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A nonsmooth algorithm for cone-constrained
eigenvalue problems

Samir Adly · Alberto Seeger

Abstract We study several variants of a nonsmooth Newton-type algorithm for solv-
ing an eigenvalue problem of the form

K � x ⊥ (Ax − λBx) ∈ K+.

Such an eigenvalue problem arises in mechanics and in other areas of applied mathe-
matics. The symbol K refers to a closed convex cone in the Euclidean space R

n and
(A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid
to the case in which K is the nonnegative orthant of R

n. The more general case of a
possibly unpointed polyhedral convex cone is also discussed in detail.

Keywords Complementarity problem · Cone-constrained eigenvalue problem ·
Semismooth Newton method · Polyhedral convex cone · Lorentz cone · Matrix
pencil

1 Introduction

1.1 The cone-constrained eigenvalue problem

The Euclidean space R
n is equipped with the standard inner product 〈y, x〉 = yTx

and the associated norm. The data

A,B ∈ Mn ≡ space of real matrices of order n,
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K ∈ �(Rn) ≡ set of closed convex cones in R
n

is considered as general as possible, but one always assumes that

〈x,Bx〉 �= 0 for all x ∈ K\{0}.
If one chooses B as the identity matrix, as we shall do in all our numerical experi-
ments, then this assumption is automatically satisfied.

A fundamental problem arising in mechanics (cf. [7, 8, 25]) and in other areas of
applied mathematics is that of finding λ ∈ R and a nonzero vector x ∈ R

n such that

K � x ⊥ (Ax − λBx) ∈ K+ (1)

with ⊥ indicating orthogonality and K+ standing for the positive dual cone of K .
This is what one calls a cone-constrained eigenvalue problem. One refers to x as
a K-eigenvector of (A,B) and to λ as a K-eigenvalue of (A,B). The set of all
K-eigenvalues, denoted by σ(A,B,K), is called the K-spectrum of (A,B). The me-
chanical or physical interpretation of a K-eigenvalue depends of course on the specific
context. The orthogonality condition in (1) implies that

λ = 〈x,Ax〉
〈x,Bx〉 ,

as in a classical generalized eigenvalue problem, but Ax −λBx may be different from
zero.

The mathematical theory of K-spectra is nowadays well developed [12, 19, 26–28],
but the design of efficient algorithms is still in its infancy. In [13, 15] it is assumed
that both A and B are symmetric, but we are not interested in such a framework.
We focus the attention to the more complicated case in which A is asymmetric. The
Scaling-and-Projection Algorithm and the Power Iteration Method have been intro-
duced and studied in [22, 23]. Global optimization and Branch-and-Bound techniques
have been explored by Júdice et al. [14]. In the present paper we discuss a solution
technique that is very different in spirit from those just mentioned. The basic idea
consists in reformulating (1) as a system

�(z) = 0

of nonsmooth equations and then applying a Newton-type algorithm. Such an ap-
proach makes sense only if the vector function � : R

d → R
d satisfies a minimal set

of assumptions. The details are explained next.

1.2 Brief description of the semismooth Newton method

To start with, one asks � : R
d → R

d to be locally Lipschitz. Rademacher’s theorem
ensures then the existence of the Jacobian matrix J�(z) for almost all z ∈ R

d . Hence,
at any reference point z, the Clarke generalized Jacobian

∂�(z) = co
{
M ∈ Md : M = lim

k→∞J�(zk) for some {zk}k∈N → z with zk ∈ D�

}
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is a nonempty compact convex set. Here, D� stands for the set of differentiability
points of � and “co” refers to the convex hull operation.

The standard formulation of the Semismooth Newton Method (SNM) reads as
follows:

• Initialization. Choose an initial point z0 and set t = 0.
• Iteration. One has a current point zt . Choose Mt ∈ ∂�(zt ) and compute ht by

solving the linear system

Mtht = −�(zt ). (2)

Set zt+1 = zt + ht and increment t by one.

This algorithm has been studied in depth by many authors. Some additional as-
sumptions on � are needed for ensuring that (2) admits a unique solution and that
{zt }t∈N converges. The theorem below is taken from Qi and Sun [24, Sect. 3], but
other results in the same vein can be found in [5, 17, 21].

Theorem 1 Let z̄ be a zero of the locally Lipschitz function � : R
d → R

d . Suppose
that

� is semismooth at z̄, and (3)

all matrices in ∂�(z̄) are nonsingular. (4)

Then there exists a neighborhood V of z̄ such that the SNM initialized at any z0 ∈ V

generates a sequence {zt }t∈N that converges superlinearly to z̄.

We opted for a formulation of Theorem 1 that is as simple as possible, but the
specialized literature in the area provides also conditions guaranteeing a quadratic
rate of convergence of the sequence {zt }t∈N. The technical assumption (3) refers to
the existence of the limit

��(z̄;h) := lim
M∈∂�(z̄+tw)

w→h, t→0+
Mw (5)

for all direction h ∈ R
d . This is equivalent to saying that

sup
M∈∂�(z̄+v)

‖�(z̄ + v) − �(z̄) − Mv‖ = o(‖v‖) as v → 0.

Despite the unpleasant appearance of the expression (5), there are plenty of helpful
rules for checking semismoothness. While applying the SNM to cone-constrained
eigenvalue problems, the main source of annoyances is the nonsingularity hypothe-
sis (4). We shall comment on this issue in due course.
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2 Eigenvalue problems under nonnegativity constraints

2.1 Theoretical background

The most interesting example of a cone-constrained eigenvalue problem is the one in
which the convex cone K is the nonnegative orthant of R

n. In such a case, (1) takes
the form

x ≥ 0, Ax − λBx ≥ 0, 〈x,Ax − λBx〉 = 0, (6)

where the notation x ≥ 0 indicates that each component of x ∈ R
n is nonnegative.

This is the so-called Pareto eigenvalue problem. One refers to x as a Pareto eigenvec-
tor of (A,B) and to λ as a Pareto eigenvalue of (A,B). The model (6) is not as sui
generis as it might appear. In fact, a cone-constrained eigenvalue problem associated
to a pointed polyhedral convex cone can be brought to the form (6). The details are
explained in the next proposition borrowed from [26]. Recall that a convex cone is
pointed if it contains no line.

Proposition 2 Let K = {Gu : u ∈ R
p
+} for some real matrix G whose columns are

positively linearly independent vectors of R
n. Then

σ(A,B,K) = σ
(
GTAG,GTBG,R

p
+
)
, (7)

where the superscript “T” indicates transposition.

The integer p corresponds to the number of generators of K . A pointed polyhedral
convex cone in R

n can always be represented as in Proposition 2, but sometimes the
columns of G are not easily available. Needless to say, the evaluation of the right-
hand side of (7) could be very expensive if p is large.

As a first step towards a reformulation of the Pareto eigenvalue problem (6) as a
system of equations, we write

x ≥ 0 primal or eigenvector feasibility,

y ≥ 0 dual feasibility,

〈x, y〉 = 0 complementarity slackness, (8)

Ax − λBx = y stationarity or equilibrium law,

〈1n, x〉 = 1 normalization

with 1n ∈ R
n standing for a vector of one’s. The last condition in (8) makes sure that

x is a nonzero vector. Normalizing x with the help of the linear function 〈1n, · 〉 is just
one option among many. One could use instead the normalization condition ‖x‖2 = 1
and this would not change substantially the overall presentation of our work. In the
sequel, we refer to y ∈ R

n as a “dual vector” (or as a vector of dual variables). We
are borrowing the terminology of optimization theory, but one should not view (8) as
a Karush-Kuhn-Tucker system for an optimization problem. Recall that A and B are
not necessarily symmetric.

4



Next, we observe that the first three conditions in (8) can be written in the succinct
form Uϕ(x, y) = 0, where Uϕ : R

2n → R
n is the vector function given by

Uϕ(x, y) =
⎡

⎢
⎣

ϕ(x1, y1)
...

ϕ(xn, yn)

⎤

⎥
⎦

and ϕ : R
2 → R is a complementarity function, i.e.,

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (9)

In short, we are led to solve a system

Uϕ(x, y) = 0, (10)

Ax − λBx − y = 0, (11)

〈1n, x〉 − 1 = 0 (12)

of 2n+ 1 equations involving the same number of variables. The troublesome part of
the above nonlinear system is the block (10), and this is because a complementarity
function is usually nonsmooth.

The next lemma explains why it is reasonable to apply the SNM to the system
(10)–(12). We mention in passing that concept of semismoothness applies to any
locally Lipschitz function between finite dimensional vector spaces, even if the output
space has different dimension than the input space. The same remark applies to the
definition of a Clarke generalized Jacobian.

Lemma 3 Consider a vector function � : R
2n+1 → R

2n+1 of the form

�(x,y,λ) =
⎡

⎣
Uϕ(x, y)

Ax − λBx − y

〈1n, x〉 − 1

⎤

⎦ (13)

with ϕ being any of the following complementarity functions:

ϕmin(a, b) = min{a, b}, (14)

ϕFB(a, b) = a + b −
√

a2 + b2, (15)

ϕEP(a, b) = 2ab − (min{0, a + b})2 . (16)

Then � is locally Lipschitz and semismooth. Furthermore, its Clarke generalized
Jacobian at z = (x, y,λ) admits the block representation

∂�(z) =
⎧
⎨

⎩

⎡

⎣
E F 0

A − λB −In −Bx

1T
n 0 0

⎤

⎦ : [E,F ] ∈ ∂Uϕ(x, y)

⎫
⎬

⎭
(17)

with In standing for the identity matrix of order n.
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Proof The last n + 1 components of � are continuously differentiable, so they are
locally Lipschitz and semismooth. Concerning the first n components of �, we recall
the following known facts:

– The “lattice” complementarity function (14) is a minimum of two linear functions,
therefore it is globally Lipschitz and semismooth.

– The Fischer-Burmeister complementarity function (15) is globally Lipschitz. Fur-
thermore, it is continuously differentiable everywhere except at the origin, where
it is semismooth (cf. [5, Sect. 7.4]).

– The Evtushenko-Purtov complementarity function (16) is continuously differen-
tiable because the nonsmooth term min{0, a + b} has been squared. That (16) sat-
isfies the “only if” part of (9) is mentioned for the first time in [4]. The “if” part
can be seen by direct inspection. Concerning the name attributed to (16), we follow
references [10, 30].

This takes care of the announced behavior of � and the representation for-
mula (17). �

For any of the complementarity functions listed in Lemma 3, the computation
of the Clarke generalized Jacobian ∂Uϕ(x, y) offers no difficulty. For saving space,
we omit writing down the explicit formulas. Many other complementarity functions
could also be considered (cf. [3, 16]), but there is no need of multiplying the exam-
ples. For notational convenience, we write

Umin = Uϕmin , UFB = UϕFB , UEP = UϕEP ,

and define the functions �min,�FB,�EP according to (13).
Of course, the SNM specialized to the system (10)–(12) takes a particular form. It

reads as follows:

• Initialization. Choose an initial point z0 = (x0, y0, λ0) and set t = 0.
• Iteration.1 One has a current point zt = (xt , yt , λt ). Choose (Et ,F t ) ∈ ∂Uϕ(xt , yt )

and compute zt+1 = (xt+1, yt+1, λt+1) by solving the linear system

Etxt+1 + F tyt+1 = Etxt + F tyt − Uϕ(xt , yt ),

(A − λtB)xt+1 − yt+1 − λt+1Bxt = −λtBxt ,

〈1n, x
t+1〉 = 1.

There are no theoretical results on the best way of selecting the initial point. Guided
just by common sense, we apply a rule of the sort:

generate a random vector ξ ∈ R
n with uniform distribution on [−1,1]n, (18)

and set x0 = ξ/〈1n, ξ 〉, λ0 = 〈x0,Ax0〉/〈x0,Bx0〉, y0 = Ax0 − λ0Bx0. (19)

Generating an n-dimensional Gaussian vector ξ is another option, but we stick to
the uniform distribution rule. A question raised by one of the referees is why we

1As stopping criterion we use ‖�(zt )‖ < 10−8.
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do not generate ξ uniformly on [0,1]n. After all, the sequence {xt }t∈N is expected to
converge to a vector with nonnegative components. This observation is very pertinent,
but it happens in practice that an overwhelming majority of Pareto eigenvectors lie on
the boundary of the cone R

n+. Now, a boundary type Pareto eigenvector can equally
well be approximated from the interior or from the exterior of the cone. Anyhow,
we carried out some numerical experiments with the referee’s choice and we did not
observe a substantial difference with respect to (18).

An important question now is this: if z̄ = (x̄, ȳ, λ̄) is a solution to (10)–(12), are
we sure that every matrix in ∂�(z̄) is nonsingular? The answer to this question is not
always yes. It depends not only on the matrices A and B , but also on the solution z̄

under consideration.

Example 4 Consider the Pareto eigenvalue problem for the pair

A =
[

3 −1
4 −1

]
, B =

[
1 0
0 1

]

and the lattice complementarity function (14). Although �min is differentiable at both
solutions

zbad = ((1/3,2/3), (0,0),1),

zgood = ((1,0), (0,4),3),

the corresponding Jacobian matrices

⎡

⎢⎢⎢⎢
⎣

0 0 1 0 0
0 0 0 1 0
2 −1 −1 0 −1/3
4 −2 0 −1 −2/3
1 1 0 0 0

⎤

⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢
⎣

0 0 1 0 0
0 1 0 0 0
0 −1 −1 0 −1
4 −4 0 −1 0
1 1 0 0 0

⎤

⎥⎥⎥⎥
⎦

are somewhat different in nature. The former is singular and the latter is nonsingular.

The situation described by Example 4 warns us from being overly optimistic, but
it does not impede us from using the SNM. What happens in practice is that some
solutions could remain undetected. From a theoretical point of view, it is interesting to
distinguish between different types of solutions to the Pareto eigenvalue problem (6).

Definition 5 Let x̄ be a Pareto eigenvector of (A,B) and write

λ̄ = 〈x̄,Ax̄〉/〈x̄,Bx̄〉, ȳ = Ax̄ − λ̄x̄, z̄ = (x̄, ȳ, λ̄).

The Pareto eigenvector x̄ is called:

(i) Strict if x̄i + ȳi > 0 for all i ∈ {1, . . . , n}.
(ii) Nondegenerate relative to ϕ if the function (13) is such that every matrix in ∂�(z̄)

is nonsingular.
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Strictness simply means that the variables x̄i and ȳi cannot vanish at the same time.
Such a requirement has a clear interpretation in mechanics and, more generally, in
any mathematical model involving complementarity slackness. The analytical benefit
derived from strictness is differentiability:

Proposition 6 Under the notation of Definition 5, the following statements are equiv-
alent:

(a) The Pareto eigenvector x̄ is strict.
(b) Umin is continuously differentiable on a neighborhood of (x̄, ȳ).
(c) UFB is continuously differentiable on a neighborhood of (x̄, ȳ).

Proof For a Pareto eigenvector x̄, strictness can be expressed in the equivalent form

x̄i �= ȳi for all i ∈ {1, . . . , n}.
The proposition is a consequence of this observation and the following two facts:
firstly, ϕmin is continuously differentiable in a neighborhood of (ā, b̄) if and only
if ā �= b̄, and, secondly, ϕFB is continuously differentiable everywhere except at the
origin. �

Unfortunately, strictness does not prevent degeneracy. The risk of degeneracy per-
sists even in a smooth context and simply cannot be avoided. Anyway, it is good to
have the following result in mind.

Proposition 7 Let x̄ be a strict Pareto eigenvector of (A,B). Then the following
statements are equivalent:

(a) x̄ is nondegenerate with respect to ϕmin.
(b) x̄ is nondegenerate with respect to ϕFB.
(c) x̄ is nondegenerate with respect to ϕEP.

Proof The complementarity functions ϕmin and ϕFB are calibrated so that

∂ϕ

∂a
(ā,0) = 0,

∂ϕ

∂b
(ā,0) = 1, for all ā > 0, (20)

∂ϕ

∂a
(0, b̄) = 1,

∂ϕ

∂b
(0, b̄) = 0, for all b̄ > 0. (21)

Hence, Umin and UFB have the same Jacobian matrix at the reference point (x̄, ȳ).
Consequently, �min and �FB have the same Jacobian matrix at z̄. This is a lot more
than merely saying that (a) and (b) are equivalent. The partial derivatives of ϕEP are
not exactly as in (20)–(21), but they satisfy a calibration condition that is somewhat
similar. Indeed, one has

∂ϕEP

∂a
(ā,0) = 0,

∂ϕEP

∂b
(ā,0) �= 0, for all ā > 0,

∂ϕEP

∂a
(0, b̄) �= 0,

∂ϕEP

∂b
(0, b̄) = 0, for all b̄ > 0.
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The Jacobian matrices J�min(z̄) and J�EP(z̄) are different in general. However, we
claim that

det
[
J�EP(z̄)

] = μdet
[
J�min(z̄)

]
(22)

for some scalar μ �= 0. To see this, suppose for instance that
{

x̄j > 0 for j = 1, . . . , r,

x̄j = 0 for j = r + 1, . . . , n

with r ∈ {1, . . . , n}. Any other sign configuration of x̄ can be treated in the same way.
The strictness assumption implies that

{
ȳj = 0 for j = 1, . . . , r,

ȳj > 0 for j = r + 1, . . . , n.

Hence,

J�min(z̄) =
⎡

⎣
E F 0

A − λ̄B −In −Bx̄

1T
n 0 0

⎤

⎦ (23)

with

E =
[

0 0
0 In−r

]
, F =

[
Ir 0
0 0

]
.

The Jacobian matrix J�EB(z̄) has the same structure as (23), except that E and F are
slightly different: Ir must be changed by a diagonal matrix with nonzero entries

∂ϕEP

∂b
(x̄1,0), . . . ,

∂ϕEP

∂b
(x̄r ,0), (24)

and In−r must be changed by a diagonal matrix with nonzero entries

∂ϕEP

∂a
(0, ȳr+1), . . . ,

∂ϕEP

∂a
(0, ȳn). (25)

Hence, the equality (22) holds if one defines μ as the product of all the terms in
(24)–(25). This proves that (a) and (c) are equivalent. �

2.2 Numerical experiments

In all our tests2, B = In and A is an arbitrary matrix, not necessarily symmetric. By a
Pareto eigenvalue of A one understands a scalar λ ∈ R such that the complementarity
system

x ≥ 0, Ax − λx ≥ 0, 〈x,Ax − λx〉 = 0 (26)

admits a nonzero solution x ∈ R
n. Such an x is called a Pareto eigenvector of A.

2The numerical experiments are carried out in a Powerbook Mac OS 10.5.8 with a processor 2.33 GHz
Intel Core 2 Duo and 2Go memory. The software used is Matlab 7.7.0.471 (R2008b).
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It is worthwhile mentioning that the integer

πn = max
A∈Mn

card[σ(A, In,R
n+)]

is finite, but grows exponentially with n. By definition, πn is the largest number of
Pareto eigenvalues that can be found in a matrix of order n. As shown in [23], one
has

2n − 1 ≤ πn ≤ n2n−1 − (n − 1).

Note, for instance, that a matrix of order 40 could have more than 1012 Pareto eigen-
values! Finding all of them is simply not realistic, so we aim at detecting just a bunch
of them.

2.2.1 Testing on a matrix of order 3 with 9 Pareto eigenvalues

Our first numerical experiment concerns a matrix of order 3 that is known to have 9
Pareto eigenvalues:

A =
⎡

⎣
8 −1 4
3 4 1/2
2 −1/2 6

⎤

⎦ . (27)

As seen in the Table 1, the SNM was able to detect all of them.3 We considered 104

random initial points, but we could have used a smaller sample. What Table 1 essen-
tially says is that some Pareto eigenvalues are more likely to be found than others.
For easy of visualization, proportions presented as percentages are given without dec-
imals. As one can see, the percentage of convergence towards each particular solution
depends on the choice of complementarity function.

Table 1 SNM applied to the
matrix (27) with a sample of 104

random initial points. The
figures on the last three columns
refer to percentages of
convergence to each particular
solution. The cases of
divergence are not counted, so
the percentages in each column
add up to 100%

Solution % of convergence to each solution

ϕmin ϕFB ϕEP

λ1 = 4.1340 24 31 22

λ2 = 4.6021 13 7 14

λ3 = 5.0000 8 6 7

λ4 = 5.8660 13 10 8

λ5 = 6.0000 13 13 10

λ6 = 7.0000 9 5 6

λ7 = 8.0000 15 15 13

λ8 = 9.3979 2 6 10

λ9 = 10.0000 3 7 10

3In [22], the Power Iteration Method implemented with 108 random initial points detected only four Pareto
eigenvalues of (27).
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2.2.2 Testing on a matrix of order 4 with 23 Pareto eigenvalues

An example of a matrix of order 4 with 23 Pareto eigenvalues was kindly commu-
nicated to us by Victor Qi, a student at Tongji University, Shanghai. Qi’s example is
this:

A =

⎡

⎢⎢
⎣

100 106 −18 −81
92 158 −24 −101
2 44 37 −7
21 38 0 2

⎤

⎥⎥
⎦ . (28)

We tested the SNM on (28) by using the complementarity function ϕFB and a sample
of 103 random initial points. Table 2 displays what we got. The matrix (28) possesses
exactly 23 Pareto eigenvalues, so the SNM found all of them. The Pareto eigenvectors
are all strict in the sense of Definition 5. Some faces of the cone R

4+ contain several
Pareto eigenvectors, but other faces are free of them.

Table 2 SNM applied to the matrix (28) with a sample of 103 random initial points. Pareto eigenvectors
are found in various faces of the Pareto cone R

4+

Pareto Pareto eigenvector Dual vector

eigenvalue x1 x2 x3 x4 y1 y2 y3 y4

λ1 = 26.2823 0.4314 0.0762 0 0.4924 0 0 0.7693 0

λ2 = 26.4149 0.4558 0.0368 0.0581 0.4493 0 0 0 0

λ3 = 28.7114 0.4527 0 0.1913 0.3559 0 1.1100 0 0

λ4 = 29.1341 0.2266 0.2491 0 0.5243 0 0 7.7457 0

λ5 = 32.6080 0 0.4461 0 0.5539 2.4261 0 15.7526 0

λ6 = 32.8635 0.4258 0 0.2844 0.2897 0 3.0863 0 0

λ7 = 37.5767 0.2238 0 0.7762 0 0 1.9626 0 4.7001

λ8 = 41.0162 0.1241 0.0681 0.8078 0 0 0 0 5.1944

λ9 = 46.4681 0 0.1771 0.8229 0 3.9579 0 0 6.7290

λ10 = 49.1435 0.1561 0.1589 0.4874 0.1976 0 0 0 0

λ11 = 66.9700 0 0.3429 0.4566 0.2005 11.8334 0 0 0

λ12 = 77.4251 0.7814 0 0.0010 0.2176 0 49.8944 0 0

λ13 = 77.4575 0.7823 0 0 0.2177 0 49.9815 0.0406 0

λ14 = 99.4233 0.9690 0 0.0310 0 0 88.3988 0 20.3481

λ15 = 100.0000 1 0 0 0 0 92.0000 2.0000 21.0000

λ16 = 107.5010 0 0.5132 0.3019 0.1849 33.9922 0 0 0

λ17 = 127.3920 0 0.7674 0 0.2326 62.5095 0 32.1390 0

λ18 = 148.5319 0 0.7171 0.2829 0 70.9204 0 0 27.2498

λ19 = 158.0000 0 1 0 0 106.0000 0 44.0000 38.0000

λ20 = 197.1730 0.3415 0.4238 0.1155 0.1193 0 0 0 0

λ21 = 204.5836 0.3874 0.4820 0 0.1306 0 0 21.0694 0

λ22 = 226.2813 0.3935 0.4888 0.1178 0 0 0 0 26.8356

λ23 = 231.9223 0.4455 0.5545 0 0 0 0 25.2880 30.4261
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Table 3 SNM applied to
(A, In) with A following a
uniform distribution on
[0,1]n×n . The percentages of
convergence are estimated by
using a sample of 104 randomly
generated pairs (A, ξ). The best
performances for each n are
indicated in bold. The last three
columns indicate average
numbers of iterations in case of
convergence

n % of convergence 
 iterations if convergence

ϕmin ϕFB ϕEP ϕmin ϕFB ϕEP

10 100 100 37 7 10 24

20 99 100 24 8 13 19

30 99 100 17 9 18 16

40 98 100 11 10 23 14

50 97 99 9 10 26 13

100 94 97 4 11 33 9

200 93 93 2 12 38 7

2.2.3 Testing on random matrices of various dimensions

Table 3 has been produced as follows. For each n ∈ {10,20, . . . ,50}∪{100,200}, one
generates a sample of 104 random pairs (A, ξ) with ξ as in (18) and A following a
uniform distribution on the unit hypercube [0,1]n×n. One applies the SNM to (A, In)

with initial point z0 constructed from ξ as explained in (19). One counts the number
of times in which convergence to a solution occurs within 100 iterations. More than
100 iterations, or the occurrence of a badly conditioned Jacobian matrix at current
point, is declared a failure.

Some of the conclusions that can be drawn from Table 3 are:

– The overall performance of the SNM diminishes as the dimension n increases. This
is something to be expected from any numerical method. We saw such a deteriora-
tion phenomenon already with the Scaling-and-Projection Algorithm [23].

– The highest percentages of convergence are obtained with the complementarity
function ϕFB. The performance of ϕmin is almost as good as ϕFB. Despite being
continuously differentiable, ϕEB yields very disappointing percentages of conver-
gence. Said in a provocative way, a nonsmooth complementarity function may per-
fectly well beat a smooth one.

– Concerning the average number of iterations, the quality of ϕFB deteriorates as n

increases, but the quality of ϕmin remains rather stable.

Remark 8 Similar numerical tests with A following a uniform distribution on
[−1,1]n×n lead essentially to the same conclusions. However, the percentages of
convergence are weaker, regardless of the choice of complementarity function.

3 Partially constrained eigenvalue problems

3.1 Coping with unpointedness

In some applications only a group of components of x ∈ R
n is cone-constrained. To

fix the ideas, suppose that the first m components of x are required to be nonnegative,
but the remaining ones are free. For notational convenience we write x in the form

x =
[

xc

xf

]
,

12



where the constrained block xc is an m-dimensional vector and the free block xf is
an (n − m)-dimensional vector. Consistently, we write

y =
[

yc

yf

]
, A =

[
Ac,c Ac,f

Af,c Af,f

]
, B =

[
Bc,c Bc,f

Bf,c Bf,f

]
.

We are dealing thus with a generalized eigenvalue problem constrained by a con-
vex cone

Km,n−m = R
m+ × R

n−m (29)

that is no longer pointed. Hence, we go beyond the framework of Sect. 2 and of
reference [22]. Recall that the lineality of a convex cone K in R

n is defined as the
integer

lin(K) = dim[K ∩ −K].
The lineality of (29) is clearly n − m. The dual cone K

+
m,n−m = R

m+ × {0}n−m has
empty interior and the spectral problem (1) becomes

xc ≥ 0, xf free,

yc ≥ 0, yf = 0,

〈xc, yc〉 + 〈xf , yf 〉 = 0,
[

Ac,c Ac,f

Af,c Af,f

][
xc

xf

]
− λ

[
Bc,c Bc,f

Bf,c Bf,f

][
xc

xf

]
=

[
yc

yf

]
.

After adding the usual normalization condition and simplifying, one ends up with

Uϕ(xc, yc) = 0, (30)

Ac,cxc + Ac,f xf − λ(Bc,cxc + Bc,f xf ) − yc = 0, (31)

Af,cxc + Af,f xf − λ(Bf,cxc + Bf,f xf ) = 0, (32)

〈1m,xc〉 + 〈1n−m,xf 〉 − 1 = 0. (33)

Note that (30)–(33) is a nonsmooth system of n+m+1 equations involving the same
number of variables.

Table 4 has been produced as follows. For each dimension n ∈ {20,40,60,80} one
generates a sample of 104 random pairs (A, ξ) with ξ as in (18) and A following a

Table 4 SNM applied to
(A, In) with A following a
uniform distribution on
[0,1]n×n . The percentages of
convergence are given without
decimals and are estimated by
using a sample of 104 randomly
generated pairs (A, ξ)

Dimension Number m of constrained variables

n m = n/4 m = n/2 m = 3n/4

20 91% 95% 98%

40 93% 96% 98%

60 92% 95% 97%

80 91% 94% 96%

13



uniform distribution on the hypercube [0,1]n×n. One applies the SNM to (A, In) with
an initial point z0 constructed from ξ as explained in (19). One counts the number
of times in which convergence to a solution occurs within 100 iterations. The same
procedure is carried out for each lineality n − m ranging from 1 to 5. We use ϕFB as
complementarity function. The main conclusion of Table 4 is that, for each dimen-
sion n, the SNM performs slightly better as the number m of constrained variables
increases.

3.2 The general polyhedral case

Dealing with a general polyhedral convex cone K in R
n is not more difficult than

dealing with the particular case (29). The first thing one has to do is writing

K = {Gu + Fv : u ∈ R
p
+, v ∈ R

q}, (34)

where G and F are real matrices whose columns are vectors in R
n satisfying a suit-

able blend of linear independence and positive linear independence:

Gu + Fv = 0, u ∈ R
p
+, v ∈ R

q =⇒ u = 0, v = 0. (35)

Finding the matrices G and F is often a cumbersome task, but there are a number of
interesting examples for which these matrices are readily available. The result stated
below extends Proposition 2.

Proposition 9 Let K be as in (34) with G,F satisfying the hybrid linear indepen-
dence condition (35). Then σ(A,B,K) = σ(Ã, B̃,Kp,q), where

Ã =
[
GTAG GTAF

F TAG F TAF

]
, B̃ =

[
GTBG GTBF

F TBG F TBF

]

are matrices of order p + q .

Proof The dual cone of (34) is clearly

K+ = {y ∈ R
n : GTy ≥ 0,F Ty = 0}.

Plugging x = Gu + Fv into (1) leads to the system

u ≥ 0, v free,

GT [A(Gu + Fv) − λB(Gu + Fv)] ≥ 0,

F T [A(Gu + Fv) − λB(Gu + Fv)] = 0,

〈Gu + Fv,A(Gu + Fv) − λB(Gu + Fv)〉 = 0,

which can be written in the more compact form

Kp,q �
[
u

v

]
⊥

([
GTAG GTAF

F TAG F TAF

]
− λ

[
GTBG GTBF

F TBG F TBF

])[
u

v

]
∈ K

+
p,q . (36)

Given the hybrid linear independence condition (35), x is a nonzero solution to (1) if
and only if (u, v) is a nonzero solution to (36). �
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Example 10 By way of illustration, consider a generalized eigenvalue problem con-
strained by the downward monotonic cone Kdown = {x ∈ R

n : x1 ≥ · · · ≥ xn}. For this
particular case, one can take

G =

⎡

⎢⎢⎢⎢⎢
⎣

1 1 . . . 1
0 1 . . . 1
...

...
. . .

...

0 0 . . . 1
0 0 . . . 0

⎤

⎥⎥⎥⎥⎥
⎦

, F =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

1
...
...
...

1

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

Note that G is formed by p = n− 1 columns and F is formed by q = 1 column. This
is consistent with the fact that Kdown ∩ −Kdown = R1n is a one-dimensional linear
subspace. The case of an upward monotonic cone can be handled in a similar way.

4 Extensions

4.1 Beyond a polyhedral setting

The Lorentz eigenvalue problem is the prototype example of a cone-constrained
eigenvalue problem involving a nonpolyhedral convex cone. It can be formulated
in the succinct form

0 � x ⊥ (Ax − λBx) � 0, (37)

where � stands for the Lorentz ordering relation on R
n. By definition, u � v means

that u − v belongs to the Lorentz cone

Ln = {
x ∈ R

n : [x2
1 + · · · + x2

n−1]1/2 ≤ xn

}
.

Some authors refer to Ln as the n-dimensional ice-cream cone [20, 29] or as the sec-
ond order cone [2]. A nonzero vector x satisfying (37) is called a Lorentz eigenvector
of the pair (A,B). The reader should be aware that the Lorentz spectrum σ(A,B,Ln)

may contain infinitely many elements, even if one assumes that

〈x,Bx〉 �= 0 for all x ∈ Ln\{0}.

The lack of polyhedrality in Ln is at the origin of many complications. Anyhow,
the SNM can be applied also to (37). Indeed, the Lorentzian eigenvalue problem can
be reformulated as a nonsmooth system of equations, namely

U (x, y) = 0, (38)

Ax − λBx − y = 0, (39)

xn − 1 = 0. (40)
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The equilibrium law (39) is as in Sect. 2.1. The normalization condition (40) guaran-
tees that x is a nonzero vector. This is the simplest and most natural way of normal-
izing a Lorentz eigenvector. The function U : R

n × R
n → R

n appearing in (38) is a
vector complementarity function for the Lorentz ordering. This simply means that

U (x, y) = 0 ⇐⇒ x � 0, y � 0, x ⊥ y.

For making sure that the SNM works properly, one asks U to be locally Lipschitz and
semismooth. A vector complementarity function U with such properties does exist,
the two most popular examples being

Umin(x, y) = x − �Ln
(x − y), (41)

UFB(x, y) = x + y − √
x ◦ x + y ◦ y . (42)

The symbol �Ln
in (41) stands for the metric projection onto Ln. The product ◦

and the square root in (42) are to be understood in the Jordan algebra framework
associated to Ln. The details concerning the definition and properties of Umin and
UFB can be found in [9, 11, 18].

4.2 Beyond affine matrix pencils

The expression A − λB is a particular instance of a matrix pencil. So, the cone-
constrained eigenvalue problem (1) is a particular case of the model

K � x ⊥ M(λ)x ∈ K+ (43)

with M standing for the pencil associated to a finite collection {A0,A1, . . . ,Ar} of
real matrices of order n, that is,

M(λ) =
r∑

k=0

λkAk. (44)

The way we handle an eigenvalue problem like (43) is as follows. To fix the ideas,
consider for instance the Paretian version

x ≥ 0, M(λ)x ≥ 0, 〈x,M(λ)x〉 = 0. (45)

It should be clear that solving (45) is a matter of finding a zero of

�(x,y,λ) =
[

Uϕ(x, y)
M(λ)x − y
〈1n, x〉 − 1

]

(46)

with ϕ being any of the complementarity functions listed in Lemma 3. The func-
tion (46) is locally Lipschitz and semismooth. Furthermore, its Clarke generalized
Jacobian at z = (x, y,λ) is given by

∂�(z) =
⎧
⎨

⎩

⎡

⎣
E F 0

M(λ) −In M ′(λ)x

1T
n 0 0

⎤

⎦ : [E,F ] ∈ ∂Uϕ(x, y)

⎫
⎬

⎭

with M ′(λ) = ∑r
k=1 kλk−1Ak .
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In principle, everything is more or less the same as in Sect. 2.1. Of course, the
expression “dual vector” refers now to y = M(λ)x. There is however an important
theoretical difference between an affine pencil like A − λB and a polynomial pencil
like (44). In the latter case, the existence of Pareto eigenvalues is not automatically
guaranteed. We end this work with an existential result for the case of a quadratic
pencil

M(λ) = A0 + λA1 + λ2A2. (47)

Cone-constrained eigenvalue problems involving quadratic pencils arise, for instance,
in the analysis of mechanical systems with frictional contacts (cf. [7]). An application
to electronic circuits with ideal diodes will be discussed in a forthcoming paper of
ours.

Theorem 11 Let M be the quadratic pencil associated to a triplet (A0,A1,A2) of
real matrices of order n such that

〈x,A2x〉 �= 0 for all x ∈ R
n+\{0},

〈x,A1x〉2 − 4〈x,A2x〉〈x,A0x〉 ≥ 0 for all x ∈ R
n+.

Then there exist a scalar λ̄ ∈ R and a nonzero vector x̄ ∈ R
n solving (45).

Proof We rely on a theorem by Ky Fan on the existence of solutions to variational
inequalities (cf. [1, Theorem 3.1.1] or the original source [6]). Let � = {x ∈ R

n+ :
〈1n, x〉 = 1}. Note that � is a convex compact set not containing the origin. Both
roots

λ±(x) = −〈x,A1x〉 ± [〈x,A1x〉2 − 4〈x,A2x〉〈x,A0x〉]1/2

2〈x,A2x〉
of the quadratic equation 〈x,M(λ)x〉 = 0 are real and well defined for every x ∈ �.
Consider for instance the function 
 : � × � → R given by


(x,w) = 〈M(λ+(x))x,w〉 .

One readily sees that
⎧
⎨

⎩

for all w ∈ �, 
( · ,w) is continuous,
for all x ∈ �, 
(x, · ) is linear,
for all x ∈ �, 
(x, x) = 0.

Ky Fan’s theorem ensures the existence of x̄ ∈ � such that 
(x̄,w) ≥ 0 for all w ∈ �.
If one sets λ̄ = λ+(x̄), then it is clear that (λ̄, x̄) solves (45) with M(λ) as in (47). �

Example 12 The quadratic pencil

M(λ) = λ2

⎡

⎣
2 0 0
0 6 0
0 0 10

⎤

⎦ + λ

⎡

⎣
7 0 0
0 30 0
0 0 20

⎤

⎦ +
⎡

⎣
−2 6 0
2 16 3
0 5 0

⎤

⎦ (48)
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Table 5 SNM applied to the quadratic pencil (48) with a sample of 104 random initial points. Pareto
eigenvectors were found in various faces of R

3+

Pareto Pareto eigenvector Dual vector

eigenvalue x1 x2 x3 y1 y2 y3

λ1 = −4.3930 0 1 0 6.0000 0 5.0000

λ2 = −3.7656 1 0 0 0 2.0000 0

λ3 = −3.6524 0.8712 0.1288 0 0 0 0.6438

λ4 = −2.0000 0 0 1 0 3.0000 0

λ5 = −1.9613 0 0.1318 0.8682 0.7909 0 0

λ6 = −1.9580 0.0954 0.1277 0.7769 0 0 0

λ7 = −0.7689 0.3877 0.4006 0.2116 0 0 0

λ8 = −0.6986 0.5036 0.4964 0 0 0 2.4820

λ9 = −0.6820 0 0.6426 0.3574 3.8554 0 0

λ10 = −0.6070 0 1 0 6.0000 0 5.0000

λ11 = 0.0000 0 0 1 0 3.0000 0

λ12 = 0.2656 1 0 0 0 2.0000 0

satisfies the hypotheses of Theorem 11. In fact, (48) satisfies even stronger assump-
tions, namely, A2 is positive definite and

〈x,A1x〉2 − 4〈x,A2x〉〈x,A0x〉 > 0 for all x ∈ R
3\{0}.

The existence of solutions to (45) is then guaranteed. Table 5 displays the solutions
we got by implementing the SNM with the complementarity function ϕFB and a sam-
ple of 104 random initial points. We used the initialization rule

x0 = ξ/〈1n, ξ 〉, λ0 = λ±(x0), y0 = M(λ0)x0

with ξ being a random vector as in (18).

Note that λ6 and λ7 are eigenvalues of (48) in the classical sense. Indeed, the
corresponding eigenvectors are in the interior of R

3+ and therefore the corresponding
dual vectors are equal to zero. All the other Pareto eigenvalues are not classical, but
created by the cone constraint imposed on the pencil.

5 By way of conclusion

The SNM is well suited for solving the cone-constrained eigenvalue problem (1), re-
gardless of whether the matrices A and B are symmetric or not. The SNM is also
successful when it comes to solve the more general problem (43) involving a polyno-
mial matrix pencil.

More important than the structure of A and B , what really makes a practical dif-
ference is the complexity of the cone K . If this cone is polyhedral, then (1) can be

18



converted into a system of equations like in (30)–(33), and the SNM becomes di-
rectly applicable. As reasonable to expect, the nonpolyhedral case is more involved.
One has to worry about finding a suitable vector complementarity function for the
cone. Such function must be semismooth and, at the same time, it must have an eas-
ily computable Clarke generalized Jacobian.

It is hard to compare the SNM with other methods for solving (1). For instance,
the numerical results reported in [14] are different in spirit from ours and focus on
different issues. What is safe to say, at least, is this:

– While working with some particular examples, like the one of Sect. 2.2.1, the
SNM was able to find the solutions that were left undetected by the Scaling-and-
Projection Algorithm [23] and by the Power Iteration Method [22, 23].

This does not mean that the SMN is systematically better than the methods suggested
in [22, 23]. As said before, implementing the SNM could be a headache if the cone K

is not polyhedral. By contrast, implementing the Scaling-and-Projection Algorithm
offers no difficulty if one has to deal with a revolution cone of arbitrary half-aperture
angle [22].

Acknowledgements The authors are grateful to Professor C. Kanzow (Würzburg) for useful hints con-
cerning the semismooth Newton method.
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