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Plates made of piezoelectric materials: when

are they really piezoelectric?

Giuseppe Geymonat, Christian Licht, Thibaut Weller

Laboratoire de Mécanique et Génie Civil,
cc 048, Université Montpellier II,
34095 Montpellier Cedex 5, France

Abstract. This paper aims at presenting in a synthetic way mathematical results
that have been rigorously and recently derived by the authors. These results deal
with the simplified but accurate modeling of linearly piezoelectric thin plates. It is
shown how mathematical tools lead to two different situations linked to either sen-
sors or actuators devices. Moreover we enlighten the fact that for some piezoelectric
crystal classes, the coupling between the electrical and the mechanical effects dis-
appear in the plate. Finally, we furnish a detailled example of such models in the
case of a plate constitued by a 222 symmetry class material.

1 Introduction

Piezoelectric materials are widely used in the design of smart structures (see [1] for
a widespread presentation of such structures). For example (see [2] and [3]) thin
piezoelectric plates devices can be either bonded or embedded in these structures to
determine strains and displacements (sensing effect) or to provide localized strains
through which the deformation of the structure can be controlled (actuation effect).
It is thus of major technological interest to provide efficient modelings of such
structures. In [4], [5], [6] and [7], taking advantage of the particular shapes of such
devices, the authors have derived new models by a rigorous study of the asymptotic
behavior of a three dimensional body whose thickness, considered as a parameter,
tends to zero. The important result is that two different models appear at the limit,
enlightening the different behavior of piezoelectric sensors and actuators devices.
In particular, it is shown how the kind of electrical loading is connected to the
obtained limit model.

Starting from a general three-dimensional piezoelectric problem denoted by
P3D, we outline the method that lead to simplified but accurate plate models de-
noted by P2D because they are two-dimensional in essence. The ground of the
method is to view the thickness of the plate as a small normalizing parameter
whose aim is to tend to zero. Then, in particular, it can be shown that the two
limit generalized kinematics do not have the same number of variables. Moreover,
we investigate the influence of crystalline symmetries on the properties of our mod-
els and show that some crystal classes lead to a striking structural switch-off of
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the piezoelectric effect: even if the material is piezoelectric, it is not anymore the

case for the thin plate. More precisely, this switch-off does not depend only on the
crystal class of the piezoelectric material that constitutes the plate but also on the
electrical boundary conditions, i.e. crystal symmetries do not have the same influ-
ence on sensors and actuators. It is shown that if the plate is used as a sensor, the
decoupling occurs for the classes

2, 222, 2mm, 4, 4̄, 422, 4mm, 4̄2m, 6, 622, 6mm, 23 and 4̄3m,

while, if the plate is used as an actuator, the decoupling takes place with the classes

m, 32, 422, 6̄, 622 and 6̄m2.

We therefore observe that the decoupling occurs for sensors and actuators for only
two classes: 422 and 622. These results are detailled in Section 4.

Finally, we give an example of our results in the case of a 222 symmetry class
material. The distinction between the two purely mechanical behaviors is also made
explicit by showing that the difference lies in a non negligible inplane shear coeffi-
cient.

2 Theoretical considerations

It is useful to recall the basic equations governing the electroelastic behavior of
piezoelectric continua. It is the starting point of many problems that can either be
of mathematical or numerical nature.

2.1 Basic piezoelectric equations

Latin lower indexes run from 1 to 3 and the lower index ′ , i ′ stands for the deriva-
tion with respect to the ith coordinate. Moreover, the convention of summation
over repeated indexes is used.

The equilibrium of a piezoelectric body whose reference configuration is a 3D
domain Ω with boundary S leads to:

σij,j + fi = 0, Di,i − q = 0, rotE = 0. (1)

Obviously, the electric field E being irrotational, it derives from an electric scalar
potential ϕ. In the equations above, fi, q are the mechanical body force components
and the electric body charge, while σij andDi stand for the Cauchy stress tensor and
the electric displacement vector components. These latter components are related
to those of small strain tensor eij(u) =

1

2
(ui,j + uj,i) (u denotes the displacement

vector field) and of electric vector field Ei = −ϕ,i by the constitutive equations
(see [8] for example):

σij = aijkh ekh(u) − bijk ϕ,k,
Dp = bpqr eqr(u) + cpq ϕ,q.

(2)

In this expression, aijkh, bijk and cpq denote the elastic, piezoelectric and dielectric
material constants, respectively.
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———————————-

Remark 1. It is possible to define an operator M : R
12 −→ R

12 governing the
constitutive law (2) by writing that1

(
σ
D

)
=M

(
e(u)
∇ϕ

)
. (3)

The couple

(
σ
D

)
is called the generalized stress, while

(
e(u)
∇ϕ

)
is the generalized

strain.

Most of the time, the mapping (2) is seen in a 9×9 matrix-form representation.
In this direction, we introduce

M =

(
aIJ −bKl

blK cmn

)
, (4)

with cmn = cmn and where indexes l,m and n take their values in {1, 2, 3} while I, J
andK satisfy the Voigt contraction convention, taking their values in {1, 2, 3, 4, 5, 6}.
We recall that the Voigt contraction convention is a mapping which associates to a
couple of indexes (i, j) a sole index I such that

(i, j) (1, 1) (2, 2) (3, 3) (2, 3) (3, 1) (1, 2)

I 1 2 3 4 5 6

Thus, the elastic tensor a can be seen as a 6× 6 real matrix which is written in
another font by a. In the same way, the piezoelectric tensor b takes the form of a
6× 3 real matrix denoted by b. However, due to the scalar product, it is necessary
to adjust the physical constants:

aIJ = aijkh if 1 ≤ I, J ≤ 3,

aIJ =
√
2 aijkh if 1 ≤ I, J ≤ 3 and 4 ≤ J, I ≤ 6,

aIJ = 2 aijkh if 4 ≤ I, J ≤ 6,
bIk = bijk if 1 ≤ I ≤ 3,

bIk =
√
2 bijk if 4 ≤ I ≤ 6.

The relation (3), which governs the linearly piezoelectric constitutive law, then
takes the form

1 We recall that ∇ϕ =



ϕ,1

ϕ,2

ϕ,3


.
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


σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

D1

D2

D3




=




a11 a12 a13 a14 a15 a16 −b11 −b12 −b13
a12 a22 a23 a24 a25 a26 −b21 −b22 −b23
a13 a23 a33 a34 a35 a36 −b31 −b32 −b33
a14 a24 a34 a44 a45 a46 −b41 −b42 −b41
a15 a25 a35 a45 a55 a56 −b51 −b52 −b53
a16 a26 a36 a46 a56 a66 −b61 −b62 −b63
b11 b21 b31 b41 b51 b61 c11 c12 c13
b12 b22 b32 b42 b52 b62 c12 c22 c23
b13 b23 b33 b43 b53 b63 c13 c23 c33




·




e11(u)
e22(u)
e33(u)√
2 e23(u)√
2 e31(u)√
2 e12(u)
ϕ,1

ϕ,2

ϕ,3




. (5)

We therefore note that the generalized three dimensional kinematics of a piezo-
electric solid is described by nine variables (six mechanical and three electrical).

———————————

The piezoelectric body can be submitted to either essential or natural mechan-
ical and electrical boundary conditions, or a combination of them, on S:

ui = Ui , σij nj = Fi,
ϕ = V , Di ni = Q.

(6)

We do not precise the associated partitions of S, the reader is refered to [4] for the
details. Here Ui, Fi, V , Q and ni denote the specified mechanical displacement and
surface force components, the electrical potential, the flux through S of the electric
induction and the outward unit normal vector components, respectively.

The local three-dimensional electroelastic problem P3D(Ω) consists of finding
the electromechanical state s = (u, ϕ) satisfying equations (1), (2) and (6).

2.2 Variational piezoelectric equations

It is necessary to rewrite P3D(Ω) in another form in order to gather useful in-
formations on the electromechanical state s = (u, ϕ). Multiplying by sufficiently
smooth2 kinematically admissible virtual displacements vi and electrical potential
ψ, equation (1) becomes equivalent to

∫

Ω

(σij,j + fi) vi dΩ +

∫

Ω

(Di,i − q)ψ dΩ = 0. (7)

Integrating by part this expression leads to

−
∫

Ω

σij,j vi,j dΩ +

∫

S

σij njvi dS +

∫

Ω

fi vi dΩ

−
∫

Ω

Di ψ,i dΩ +

∫

S

Di ni ψ dΩ −
∫

Ω

q ψ dΩ = 0. (8)

2 In the sequel, we do not precise the exact mathematical background of such a
formulation.
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The symmetry of the stress tensor (σij = σji), the definition of the small strain
tensor and the boundary conditions (6) thus give

−
∫

Ω

σij,j eij(v) dΩ +

∫

S

Fi vi dS +

∫

Ω

fi vi dΩ

−
∫

Ω

Di ψ,i dΩ +

∫

S

Qψ dS −
∫

Ω

q ψ dΩ = 0. (9)

For any kinematically admissible virtual electromechanical state r = (v, ψ), we
introduce the linear form

L(r) =

∫

S

Fi vi dS +

∫

Ω

fi vi dΩ +

∫

S

Qψ dS −
∫

Ω

q ψ dΩ. (10)

We notice that

−
∫

Ω

σij,j eij(v) dΩ −
∫

Ω

Di ψ,i dΩ = −
∫

Ω

M

(
e(u)
∇ϕ

)
·
(
e(v)
∇ψ

)
dΩ, (11)

and, for brevity, define the bilinear form m associated with the electroelastic po-
tential 1

2
(σ · e+D · E)

m(s, r) = m((u, ϕ), (v, ψ)) =

∫

Ω

M

(
e(u)
∇ϕ

)
·
(
e(v)
∇ψ

)
dΩ. (12)

It is then possible to reformulate the problem of determining the electromechanical
state at equilibrium:

P3D(Ω)

{
Find s = (u, ϕ) sufficiently smooth such that

m(s, r) = L(r), for all virtual electromechanical state r = (v, ψ).

This expression of the electromechanical problem is at the starting point of
either finite element formulations or mathematical questions in (linear) piezoelec-
tricity (see [9] and [10] for example).

3 The problem of piezoelectric plates

In pure elasticity, the problem of finding simplified but accurate plate models is
quite old. Recently however, [11] has presented a rigorous mathematical justification
of the Kirchhoff-Love model in the homogeneous and isotropic case. This method
has been successfully generalized to (possibly heterogeneous) linearly piezoelectric
plates (see [4], [5], [6] and [7]), both in the static and transient siuations. At this
point, it has been made possible to reconciliate some existing divergent models
(see [12], [13], [14], [15]) or to precise the mathematical framework of some existing
results (see [16]).

In the plate models derivation, a crucial role is played by the thickness direction
(also called the outplane direction). For commodity, this direction corresponds to
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the third coordinate axis. The role played by the thickness is crucial because it is
very small compared to the other dimensions of the plate : Ω = ω × (−ε/2,+ε/2),
where ω is a bounded domain of R2 with smooth boundary and where ε denotes the
thickness of the plate. That leads to the idea of considering ε as a small parameter

and of connecting this parameter to the data of our problem, i.e. the electrome-
chanical coefficients, loading and state. In a sense, by this way, plates models can
be interpreted as a peculiar electromechanical state resulting of a given class of
electromechanical loading imposed to a thin flat piezoelectric plate.

From the mathematical point of view, the method consists in studying what does
happen to the unique solution of P3D(Ω) when Ω is the reference configuration of
a flat piezoelectric body whose thickness goes to zero (this is the reason why this
method belongs to the field of asymptotic analysis). The striking fact is that two
models, i.e. two different kinds of behavior, appear at the limit. These two models
are intimately connected to the type of electric loading subjected to the plate,
thus giving a rigorous theoretical background to the study of sensors and actuators
plate-like devices. In order to emphasize the fact that the models we get are arising
through a dimension reduction process, they will be denoted by P2D(Ω). More
precisely, by different averagings through the thickness, it is possible to show that
our limit models can be fully described by taking into account only the inplane
coordinates.

In the sequel, we consider the following four electromechanical boundary con-
ditions on the set Γ± constituted by the lower and the upper faces of the flat thin
plate occupying Ω:

(BC)sensor : D · n = Q on Γ±,

(BC)actuator : V = V ±

0
on Γ±.

Here, we focus on the presentation of the obtained models. For the mathematical
arguments underlying the whole analysis of this problem, we refer the reader to [4],
[6] and [7].

3.1 The sensor model

Three kinds of information are needed to fully describe an electromechanical model.
These are the generalized kinematics (or generalized strain), the inner loading (or
generalized stress) and the constitutive equations (which link them).

The generalized kinematics The generalized kinematics involves the tensor
of small strains and the electrical potential gradient. In [6] and [7], we have shown
that these two mathematical objects appear in reduced forms in the limit models.

The displacements field We obtain a Kirchhoff-Love displacements field, which in
particular means that the model cannot render shear effects (see [17], [18] [2] and
[3] in which shear or thickness effects are rendered with different methods). More
precisely, a Kirchhoff-Love displacement v satisfies:

e(v) =



e11(v) e12(v) 0
e12(v) e22(v) 0

0 0 0


 . (13)
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It is possible to show that Kirchhoff-Love displacements can be decomposed
into a membrane and a flexural parts (see [11], [6] and [7]). This result is a very
classical one in pure elasticity. However, it is important to note that because of
the symmetry of the small strain tensor, the number of purely mechanical variables
comes down from six to three.

The electrical field The asymptotic analysis of the three-dimensional problem
shows a crucial difference between the actuator and the sensor cases: in the actuator
case, the electric potential intervenes only (at the first order) through the outplane
direction while, in the sensor case, the electric potential does not depend (at the
first order) on the outplane direction. Focusing here on the sensor case, we are
in the situation for which the outplane direction plays no role, i.e. the electrical
potential does not depend on x3 so that the limit model only takes into account
two variables (the inplane electrical ones).

We can therefore conclude that the limit generalized kinematics is described by
only five variables instead of nine in the full 3D situation. It is represented by the
ẽ1(u, ϕ) vector:

ẽ1(u, ϕ) =




e11(u)
e22(u)√
2 e12(u)
ϕ,1

ϕ,2



. (14)

The generalized stress The generalized stress involves the stress tensor and
the electrical displacement vector. As a result of the asymptotic analysis one finds
that this mathematical object reduces to its inplane components, so that it takes
the reduced form:

σ̃1 =




σ11

σ22√
2σ12

D1

D2



. (15)

The sensor constitutive law We now have to identify the mathematical ob-
ject M̃sensor which link the generalized stress to the generalized strain that live
on the plate. The algebraic arguments that lead to the exact formula of the limit
constitutive law are presented and justified in [6] and [7]. In fact, the limit constitu-
tive equations emerge from a recombination of the electromechanical components
of M (see (5)). This recombination is imposed by the structure of ẽ1(u, ϕ) and σ̃1

described above. In the sensor case, the recombination lead to rewrite (5) as
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


σ11

σ22√
2σ12

D1

D2

σ33√
2σ23√
2σ31

D3




=M ′

1 ·




e11(u)
e22(u)√
2 e12(u)
ϕ,1

ϕ,2

e33(u)√
2 e23(u)√
2 e31(u)
ϕ,3




. (16)

with

M ′

1 =




a11 a12 a16 −b11 −b12 a13 a14 a15 −b13
a12 a22 a26 −b21 −b22 a23 a24 a25 −b23
a16 a26 a66 −b61 −b62 a36 a46 a56 −b63
b11 b21 b61 c11 c12 b31 b41 b51 c13
b12 b22 b62 c12 c22 b32 b42 b52 c23
a13 a23 a36 −b31 −b32 a33 a34 a35 −b33
a14 a24 a46 −b41 −b42 a34 a44 a45 −b43
a15 a25 a56 −b51 −b52 a35 a45 a55 −b53
b13 b23 b63 c13 c23 b33 b43 b53 c33




.

Now, let

M00

1 =




a11 a12 a16 −b11 −b12
a12 a22 a26 −b21 −b22
a16 a26 a66 −b61 −b62
b11 b21 b61 c11 c12
b12 b22 b62 c12 c22



,M0−

1
=




a13 a14 a15 −b13
a23 a24 a25 −b23
a36 a46 a56 −b63
b31 b41 b51 c13
b32 b42 b52 c23



,

M−0

1
=




a13 a23 a36 −b31 −b32
a14 a24 a46 −b41 −b42
a15 a25 a56 −b51 −b52
b13 b23 b63 c13 c23


 ,M−−

1
=




a33 a34 a35 −b33
a34 a44 a45 −b43
a35 a45 a55 −b53
b33 b43 b53 c33


 .

(17)

Because the asymptotic analysis of P3D(Ω) associated with the boundary condi-

tions (BC)sensor shows that the vector




σ33√
2σ23√
2σ31

D3


 can be neglected, the sensor

constitutive equations appears as the Schur complement (or the condensation) of
the block M−−

1
of M ′

1:

M̃sensor = M̃1 =M00

1 −M0−

1 (M−−

1 )−1M−0

1 . (18)

Introducing the mechanical (m) and electrical (e) components of the generalized

stress and strain, we associate to M̃sensor the sub-operators M̃1mm
, M̃1me

, M̃1em and

M̃1ee :
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M̃sensor =

(
M̃1mm

M̃1me

M̃1em M̃1ee

)
. (19)

It is shown in [6] that M and M̃sensor share the same inner structure, that is:

M̃1mm
= M̃T

1mm
, M̃1me

= −M̃T
1em
, M̃1ee = M̃T

1ee
. (20)

Variational formulation of the sensor model Similarly to (12), we define

m̃1(s, r) = m̃1((u, ϕ), (v, ψ)) =

∫

Ω

M̃sensor ẽ1(u, ϕ) · ẽ1(v, ψ) dΩ. (21)

Our proposed model which allows us to determine the electromechanical state
of a plate-like sensor at equilibrium then reads as:

Psensor
2D (Ω)

{
Find s = (u, ϕ) sufficiently smooth such that

m̃1(s, r) = L(r), for all virtual electromechanical state r = (v, ψ).

As an asymptotic result, the thinner the plate (compared to its other dimensions),
the more accurate the model is. In this direction, the degree of accuracy of this re-
sult is precised in [4]. Mathematically speaking, it is of importance to precise that
the function space on which live the (limit) admissible electromechanical state is
not the same that in the three-dimensional case. This is the reason why it is often
spoken of "singular perturbations" problems.

Practically speaking, this case corresponds to a device which is able to measure
(directly or indirectly) the flux of the electric induction, so that the linear form
L is perfectly determined. A numerical treatment of Psensor

2D (Ω) then gives the
piezoelectric state in the plate. That is why we can call this model sensor.

3.2 The actuator model

As it has been specified earlier, the difference between sensor and actuator models
lies in the informations that the electrical potential can take into account. Here, in
the actuator case, these informations are collected only upon the outplane direction,
while in the sensor case these informations were collected upon the two inplane
directions. Of course, the purely mechanical informations do not change, but the
fact that only ϕ,3 appears in the actuator model radically changes the generalized
kinematics and stress together with the constitutive law.
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The generalized kinematics and stress As it has just been pointed out,
displacements field is always of Kirchhoff-Love type (see (13)). As to the electrical
potential, it can be shown that only E3 appears. The generalized kinematics is
therefore described by four variables at the limit. It is represented by the vector:

ẽ2(u, ϕ) =




e11(u)
e22(u)√
2 e12(u)
ϕ,3


 . (22)

Similarly, the generalized stress takes the form:

σ̃2 =




σ11

σ22√
2σ12

D3


 . (23)

The actuator constitutive law The method to find the constitutive relations
is similar to the one presented in the sensor case. However, the difficulty lies in an
adequate electromechanical coefficients recombination. We precise this point here.

First of all, we rewrite (5) as




σ11

σ22√
2σ12

D3

σ33√
2σ23√
2σ31

D1

D2




=M ′

2 ·




e11(u)
e22(u)√
2 e12(u)
∂3ϕ

e33(u)√
2 e23(u)√
2 e31(u)

∂1ϕ
∂2ϕ




, (24)

so that:

M ′

2 =




a11 a12 a16 −b13 a13 a14 a15 −b11 −b12
a12 a22 a26 −b23 a23 a24 a25 −b21 −b22
a16 a26 a66 −b63 a36 a46 a56 −b61 −b62
b13 b23 b63 c33 b33 b43 b53 c13 c23
a13 a23 a36 −b33 a33 a34 a35 −b31 −b32
a14 a24 a46 −b43 a34 a44 a45 −b41 −b42
a15 a25 a56 −b53 a35 a45 a55 −b51 −b52
b11 b21 b61 c13 b31 b41 b51 c11 c12
b12 b22 b62 c23 b32 b42 b52 c12 c22




.

and define
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M00

2 =




a11 a12 a16 −b13
a12 a22 a26 −b23
a16 a26 a66 −b63
b13 b23 b63 c33


 ,M0−

2
=




a13 a14 a15
a23 a24 a25
a36 a46 a56
b33 b43 b53


 ,

M−0

2
=



a13 a23 a36 −b33
a14 a24 a46 −b43
a15 a25 a56 −b53


 ,M−−

2
=



a33 a34 a35
a34 a44 a45
a35 a45 a55


 .

(25)

Here, the asymptotic analysis of P3D(Ω) associated with the boundary conditions

(BC)actuator shows that the two vectors




σ33√
2σ23√
2σ31


 and

(
∂1φ
∂2φ

)
can be neglected,

so that the actuator constitutive equations reads as

M̃actuator = M̃2 =M00

2 −M0−

2 (M−−

2 )−1M−0

2 . (26)

This operator shares the same structure and symmetry properties as those exhibited
in (19)-(20).

Similarly to the sensor case, in order to get the variational formulation of the
plate-like actuator problem, we define

m̃2(s, r) = m̃2((u, ϕ), (v, ψ)) =

∫

Ω

M̃2 ẽ2(u, ϕ) · ẽ2(v, ψ) dΩ, (27)

and the problem of determining the electromechanical state of a plate-like actuator
at equilibrium then takes the form:

Pactuator
2D (Ω)

{
Find s = (u, ϕ) sufficiently smooth such that

m̃2(s, r) = L(r), for all virtual electromechanical state r = (v, ψ),

which is also a singularly perturbed problem.

Remark 2. To be more precise, in the expression of the model Pactuator
2D (Ω), the

terms ’sufficiently smooth’ mean that s has to satisfy (BC)2 while r has to satisfy
(BC)2 with V ±

0
= 0, see [4] for the technical details.

This case corresponds to a device subjected to given electric potential at its
boundary. A numerical treatment of Pactuator

2D (Ω) supplies the piezoelectric state
in the plate. Therefore, the mechanical state can be controlled through electric
loading. That is why we call this model actuator.

4 Influence of crystalline symmetries

It is interesting to give some properties of the operator M̃p (p = 1, 2), which sup-
plies the constitutive equations of the piezoelectric thin plates. As we saw, the
fundamental coupling property of M remains true for M̃p:
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M̃pme
= −(M̃pem)

T , (28)

where m and e respectively denote the mechanical and electrical components of the
generalized kinematics and stress.

Considering the influence of crystalline symmetries on the three-dimensional
constitutive law (see [8] for example), we can deduce, in the case of a polarization
normal to the plate, that3:

- M̃2mm
involves mechanical terms only,

- M̃1mm
= M̃2mm

for the crystalline classes m, 32, 422, 6̄, 622 and 6̄m2,

- M̃1mm
involves electrical terms except for these previous classes,

- when p = 1, there is an electromechanical decoupling (M̃pme
= 0) for the classes

2, 222, 2mm, 4, 4̄, 422, 4mm, 4̄2m, 6, 622, 6mm, 23 and 4̄3m, when p = 2,
this decoupling occurs with the classes m, 32, 422, 6̄, 622 and 6̄m2, neverthe-
less the operators M̃pmm

and M̃pee involve a mixture of elastic, piezoelectric
and dielectric coefficients. In these cases, the plate can be considered as no
more piezoelectric. We are then in a situation of a structural switch-off of the
piezoelectric effect.

We then enlighten situations for which piezoelectric materials lead to non-
piezoelectric structures. For recent results concerning the reverse situation, that
is the possibility of conceiving piezoelectric composites without using piezoelectric
materials, the reader is refered to [19].

5 Application and example: 222 crystalline class

Let’s consider a thin piezoelectric plate constituted by a material whose crystalline
symmetry class is 222. Then (5) takes the form:




σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

D1

D2

D3




=




a11 a12 a13 0 0 0 0 0 0
a12 a22 a23 0 0 0 0 0 0
a13 a23 a33 0 0 0 0 0 0
0 0 0 a44 0 0 −b41 0 0
0 0 0 0 a55 0 0 −b52 0
0 0 0 0 0 a66 0 0 −b63
0 0 0 b41 0 0 c11 0 0
0 0 0 0 b52 0 0 c22 0
0 0 0 0 0 b63 0 0 c33




·




e11(u)
e22(u)
e33(u)√
2 e23(u)√
2 e31(u)√
2 e12(u)
ϕ,1

ϕ,2

ϕ,3




. (29)

Therefore, (18) and (26) respectively lead to

3 In the following, the letter m in Sans Serif font stands for ’mechanical’ while
the same letter m in italic stands for ’mirror’, as it is usually understood in
crystallography.
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


σ11

σ22√
2σ12

D1

D2




=




a11 − a2

13

a33
a12 − a13a23

a33
0 0 0

a12 − a13a23

a33
a22 − a2

23

a33
0 0 0

0 0 a66 +
b2
63

c33
0 0

0 0 0 c11 +
b2
41

a44
0

0 0 0 0 c22 +
b2
52

a55




·




e11(u)
e22(u)√
2 e12(u)
ϕ,1

ϕ,2




(30)

in the sensor case and to




σ11

σ22√
2σ12

D3


 =




a11 − a2

13

a33
a12 − a13a23

a33
0 0

a12 − a13a23

a33
a22 − a2

23

a33
0 0

0 0 a66 −b63
0 0 b63 c33


 ·




e11(u)
e22(u)√
2 e12(u)
ϕ,3


 (31)

in the actuator case.
As outlined in the preceeding section, the relation (30) shows that σ and D

respectively depend solely on e(u) and ∇ϕ when the plate acts as a sensor, so that
it can be considered as no more piezoelectric. However, when the same plate acts
as an actuator, the piezoelectric coupling does not vanish as it can be seen in (31).
Moreover, we observe that the difference between both Mpmm

lies in the inplane

shear coefficient: if p = 1, this coefficient is equal to a66 +
b2
63

c33
while it is equal to

a66 if p = 2. Since the order of magnitude of the permittivity c33 is most of the
time very low compared to the piezoelectric constants (see [8] p. 146), the term
b2
63

c33
cannot be neglected. Therefore, from the purely mechanical point of view, it

appears a significative difference between the two models.

6 Conclusion

Through classical tools of variational analysis, two of the authors derived in [4] the
mathematical modeling of linearly piezoelectric plates. In this paper, the properties
of the two models that arise from this derivation are detailed. These two models
are related to the kind of electrical boundary conditions imposed to the plate (i.e.
whether the piezoelectric plate is electroded or not). When the upper and lower
faces are not covered with electrodes, the plate acts as a sensor whose model uses
a richer generalized kinematics4 than the one of the actuator obtained when the
upper and lower faces are electroded. The procedure that leads to the constitutive
laws of our models is presented and detailled.

4 In the sense that the generalized kinematics has more components in this situa-
tion. Note, however, that the two electric components ϕ,1 and ϕ,2 do not depend
on x3 while, for the actuator, the electric potential may depend on x1, x2 and
x3 even if the sole (vertical) electric component appears in the generalized kine-
matics.
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As our results come from the field of theoretical mathematical modeling, our
paper does not directly deals with a numerical treatment of the studied problem.
However, the theorems proven in [4] and presented here can be straightforwardly
used in the field of numerical studies through finite element method. It has to be
emphasized that standard 3D mechanical problems are often prohibitive from the
numerical point of view. It is one of the many reasons for which the of asymptotic
analysis of dimension reduction problems is so important: in the case presented
here, our limit models are bidimensional. Therefore, the numerical treatment is
made much more easier. Of course, the accuracy of our models is clearly related
to the order of magnitude of the thickness of the plate : the thinner the plate, the
more accurate the modeling. We also emphasize on the point that our modeling
is carried out for every crystal classes that are piezoelectrically compatible. The
phenomenon of structural switch-off is theoretically enlightened for the first time.

To improve the modeling of smart structures, it is however necessary to look
more precisely at a rigorous modeling of multiparameterized multiphysical struc-
tures, in order to take into account the thickness of the electrodes, but also the
fact that piezoelectric devices are often glued as patches on host structures. This
kind of multiphysical structures has to be very carefully studied. The difficulty lies
on the fact that many different orders of magnitude of geometrical and mechanical
natures appear in such problem : the thicknesses of the plate, of the electrodes and
of the bonded joint, but also the orders of magnitude of the stiffness of the glue, of
the electrodes and, eventually, of the dielectric constants of the plate.
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