treated all the i-cells
of the chain of maps, and for each one computed the incidence number with all
the (i−1)-cells in its boundary. Thus the matrix Ei is the ith incidence matrix.

The complexity of Algorithm 3 is linear in number of darts of Gi. Indeed,
each dart is considered exactly once during the second loop thanks to the treated
mark, and for each dart, we have a direct access to each value used to compute
the incidence number (d′σi, sg(d′) and sg(d′σi)).

To compute all the incidence matrices for a given nD chain of maps, we need
first to orient each cell of the chain of maps; second to run Algorithm 3 for each
i, 0 ≤ i ≤ n. The complexity of the overall process is thus linear in the sum of
all the |Gi|, 1 ≤ i ≤ n, i.e. linear in size of the chain of maps.

5 Conditions and proof of the equivalence be-
tween cellular and simplicial homology on chains
of maps

5.1 Simplicial interpretation of a chain of maps

A numbered semi-simplicial set can be associated with a chain of maps C in
the following way (cf. Fig. 13). Let ci be an i-cell of C, d be a dart of ci, and
I = [0, i]:

• Simplices. For 0 ≤ j ≤ i, we associate a j-dimensional simplex
numbered {k0, · · · , kj−1, i} with the orbit 〈〉I−{k0,··· ,kj−1,i}(d), denoted
T (〈〉I−{k0,··· ,kj−1,i}(d));

• Face operators (dl)l∈[0,··· ,j], if j ≥ 1;

– for any l, 0 ≤ l ≤ j − 1, T (〈〉I−{k0,··· ,kl,··· ,kj−1,i} (d))dl =

T (〈〉I−{k0,··· ,k̂l,··· ,kj−1,i} (d));

– T (〈〉I−{k0,··· ,kj−1,i} (d))dj = T (〈〉Kj−1−{k0,··· ,kj−1}
(dσi · · ·σkj−1+1)),

where Kj−1 = [0, · · · , kj−1].

As for generalized maps (cf. 2.3 and [Lie94]), we can prove that T extended
on all orbits of an n-dimensional chain of maps C associates a semi-simplicial
set T (C) with it. T (C) is a numbered one, i.e. it is structured into cells: any
i-dimensional cell is identified by a vertex σ numbered by i, and made by all
simplices of the star of σ which are numbered by integers lower than or equal
to i.

We now study the equivalence between the cellular homology as defined by
a boundary operator acting on a chain of maps, and the simplicial homology
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defined on the associated semi-simplicial set. We show that it is possible to
associate a homologous simplicial cycle (resp. boundary) with any cellular cycle
(resp. boundary) (cf. Sections 5.2 and 5.3) and conversely (cf. Section 5.4).

5.2 Associating a simplicial chain with a cellular chain:
unsigned case

A chain of simplices can be associated with any cell in the following way (cf.
Fig. 13):

Definition 5.1 Let ci be an i-cell. We define ciτ =
∑

d∈ci

T (〈〉(d)).

This definition can be extended on any sum of cells by linearity, where the
coefficients are in Z/2Z: such a sum is an unsigned chain of cells.

Theorem 5.2 Any chain of cells v of dimension greater than or equal to 1
satisfies vτ∂S = v∂Mτ (where ∂S and ∂M are respectively the simplicial and
cellular boundary operators with coefficients in Z/2Z).

Proof. We prove that any i-dimensional cell ci, with 1 ≤ i, satisfies ciτ∂S =
ci∂Mτ , and the theorem is deduced by linearity.

We have ciτ∂S = (
∑

d∈ci

T (〈〉(d)))∂S =
∑

d∈ci

T (〈〉(d))∂S =
∑

d∈ci

∑

j=0···i

T (〈〉(d))dj

= (
∑

d∈ci

∑

j=0···i−1

T (〈〉(d))dj) + (
∑

d∈ci

T (〈〉(d))di) = (
∑

j=0···i−1

∑

d∈ci

T (〈〉(d))dj)

+
∑

d∈ci

T (〈〉(d))di.

When 0 ≤ j ≤ i − 1, T (〈〉(d))dj = T (〈αi
j〉(d)). Since αi

j is an involution

without fixed points, T (〈αi
j〉(d)) appears twice in the sum, once for d and

once for dαi
j . So, ciτ∂S =

∑

d∈ci

T (〈〉(d))di =
∑

d∈ci

T (〈〉(dσi)).

We have ci∂Mτ = (
∑

pj ,j=0···k

ci−1(pjσ
i))τ , where

{
〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=0···k makes a partition of ci. So, ci∂Mτ =

∑

pj ,j=0···k

ci−1(pjσ
i)τ =

∑

pj ,j=0···k

∑

d′∈ci−1(pjσi)

T (〈〉(d′)). Since σi restricted

to an orbit
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism, we have ci∂Mτ =

∑

pj ,j=0···k

∑

d′∈〈αi
0,··· ,αi

i−2〉(pj)

T (〈〉(d′σi)) =
∑

d′∈ci

T (〈〉(d′σi)) = ciτ∂S .

✷

Corollary 5.3 τ associates a simplicial cycle (resp. boundary) with any cellular
cycle (resp. boundary).

Proof. Let v be a cellular cycle, i.e. v∂M = 0. So v∂Mτ = 0 = vτ∂S , and vτ
is a simplicial cycle.
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Let v, ci+1 be such that v = ci+1∂M . Then vτ = ci+1∂Mτ = ci+1τ∂S , and
vτ is a simplicial boundary. ✷

5.3 Associating a simplicial chain with a cellular chain:
signed case

Definition 5.4 Let ci be an i-dimensional oriented cell. We define ciτ =
∑

d∈ci

sg(d)T (〈〉(d)).

This definition can be extended on any sum of cells with integer coefficients,
by linearity: such a sum is a signed chain of cells.

Theorem 5.5 Let i ≥ 1, and v be an i-dimensional signed chain of cells. vτ∂S

= (−1)iv∂Mτ (where ∂S and ∂M are respectively the simplicial and cellular
boundary operators with coefficients in Z).

Proof. We prove that any i-dimensional cell ci, with 1 ≤ i, satisfies ciτ∂S =
(−1)ici∂Mτ , and the theorem is deduced by linearity.

We have ciτ∂S = (
∑

d∈ci

sg(d)T (〈〉(d)))∂S =
∑

d∈ci

sg(d)T (〈〉(d))∂S =

∑

d∈ci

sg(d)
∑

j=0···i

(−1)jT (〈〉(d))dj =
∑

d∈ci

sg(d)
∑

j=0···i−1

(−1)jT (〈〉(d))dj

+
∑

d∈ci

sg(d)(−1)iT (〈〉(d))di =
∑

j=0···i−1

(−1)j
∑

d∈ci

sg(d)T (〈αi
j〉(d)) +

(−1)i
∑

d∈ci

sg(d)T (〈〉(dσi)). Since αi
j is an involution without fixed points,

and the cells are orientable, T (〈αi
j〉(d)) appears for d and for dαi

j with

opposite signs. So ciτ∂S = (−1)i
∑

d∈ci

sg(d)T (〈〉(dσi)).

On the other hand, we have :

ci∂Mτ =
∑

pj ,j=0···k

sg(pj).sg(pjσ
i)(ci−1(pjσ

i))τ,

where {
〈
αi

0, · · · , α
i
i−2

〉
(pj)}j=0···k makes a partition of ci. So ci∂Mτ =

∑

pj ,j=0···k

sg(pj).sg(pjσ
i)

∑

d′∈ci−1(pjσi)

sg(d′)T (〈〉(d′)). Since σi restricted to
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orbits
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism,

ci∂Mτ

=
∑

pj ,j=0···k

sg(pj).sg(pjσ
i)

∑

d′∈〈αi
0,··· ,αi

i−2〉(pj)

sg(d′σi)T (〈〉(d′σi))

=
∑

pj ,j=0···k

sg(pj).sg(pjσ
i)(

∑

d′∈〈αi
0αi

1,··· ,αi
0αi

i−2〉(pj)

sg(pjσ
i)T (〈〉(d′σi))

−
∑

d′∈〈αi
0αi

1,··· ,αi
0αi

i−2〉(pjαi
0)

sg(pjσ
i)T (〈〉(d′σi)))

=
∑

pj ,j=0···k

sg(pj)(
∑

d′∈〈αi
0αi

1,··· ,αi
0αi

i−2〉(pj)

T (〈〉(d′σi))

−
∑

d′∈〈αi
0αi

1,··· ,αi
0αi

i−2〉(pjαi
0)

T (〈〉(d′σi)))

=
∑

pj ,j=0···k

∑

d′∈〈αi
0,··· ,αi

i−2〉(pj)

sg(d′)T (〈〉(d′σi))

=
∑

d′∈ci

sg(d′)T (〈〉(d′σi))

= (−1)iciτ∂S

✷

Corollary 5.6 τ associates a simplicial cycle (resp. boundary) with any cellular
cycle (resp. boundary).

Proof. Let v be a signed chain of cells such that v∂M = 0. Then v∂Mτ = 0
= (−1)ivτ∂S , so vτ is a simplicial cycle.

Let v, ci+1 be such that v = ci+1∂M . Then vτ = ci+1∂Mτ = (−1)i+1ci+1τ∂S ,
and vτ is a simplicial boundary. ✷

5.4 An homologous cellular cycle (resp. boundary) is as-
sociated with any simplicial cycle (resp. boundary)

We now show that a homologous cellular cycle (resp. boundary) can be associ-
ated with any simplicial cycle (resp. boundary). We do not distinguish between
the signed and the unsigned cases, since the proofs are quite similar. In order
to show this correspondence, we use the fact that any chain of maps can be
constructed in the following way (see Fig. 13):
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• create any main14 i-dimensional cell and its boundary. We restrict here
this operation to the creation of cells which boundaries have the homology
of a (i− 1)-dimensional sphere;

• identify j-dimensional cells (0 ≤ j ≤ i− 1) which share a same boundary
(we assume that the boundary of a vertex is null).

These two operations are formally defined below.

We then show that, with the following hypotheses:

• all involutions are without fixed points;

• ∀i ≥ 1, σi restricted to an orbit
〈
αi

0, · · · , α
i
i−2

〉
is an isomorphism between

this orbit and an (i− 1)-dimensional cell;

• for the homology with coefficients in Z, all cells are orientable;

• for each cell ci = (Dci

, αi
0, · · · , α

i
i−1, ω), the chain of maps corresponding

to its canonical boundary (Dci

, αi
0, · · · , α

i
i−1) has the homology of a (i−1)-

dimensional sphere.

then:

Theorem 5.7 Let zs be a simplicial cycle (resp. boundary), i.e. a cycle in the
semi-simplicial set associated with a chain of maps. Then a cellular cycle (resp.
boundary) zc exists in the chain of maps, such that zcτ is homologous to zs.

using the following lemma illustrated in Fig. 17:

Lemma 5.8 Let cs be a simplicial chain, such that:

• all simplices of cs belong to T (cel), where cel is a cell which dimension is
strictly greater than that of cs;

• the simplices of the boundary of cs belong to the semi-simplicial subset
associated with the boundary of cel.

Then a simplicial chain c′s exists, which is homologous to cs (and thus which
has the same boundary as cs), such that all simplices of c′s are in the semi-
simplicial subset associated with the boundary of cel.

Proof. We first prove the theorem, assuming the lemma is true.

14A main cell has an empty star.
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Correspondence of cycles.

Let zs be a k-dimensional simplicial cycle (i.e. zs∂S = 0, where ∂S denotes
the simplicial boundary operator with coefficients in Z/2Z or in Z). We
can define a partition of the simplices of zs according to the cells which
triangulations produce these simplices, i.e. zs =

∑

ci

∑

j

νij
sij

, where sij
is

a simplex of T (ci) and νij
is its coefficient (in Z/2Z or in Z).

• Assume that ∀i, the dimension of ci is equal to the dimension of zs.
Then ∀i,

∑

j

νij
sij

= νiciτ . If it is not the case, it is easy to prove

that the boundary of this ”subchain” contains simplices of T (ci),
which cannot be removed by the boundary of an other ”subchain”,
involving that the boundary of zs is not null: contradiction.

• Assume that cells exist which dimension is strictly greater than that
of zs. Let ci be such a cell, such that its dimension is maximal. The
simplices of (

∑

j

νij
sij

)∂S are in the semi-simplicial set associated to

the boundary of ci: otherwise, and due to the definition of face op-
erators of the semi-simplicial set associated with a chain of map, the
boundary of this ”subchain” contains simplices of T (ci), which can-
not be removed by the boundary of an other ”subchain”: as before,
we get a contradiction. Using the lemma, a chain zi exists, such that
its simplices are in the semi-simplicial set associated with the bound-
ary of ci, and which is homologous to

∑

j

νij
sij

. We can thus replace

this subchain by zi in zs. By iterating the process, we can replace
zs by an homologous cycle which satisfies the conditions of the first
case.

Correspondence of boundaries.

Let bs be a simplicial boundary: since a boundary is a cycle, a cellular
cycle zc exists, such that zcτ is homologous to bs; zcτ is thus a simplicial
boundary, i.e. a simplicial chain ck exists, such that zcτ = ck∂S . As
before, we can define a partition of the simplices of ck according to the
cells which triangulations produce these simplices, i.e. ck =

∑

ci

∑

j

νij
sij

,

where sij
is a simplex of T (ci). We prove that ck is homologous to the

image by τ of a cellular chain as before, i.e. by distinguishing the cases:

• assume that ∀i, the dimension of ci is equal to the dimension of
ck. Then ∀i,

∑

j

νij
sij

= νiciτ . If it is not the case, this leads to

a contradiction, since the boundary of ck is associated by τ with a
cellular chain;
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• assume that cells exists which dimension is strictly greater than that
of ck. Let ci be such a cell, such that its dimension is maximal.
Using the lemma, a chain zi exists, such that its simplices are in the
semi-simplicial set associated with the boundary of ci, and which is
homologous to

∑

j

νij
sij

. We can thus replace this subchain by zi in

ck. By iterating the process, we can replace ck by an homologous
chain which satisfies the conditions of the first case.

✷

Proof. We now prove lemma 5.8. As said before, any chain of maps can
be constructed by creating its main cells and their boundaries, and by
identifying cells of the boundaries of main cells. We will show for each
operation that if the lemma is satisfied before applying the operation, it
is still satisfied after.

Creating an i-cell and its boundary.

A connected n-dimensional generalized map G = (D,α0, · · · , αn) such
that αn = identity defines an n-cell and its boundary, and it is possible
to associate an equivalent chain of maps with it. More generally, given
a gmap G = (D,α0, · · · , αn), we can associate with it a chain of maps
C = ((Gi = (Di, αi

0, · · · , α
i
i−1, ω))i=0···n, (σi)i=1···n), such that the corre-

sponding quasi-manifolds are isomorphic [EL94]). There is a one-to-one
mapping B between the orbits 〈αi+1, · · · , αn〉 of G and the darts of Di.
Moreover, ∀d ∈ D:

• B(〈αi+1, · · · , αn〉 (d))αi
j = B(〈αi+1, · · · , αn〉 (dαj)), ∀0 ≤ j ≤ i−1 <

n;

• B(〈αi+1, · · · , αn〉 (d))σi = B(〈αi, αi+1, · · · , αn〉 (d)), ∀1 ≤ i ≤ n.

Creating an i-dimensional cell and its boundary consists in creating a
cell ci defined by (D,α0, · · · , αi−1, ω), a chain of maps corresponding
to its canonical boundary (D,α0, · · · , αi−1), and σi is defined by: ∀d ∈
D, bσi = B(〈〉(d)). The resulting chain of maps corresponds to the gmap
(D,α0, · · · , αi−1, αi = identity), and it is shown in [Lie94] that the cor-
responding semi-simplicial set is a cone. Its simplicial homology is thus
trivial (i.e. H0 = Z, Hj = 0,∀j ≥ 1). Moreover, as said before, we
restrict here the construction to gmaps such that the chain of maps as-
sociated to (D,α0, · · · , αi−1) has the cellular homology of a sphere (i.e.
H0 = Z, Hj = 0, 1 ≤ j ≤ i − 2, Hi−1 = Z). By the recursion hypoth-
esis, the simplicial homology of the associated semi-simplicial set is also
that of a sphere. ci is the unique i-dimensional cell, and the cells of ci∂M

(where ∂M is the cellular boundary operator defined on chains of maps,
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with coefficients in Z/2Z or in Z) are (i − 1)-dimensional cells. Since a
boundary is a cycle, ci∂M is an element of the unique class of the (i− 1)-
dimensional cycles, and it is now a boundary. The cellular homology of ci

and its boundary is thus the homology of a cone, equal to the simplicial
homology of the corresponding semi-simplicial set.

Let zs be a k-dimensional simplicial chain, such that 1 ≤ k ≤ i − 1, the
simplices of zs are simplices of T (ci), and the simplices of zs∂S are sim-
plices of the semi-simplicial set associated with the boundary of ci. zs∂S

is thus a cycle made with simplices contained in the semi-simplicial set
associated with the boundary of ci. Since the simplicial homology of the
boundary of ci is the homology of a sphere, any (k − 1)-cycle is a bound-
ary, and a k-dimensional chain z′s exists, which simplices are contained in
the semi-simplicial set associated with the boundary of ci, and such that
z′s∂S = zs∂S . Thus zs − z′s is a cycle, and since any k-dimensional cycle
is a k-dimensional boundary (the homology of the chain of maps is the
homology of a cone), a simplicial chain c′ exists, which simplices are con-
tained in T (ci) and in the semi-simplicial set associated with its boundary,
such that z′s = zs + c′∂S . So, if the lemma is satisfied before creating a
cell and its boundary, it is still satisfied after.

Identifying two cells.

The identification of two cells corresponds to the following operation: let
ci and c′i be two distinct isomorphic i-dimensional cells (having the same
boundary if i ≥ 1), i.e. an isomorphism φ exists, such that ∀d ∈ ci,∀j, 0 ≤
j ≤ i − 1, dαi

jφ = dφαi
j , and dσi = dφσi. The chain of maps is then

modified by dividing it by φ, i.e. by identifying d with dφ for all darts d
of ci. Let us denote ci the cell resulting from the identification of ci and
c′i. Due to the definition of the identification operation, a morphism exists
between the initial chain of maps and the chain of maps resulting from the
identification operation: this morphism can be extended onto a morphism
between the associated semi-simplicial sets, and finally onto a morphism
Φ between the associated simplicial chain complexes. By definition of a
morphism, we have the following property: let c be a simplicial chain, the
simplices of which belong to the initial chain of maps, then c∂SΦ = cΦ∂S .

Assume that lemma 5.8 is satisfied before an identification operation. Af-
ter operation, let c′ be a simplicial chain which simplices are contained in
T (cel), where cel is a cell of the chain of maps, and such that the simplices
of c′∂S are contained in the semi-simplicial set associated with the bound-
ary of cel. We are now going to show that lemma 5.8 is still satisfied. For
this we are considering the following three possible cases of identification.

case 1: ci = cel. The chain c′ corresponds thus to a chain c′1 and to a
chain c′2, such that the simplices of c′1 (resp. c′2) are contained in T (ci)
(resp. T (c′i)), and they are isomorphic to each other (by φ extended to
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(a) (b) (c) (d)

Figure 17: (b) A 1d−chain c′ having all its simplices in a 3d−cell, such that the
simplices of its boundary are in the boundary of the 3d-cell. (c) A 1d−chain
c homologous to c′ having all its simplices in the boundary of the 3d−cell.
(d) 2d−chain c” such that c′ = c + c”∂S . (a) c′, c and c” on the same figure.

T (ci) and to the associated chains of simplices). Since c′1∂S = c′2∂S , and
the corresponding simplices are contained in T (ci)∂S = T (c′i)∂S , by the
recursion hypothesis, a chain c1 exists, which simplices are contained in
T (ci)∂S , a chain c”1 exists, which simplices are contained in T (ci) and
in T (ci)∂S , such that c′1 = c1 + c”1∂S , and c′2 = c1 + c”1Φ∂S . The
identification operation results in identifying c′1 with c′2 into c′, c”1 with
c”1Φ into c”, and we get: c′ = c1 + c”∂S , where the simplices of c1 are
contained in T (cel)∂S , and the simplices of c” are contained in T (cel) and
in T (cel)∂S .

case 2: ci is in the boundary of cel. First, we show that c′ satisfied the
lemma conditions before identification. We know that cel was not affected
by the identification, so before identification, c′ was a simplicial chain the
simplices of which are contained in T (cel). Moreover, the fact that Φ is a
morphism ensures that the simplices of c′∂S were in T (cel)∂S . So, before
identification, c′ satisfied the lemma conditions, and c′ = c + c”∂S , where
the simplices of c (resp. c”) belong to T (cel)∂S (resp. to T (cel)∪T (cel)∂S).
More precisely, the chain c′ can be decomposed as follow:

c′ = (c1 + c2 + c3) + (c”1 + c”2 + c”3 + c”4)∂S

where:

• the simplices of c1 (resp. c2, c3) belong to T (cel)∂S − T (ci)− T (c′i)
(resp. T (ci), T (c′i));

• the simplices of c”1 (resp. c”2, c”3, c”4) belong to T (cel) (resp. T (ci),
T (c′i), T (cel)∂S − T (ci)− T (c′i)).

After identification, we get:

c′ = c′Φ = (c1 + c2 + c3)Φ + (c”1 + c”2 + c”3 + c”4)∂SΦ
= (c1 + c2 + c3)Φ + (c”1 + c”2 + c”3 + c”4)Φ∂S

= c1 + c2Φ + c3Φ + c”1∂S + c”2Φ∂S + c”3Φ∂S + c”4∂S
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As Φ is a morphism, the simplices of ciΦ belong to the boundary of T (cel),
for i = 1..3; the simplices of c”1 belong to T (cel) and the simplices of c”jΦ
belong to the boundary of T (cel), for j = 2..4, and the lemma is satisfied.

case 3: ci 6= cel and ci /∈ cel∂M . c′ is not affected by the identification,
and the lemma remains true for c′. ✷

Corollary 5.9 A consequence of corollaries 5.3 and 5.6 and theorem 5.7 is the
existence of a one-to-one mapping between the classes of cellular cycles (resp.
boundaries) of a chain of maps and the classes of simplicial cycles (resp. bound-
aries) of the associated semi-simplicial set. The cellular homology is thus equiv-
alent to the simplicial homology.

6 Conditions and proof of the equivalence be-
tween cellular and simplicial homology on in-
cidence graphs

We first prove that chains of surfaces are equivalent to a subclass of chains of
maps, more precisely chains of maps representing subdivisions without multi-
incidence whose main cells have closed connected boundaries. We then show
that the simplicial interpretation of both structures are equivalent. We finally
prove that both boundary operators (unsigned and signed) built on both struc-
tures also are equivalent and define hence the same homology.

6.1 Equivalence between closed chains of maps without
multi-incidence and chains of surfaces

Chains of maps are able to encode subdivisions containing multi-incidence whereas
incidence graphs cannot. A cell is multiply incident to another when it is present
several times among its faces, like a vertex being incident twice to an edge
hence creating a simple loop (see Fig. 6(c)). To avoid such configurations we
have hence to add some more constraints on the way cells are glued together,
which first implies to be more restrictive on the definition of σ operators. But as
pointed out before (see Section 4.1 page 28), the structure of the interior of each
cell is also deeply related to the structure of its boundary through σ isomor-
phisms. We hence have to grant that the interior of each cell does not convey
itself any multi-incidence (see for instance Fig. 13, in which no multi-incidence
occurs).

Moreover, by definition, the boundary of any main cell of a subdivision
encoded by a chain of surfaces is also closed and connected (as it is a k-surface
for some k). Involved switchi-operators have hence no fixed point. We will see
below how switchi-operators are related to αi-involutions. And from here we
focus on chains of maps whose involutions have no fixed point. This constraint
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is anyway required to build a suitable boundary operator on chains of maps (see
theorem 4.3).

Definition 6.1 (chains of maps without multi-incidence)
An n-dimensional chain of maps without multi-incidence is an n-dimensional

chain of maps C = ((Gi = (Di, αi
0, . . . , α

i
i−1, α

i
i = ω))i=0,...,n, (σi)i=1,...,n) such

that:

1. ∀i, 0 ≤ i ≤ n, (Di, αi
0, . . . , α

i
i−1) is a closed (i − 1)-generalized map

without multi-incidence15;

2. ∀i, 1 ≤ i ≤ n, σi : Di −→ Di−1 induces an isomorphism between the set
of

〈
αi

0, α
i
1, . . . , α

i
i−2

〉
-orbits included in each i-cell ci =

〈
αi

0, α
i
1, . . . , α

i
i−1

〉

and the set of
〈
αi−1

0 , αi−1
1 , . . . , αi−1

i−2

〉
-orbits belonging to ciσi.

Roughly speaking, point 2 of the previous definition simply means that σ
induces an isomorphism between the boundary of each i-cell ci and the chain
corresponding to (D|ci , αi

0, . . . , α
i
i−1).

We now focus on the relationship between chains of surfaces and this subclass
of chains of maps (cf. figures 11 and 13).

Before giving explicitly the construction processes through which a chain of
surfaces can be constructed from any chain of maps and reciprocally, we present
some useful properties.

Property 6.2 Let |X| be an n-dimensional chain of surfaces, then ∀xi ∈ X,
|α�(xi)| is a connected (i− 1)-surface.

Proof. This property actually comes from the very definition when xi is a
main cell of the subdivision. Any other i-dimensional element xi of the
chain of surfaces belongs to a p-surface, where p is the dimension of a
main cell having xi in its α-adherence: α�(xi) is also hence a connected
(i− 1)-surface (see proof in [DCB05]). ✷

Property 6.3 Let |X| be an n-dimensional chain of surfaces, each suborder
built on Xi =

⋃

xi∈X{α(xi)}, i ∈ {0, . . . , n}, is itself a chain of surfaces
whose each switchi

k-operator, k ∈ {0, . . . , i − 1}, is simply the restriction of
the switchk-operator of X on Xi.

Proof. Main cells of such a suborder are i-cells of the original order. Their
strict α-adherences are hence (i− 1)-surfaces (Property 6.2). This corre-
sponds precisely to the definition of chains of surfaces (see definition 3.1).
The construction of switch-operators is straigthforward. ✷

15An n–gmap is without multi-incidence [ADLL08] if and only if ∀d ∈ D, ∀I ⊆
N, 〈〉N−{I} (d) = ∩i∈I 〈〉N−{i} (d).

47



Theorem 6.4 (construction of an n-dimensional chain of maps from
an n-dimensional chain of surfaces) Let |X| be an n-dimensional chain of
surfaces.

1. ∀i ∈ {0, . . . , n}, let Di be the set of all i-α•-chains of |X| rooted at some
element of rank i, i.e. Di = {i−α•−chains of α(xi), xi ∈ X};

2. ∀i ∈ {0, . . . , n}, ∀k ∈ {0, . . . , i − 1}, let αi
k be the involution switchi

k

induced on the chain of surfaces |
⋃

xi∈X{α(xi)}|;

3. ∀i ∈ {1, . . . , n}, let σi be the application which associates to each i-
α•-chain of |α(xi)|, (x0, . . . , xi−1, xi), the (i − 1)-α•-chain of |α(xi−1)|,
(x0, . . . , xi−1).

Then C = ((Di, αi
0, . . . , α

i
i−1, α

i
i = ω)i∈{0,...,n}, {σ

i}i∈{1,...,n}), where ω is
undefined on Di, ∀i ∈ {0, . . . , n}, is an n-dimensional chain of maps without
multi-incidence whose main cells have closed connected boundaries.

Proof. In the sequel we denote by Dk
|Y where Y is a k-dimensional suborder of

|X|, the set of k-α•-chains belonging to Y . First note that each set Di can
be decomposed into the disjoint union of restrictions of Di to suborders
|α(xi)|, i.e. Di =

⋃

xi∈|X| D
i
|α(xi).

1. We first prove that, ∀i ∈ {0, . . . , n}, (Di, αi
0, . . . , α

i
i−1, α

i
i = ω) is an

i-dimensional generalized map where αi
i is undefined on Di.

As |X| is an n-dimensional chain of surfaces, each α�(xi) is a con-
nected (i− 1)-surface (see property 6.2).

(Di−1
|α�(xi)

, switchi−1
0 , . . . , switchi−1

i−1) is hence a closed connected

(i − 1)-generalized map without multi-incidence [ADLL08]. More-
over there is an isomorphism φxi between (Di−1

|α�(xi)
, switchi−1

k )

and (Di
|α(xi), switch

i
k), which associates to each (i − 1)-chain

(x0, . . . , xi−1) the i-chain (x0, . . . , xi−1, xi).

Hence ∀i ∈ {0, . . . , n}, (Di, αi
0, . . . , α

i
i−1, ω) is a closed i-generalized

map without multi-incidence made of several connected components,
each corresponding to some i-dimensional cell of the order;

2. Both equalities involving σi are quite straightforward. Actually when
i ≥ 2:

(a) dαi
kσi = dσiαi−1

k , for 0 ≤ k ≤ i− 2

dαi
kσi = (x0, . . . , xk−1, xk, xk+1, . . . , xi−1, xi)αi

kσi

= (x0, . . . , xk−1, x′k, xk+1, . . . , xi−1, xi)σi

= (x0, . . . , xk−1, x′k, xk+1, . . . , xi−1)

= (x0, . . . , xk−1, xk, xk+1, . . . , xi−1)αi−1
k

= (x0, . . . , xk−1, xk, xk+1, . . . , xi−1, xi)σiαi−1
k

= dσiαi−1
k
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(b) dαi
i−1σ

iσi−1 = dσiσi−1

dαi
i−1σ

iσi−1 = (x0, . . . , xi−1, xi)αi
i−1σ

iσi−1

= (x0, . . . , x′i−1, xi)σiσi−1

= (x0, . . . , x′i−1)σi−1

= (x0, . . . , xi−2)

dσiσi−1 = (x0, . . . , xi−1, xi)σiσi−1

= (x0, . . . , xi−1)σi−1

= (x0, . . . , xi−2)

3. σi is, by construction, a one-to-one mapping between the
i-α•-chains of α(xi), Di

|α(xi) and the (i − 1)-α•-chains of
⋃

xi−1∈α(xi) α(xi−1), Di−1
|

S

xi−1∈α(xi)
. Moreover by definition of

switch-operators, σi is an isomorphism between (Di
|α(xi), switch

i
k)

and (Di−1
|

S

xi−1∈α(xi)
, switchi−1

k ), ∀k ∈ 0, . . . , i− 2.

Finally, as each α�(xi) is an (i − 1)-surface, it is chain-
connected [ADLL08] which means that there exists an isomor-
phism between the set {α(xi−1), xi−1 ∈ α�(xi)} and the set of
〈
switchi

0, . . . , switch
i
i−2

〉
-orbits of Di. The chain of maps fulfills

hence item 2 of definition 6.1.

✷

Theorem 6.5 (construction of an n-dimensional chain of surfaces from
an n-dimensional chain of maps without multi-incidence) Let C =
((Di, αi

0, . . . , α
i
i−1, α

i
i = ω)i∈{0,...,n}, {σ

i}i∈{1,...,n}) be an n-dimensional chain
of maps without multi-incidence, where ω is undefined on Di, ∀i ∈ {0, . . . , n}.

1. ∀i ∈ {0, . . . , n}, let Xi be the set of
〈
αi

0, . . . , α
i
i−1

〉
-orbits, i.e. of connected

components, of (Di, αi
0, . . . , α

i
i−1, α

i
i = ω). Let us denote by X the set:

⋃

xi∈Xi

i=0,...,n

{xi}

2. let α� be defined on X ×X, as the transitive closure of the relation α•:

xi−1 ∈ α•(xi)⇔ Di−1
xi−1 ⊆ Di

xiσi

where the orbit represented by xi ∈ Xi is denoted by Di
xi

and let α = α� ∪ (x, x).
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Then |X| = (X,α) is an n-dimensional chain of surfaces.

Proof. 1. By construction of α, |X| is obviously an order;

2. Let xi be a main cell of |X|. As the chain of maps is without multi-
incidence, σi induces an isomorphism between the boundary of xi,
i.e. α�(xi) and the corresponding gmap (D|Ci , αi

0, . . . , α
i
i−1), which

is a closed connected (i−1)-generalized map without multi-incidence.
α�(xi) is hence an (i− 1)-surface [ADLL08].

✷

Note also that the switchi
k-operators, k ∈ {1, . . . , i− 1}, naturally induced

on each |α(xi)| are deeply related to the αi
k involutions of the corresponding

map (see [Bri93]).
Finally, constructions described in theorems 6.4 and 6.5 are inverse to each

other up to isomorphism. Actually, the first one builds a chain of maps whose set
of i-cells is in bijection with the set of {α(xi), xi ∈ X} of the chain of surfaces.
The second builds a chain of surfaces whose set of i-cells is in bijection with the
set of i-cells of the chains of maps and there is a straightforward bijection be-
tween the set of i-cells and the set of α-adherences of i-cells. Moreover two darts
of Gi related by some αk correspond to two i-α•-chains of the corresponding
chain of surfaces related by switchi

k and reciprocally.
The equivalence between both structures leads to useful properties.

Property 6.6 Let C = ((Di, αi
0, . . . , α

i
i−1, α

i
i = ω)i∈{0,...,n}, {σ

i}i∈{1,...,n})
and |X| = (X, α) be equivalent n-dimensional chain of maps without multi-
incidence and n-dimensional chain of surfaces, then the following properties
hold:

1. ∀i ∈ {1, . . . , n},∀k ∈ {0, . . . , i−1}, xk ∈ α(xi)⇔ Dk
xk ⊆ Di

xiσiσi−1 . . . σk;

2. ∀p ∈ {1, . . . , n}, (p + 1)-α-chain (xk0 , . . . , xkp)⇔ 〈〉I−{k0,...,kp}
(d) ⊆ D

kp

xkp

where I = [0, . . . , kp] and d corresponds to a (kp + 1)-α•-chain containing
(xk0 , . . . , xkp);

3. ∀p ∈ {1, . . . , n}, ∀k ∈ {1, . . . , p}, if dp corresponds to the (p + 1)-chain
(x0, . . . , xp) then dpσp . . . σk+1 corresponds to the (k+1)-chain (x0, . . . , xk).

Proof. 1. directly comes from transitivity of α and point 2 of theorem 6.5;

2. directly comes points 1 and 2 of theorem 6.4;

3. it is highly related to point 1.

✷

The correspondences between a chain of surfaces and a chain of maps rep-
resenting the same subdivision are displayed on Table 1.
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chain of surfaces chain of maps
(X, α) (Gi

i∈{0,...,n}, σ
i
i∈{1,...,n})

α(xi) connected component of Gi: Di
α(xi)

m m
xi i-cell

xk ∈ α(xi) Dk
xk ⊆ Di

xiσiσi−1 . . . σk

(i + 1)-α•-chain (x0, . . . , xi) di ∈ Di

switchi
k αi

k

(p + 1)-α-chain (xk0 , . . . , xkp)
〈

α
kp

k

〉

k∈Kp\{k0,··· ,kp}
⊆ D

kp

xkp

m

〈

switch
kp

k

〉

k∈Kp\{k0,··· ,kp}

where Kp = [0, . . . , kp] where Kp = [0, . . . , kp]

Table 1: Correspondence between equivalent chain of surfaces and chain of
maps.

6.2 Equivalence between associated simplicial objects

The topology of both incidence graphs and chains of maps is directly related to
their simplicial interpretation. We focus here on equivalent chains of surfaces
and chains of maps. It means that there is no multi-incidence in the associated
subdivision, and that associated numbered simplicial sets are numbered sim-
plicial complexes. The numbered simplices associated with an incidence graph
(see page 9) are built on its α-chains, whereas numbered simplices associated
with a chain of maps are built on orbits of darts (see Section 5.1 page 37).

More precisely a numbered j-simplex of a chain of surfaces is a (j + 1)-α-
chain, (xk0 , . . . , xkj−1 , xi), which is naturally included in α(xi). Let us recall
that the number of each vertex is the rank of the corresponding element in the
order, i.e. the simplex is numbered {k0, . . . , kj−1, i}. A j-simplex of a chain of
maps, numbered (k0, . . . , kj−1, i), is an orbit 〈〉I−{k0,··· ,kj−1,i} of Di

α(xi), where

I = [0, · · · , i]. According to property 6.6.2, there is hence a bijection between
the set of i-simplices associated to a chain of surfaces and the set of i-simplices
associated to its corresponding chain of maps (see Table 2).

51



simplicial complex chain of surfaces chain of maps
(X, α) (Gi

i∈{0,...,n}, σ
i
i∈{1,...,n})

j-simplex (xk0 , . . . , xkj−1 , xi) 〈〉I−{k0,··· ,kj−1,i} (Di
α(xi))

Table 2: Simplicial correspondence between equivalent chain of surfaces and
chain of maps.

Face relations between simplices are preserved by this bijection. Let Sj
S =

(xk0 , . . . , xkj−1 , xi) and Sj
M = T (〈〉I−{k0,··· ,kj−1,i} (di)) be two corresponding

simplices respectively associated with a chain of surfaces and an equivalent chain
of maps. The face of Sj

S , obtained through dl-operator, l ∈ {k0, . . . , kkj−1
, i} is

the (j − 1)-simplex obtained by removing xl from Sj
S .

When l 6= i, the smallest cell of the subdivision containing the
(j − 1)-simplex remains xi. The image of this j-α-chain is simply
the orbit 〈〉I−{k0,··· ,l̂,··· ,kj−1,i} (di). The corresponding simplex is hence

T (〈〉I−{k0,··· ,l̂,··· ,kj−1,i} (di)), which is equal to T (〈〉I−{k0,··· ,kj−1,i} (di))dl.

When l = i, then the smallest cell of the subdivision containing
the (j − 1)-simplex is xkj−1 . The image of (xk0 , . . . , xkj−1) is the orbit
〈〉[0,kj−1]−{k0,··· ,kj−1}(d

kj−1) where dkj−1 = diσiσi−1 . . . σkj−1+1.

6.3 Unsigned boundary operators equivalence

As there is no multi-incidence in this context, the unsigned incidence number
linking two cells is either equal to 1 or to 0.

We proved that there is a bijection between the set of cells associated to a
chain of surfaces and the set of cells associated to the corresponding chain of
maps. We just need to show that the unsigned incidence number between any
two cells of the subdivision is preserved through this bijection which grants that
boundary operators are equivalent and lead to same homology.

First note that definition 4.2 of unsigned incidence number on chain of maps
(page 30) implies that when there is no multi-incidence (ci(di) : ci−1(di−1) = 1
is equivalent to Di−1

xi−1(di−1) ⊆ Dxi(di)σ
i.

The equivalence between both unsigned incidence numbers comes then from
the fact that xi−1 ∈ α(xi), i.e. (xi : xi−1) = 1 implies that Di−1

xi−1 ⊆ Di
xiσi and

reciprocally.

6.4 Signed boundary operators equivalence

Like above, there is no multi-incidence, and the signed incidence number linking
two cells is either equal to 1, −1 or 0.

The value of this number depends on the value of the unsigned incidence
number and on the relative orientation of both cells. We hence have to prove
that orienting a chain of surfaces and a chain of maps lead to the same signed
incidence number.
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Orienting the cells of a chain of surfaces consists in marking each α•-relation
with a + or a −. Based on these orientations, a sign can also be associated with
each i-α•-chain as the product of all signs of α•-relations included in the chain.
Due to the orientation process, two i-α•-chains obtained from one another by
a switchk-operator, k ∈ {0, . . . , i − 1}, have different signs. Indeed they differ
only on one branch on the diamond configuration related to switchk. Otherwise
said, the orientation of i-α•-chains leads to a consistent orientation of darts of
Di.

On the contrary, let di and di−1 be two oriented darts of Di and Di−1, such
that diσi = di−1. Let xi and xi−1 the cells corresponding to the connected
component of Di and Di−1 respectively associated with di and di−1. Let us
mark the α•-relation between xi−1 and xi by the product of the signs of di

and di−1. Note that this sign does not depend on the chosen darts. Let us
consider a diamond configuration i.e. four cells xi−2, xi−1, xi−1′

, xi such that
{xi−1, xi−1′

} = β•(xi−2)∩α•(xi). Let di and di′ be darts corresponding to two
α-chains containing respectively xi−2, xi−1, xi, and xi−2, xi−1′

, xi. Let di−1,
di−1′

be darts corresponding to both previous chains where xi was removed.
And let di−2 be the dart associated with the intersection of both chains and
α(xi−2). By construction di = di′αi

i−1. Both darts have hence opposite signs.
Then:

sg (xi, xi−1) ∗ sg (xi−1, xi−2) + sg (xi, x′i−1) ∗ sg (x′i−1, xi−2)

= (sg(di) ∗ sg(di−1)) ∗ (sg(di−1) ∗ sg(di−2))

+(sg(di′) ∗ sg(di−1′

)) ∗ (sg(di−1′

) ∗ sg(di−2))

= sg(di) ∗ sg(di−2) + sg(di′) ∗ sg(di−2)

= 0

A consistent orientation has hence been defined on the chain of surfaces.

Correspondences between orientations
chain of surfaces chain of maps

∏k=i
k=1 sg(xk : xk−1) sg(di) where di corresponds to (x0, x1, . . . , xi)

sg(xi : xi−1) sg(di(xi)) ∗ sg(di−1(xi−1))
where di−1(xi−1) = di(xi)σi

The signed incidence numbers on chain of surfaces and chain of maps are
hence equal.

Moreover definition 4.5 of signed incidence number on chains of maps
(page 33) can be simplified when there is no multi-incidence. In this context,
the signed incidence number (ci : ci−1) is equal to 1 if there exists di in ci such
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that diσi in ci−1 and sg(di) = sg(diσi). It is equal to −1 if there exists di in ci

such that diσi in ci−1 and sg(di) = −sg(diσi). Else it is equal to 0.

7 Generalized maps

7.1 Definition

Definitions of boundary operators have been proposed in [APDL09] in order to
optimize the computation of the homology groups of generalized maps. We recall
here these definitions, and we show that the so-defined homology of a generalized
map is equivalent to the simplicial homology of the associated quasi-manifold.
The proof of this equivalence is based upon the relations between a chain of
maps corresponding to a quasi-manifold and the associated generalized map,
which can be explained in the following way.

An homogeneous (or pure) n-dimensional chain of map C =
((Gi)i=0,...,n, (σi)i=1,...,n) is such that any i-cell is incident to an n-cell, for
0 ≤ i ≤ n − 1 [EL94]. We can then define an equivalent structure C ′ =
(Gn, (Ri)i=0,...,n−1), where (Ri)i=0,...,n−1 are equivalence relations between the
darts of Gn, such that two darts b and b′ satisfy relation Ri if and only if they
have the same image bσn . . . σi+1 = b′σn . . . σi+1, for 0 ≤ i ≤ n− 1. In fact, re-
lations (Ri)i=0,...,n−1 implicitly represent the i-cells, and they satisfy properties
which can be deduced from the definition of the chains of maps.

When the chain of maps corresponds to a quasi-manifold, this structure can
again be simplified: it is sufficient to explicitly represent n-cells and relation
Rn−1, since n-cells are glued along (n−1)-cells; the equivalence classes of Rn−1

contain each two darts, since at most two n-cells share an (n − 1)-cell. Rn−1

can thus be represented by an involution, namely αn, and we get the definition
of generalized maps.

Moreover, since we consider chains of maps in which σi+1, for 0 ≤ i ≤ n− 1,
is an isomorphism between orbits 〈αi+1

0 , . . . , αi+1
i−1〉 and orbits 〈αi

0, . . . , α
i
i−1〉

(cf. definition 4.1), we get the subclass of generalized maps without self-
bending [ADLL08, CMP06]. A 2−gmap and a chain of maps encoding the same
quasi-manifold are respectively displayed on Figure 18(a) and Figure 18(c).

A generalized map without self-bending (D,α0, . . . , αn) can be iteratively
constructed as follows:

Algorithm 4: Construction of a generalized map without self-bending

create the set of darts (D) = G−1 ;
for i=0 to n-1 do

/* denote by Gi−1 = (D,α0, . . . , αi−1) the (i− 1)-gmap
constructed through the previous iteration */

define Gi = (D,α0, . . . , αi−1, id) (creation of i-cells) ;
define αi (identification of (i− 1)-cells to glue i-cells) in such a way
that it identifies only distinct (i− 1)-cells ;
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Figure 18: (a) A 2-gmap. (b) Using the notion of compacted cells, a, i−gmap
can be associated with each i−cell of the gmap. (c) the corresponding chain of
maps.

Note that any n-gmap can be constructed in a similar way but cells can be
“bended onto themselves” by αi−1 (see Figure 19).

(a)

5

12

3

4
6

7

8

9
1112
10

(b)

Figure 19: (a) an object where an edge is bended onto itself. (b) corresponding
2−gmap.

Generalized maps without self-bending satisfy property 7.1 below. An
important consequence of this property is the following. Let C =
((Gi)i=0,...,n, (σi)i=1,...,n) be a chain of maps as defined in definition 4.1 and cor-
responding to a quasi-manifold, and let G = (D,α0, . . . , αn) be the equivalent
gmap. Note that, all involutions αi are without fixed points for 0 ≤ i ≤ n− 1.
For 0 ≤ i ≤ n, there is a one-to-one mapping between the i-cells of C and orbits
(D/〈αi+1, . . . , αn〉, α0, . . . , αi−1) of G (see figure 18(b)). More precisely, each
dart of Gi corresponds to an orbit 〈αi+1, . . . , αn〉, and 〈αi+1, . . . , αn〉(d)σi =
〈αi, . . . , αn〉(d) [APDL09].

Property 7.1 A generalized map without self-bending G = (D,α0, . . . , αn),
equivalent to a chain of maps as defined in definition 4.1, satisfies, ∀d ∈ D,
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∀i, 0 ≤ i ≤ n:

1. 〈α0, . . . , αi−1〉(d) ∩ 〈αi+1, . . . , αn〉(d) = {d};

2. the simple cell (〈α0, . . . , αi−1〉(d), α0, . . . , αi−1) is isomorphic to the
compacted cell cci = (ci(d)/〈αi+1, . . . , αn〉, α0, . . . , αi−1), where ci(d)
= 〈α0, . . . , αi−1, αi+1, . . . , αn〉(d). More precisely, ci(d)/〈αi+1, . . . , αn〉
means that a dart is associated with each orbit 〈αi+1, . . . , αn〉 of ci(d);
since αkαl = αlαk for k ≤ l − 2, we get (by abuse of notations) that
(〈αi+1, . . . , αn〉(d′))αk = 〈αi+1, . . . , αn〉(dαk) for 0 ≤ k ≤ i − 1 (see
Fig. 15).

This property is a direct consequence of the following properties of chains of
maps, as stated by the following lemma:

Lemma 7.2 Let C = ((Gi)i=0,...,n, (σi)i=1,...,n) be a chain of map, as defined
in definition 4.1. ∀0 ≤ i < k ≤ n,∀ d:

1. let d′ ∈ 〈αk
i+1, . . . , α

k
k−1〉(d); then d′σk . . . σi+1 = dσk . . . σi+1;

2. the simple cells (〈αk
0 , . . . , αk

i−1〉(d), αk
0 , . . . , αk

i−1) and
(〈αi

0, . . . , α
i
i−1〉(dσk . . . σi+1), αi

0, . . . , α
i
i−1) are isomorphic to each

other;

3. 〈αk
0 , . . . , αk

i−1〉(d) ∩ 〈αk
i+1, . . . , α

k
k−1〉(d) = {d};

4. the compacted cell:

(〈αk
0 , . . . , αk

i−1, α
k
i+1, . . . , α

k
k−1〉(d)/〈αk

i+1, . . . , α
k
k−1〉, α

k
0 , . . . , αk

i−1) is iso-

morphic to (〈αi
0, . . . , α

i
i−1〉(dσk . . . σi+1), αi

0, . . . , α
i
i−1).

Proof. 1. let d′ ∈ 〈αk
i+1, . . . , α

k
k−1〉(d).

Then d′ = dαk
j1

. . . αk
jp

, with j1, . . . , jp ∈ [i+1, k−1]. d′σk . . . σi+1 =

dαk
j1

. . . αk
jp−1

σk . . . α
jp+1
jp

σjp+1σjp . . . σi+1 = dαk
j1

. . . αk
jp−1

σk . . . σi+1,
due to the properties 2a and 2b of α and σ operators in definition 4.1.
By iterating on indices j1, . . . , jp−1, we get the result;

2. since ∀i + 1 ≤ j ≤ k, σj is an isomorphism between

(〈αj
0, . . . , α

j
j−2〉(dσk . . . σj+1), αj

0, . . . , α
j
j−2)

and (〈αj−1
0 , . . . , αj−1

j−2〉(dσk . . . σj), αj−1
0 , . . . , αj−1

j−2), it is thus an iso-
morphism between

(〈αj
0, . . . , α

j
i−1〉(dσk . . . σj+1), αj

0, . . . , α
j
i−1)

and (〈αj−1
0 , . . . , αj−1

i−1 〉(dσk . . . σj), αj−1
0 , . . . , αj−1

i−1 ). The composition
of isomorphisms is an isomorphism, and we get the result;

3. assume a dart d′ exist, such that d′ 6= d and d′ ∈ 〈αk
0 , . . . , αk

i−1〉(d)
∩ 〈αk

i+1, . . . , α
k
k−1〉(d). Then d′ = dαk

j1
. . . αk

jm
= dαk

jm+1
. . . αk

jp
with

j1, . . . , jm ∈ [0, i− 1] and jm+1, . . . , jp ∈ [i + 1, k − 1].
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But dαk
jm+1

. . . αk
jp

σk . . . σi+1 = dσk . . . σi+1 = d′σk . . . σi+1. So we

have two different darts d and d′ of orbit 〈αk
0 , . . . , αk

i−1〉(d) which have
the same image by σk . . . σi+1 in orbit 〈αi

0, . . . , α
i
i−1〉(dσk . . . σi+1):

contradiction with the fact that σk . . . σi+1 is an isomorphism be-
tween these orbits;

4. we consider ci = 〈αk
0 , . . . , αk

i−1, α
k
i+1, . . . , α

k
k−1〉(d).

All darts of an orbit 〈αk
i+1, . . . , α

k
k−1〉 contained in ci have the

same image by σk . . . σi+1, and all orbits 〈αk
0 , . . . , αk

i−1〉 are isomor-
phic, since they are isomorphic to 〈αi

0, . . . , α
i
i−1〉(dσk . . . σi+1) by

σk . . . σi+1. We can thus extend the definition of σk . . . σi+1 onto
orbits 〈αk

i+1, . . . , α
k
k−1〉, and orbit ci/〈αk

i+1, . . . , α
k
k−1〉 is isomorphic

by σk . . . σi+1 to 〈αi
0, . . . , α

i
i−1〉(dσk . . . σi+1).

✷

7.2 Boundary operators

With this equivalence, we can thus extend the results presented above for chains
of maps onto generalized maps. First, we define the unsigned incidence numbers:

Definition 7.3 (unsigned incidence number) Let i ∈ {1, . . . , n}. Let ci(d)
and ci−1(d′) be two cells of G. The unsigned incidence number, (ci(d) : ci−1(d′)),
is:
card({〈αi+1, . . . , αn〉(d′′) ⊆ 〈αi, . . . , αn〉(d′) s.t. 〈αi+1, . . . , αn〉 (d′′) ⊆ ci(d)}).

This definition is a direct translation of the unsigned incidence numbers on
chains of maps. We can simplify the definition in the following way : (ci(d) :
ci−1(d′)) = card({〈αi+1, . . . , αn〉(d′′) s.t. d” ∈ 〈αi, . . . , αn〉(d′)} and d” ∈ ci(d)).

As for chain of map, we can provide the following alternative
definition: let {pj}j=1···k be a set of darts such that the orbits
{〈α0, · · · , αi−2〉 (pj)}j=1···k make a partition of 〈α0, · · · , αi−1〉 (d); then (ci :
ci−1) = card({pj , j = 1 · · · k|pj ∈ ci−1}).

Then we define the signed incidence numbers, for gmaps which cells
are orientable, i.e. for any i-cell ci = 〈α0, . . . , αi−1, αi+1, . . . , αn〉(d),
there are two orbits 〈α0α1, . . . , α0αi−1, α0αi+1, . . . , α0αn〉(d) and
〈α0α1, . . . , α0αi−1, α0αi+1, . . . , α0αn〉(dα0) (cf. [Lie94] and section 8).
We then choose an orientation for the associated compacted cell, i.e. each
dart d of the i-cell is marked with a sign (+ or −) denoted sgi(d) such that
sgi(d) 6= sgi(dαj) ∀j: 0 ≤ j < i, and sgi(d) = sgi(dαj) ∀j: i < j ≤ n 16. Note
that, as for chain of maps, the gmap itself can be not orientable.

Definition 7.4 (signed incidence number) Let i ∈ {1, . . . , n}. Let ci(d)
and ci−1(d′) be two cells of G. The signed incidence number, (ci(d) : ci−1(d′)),

16This definition is equivalent to the one given in [APDL09].
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is: ∑

〈αi+1,...,αn〉(d′′)⊆〈αi,...,αn〉(d′)
s.t. d′′∈ci(d)

sgi(d′′).sgi−1(d′)

It has been shown in [APDL09] that the incidence number does not depend
on the chosen darts, and thus that the definitions are consistent. As for unsigned
incidence number, we will use the following alternative definition: let {pj}j=1···k

be a set of darts such that the orbits {〈α0, · · · , αi−2〉 (pj)}j=1···k make a partition
of 〈α0, . . . , αi−1〉(d); then (ci : ci−1) =

∑

pj ,j=1···k|pj∈ci−1

sgi(pj).sg
i−1(pj).

Let ∂M be the corresponding boundary operator, according to definition 2.9:
we can easily prove that ∂M satisfies ∂M∂M = 0 when involutions αi are without
fixed points for 0 ≤ i ≤ n− 1. Moreover, we have:

Theorem 7.5 The homologies defined on gmaps by these boundary operators
are equivalent to the simplicial homologies of the associated quasi-manifolds
when the homology of the canonical boundary of each i-cell is that of an (i− 1)-
sphere.

Proof. We have mentioned above the equivalence between chains of maps
such that all involutions are without fixed points, and generalized maps
without self-bending, such that all involutions except αn are without fixed
points. This equivalence still holds when the cells are orientable. We
can also show easily that a generalized map and its corresponding chain
of maps correspond to the same quasi-manifold, and that the incidence
numbers defined for the generalized map are the same as those defined
for the associated chain of maps. The result comes from the fact that
the homology of the chain of map is equivalent to the homology of the
quasi-manifold.

✷

7.3 Algorithms

We present now Algorithm 5 allowing to compute the incidence number (ci :
ci−1). The only difference with the same algorithm for chains of maps (cf.
Algorithm 2) is the way that we now consider cells. Indeed, contrary to chains
of maps, the darts of all the i-cells, ∀i : 0 ≤ i ≤ n in relation by σ are now
represented by only one dart in the gmap, thus we take the same dart c to
consider i-cells and (i− 1)-cells.

This algorithm is the direct translation of the alternative definition of the
signed incidence number presented above. In order to consider all darts pj such
that the orbits {〈α0, · · · , αi−2〉 (pj)}j=1···k make a partition of 〈α0, . . . , αi−1〉 (d),
we run through all the darts c ∈ 〈α0, . . . , αi−1〉 (d). If c is not marked treated,
that means that the orbit 〈α0, . . . , αi−1〉(c) is not already considered thus we
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Algorithm 5: Computation of the signed incidence number (ci(d) :
ci−1(d′)) for gmaps

Data: GM = (D,α0, . . . , αn): a signed nG map
i: a dimension , 1 ≤ i ≤ n
d, d′: two darts of GM

Result: The signed incidence number (ci(d) : ci−1(d′))
1 res← 0;
2 foreach dart c ∈ 〈α0, . . . , αi−1〉 (d) do
3 if c is not marked treated and c ∈ ci−1(d′) then
4 res← res + sgi(c).sgi−1(c);
5 mark treated all the darts of 〈α0, · · · , αi−2〉 (c);

6 return res;

process this dart and marks all the darts of this orbit. This allows us to consider
exactly all darts pj .

We use the same principle in Algorithm 6 which computes the incidence
matrix Ei. As for the chain of maps, we do not use the previous algorithm
computing the incidence number but compute directly the incidence matrix to
avoid to mark and unmark each dart of ci−1(d′).

Algorithm 6: Computation of the ith incidence matrix

Data: GM = (D,α0, . . . , αn): a signed nG map
i: a dimension , 0 ≤ i ≤ n

Result: The incidence matrix Ei

1 if i=0 then
2 Ei ← zeroMatrix(card(C0),1);
3 else
4 Ei ← zeroMatrix(card(Ci),card(Ci−1));
5 foreach dart d ∈ GM do
6 if d is not marked treated then
7 foreach dart d′ ∈ 〈α0, . . . , αi−1〉 (d) do
8 if d′ is not marked treated then
9 Ei(ci(d), ci−1(d′))←

Ei(ci(d), ci−1(d′)) + sgi(d′).sgi−1(d′);
10 mark treated all the darts of 〈α0, · · · , αi−2〉 (d′);

11 mark treated all the darts of ci(d);

12 return Ei;

The complexity of Algorithm 5 is linear in number of darts of ci(d)+ci−1(d′).
Indeed, each dart of ci(d) is considered exactly once, and we need to mark all
the darts of ci−1(d′) before to enter in the foreach loop in order to be able to
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test in O(1) if c ∈ ci−1(d′).
The complexity of Algorithm 6 is linear in number of darts of the gmap.

Indeed, each dart is processed exactly once thanks to the mark, and we have a
direct access to each information associated to darts.

Let us recall that these algorithms require that the gmap has all its cells
oriented. Orienting an i-cell can be achieved locally in complexity linear in
number of darts of the cell. Thus, the algorithm which orients each cell for
each dimension of the map is linear in number of darts of the gmap times its
dimension.

The algorithm computing all the incidence matrices consists in first orienting
all the cells in all dimensions, and second computing all the incidence matrices
Ei for all 1 ≤ i ≤ n. Its overall complexity is thus also linear in number of
darts of the gmap times its dimension. It is hence less expensive than simplicial
homology computation over the same structure which requires to compute every
possible orbit and is hence equal to the number of darts times 2 to the power
of the dimension.

8 Maps

N-dimensional maps are defined in order to represent orientable quasi-manifolds
without boundaries (cf. [Lie94]).

Definition 8.1 (n-map) Let n ≥ 0, an n-map is defined by an (n + 1)-tuple
M = (D,β1, · · · , βn) such that:

• D is a finite set of darts;

• β1 : D → D is a permutation; ∀i, 2 ≤ i ≤ n, βi : D → D is an involution;

• ∀i, 1 ≤ i ≤ n− 2,∀j, i + 2 ≤ j ≤ n, βiβj is an involution.

The inverse of M = (D,β1, β2, · · · , βn) is M−1 = (D,β−1
1 , β2, · · · , βn).

The link with n-gmaps is the following. Let G = (D,α0, · · · , αn) be a con-
nected n-gmap without boundaries, i.e. such that αi is without fixed points for
any 0 ≤ i ≤ n. Let O = (D,α0α1, · · · , α0αn) be the n-map of the orientations
of G. O has at most two connected components; G is orientable if and only if O
has exactly two connected components; in this case, each connected component
is the inverse of the other one (cf. Fig. 20).

Conversely, let M = (D,β1, · · · , βn) be a connected n-map, and M ′ =
(D′, β′

1, · · · , β
′
n) be an n-map isomorphic to M−1 by φ. Then we can define

the corresponding gmap G = (D ∪D′, α0, · · · , αn) with:

• for 1 ≤ i ≤ n, αi/D = φβ′
i, αi/D′ = φ−1βi;

• α0/D = φ, α0/D′ = φ−1.
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(a) (b) (c)

Figure 20: (a) A 2-gmap representing a decomposition of S2 using 3 faces.
(b)-(c) Its two corresponding oriented maps.

Note that the two connected components of the n-map of the orientations of G
are M and M ′.

We have not found a simple direct characterization of the self-bending condi-
tion that n-maps have to fulfill in order to define an homology which is equivalent
to the homology of their simplicial interpretation. Given an n-dimensional map,
we think the most easy way consists in computing the associated gmap, and in
checking the conditions. The cost of the conversion map-gmap is linear in the
size of the map, so it doesn’t change the complexity of the whole computation.
The main interest is here the fact that the quasi-manifold corresponding to an
n-map is torsion-free ; so the whole topological information is got when using
coefficients in Z/2Z: the only possible values for the incidence numbers are 0
and 1. Thus, let ci−1 be an (i− 1)−cell and ci be an i−cell, then:

(ci : ci−1) =

{
0 if ci−1 appears an even times in the boundary of ci

1 otherwise

There is a special case for dimension 1 cells to detect the case of loops
(edges incident twice to the same vertex). Indeed, (c1(d) : c0(d′)) = 1 if c0(d′)
is incident to c1(d) and c0(dβ1) 6= c0(d′); (c1(d) : c0(d′)) = 1 otherwise.

A consequence of having coefficients in Z/2Z is that no large integer can arise
during the computation of the homology groups, when computing for instance
the Smith Normal Form of the incidence matrices. We can thus use the same
optimization as for computing unsigned incidence number for chain of maps,
i.e. replace the use of integer by the use of Boolean.

However, we can use the alternative definition of incidence number for gmaps
to propose the corresponding definitions for maps: let {pj}j=1···k be a set
of darts such that the orbits {〈β1, · · · , βi−2〉 (pj)}j=1···k make a partition of
〈β1, · · · , βi−1〉 (d); then (ci : ci−1) = 0 if card({pj , j = 1 · · · k|pj ∈ ci−1}) is even;
1 otherwise. This alternative definition allows to propose algorithms similar to
Algorithm 5 and Algorithm 6 to compute incidence numbers and incidence ma-
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Object Cellular Simplicial
Cell dimension 0 1 2 3 0 1 2 3
2-torus 151 294 142 - 588 1,770 1,180 -
Klein bottle 324 648 324 - 1,296 3,888 2,592 -
Pinion 470 701 231 - 1,402 4,206 2,804 -
Tower 228 452 226 4 910 3,824 4,928 2,016
Menger sponge 64 144 96 20 324 1,576 2,208 960

Table 3: Numbers of cells of objects shown in Fig. 21, for cellular objects, and
for corresponding simplicial objects.

trices directly on oriented maps.

9 Preliminary experiments

We have implemented the computation of incidence matrices for n-gmaps, and
use these matrices to compute homology of 2D and 3D object by using the
method presented in [PAFL06b]. The dimension is for the moment restricted to
3D because the software used to develop these methods is Moka [VD03] which
is for the moment only in 3D. But all the functions which compute incidence
matrices and homology are generic in any dimension.

We present here some results obtained for the five objects shown in Fig. 21.
The three first objects are surfacic (i.e. 2D combinatorial object embedded in
3D space) while the two last ones are 3D objects. We give in Table 3 the number
of cells of each object in each dimension, and compare these numbers with the
number of cells of the corresponding simplicial object. Of course we can verify
that the number of cells of the cellular object is very small comparing it to the
number of cells of the corresponding simplicial object, this is obvious.

Due to this important difference between the cellular and simplicial ob-
jects, we can observe in Table 4 that we need much less memory space and
time to compute homology of cellular objects than for simplicial object. Once
again, this is obvious, but this justifies the interest of our approach to pro-
pose a cellular framework to compute cellular homology. It must be noticed
that the method implemented in Moka to compute homology has no optimiza-
tion, thus the computation time can be much improved by using for instance
optimized algorithms for computing the Smith Normal Form of the incidence
matrices [DSV01, Gie96, Sto96].

10 Conclusion and perspectives

In this paper, we study the definition and computation of homology on cellular
structures. Most previous works related to homology computation only deal
with simplicial structures but many applications need to compute topological
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(a) (b) (c)

(d) (e)

Figure 21: The five objects used in our preliminary experiments. (a) A two torus
surfacic (thus a 2D combinatorial object). (b) A Klein bottle (also surfacic).
(c) A pinion (surfacic). (d) A tower (volumic). (e) A Menger sponge (volumic).

Object Cellular Simplicial
memory time memory time

2-torus 2.05Mb 0.18s 73Mb 134s
Klein bottle 9Mb 2.4s 352Mb 1,872s
Pinion 11Mb 4.5s 412Mb 2,228s
Tower 5.2Mb 0.7s 754Mb 4,892s
Menger sponge 0.6Mb 0.03s 143Mb 342s

Table 4: Memory space (in mega-bytes) occupied by incidence matrices and
time (in seconds) for homology computation of objects shown in Fig. 21, for
cellular objects, and for corresponding simplicial objects.
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properties of cellular objects. In order to avoid computing the homology on
the simplicial analog of cellular objects, we provide here a direct definition of
homology on several cellular structures.

To achieve this objective, we study homology on the two main families of
cellular structures: incidence graphs and ordered models. For each family, we
exhibit a subclass that is compliant with the definition of an homology (chains
of surfaces for incidence graphs, chains of maps for ordered models). The char-
acterization of such structures is purely combinatorial. Roughly speaking they
correspond to subdivisions whose cells are cellular quasi-manifolds. In this con-
text, we define the notion of incidence numbers and use it to define a boundary
operator. We study both homology over Z/2Z which is sufficient when dealing
with torsion-free objects and homology over Z which encompasses all homology
information for more general structures. We go on one step further with ordered
models as we also study homology on two more restricted subclasses, namely
generalized maps and n-maps. Our motivation is to take benefit from the speci-
ficities of both models to improve the complexity of homology computation.

To show the validity of our approach, we compare, for each studied struc-
ture, the homology of a cellular object computed with our boundary operator
with the simplicial homology of its simplicial analog. We prove that both are
equivalent when the boundary of each cell of the cellular object is homologi-
cally equivalent to a sphere, which is still a purely combinatorial constraint. We
begin with proving it on the most general structures, i.e. the chains of maps.
We then extend [ADLL08] to prove the equivalence between chains of surfaces
and a subclass of chains of maps. We deduce from this correspondence the
equivalence between cellular and simplicial homology on chains of surfaces. A
similar equivalence for both generalized maps and n-maps is also proved as a
consequence of well-known relations between such structures and chains of maps
[EL94, Lie94]. Note that the cellular homology of a slightly more restricted sub-
class of incidence graphs has been explored by Basak in [Bas10]. The structures,
he studies, belong to a subclass of chains of surfaces where two distinct cells
cannot share exactly the same boundary: e.g. two edges cannot be incident
to the two same vertices. Moreover the proof of the equivalence between the
cellular homology and the simplicial homology of such structures follows a quite
different path: the cellular structure is refined to obtain a simplicial subdivision
by successively applying stellar subdivisions; it is proved that each elementary
operation preserves the homology of the structure.

Apart the work of Basak [Bas10], the present study is, to our knowledge,
the first one to tackle the problem of the definition and computation of a con-
sistent cellular homology on quite generic and purely combinatorially defined
cellular structures. This approach provides a natural optimization as the num-
ber of cells of a cellular structure is usually much lesser than the one of its
simplicial analog. Moreover the complexity of cellular homology computation
can obviously be further improved by using techniques similar to those used
in the simplicial framework (e.g. optimization of matrices reductions [Sto96],
elementary reductions [KMS98]).

Finally, we also design efficient algorithms on each structure to compute
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cellular incidence numbers and associated incidence matrices. This computation
is linear with respect to the size of the structure for chains of surfaces and chains
of maps because cells are directly accessible. It is linear with respect to the size
of the structure times its dimension for generalized maps and n-maps because
cells are implicitly represented. Our preliminary experiments on generalized
maps show the interest of our approach by comparing its efficiency to this of
the classical simplicial approach. It clearly illustrates the significant gain of
memory we obtain and the consequent reduction of computation time.

As future works, we plan to implement existing optimization techniques for
homology computation based for instance on efficient matrices reductions in
order to speed up the computation of homology groups (Betti numbers, torsion
coefficients and generators).

References

[AdFF85] S. Ansaldi, L. de Floriani, and B. Falcidieno. Geometric modeling
of solid objects by using a face adjacency graph representation.
Computer Graphics, 19(3):131–139, 1985.

[ADLL08] S. Alayrangues, X. Daragon, J.-O. Lachaud, and P. Lienhardt.
Equivalence between closed connected n-g-maps without multi-
incidence and n-surfaces. J. Math. Imaging Vis., 32(1):1–22, 2008.

[Ago76] M. K. Agoston. Algebraic Topology, a first course. Pure and
applied mathematics. Marcel Dekker Ed., 1976.

[APDL09] Sylvie Alayrangues, Samuel Peltier, Guillaume Damiand, and Pas-
cal Lienhardt. Border operator for generalized maps. In Srecko
Brlek, Christophe Reutenauer, and Xavier Provençal, editors, Dis-
crete Geometry for Computer Imagery, volume 5810 of Lecture
Notes in Computer Science, pages 300–312. Springer Berlin / Hei-
delberg, 2009. 10.1007/978-3-642-04397-0 26.

[Bas10] Tathagata Basak. Combinatorial cell complexes and poincaré du-
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