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Abstract We propose a construction of fatigue laws from

cohesive forces models in the case of a crack submitted to a

mode I cyclic loading. Taking the cumulated opening as the

memory variable and the surface energy density associated

with Dugdale’s model, we explicitly construct the fatigue

law which gives the crack growth rate by cycle d‘/dN in

terms of the stress intensity factor KI. In particular, we

recover a Paris law with an exponent 4, i.e., d‘/dN = CKI
4,

when KI is small, the coefficient C being explicitly

expressed in terms of the material parameters. Furthermore,

the law can be applied in the full range of values of KI and

can be extended to non simple cycles.

Keywords Fatigue � Fracture mechanics �
Cohesive force � Cyclic loading � Variational approach �
Complex analysis

1 Introduction

It is not possible to account for fatigue phenomenon, i.e.,

for propagation of a crack under cyclic loading, within

Griffith’s theory (i.e., when the material behavior is purely

elastic and the crack lips are free of cohesive forces),

because the response is unchanged after the first cycle.

That becomes possible with cohesive forces but only if a

right irreversibility condition is introduced into the model.

Indeed, it is essential that the cohesive forces depend on the

sign of the rate of the displacement jump and not only on

the current value of the displacement jump. Owing to this

directional rate dependence, we obtain a response which

differs in loading and unloading phases. Moreover, by

introducing into the constitutive relation a memory variable

which cumulates all the oscillations of the displacement

jump, one can explain that the cohesive forces decrease

gradually to zero. Therefore, by this effect of accumulation

under cyclic loading, all the liaisons will finally break

everywhere along the crack path, even if the amplitude of

the loading is small. To our knowledge, this idea was first

introduced by [23] in the context of Damage Mechanics. It

is now a well-established principle which is included in all

cohesive models used in fatigue. This concept was used

again in [18, 19] and coupled with a variational approach

consisting in a sequence of energy minimization problems.

With these three fundamental ingredients: cohesive forces,

accumulation of dissipated energy and energy minimiza-

tion, it becomes possible to develop a general theory of

crack propagation under any type of loading, monotonic as

well as cyclic. Then, a particularly exciting challenge is to

establish a link between the two paradoxical propagation

laws of Griffith [17] and Paris [30, 31]. The former is

generally considered as valid under monotonic loading, but

must be replaced by the latter under cyclic loading. How-

ever, the latter has only a phenomenological character and

is not based on well established physical foundations.

Therefore, the challenge is to show that ‘‘good’’ cohesive

models (in the sense above) give rise to Griffith-like crack
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propagation under monotonic loading and to Paris-like

crack propagation under cyclic loading. This task was

achieved in [19], but only in the one-dimensional simpli-

fied setting of a thin film peeling. That needs to introduce,

as a last ingredient, an asymptotic method based on the

presence of a small parameter. Indeed, a cohesive model

necessarily contains (at least) one material characteristic

length. For example, in Dugdale’s model if Gc denotes the

usual critical energy release rate and rc is the yield stress,

then their ratio dc = Gc/rc is a characteristic length. If this

length is small in comparison to the size of the body (and it

is generally the case in the engineering structures), then it

is possible (and even highly recommended) to analyze the

asymptotic behavior of the response when the small

parameter goes to zero. In the above mentioned simplified

context, it was proved in [19] that the response governed

by a cohesive model under monotonic loading (or small

number of cycles) converges to that governed by Griffith’s

law, while the response under a large number of cycles

converges to that of a Paris-like fatigue law. The con-

struction of this ‘‘limit’’ fatigue law is even explicit in the

case of Dugdale’s model with a condition of irreversibility

based on the concept of cumulated opening. In fact the

limit fatigue law itself allows to establish the link between

Griffith and Paris. Indeed, this law reads as d‘/dN =

f(G) where ‘ is the length of the crack, N the number of

cycles and G is the energy release rate. The function f is

defined only for G B Gc, is undetermined when G = Gc, is

monotonically increasing when 0 \ G \ Gc and behaves

like CGm when G is small in comparison with Gc. In the

case of a thin film, the exponent m depends on the form of

the strain energy. In any case, this elementary example

shows that the challenge is reasonable.

The goal of the present paper is to extend this con-

struction and the results to a more realistic two-dimen-

sional setting. In fact, the results have been already

announced in [1] and [2] but without any proof. All the

construction and proofs are detailed here. Specifically,

the paper is organized as follows. In Sect. 2, we introduce

the cohesive model with the cumulated opening as the

unique memory variable, the crack being assumed to be

always in mode I. Then, we formulate the evolution

problem from a variational approach in the general context

of a two-dimensional body with a crack propagating along

a predefined path. The two main ingredients of the varia-

tional formulation are a stability criterion and an energy

balance. We obtain thus in a rational manner all the con-

ditions that the normal stress, the opening, the opening rate

and the cumulated opening must satisfy along the crack

path. These conditions are particularized in the case of

Dugdale’s model and cyclic loading. Section 3 is the

central one where the construction of the limit fatigue law

is developed. Assuming that the characteristic length dc is

small, we propose a two-scale method based on a priori

assumptions which will be checked a posteriori. One of the

main assumption is the concept of stationary regime at

small scale which constitutes the cornerstone of the con-

struction. Then, we assemble, step by step, the different

components of the fatigue law. We distinguish in particular

a large scale problem where the cohesive forces can be

neglected and a small scale problem where they play an

essential role. The former problem is structural by nature

and hence will change from one problem to the other. On

the other hand, the small scale problem is only dependent

on the material behavior, the cohesive model and the type

of cyclic loading, but not on the overall geometry and

boundary conditions. In that sense, it has a universal

character. The main difficulty of the paper is to solve this

local problem (in a quasi closed form). That needs to

determine the evolution along one cycle under the con-

straint imposed by the stationary regime assumption. One

step in this procedure consists in solving a non linear

equation involving d‘/dN and G. That equation comes from

the cumulated opening rule, has the same form as in the

case of the peeling test and enjoys the same properties.

That yields the desired fatigue law of Paris-type d‘/dN =

f(G) which can be approximated by a power law d‘/dN =

CG2 when G/Gc is small. The section ends by checking all

the a priori assumptions. In Sect. 4 we establish some

additional properties of the fatigue law. We study also the

influence of the different ‘‘parameters’’ of the modeling on

the derived fatigue law. We consider in particular the case

when the unloading is not complete at the end of a cycle

and establish a fatigue law in terms of the maximal value

and the amplitude of the stress intensity factor, d‘=dN ¼
f KM;DKð Þ. We compare also the fatigue law in mode I

with that in mode III. The paper is completed by an

appendix where a generic small scale problem is solved

and which is used several times in Sect. 3.

Let us complete this introduction by a short state-of-the-

art. There exists some attempts to recover fatigue laws

from more fundamental mechanisms of propagation of

defects, like [35] based on the dislocation theory, but they

cannot be considered as really complete and satisfactory.

The need for introducing cohesive forces so that to remove

some fundamental drawbacks of Griffith’s theory (like

stress singularity or unphysical opening shape) is well

known from the pioneering works by Dugdale [11] or

Barenblatt [4]. A lot of interfacial models have been

developed in this spirit, [27] being the prototype. The

introduction of an irreversibility condition based on the

concept of a loading-unloading hysteretic behavior like that

proposed first in [23] is more recent, but tends to become

the rule, see for instance [3, 22, 28, 32, 33, 36]. However,

these models are generally used in purely numerical studies

with the objective to identify from computational tests the
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‘‘effective’’ fatigue law. To our knowledge, there exists

none work before [19] where a rigorous link is established

between Griffith’ law, Paris law and cohesive models. The

reason is probably the lack, in all these computational

works, of a theoretical framework in which it becomes

possible to develop asymptotic methods. The variational

approach provides this theoretical framework. Strongly

inspired by the French School of Generalized Standard

Materials and the works by NGuyen [29], it can be applied

in a general setting of rate independent behaviors, see

[15, 25]. In the fracture mechanics setting, the variational

approach has been largely developed since the late of

nineteenths and the Francfort-Marigo paper [14]. Several

theoretical results have been obtained in the Griffith theory

setting, see [5, 9, 10]. Many improvements have been

incorporated in order to include cohesive forces, see [5, 7,

12, 16, 20, 24]. But to our knowledge, the formulation of

such cohesive models in the framework of a variational

approach is due to [18]. Based on a ‘‘discrete in time’’ mini-

mization problem, its ‘‘continuous in time’’ version has been

proposed by [13], see also [5]. As far as a rigorous deduction

of Paris fatigue law from cohesive models is concerned, we

have knowledge of none work except [1, 2, 18, 19].

Throughout the paper we use classical notations: vectors

and second order tensors are in bold face, their components

are in italic, the inner product between vectors or tensors

is indicated by a dot, like f � u, time derivative by a dot,

like _u. No use is made of summation convention over

repeated indices, a? denotes the positive part of a, i.e.,

a? = max{a, 0}. The jump of a discontinuous field across

a curve is denoted by double brackets, like ½½un��. The

dependence of a field (or more generally of any physical

quantity) on a parameter is emphasized either by inserting

the parameter inside square brackets just after the symbol

of the field or by putting the parameter as a superscript.

Thus, the displacement field at time t is denoted by ut and

to emphasize its dependence on the current crack length ‘ it

will be denoted u[‘]t (or simply u[‘] if the value of t is clear

in context). From the technical standpoint, we essentially

use the basic tools of the Calculus of Variations, some

classical results of the theory of complex potentials [26]

and basic concepts of Fracture Mechanics [6, 8, 21, 34].

2 The cohesive model

Throughout the paper, all the analysis is made in a two-

dimensional setting of plane strain. One uses a cartesian

coordinate system (x1, x2) with its canonical orthonormal basis

(e1, e2) and e3 = e1^e2 denotes the unit anti-plane vector. We

consider a body, the reference configuration of which is the

open subset X of R2, submitted to a time-dependent loading

consisting in prescribed displacement nt on the partoDX of the

boundary, in prescribed surface forces Ft on the comple-

mentary part oFX of the boundary and in prescribed body

forces ft in X. All these data are supposed smooth, both in

space and time. The loading causes the propagation of a crack

along a predefined crack path Ĉ, smooth simple curve with

unit normal n and across which the displacement can be dis-

continuous. The simple curve representing the crack path Ĉ is

parameterized by its arc length s, say s 7! x̂ðsÞ. It will be often

identified with the real interval [0, Lc], Lc being its length. In

the unbreakable part Xn Ĉ of the body, the material has an

isotropic linear elastic behavior characterized by Young’s

modulus E, Poisson’s ratio m and Lamé’s coefficients k, l.

We assume that the body, the loading and the crack path

are so that the crack is always in mode I, i.e., only the

normal displacement can be discontinuous on Ĉ. We

denote by ½½ut
n�� and ½½ _ut

n�� the jump and the rate of the jump

of the normal component of the displacement at time t at a

point on the crack path and call them the opening and the

rate of opening. The opening must satisfy the non inter-

penetration condition ½½ut
n�� � 0 at every t:

½½ut�� ¼ ½½ut
n��n; ½½ut

n�� � 0; on Ĉ:

Accordingly, ‘‘by symmetry’’, the tangential stress

always vanishes on Ĉ. We denote by rt
nn the normal

component of the stress vector and call it the cohesive force

when it is positive and the contact force when it is

negative. The relationship between the current cohesive

force and the current opening (or, more generally, the

history of the opening up to the current time) is obtained

via a variational approach from fundamental assumptions

on the surface energy density.

Remark 1 This mode I assumption could appear very

strong as it is formulated above and only valid in very few

cases. Indeed, the tangential displacement will be contin-

uous through Ĉ only in the case of a symmetric body, a

symmetric loading and a symmetric crack path. However,

in order that the two-scale procedure developed in Sect. 3

remains valid it is sufficient that this condition holds in the

neighborhood of the crack tip. Specifically, it is sufficient

that KII½‘� ¼ 0 for all ‘ 2 ð0; LcÞ; KII½‘� being the mode II

stress intensity factor appearing in the large scale problem

of Sect. 3.2. Therefore, the condition is local in space at

given t and is satisfied for every t if the crack path is such

that the propagation follows the Local Symmetry Principle.

2.1 The variational formulation without any

irreversibility condition

Let us first consider the case when the opening is always

monotonically increasing in time, i.e., when ½½u0
n�� ¼ 0 and

½½ _ut
n�� � 0. Then it is useless to introduce any condition of
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irreversibility and the surface energy density is a function

/ of ½½un�� alone. To obtain precise mathematical results, it

is necessary to suppose that / enjoys some relevant con-

cave and monotonic properties, see [24]. However, since in

this paper all the developments will be made with Dug-

dale’s surface energy, we simply assume that / is defined

on [0, ??), monotonically increasing and piecewise

smooth with /(0) = 0 and rc = /0(0) [ 0, the prime

denoting the derivative.

Since the response of the body depends on the current

loading only and not on its history, we omit the superscript

t. Let v be a kinematically admissible displacement (with

the constraint that only its normal component can be dis-

continuous on Ĉ), i.e.,

v 2 C ¼ v 2 H1ðXnC;R2Þ : v ¼ n
�

on oDX; ½½v�� ¼ ½½vn��n with ½½vn�� � 0 on Ĉ
�

where H1 denotes the usual Sobolev space. The associated

total energy of the body is given by

EðvÞ ¼
Z

XnĈ

1

2
AeðvÞ � eðvÞdxþ

Z

Ĉ

/ð½½vn��Þds�
Z

X

f � vdx

�
Z

oFX

F � vds

where A denotes the stiffness tensor of the material and

eðvÞ is the symmetric part of the gradient of v. The true

displacement field u is (the) one in C which satisfies the

following local minimality condition:

8v 2 C; 9�h [ 0 : 8h 2 0; �h½ �; EðuÞ� Eðuþ hðv� uÞÞ:
ð1Þ

Dividing by h [ 0 the inequality above and passing to the

limit when h ; 0, we obtain the so-called first order

optimality condition

8v 2 C;
Z

XnĈ

r � eðv� uÞdxþ
Z

Ĉ

/0ð½½un��Þ½½vn � un��ds

�
Z

X

f � ðv� uÞdxþ
Z

oFX

F � ðv� uÞds ð2Þ

where r ¼ AeðuÞ denotes the stress field. The variational

inequality (2) is equivalent to a system of local equalities

and inequalities which are obtained by considering differ-

ent types of test fields v.

1. Let v = u ? w with w = 0 on oDX and ½½wn�� ¼ 0 on

Ĉ. Inserting into (2) and using standard arguments of

Calculus of Variations lead to the local equilibrium

equations and the natural boundary conditions

divrþ f ¼ 0 in X nĈ; rn ¼ F on oFX: ð3Þ

Moreover, we obtain also that the normal stress is

continuous on Ĉ while we assume that ‘‘by symmetry’’

the shear stress vanishes on Ĉ:

rn ¼ rnnn; ½½rnn�� ¼ 0 on Ĉ: ð4Þ

After inserting (3) and (4) into (2), the first order optimal

condition becomes

8v 2 C;
Z

Ĉ

/0ð½½un��Þ � rnnð Þ½½vn � un��ds� 0: ð5Þ

2. Let us divide Ĉ into two parts: Cc where ½½un�� ¼ 0 and

Co where ½½un��[ 0. We obtain that (5) is satisfied if

and only if the cohesive forces repartition verifies

rnn�rc ¼/0ð0Þ on Cc ¼ s2 Ĉ : ½½un��ðsÞ ¼ 0
� �

rnn ¼/0ð½½un��Þ on Co ¼ s2 Ĉ : ½½un��ðsÞ[0
� �

(

:

ð6Þ

Remark 2 The first order optimality condition (2)

contains not only the normal stress-opening relation rnn ¼
/0ð½½un��Þ but also the stress yield criterion rnn B rc for the

onset of opening. In the present case where only the normal

displacement is discontinuous, this criterion is simply a

maximal traction criterion. This fundamental result can be

generalized in a three dimensional setting for general

surface energy densities to obtain more general stress yield

criteria, see [20] and [7].

2.2 Introduction of an irreversibility condition

and the new evolution problem

When the surface energy density depends only on the

current opening, the response of the body depends only on

the current loading. Therefore, in the case of cyclic load-

ing, the response is the same at each cycle, the crack cannot

propagate progressively from one cycle to the other and no

fatigue effect is possible. Accordingly, we must introduce

irreversibility conditions and consider that the surface

energy density depends on the entire history of the opening.

To this end, the normal stress-opening relation is custom-

arily defined by using memory variables, say d, see [22, 28,

32, 33, 36]. In a variational approach that consists first in

defining the surface energy density as a function of the

current opening and these memory variables. Here, in a

two-dimensional mode I setting, we make the simplest

choice as in [2, 18, 19]. We choose as memory variable the

cumulated opening up to time t defined at each point s of

the crack path by

dtðsÞ ¼ d0ðsÞ þ
Z t

0

½½ _ut0

n ��ðsÞ
� �þ

dt0; ð7Þ
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where d0 represents the given initial value of the cumulated

opening and the ? denotes the positive part. In a

differential form, (7) reads as

_d ¼ ½½ _un��þ:

Then, we assume that the surface energy density is the

same function / as in the previous subsection, but now

depending on the cumulated opening instead of the

opening. Accordingly, the surface energy of the body at

time t, say St, reads as

St ¼
Z

Ĉ

/ dtðsÞð Þds:

In the spirit of the ideas developed in [5, 13, 25], the

evolution of the cracking in the body is defined in terms of

a stability criterion and an energy balance principle.

Let us first introduce the stability condition. To test the

stability of the state (ut, dt) of the body at time t C 0, we

consider a kinematically admissible displacement v at time

t, i.e., v 2 Ct with

Ct ¼
�

v 2 H1 X n Ĉ;R2
� �

: v ¼ nt on oDX;

½½v�� ¼ ½½vn��n with ½½vn�� � 0 on Ĉ
�
:

Replacing the true displacement ut by the virtual one v, the

deformation of the body undergoes the virtual jump

discontinuity v - ut at time t and therefore the associated

virtual cumulated opening at time t reads as dt
� ¼ dtþ

½½vn � ut
n��
þ

. Accordingly, the total energy of the body at

time t associated with this virtual displacement v reads as

EtðvÞ ¼
Z

XnĈ

1

2
AeðvÞ � eðvÞdxþ

Z

Ĉ

/ dt þ ½½vn � ut
n��
þ� �

ds

�
Z

X

f t � vdx�
Z

oFX

Ft � vds: ð8Þ

The stability condition consists in using the local

minimality condition (1) with the new expression of the

energy, i.e.,

8v 2 Ct; 9�h [ 0 : 8h 2 0; �h½ �;
Et utð Þ� Et ut þ h v� utð Þð Þ: ð9Þ

However, the stability condition alone is not sufficient to

define the evolution of the body. It must be completed by

the energy balance which reads as

Et utð Þ ¼ E0 u0
� �

þ
Z t

0

Z

oDX

rt0n � _nt0ds�
Z

X

_f t0 � ut0dx�
Z

oFX

_Ft0 � ut0ds

0

B@

1

CAdt0

ð10Þ

where _f; _F and _n denote the rate of the data. In (10), u0

denotes the initial displacement field which must be com-

patible with the stability condition (9) written at t = 0 with

the data d0, f0, F0 and n0.

Remark 3 Therefore, the evolution problem consists in

finding t 7! ut; dtð Þ which satisfies, at every t C 0, (7), (9)

and (10). The main advantages of such a formulation are

the following ones:

1. it is valid for any type of loading (with the unique

restriction that the loading is smooth in time) and can

be used both for monotone or cyclic loading;

2. it can be easily extended to a very general framework

(3D, anisotropic and heterogeneous body, ...);

3. it contains a stability condition which can be used as a

criterion of selection of solutions. Indeed, since the

surface energy density is usually a concave function of

d, the total energy is not a convex function of v and the

uniqueness of the solution is not guaranteed;

4. it does not require that the evolution is smooth in time

(only the data have to be smooth). It allows to search

for discontinuous-in-time solutions.

Note that the proposed evolution law is rate independent.

Indeed, let t 7! ut be a solution of (9) and (10) with the data d0

and t 7! f t;Ft; ntð Þ. If a change of the rate of loading is made

by considering a smooth one-to-one map t 7! sðtÞ such that

s(0) = 0 and ds/dt[ 0, then t 7! ~ut ¼ usðtÞ is a solution of the

problem with the new data t 7! fsðtÞ;FsðtÞ; nsðtÞ
� �

.

From now on, we assume that there is no initial cumu-

lated opening, d0 = 0 on Ĉ, the loading starts from 0, i.e.

f0 ¼ F0 ¼ n0 ¼ 0; so that u0 = 0. Let us assume that the

evolution problem has a smooth solution and let us proceed

as in the previous subsection to obtain the local conditions

satisfied by this solution (in particular, the normal stress-

opening relations).

Let t [ 0, dividing (9) by h [ 0 and passing to the limit

as h # 0, we obtain the first order stability condition

8v 2 Ct;

Z

XnĈ

rt � e v� utð Þdxþ
Z

Ĉ

/0 dtð Þ½½vn � ut
n��
þ

ds

�
Z

X

f t � v� utð Þdxþ
Z

oFX

Ft � v� utð Þds: ð11Þ

Let us first take v = ut ? w with w = 0 on oDX and

½½wn�� ¼ 0 on Ĉ. Inserting into (11) gives, as in the previous

subsection, the equilibrium equations and the natural

boundary conditions,

divrt þ f t ¼ 0 in X n Ĉ; rtn ¼ Ft on oFX; ð12Þ

as well as the continuity of the normal stress on Ĉ (and we

still assume the vanishing of the shear stress),
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rtn ¼ rt
nnn; ½½rt

nn�� ¼ 0 on Ĉ: ð13Þ

After inserting (12) and (13) into (11), the first order

stability condition becomes

8v 2 Ct;

Z

Ĉ

/0 dtð Þ½½vn � ut
n��
þ � rt

nn½½vn � ut
n��

� �
ds� 0:

ð14Þ

Let us divide Ĉ into two parts defined in terms of ½½ut
n�� : Ct

c

(c like closed) where ½½ut
n�� ¼ 0 and Ct

o (o like open) where

½½ut
n��[ 0. We obtain that (14) is satisfied if and only if the

cohesive forces repartition is such that

rt
nn�/0 dtð Þ on Ct

c ¼ s 2 Ĉ : ½½ut
n��ðsÞ ¼ 0

� �

rt
nn 2 0;/0 dtð Þ½ � on Ct

o ¼ s 2 Ĉ : ½½ut
n��ðsÞ[ 0

� �

(

:

ð15Þ

We see that, because of the introduction of an irreversibility

condition (through the concept of cumulated opening), the

first order stability condition is no more sufficient to obtain

all the information concerning the cohesive forces. We have

also to consider the energy balance. Assuming that the

evolution is smooth, differentiating (10) with respect to

time and using (8) with v = ut, we get
Z

XnĈ

rt � e _utð Þdxþ
Z

Ĉ

/0 dtð Þ _dtds

¼
Z

X

f t � _utdxþ
Z

oFX

Ft � _utdsþ
Z

oDX

rtn � _ntds: ð16Þ

Integrating by parts the first integral in the left hand side of

(16) and using (12)–(13) we obtain
Z

Ĉ

/0 dtð Þ½½ _ut
n��
þ � rt

nn½½ _ut
n��

� �
ds ¼ 0: ð17Þ

After dividing Ĉ into three parts defined in terms of

½½ _ut
n�� : Ct

a (a like active) where ½½ _ut
n��[ 0;Ct

n (n like neutral)

where ½½ _ut
n�� ¼ 0 and Ct

p (p like passive) where ½½ _ut
n��\0, (17)

becomes
Z

Ct
a

/0 dtð Þ � rt
nn

� �
½½ _ut

n��dsþ
Z

Ct
p

rt
nn ½½ _ut

n��
�� ��ds ¼ 0: ð18Þ

By virtue of (15), the first integral of (18) is non negative and

vanishes if and only if rt
nn ¼ /0 dtð Þ on Ct

a. Because of the non

interpenetration condition, Ct
p � Ct

o and hence, by virtue of

(15), the second integral of (18) is also non negative and

vanishes if and only if rnn
t = 0 on Ct

p. Consequently, both

integrals must vanish and we have finally obtained the

following normal stress-opening relations which complete

those of (15) (which have still to be satisfied):

rt
nn ¼ /0 dtð Þ on Ct

a ¼ s 2 Ĉ : ½½ _ut
n��ðsÞ[ 0

� �

rt
nn�/0 dtð Þ on Ct

n ¼ s 2 Ĉ : ½½ _ut
n��ðsÞ ¼ 0

� �

rt
nn ¼ 0 on Ct

p ¼ s 2 Ĉ : ½½ _ut
n��ðsÞ\0

� �

8
><

>:
:

ð19Þ

Remark 4 It appears that the cohesive force depends not

only on the opening but also on the rate of opening. The

cohesive force is activated when the opening increases but

is deactivated when the opening decreases. It is not the

value of the opening which is important, but the sign of its

rate and the value of its cumulation. That constitutes the

key property to obtain fatigue effects under cyclic loading.

This idea was first introduced by [23] in the context of

Damage Mechanics. Note that if the opening is always

increasing once the crack is open, i.e., if ½½ _ut
n��[ 0 when

dt [ 0, then dt ¼ ½½ut
n�� at every t and by applying the

conditions (15) and (19) we recover (6). In other words,

under monotone loading the two formulations are

equivalent. The irreversibility condition plays a role only

under non monotonic loading.

The set of conditions (12), (13), (15) and (19) are only

necessary conditions in order that the stability condition (9)

be satisfied. They are, in general, not sufficient and second

order stability conditions should be considered. However,

we shall develop hereafter the construction of the fatigue

law only from the first order stability conditions, the study

of the role of the additional conditions is left for future

work.

2.3 Case of Dugdale’s surface energy

and of cyclic loading

Let us particularize the previous formulation and results to

the case of Dugdale’s model and cyclic loading. In the case

of Dugdale’s model, the surface energy density is defined

on [0, ??) by

/ðdÞ ¼ Gc
d
dc

if 0� d� dc

Gc if d� dc

	

where Gc is the critical energy release rate of Griffith’s

theory and dc is a characteristic length of the material.

Therefore the critical stress is rc = Gc/dc. The main par-

ticularities of Dugdale’s model are

1. The cohesive force vanishes as soon as the cumulated

opening becomes larger than dc. Accordingly, the

crack path can be divided into three zones (which

evolve with time): the still bonded zone Ct
B where

dt = 0, the process zone (or genuine cohesive zone) Ct
C

where 0 \ dt \ dc and the already debonded zone (or

non cohesive zone) Ct
D where dt [ dc. (Because of the

concavity of / and its non differentiability at d = dc,
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the points where dt = dc are isolated and can be

neglected in this partitioning.)

2. / is piecewise linear and hence its derivative is

piecewise constant. Consequently, the cohesive force

is constant and equal to rc on the active part of the

process zone whereas it vanishes everywhere on Ct
D.

This property is very useful in the sequel to obtain

solutions in a closed form.

The normal stress-opening conditions read now as

rt
nn� rc on Ct

c \ Ct
B [ Ct

C

� �

rt
nn� 0 on Ct

c \ Ct
D

(

;

rt
nn ¼ rc on Ct

Ca

rt
nn 2 ½0; rc� on Ct

o \ Ct
Cn

rt
nn ¼ 0 on Ct

o \ Ct
Cp [ Ct

D

� �

8
>><

>>:

with

Ct
B ¼ fx 2 Ĉ : dtðxÞ ¼ 0g

Ct
C ¼ fx 2 Ĉ : 0\dtðxÞ\dcg

Ct
D ¼ fx 2 Ĉ : dtðxÞ[ dcg

8
><

>:
;

Ct
Ca ¼ fx 2 Ct

C : ½½ _ut
n��ðxÞ[ 0g

Ct
Cn ¼ fx 2 Ct

C : ½½ _ut
n��ðxÞ ¼ 0g

Ct
Cp ¼ fx 2 Ct

C : ½½ _ut
n��ðxÞ\0g

8
><

>:
:

Only the cohesive zone has to be divided into active,

neutral and passive zones, since the cohesive forces are

equal to 0 in the debonded zone forever (but contact forces

can be present). We consider a particular type of cyclic

loading, called simple cyclic loading and defined as

follows. The loading is proportional in the sense that

f t ¼ -ðtÞqM
�f; Ft ¼ -ðtÞqM

�F; nt ¼ -ðtÞqM
�n

where �f; �F and �n are normalized data which do not depend on

time and qM is the amplitude of the loading. Furthermore, the

real-valued function - is a seesaw-type function, i.e., periodic

with period 2 and defined on [0, 2] by

-ðtÞ ¼ t if 0� t� 1

ð2� tÞ if 1� t� 2:

	
ð20Þ

By virtue of the rate-independent character of the evolution

law, only the monotonic properties of - are important, its

piecewise linear character and the value of the period have

no influence. For i 2 N�, we call cycle i or ith cycle the

time interval [2(i - 1), 2i), loading phase of cycle i the

time interval (2(i - 1), 2i - 1), unloading phase of cycle

i the time interval (2i - 1, 2i), end of loading of cycle i the

time t = 2i - 1 and end of unloading of cycle i the time

t = 2i.

3 Construction of the fatigue law

3.1 Main a priori assumptions and the two-scale

procedure

Throughout the section we consider only Dugdale’s cohe-

sive model with a simple cyclic loading. Moreover, we

suppose that the size of the body is large in comparison

with the internal length of the material and hence that the

ratio e = dc/Lc is a small dimensionless parameter:

� ¼ dc

Lc
	 1:

Therefore, Gc = rcdc = ercLc. The surface energy

necessary to debond all the crack path is equal to �rcL2
c

and hence of the order of e. We assume that the potential

energy is also of the order of e what requires that the amplitude

of the loading is of the order of
ffiffi
�
p

(otherwise, if the order of

the loading amplitude is smaller than
ffiffi
�
p

, then the crack will

not propagate, while, if the order of the loading amplitude is

larger than
ffiffi
�
p

, then all the crack path will debond during the

first loading phase). Accordingly, we set

qM ¼
ffiffi
�
p
:

But even in this restricted context, the properties of the

solution (if any) of the evolution problem strongly depend

on the geometry of the body, on the crack path and on the

data. It is not possible to follow a purely deductive pro-

cedure and to obtain precise results without particularizing

the problem, as in [19]. Therefore, we shall proceed as

follows:

1. We make a priori assumptions on the form of the

solution, in particular on the shape and the size of the

different zones of the crack path;

2. We develop a two-scale approach based on the

smallness of the internal length dc;

3. We check a posteriori the pertinence of the a priori

assumptions.

Hypothesis. The first a priori assumptions are the fol-

lowing ones (additional assumptions will be introduced later):

H1 At time t, the non cohesive zone is the interval

Ct
D ¼ 0; ‘t½ Þ, the process zone is the interval Ct

C ¼
‘t; ‘t þ dtð Þ and the bonded zone is the interval

Ct
B ¼ ‘t þ dt; Lc½ �;

H2 The length dt of the process zone is of the order of dc

and hence small in comparison with Lc;

H3 During any cycle i, the propagation of the tip of the

non cohesive zone, that is ‘2i - ‘2i-2, is of the order of dc

and hence small in comparison with Lc;

H4 From one cycle to the other, at first approximation,

the evolution follows a quasi-stationary regime.
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The first assumption is only introduced to simplify the

presentation, the case with several process zones and sev-

eral non cohesive crack tips could be treated in the same

manner. The meaning of the last assumption will become

precise later. The second and the third assumptions allow a

scale separation, both in space and time.

Let ‘ be given in the interval (0, Lc), independent of e.
From H3, we deduce that a great number of cycles are

necessary, say Ne, so that the length of the non cohesive

crack be equal to ‘. Ne is of the order of 1/e and if we

consider T = lime? 0 e Ne, T can be seen as the real valued

parameter characterizing the number of cycles at the

macro-scale. The main goal of the subsequent analysis is to

find the relation between T and ‘, that is the function

T 7! ‘ðTÞ giving the evolution of the tip of the non cohe-

sive crack at the macro-scale number of cycles. That

requires to also consider the evolution problem at a small

scale. Specifically, for a given i 2 Z, independent of e, if

we consider the cycle Ne ? i or equivalently T/e ? i, then

i can be seen as the micro-scale number of cycles. By

Hypothesis H3 again, the propagation of the non cohesive

crack tip during the cycle Ne ? i is of the order of e and

a priori lim�!0 ‘
2N�þ2i � ‘2N��2i�2ð Þ=� depends on T (or ‘)

and i. But one main feature of Hypothesis H4 is to claim

that this limit is independent of i, say _‘ðTÞ. Accordingly,

‘2N�þ2i ¼ ‘ðTÞ þ �i _‘ðTÞ þ oð�Þ and _‘ðTÞ can be identified

with d‘
dT ðTÞ. The main step in order to determine T 7! ‘ðTÞ

consists in finding the relation between _‘ðTÞ and global

energetic quantities characterizing the state of the

cracked body at ‘‘time’’ T. For that, a separation of

scale in space is also necessary. Specifically, we shall

first construct an approximation of the displacement

field at a large scale, i.e., at the scale of the whole

body, with the help of Assumptions H1–H3. This

so-called large scale problem will give us the macroscopic

energetic quantities like the effective Stress Intensity

Factor KI in terms of the length ‘ of the non cohesive

crack. Then we shall make a zoom of the tip of the non

cohesive crack at the macro-time T and consider the

evolution problem at a micro-scale both in space and

time. This so-called small scale problem will give the

relation between _‘ and KI.

3.2 The large scale problem

At time t = 2Ne - 1, i.e., at the end of the loading phase of

the cycle Ne, the amplitude of the loading is
ffiffi
�
p

, the tip of

the non cohesive crack is at ‘ and the length of the process

zone is of the order of e. At a large scale, if we neglect the

process zone, the true displacement and stress fields

u2N��1; r2N��1ð Þ can be approximated by
ffiffi
�
p

u½‘�;
ffiffi
�
p

r½‘�ð Þ

(to avoid any confusion, the dependence in ‘ is explicit)

which are given by

div r½‘� þ �f ¼ 0; r½‘� ¼ kdiv u½‘�Iþ 2leðu½‘�Þ in X n C½‘�;
r½‘�n ¼ �F on oFX; u½‘�n ¼ �n on oDX;

r½‘�n ¼ r½‘�nnn; r½‘�nn � 0; ½½u½‘�n�� � 0; r½‘�nn½½u½‘�n�� ¼ 0 on C½‘�

8
><

>:

ð21Þ

with always the mode I assumption and C½‘� ¼ x̂ðsÞ 2f
Ĉ : s 2 ½0; ‘�g. The set of Eq. (21) corresponds to an elastic

problem posed on the cracked domain with a (non

cohesive) crack of length ‘ and with a loading given by

the data �f; �F; �n
� �

. The displacement u[‘] will be in general

singular at the tip x̂ð‘Þ of the crack with the usual

singularity in
ffiffi
r
p

. Specifically, because of the mode I

assumption, the mode II stress intensity factor, say KII½‘�,
vanishes and u[‘](x) in the neighborhood of the tip of the

crack can read as

u½‘�ðxÞ ¼ KI½‘�
2l

ffiffiffiffiffiffi
r

2p

r
uSðhÞ þ u½‘�RðxÞ ð22Þ

with

uSðhÞ ¼ ð3� 4m� cos hÞ cos
h
2

tð‘Þ þ sin
h
2

nð‘Þ
� �

where r denotes the distance of x to x̂ð‘Þ; h is the

angle made by x� x̂ð‘Þ with the tangent t(‘) to Ĉ at

x̂ð‘Þ; nð‘Þ ¼ e3 ^ tð‘Þ. In (22) u[‘]R denotes the regular part

of u[‘], which is locally in H2, and the mode I stress

intensity factor KI½‘� depends in general on ‘. Because of

the non interpenetration condition, KI½‘� is necessarily non

negative and we shall assume that it is positive, what

means that u[‘] is really singular.

H5 The effective stress intensity factor is positive:

KI½‘�[ 0.

Of course, this property is a global property which

must be checked for each particular problem and each

crack length. The consequence is that the crack is nec-

essarily open in a neighborhood (‘ - h, ‘) of the crack

tip. Therefore, ½½u½‘�n��ðsÞ[ 0 and r[‘]nn(s) = 0 for

s [ (‘ - h, ‘).

Remark 5 For e sufficiently small, the condition

r2N��1
nn � rc is satisfied by its approximation

ffiffi
�
p

r½‘�
everywhere on Ĉ n C½‘�, except near the tip x̂ð‘Þ, provided

that r½‘� is not singular at another point of the crack path.

In terms of energy, the real potential energy (difference

between the strain energy and the work of the external

forces) of the body at time t = 2Ne - 1 is well approxi-

mated by the potential energy associated with the field u[‘],

i.e.,

P2N��1 ¼ �P½‘� þ oð�Þ
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with

P½‘� ¼
Z

XnĈ

1

2
Aeðu½‘�Þ � eðu½‘�Þdx�

Z

X

�f � u½‘�dx

�
Z

oFX

�F � u½‘�ds:

Defining, as usually, the potential energy release rate G½‘�
as � dP½‘�

d‘ , we can use Irwin’s formula to link G½‘� with KI½‘�:

G½‘� :¼ � dP½‘�
d‘
¼ 1� m2

E
KI½‘�2: ð23Þ

Note however that this concept of energy release rate is

well defined only for the ‘‘limit’’ problem, i.e., when the

process zone is neglected.

Let # 2 R be given and independent of e. By Hypotheses

H2–H3, the position of the non cohesive crack tip at time

t = 2Ne - 1 ? 0 differs from ‘ only by a term of the order of

e and the length of the process zone is of the order of e. Hence

the true displacement and stress fields at that time can be well

approximated by
ffiffi
�
p

u½‘�#;
ffiffi
�
p

r½‘�#
� �

which are given by a set

of equations similar to (21) the loading being now

-ð#þ 1Þ�f;-ð#þ 1Þ�F;-ð#þ 1Þ�n
� �

with - given by (20).

By virtue of the linear character of this elastic problem, we

have u½‘�# ¼ -ð#þ 1Þu½‘�. That means that, at a macro scale,

neglecting the process zone and the propagation of the crack

during a micro number of cycles, the response of the body

oscillates because of the periodicity of the loading. Therefore,

the stress intensity factorKI½‘�# oscillates between 0 and KI½‘�:

KI½‘�# ¼ -ð#þ 1ÞKI½‘�:

3.3 The small scale problem

3.3.1 The rescaling and the stationary regime assumption

The field
ffiffi
�
p

u½‘� is a good approximation of u2N��1 only far

enough from the tip x̂ð‘Þ. This approximation is sufficient for

evaluating the energy of the whole body at this time, but not to

determine the evolution of the crack from one cycle to the other.

For that it is necessary to take account of the process zone and of

the cumulative process of the opening during a cycle. We have

to refine the analysis by considering the problem at a small

scale, both in space and time. (Figs. 1, 2 and 3)

Let us change the time origin by setting 0 = t -

2Ne ? 1. The rescaled times # ¼ 2i; i 2 Z, correspond to

the end of the loading phases of the ith cycle after (or

before when i is negative) the cycle Ne. Let us make a zoom

of the crack tip x̂ð‘Þ by introducing the new cartesian

coordinate system (x, y) where (0, 0) corresponds to the tip

x̂ð‘Þ and the axis x corresponds to the direction of the

tangent t(‘) to Ĉ at x̂ð‘Þ:

x� x̂ð‘Þ ¼ �ðxtð‘Þ þ ynð‘ÞÞ; tð‘Þ ¼ dx̂

ds
ð‘Þ;

nð‘Þ ¼ e3 ^ tð‘Þ:
ð24Þ

The small scale domain is then the plane R
2 and the crack

path is the axis y = 0. For a given 0 independent of e,

denoting by U#;R# and D# the approximation of the

displacement, stress and cumulated opening fields near the

crack tip x̂ð‘Þ, we have

u2N��1þ#ðxÞ ¼ -ð#þ 1Þ
ffiffi
�
p

u½‘� x̂ð‘Þð Þ þ �U#ðx;yÞ þ oð�Þ
r2N��1þ#ðxÞ ¼ R#ðx;yÞ þ oð1Þ
d2N��1þ#ð‘þ �xÞ ¼ �D#ðxÞ þ oð�Þ

8
<

:
:

ð25Þ

With these notations, we are in a position to formulate

precisely Hypothesis H4 and the concept of stationary

regime. Specifically, we assume that

8# 2 ½0; 2Þ; 8i 2 Z; U2iþ#ðx; yÞ ¼ U#ðx� i _‘; yÞ;
D2iþ#ðxÞ ¼ D# x� i _‘

� � ð26Þ

Fig. 1 The body X with the predefined crack path Ĉ and its

parameterization

Fig. 2 Dugdale’s surface energy density

Fig. 3 Simple cyclic loading
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which means that from a cycle to the other the fields are

simply shifted in the direction x through the crack growth

rate _‘. Therefore, the length of the process zone and the

growth rate of the non cohesive crack tip are, at first

approximation, 2-periodic in 0:

d2N��1þ# ¼ �D# þ oð�Þ; D#þ2i ¼ D#;
8# 2 R; 8i 2 Z;

ð27Þ

‘2N��1þ# ¼ ‘þ �L# þ oð�Þ;
L#þ2i ¼ i _‘þ L#; 8# 2 R; 8i 2 Z

ð28Þ

and, by definition, L0 = 0. By virtue of this a priori assump-

tion, it suffices to determine _‘ and U#;R#;D#;D#; L# for

0 [ [0,2). Let us recall for further reference the full set of

relations they must satisfy:

The structure of the solution that we construct in the

next subsections is indicated in Fig. 4. Once the solution is

found in the interval [0,2), it can be periodically extended

to all R in order that (26)–(28) be automatically satisfied.

However, it could happen that the so constructed solution

be discontinuous at 0 = 2i for i 2 Z and hence we shall

also check the continuity of U#;R#;D#;D# and L0 at

0 = 2. Note that the boundary conditions on the crack line

have been simplified by assuming that there are no contact

forces between the crack lips owing to the assumption that

KI½‘�[ 0. The last equation of (29) giving the behavior of

U0 at infinity can be justified as follows. In order to match

the two approximations of the displacement field u2N��1þ#,

the behavior of eU0 at infinity is given by the behavior

of the singular part of
ffiffi
�
p

u½‘�# at x̂ð‘Þ. Specifically, close to

x̂ð‘Þ we have
ffiffi
�
p

u½‘�# x̂ð‘Þ þ �ðxtþ ynÞð Þ ¼ -ð#þ 1Þ
ffiffi
�
p

u½‘� x̂ð‘Þð Þ

þ -ð#þ 1Þ� KI½‘�
2l

ffiffiffiffiffiffi
r

2p

r
uSðhÞ

þ oð�Þ ð30Þ

with x ¼ rcosh and y ¼ rsinh. Comparing (30) with the

first of (25) yields the last of (29).

Notation In the next subsections up to Sect. 3.4, since ‘ is

fixed and plays the role of a parameter, we remove it from

the notations.

3.3.2 Determination of U0;R0 and D0

At small scale and at 0 = 0, the non cohesive crack is the half-

line x \ 0 whereas the process zone is an interval of length D0:

C0
D ¼ ð�1; 0Þ 
 f0g; C0

C ¼ 0;D0
� �


 f0g;
C0
B ¼ D0;þ1


 �

 f0g:

We search the solution such that all the process zone is active

(and open) at the end of each loading phase, i.e.,C0
Ca ¼ C0

C. The

checking of this hypothesis needs to determine the evolution of

the displacement field U0 during a cycle. That will be made in

the next subsections. Accordingly, U0 and R0 are such that

L0 ¼ 0; L#� 0; D# [ 0

R# ¼ kdiv U#Iþ 2leðU#Þ; div R# ¼ 0 in R
2 n ð�1; L# þ D#Þ 
 f0g

C#
D :¼ ð�1; L#Þ 
 f0g; C#

C :¼ L#; L# þ D#
� �


 f0g; C#
B :¼ L# þ D#;þ1

� �

 f0g

C#
Ca ¼ C#

C \ ½½ _U#
2 ��[ 0

� �
; C#

Cn ¼ C#
C \ ½½ _U#

2 �� ¼ 0
� �

; C#
Cp ¼ C#

C \ ½½ _U#
2 ��\0

� �

R#
22 ¼ 0; ½½U#

2 �� � 0 on C#
D

R#
22 ¼ rc; ½½U#

2 ��[ 0 on C#
Ca; R#

22 2 ½0;rc�; ½½U#
2 �� � 0 on C#

Cn; R#
22 ¼ 0; ½½U#

2 �� � 0 on C#
Cp

R#
22� rc; ½½U#

2 �� ¼ 0 on C#
B

_D# ¼ ½½ _U#
2 ��
þ

on y ¼ 0

D# [ Lc on C#
D ; 0\D#\Lc on C#

C ; D# ¼ 0 on C#
B

limr!1 U#ðr cos h; r sin hÞ � -ð#þ 1Þ KI½‘�
2l

ffiffiffiffi
r

2p

p
uSðhÞ

� �
¼ 0

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð29Þ

divR0 ¼ 0; R0 ¼ kdiv U0Iþ 2le U0
� �

in R
2 n �1;D0ð Þ 
 f0g

R0e2 ¼ 0 on C0
D; R0e2 ¼ rce2 on C0

C; R0
22� rc on C0

B

½½U0
2 �� � 0 on C0

D; ½½U0
2 �� � 0 on C0

C; ½½U0
2 �� ¼ 0 on C0

B

limr!1 U0ðr cos h; r sin hÞ � KI
2l

ffiffiffiffi
r

2p

p
uSðhÞ

� �
¼ 0:

8
>>><

>>>:

ð31Þ
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The set of Eq. (31) constitutes a generic problem treated in

the ‘‘Appendix 1’’ with parameters L ¼ 0; D ¼ D0 and

K ¼ KI. Thus, the stress intensity factor KI plays the role of

the intensity of the loading for the small scale problem.

Since the normal stress is bounded by rc on C0
B and because

of the non interpenetration condition, there is no singularity

at the tip x = D0 of the process zone and therefore the

length of the process zone is related to KI by

D0 ¼ pK2
I

8r2
c

¼ pEG

8 1� m2ð Þr2
c

: ð32Þ

Moreover the jump of the normal displacement on the

crack line is given by

½½U0
2 ��ðxÞ ¼ V

x

D0

� � G

rc
ð33Þ

where V is given by (55) and G denotes the rescaled

potential energy release rate, see (23). The normal stress on

C0
B is given by

R0
22ðx; 0Þ ¼ 1� 2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� D0

x

r !

rc:

The non interpenetration condition and the yield stress

condition are hence satisfied.

3.3.3 Determination of U#;R#; L# and D#

when 0 \# B 1

During the unloading phase of the cycle, the stress intensity

factor decreases to 0: K#I ¼ ð1� #ÞKI. We search a solution

such that neither the non cohesive zone nor the process zone

propagate. However, the process zone will become progres-

sively passive. Specifically, we search a solution such that

L# ¼ 0; D# ¼ D0; C#
Cp ¼ 0;D#

p

� �

 f0g;

C#
Cn ¼ D#

p ;D
0

� �

 f0g

with # 7!D#
p growing from 0 to D0. Accordingly, U0 and R#

have to satisfy the following conditions on the crack line:

on C#
D

R#
22 ¼ 0

½½U#
2 �� � 0

(

; on C#
Cp

R#
22 ¼ 0

0� ½½U#
2 �� � ½½U0

2 ��

(

;

on C#
Cn

0�R#
22� rc

½½U#
2 �� ¼ ½½U0

2 ��

(

; on C#
B

R#
22� rc

½½U#
2 �� ¼ 0

(

:

Setting U# ¼ U0 � �U# and R# ¼ R0 � �R#; the pair �U#; �R#
� �

is solution of the generic problem of ‘‘Appendix 1’’ with

parametersK ¼ #KI; L ¼ 0 andD ¼ D#
p . Moreover �R# and �U#

must be such that 0� �R#
22� rc on C#

Cn and ½½ �U#
2 �� � 0 on C#

Cp.

(Note that the condition ½½ �U#
2 �� � 0 is not due to the non

interpenetration condition but to the decrease of the opening

during the unloading phase.) Therefore, there is no singularity

at the tip of the neutral zone, its position is given by D#
p ¼

#2D0 and grows from 0 to D0 during the unloading phase. The

jump of the normal displacement on the crack line is given by

½½U#
2 ��ðxÞ ¼ V

x

D0

� �
� #2V

x

#2D0

� �� � G

rc
ð34Þ

while the normal stress on the neutral zone and the bonded

zone is given by

R#
22ðx; 0Þ ¼

rc
2
p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #2D0

x

q
if #2D0 � x�D0

rc
2
p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #2D0

x

q
� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D0

x

q� �
if x�D0

8
<

:
:

ð35Þ

Let us now verify all the required conditions for U0 and R#.

First, lim##0 U#;R#
� �

¼ U0;R0
� �

. Second, since V is strictly

decreasing on [0,1], ½½ _U#
2 ��ðxÞ\0 when 0 \ x \02D0, in

Fig. 4 Evolution of the non cohesive crack and of the cohesive crack

during a cycle: in white, the non cohesive crack or the passive part of

the cohesive crack; in gray, the neutral part of the cohesive crack; in

black, the active part of the cohesive crack. The associated boundary

conditions in terms of the normal stress or of the opening rate are

indicated. The main stages of the evolution are as follows: at 0 = 0,

all the cohesive crack is active and the cohesive stress is equal to rc;

during the unloading phase, 0 \0\ 1, the cohesive crack becomes

progressively passive, the cohesive stress is equal to 0 in the passive

part while the opening does not evolve in the neutral part; at 0 = 1

which corresponds to the end of the unloading phase, all the cohesive

crack is passive; during the first part of the loading phase,

1 \0\0*, the tip of the non cohesive crack propagates while the

tip of the cohesive crack does not evolve, a part of the cohesive crack

remains neutral, the cohesive stress is equal to rc in the active part

while the opening does not evolve in the neutral part; at 0 = 0*, all

the cohesive crack is active; during the second part of the loading

phase, 0* \0\ 2, all the cohesive crack is active, both the tip of the

cohesive crack and the tip of the non cohesive crack propagate; at

0 = 2, the tip of the non active crack is at _‘ and the length of the

cohesive crack is D0 again

Ann. Solid Struct. Mech. (2010) 1:139–158 149

123



conformity with the definition of C#
Cp. Third, since V is con-

cave on (-?, 0) with V(0) = 1, we have V(hf) - h
V(f) C (1 - h)V(0) C 0 for f B 0 and 0 \ h B 1; hence (34)

yields ½½U#
2 ��ðxÞ� 0 when x B 0. Since V is decreasing

and positive on [0,1], we have V(hf) C V (f) C hV(f) for

0 B f B 1 and 0 \ h B 1; hence (34) yields ½½U#
2 ��ðxÞ� 0

when 0 B x B 02D0. Therefore, the non interpenetration

condition is satisfied everywhere. Finally, it is immediate from

(35) that 0�R#
22ðx; 0Þ� rc when x C 02 D0. All the condi-

tions are satisfied by U0 and R#.

When # " 1, all the process zone becomes passive, the

length of the neutral zone (1 - 02)D0 tends to 0. We can

see in (35) (or in Fig. 5) that lim#"1R
#
22ðx; 0Þ ¼ 0 for all

x. Since VðfÞ ¼ 2
ffiffiffiffiffi
jfj

p
þ oð1Þ when f? -?, (34) gives

that lim#"1½½U#
2 ��ðxÞ ¼ 0 for all x (see also Fig. 5). There-

fore, defining U1;R1
� �

as the limit of U#;R#
� �

when # " 1,

we have U1 = 0 and R1 ¼ 0.

Remark 6 Since ½½U#
2 ��ðxÞ decreases as 0 increases from 0

to 1, the cumulated opening does not evolve during the

unloading phase, D# ¼ D0. Moreover, at the end of the

unloading phase, all the crack is closed and free of any

contact or cohesive force. Note that U1;R1
� �

are defined by

passage to the limit when # " 1. We shall see that ½½ _U#
2 �� is

not defined at 0 = 1 because of the change of the sense of

loading, only the left and the right derivatives are defined.

It is the same at 0 = 2. Accordingly, one should modify

the definition of active, passive or neutral zones at these

times by considering the left derivative of ½½U#
2 �� (rather than

the right derivative for causality reasons). With this new

definition, one can prove that U1 = 0 and R1 ¼ 0 and

hence their left-continuity at 0 = 1.

3.3.4 Determination of U#;R# and D# when 1 \#\ 2

During the loading phase of the cycle, the stress intensity

factor increases: K#I ¼ ð#� 1ÞKI. At 0 = 1 the crack is

closed and the process zone is passive. The process zone

becomes progressively active and the non cohesive crack

tip propagates. Beyond a certain time 0*, all the process

zone is active and the tip of the process zone propagates.

Thus, assuming that L0 is known and continuously

increasing with 0, we search a solution such that the

loading phase itself is divided into two parts as follows:

1. First part of the loading phase: D# ¼ D0 � L#;C#
Ca ¼

L#; L# þ D#
a

� �

 f0g;C#

Cn ¼ L# þ D#
a ;D

0
� �


 f0g;
2. Second part of the loading phase: C#

C ¼ C#
Ca ¼

L#; L# þ D#
� �


 f0g.

In both parts, U0 and R# have to satisfy the following

conditions on the crack line:

R#
22ðx; 0Þ ¼ 0 if x\L#;

R#
22ðx; 0Þ ¼ rc if L#\x\L# þ D#

a ;

½½U#
2 ��ðxÞ ¼ 0 if x� L# þ D#

a

with the convention that D#
a ¼ D# during the second part.

Therefore, the pair U#;R#
� �

is solution of the generic problem

of ‘‘Appendix 1’’ with parametersK ¼ ð#� 1ÞKI; L ¼ L# and

D ¼ D#
a . Moreover R# must be such that 0�R#

22� rc on C#
Cn

and R#
22� rc on C#

B , whereas U0 must satisfy the non

interpenetration condition. Hence, there is no singularity at

x ¼ L# þ D#
a ;D

#
a is given by D#

a ¼ ð#� 1Þ2D0 and grows

continuously from 0 to D0 during the loading phase. The jump

of the normal displacement on the crack line is given by

½½U#
2 ��ðxÞ ¼ V

x� L#

ð#� 1Þ2D0

 !
ð#� 1Þ2G

rc
ð36Þ

while the normal stress on the neutral zone and the bonded

zone is given by

R#
22ðx; 0Þ ¼ rc 1� 2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð#� 1Þ2D0

x� L#

s0

@

1

A

if x� L# þ ð#� 1Þ2D0:

Since V is strictly decreasing on [0,1] and provided that

# 7!L# is continuously increasing, ½½ _U#
2 ��ðxÞ is defined and

positive for x 2 L#; L# þ ð#� 1Þ2D0
� �

, in conformity with

the definition of C#
Ca. Furthermore, the non interpenetration

condition and the yield stress condition are ensured. The time

0* when the first part of the loading phase finishes is such that

L0* ? (0* - 1)2D0 = D0. Provided that L0 grows continu-

ously when 0 grows from 1 to 2, since L1 = 0, there exists a

Fig. 5 Evolution of the opening

and of the normal stress during

the unloading phase of a cycle.

Note the growth of the passive

zone
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unique 0* satisfying this condition. Since VðfÞ ¼ 2
ffiffiffiffiffi
jfj

p
þ

oð1Þ when f? -?, one gets lim##0 U#;R#
� �

¼ ð0; 0Þ and

hence the continuity at 0 = 1. Provided that lim#"2L# ¼ _‘, it

is easy to check that lim#"2 U#;R#
� �

¼ U2;R2
� �

with

U2;R2
� �

related to U0;R0
� �

by the stationary conditions (26).

Remark 7 At this stage, provided that# 7!L# is continuously

increasing on [1,2] from 0 to _‘, we have found U0 and R# in

terms of L0 which satisfy all the requirements for 0 [ [0,2]. It

remains to find _‘;D0 and L#;D# for 0 [ (1,2), then, to verify

that # 7!L# and # 7!D# are continuous at 0 = 1 and 0 = 2.

3.3.5 Determination of D0 and _‘

By definition and Hypothesis H1, d2N��1ðsÞ[ dc for s \ ‘

and d2N��1ðsÞ\dc for s [ ‘. Hence, if we assume that

d2N��1 is continuous at s = ‘, we have d2N��1ð‘Þ ¼ dc.

Using (24) and (25), we get

D0ð0Þ ¼ Lc: ð37Þ

By definition (7) of the cumulated opening, since the

opening does not increase during the unloading phases and

does not decrease during the loading phases, since the

opening vanishes at the end of an unloading phase and by

virtue of the stationary conditions (26), we have

D0ðxÞ ¼ D�2ðxÞ þ
Z0

�2

½½ _U#
2 ��ðxÞ

� �þ
d#

¼ D�2ðxÞ þ ½½U0
2 ��ðxÞ � ½½U�1

2 ��ðxÞ
¼ D0 xþ _‘

� �
þ ½½U0

2 ��ðxÞ:

Then, by induction, since D0ðxÞ ¼ 0 for x C D0, we get

D0ðxÞ ¼
Pþ1

i¼0 ½½U0
2 �� xþ i _‘
� �

. Note that this series contains

a priori an infinite number of terms because the micro-number

of cycles needed to compute D0ðxÞ depends on x and _‘, and can

tend to infinity when _‘ goes to 0. Using (33) we finally obtain

D0ðxÞ ¼
Xþ1

i¼0

V
xþ i _‘

D0

 !
G

rc
ð38Þ

with D0 given by (32). Inserting this expression for D0ð0Þ
into (37) gives the desired equation for _‘:

Xþ1

i¼0

V
i _‘

D0

 !

G ¼ rcLc: ð39Þ

This equation will be rewritten and interpreted in the next

section by reintroducing the true physical quantities instead

of the rescaled ones. Let us analyze here the conditions for

the existence and the uniqueness of a solution _‘ in terms of

G. According to whether G is greater than, equal to or less

than rcLc there exists no solution, an infinite number of

solutions or a unique solution for _‘ as it is proved below.

1. If G[ rcLc, then there exists no solution for _‘.

Indeed, since V C 0 and V(0) = 1,
Pþ1

i¼0 V i _‘=D0
� �

G� G[ rcLc for all _‘.

2. If G ¼ rcLc, then all the solutions are the _‘’s such that
_‘� _‘m :¼ pELc

8 1�m2ð Þrc
.

Indeed, in such a case, (39) becomes
Pþ1

i¼0 V i _‘= _‘m

� �
¼ 1. Since V(0) = 1, it reads also as

Pþ1
i¼1 V i _‘= _‘m

� �
¼ 0. Since V C 0 everywhere and V = 0

only on [1, ??), we must have V _‘= _‘m

� �
¼ 0 and hence

_‘� _‘m. Conversely, if _‘� _‘m, then V i _‘= _‘m

� �
¼ 0 for

every i C 1 and hence _‘ is solution.

3. If 0\G\rcLc, then there exists a unique solution
_‘ ¼ f ðGÞ[ 0.

Indeed, let us consider the function k 7!FðkÞ :¼
Pþ1

i¼0 V ik=D0ð ÞG defined for k C 0. Since V(0) = 1,

then F(0) = ??. Since V(f) = 0 for f C 1, then

FðkÞ ¼ G\rcLc for every k C D0. When 0 \ k\ D0,

we have FðkÞ ¼ 1þ V k=D0ð Þð ÞGþ
Pþ1

i¼2 V ik=D0ð ÞG.

Since V is decreasing on [0, 1] and vanishes on

[1, ??), then F(k) decreases from infinity to G as k

goes from 0 to D0. Therefore, there exists a unique _‘

such that Fð _‘Þ ¼ rcLc. Moreover, _‘ 2 0;D0ð Þ.

The precise dependence of _‘ on G will be studied in the

next section. Let us make the last Hypothesis, which con-

tains Hypothesis H5,

H6: 0\G\rcLc.

In such a case, there exists a unique _‘ andD0 is given by (38).

Since V is continuously differentiable, non increasing and non

negative, so is D0. Moreover, since V is decreasing on (-?,1]

and vanishes on [1, ??), D0 is decreasing on (-?,D0] and

vanishes on [D0, ??). Accordingly, we have D0 [ Lc on

C0
D; 0\D0\Lc on C0

C and D0 ¼ 0 on C0
B, as it is required.

3.3.6 Determination of D# and L# when 1 \#\ 2

As before, if we assume that x 7!D#ðxÞ is continuous, then

L0 is such that

D# L#
� �

¼ Lc: ð40Þ

By definition (7) of the cumulated opening, since the

opening does not decrease during the loading phase and

since the opening vanishes at 0 = 1, we have

D#ðxÞ ¼ D1ðxÞ þ
Z#

1

½½ _Ut
2��ðxÞ

� �þ
dt ¼ D0ðxÞ þ ½½U#

2 ��ðxÞ: ð41Þ
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Inserting this expression for D#ðL#Þ into (40) and using

(36) lead to the following equation for L0:

rcD
0 L#
� �

þ ð#� 1Þ2G� rcLc ¼ 0:

Let us set Fðx; #Þ :¼ rcD
0ðxÞ þ ð#� 1Þ2G� rcLc and

remark that F(x, 0) decreases from infinity to ð#� 1Þ2G�
rcLc when x goes from -? to D0, then remains constant

for x C D0. Therefore, since by Hypothesis H6

ð#� 1Þ2G\rcLc, there exists a unique L0 such that

F(L0,0) = 0. Since D0ð0Þ ¼ Lc, then F(0, 0) [ 0 and hence

L0 [ (0, D0). Since F is an increasing function of 0 at given

x and since D0 is decreasing on 0;D0ð Þ;D0 L#
� �

decreases and

hence L0 increases when 0 is increasing. Moreover, since V is

continuously differentiable on 0;D0½ �; # 7! L# is continuous

on [1,2] and continuously differentiable on (1,2). Therefore,

L0 grows continuously from 0 to _‘ during the loading phases.

From (41) and by virtue of the continuity of# 7!U# at 0 = 2,

we get lim#"2D
#ðxÞ ¼ D0ðxÞ þ ½½U2

2 ��ðxÞ ¼ D2ðxÞ and hence

the continuity of # 7!D# at 0 = 2. Since lim##0½½U#
2 �� ¼ 0, we

have also the continuity of # 7!D# at 0 = 1.

Note that the right derivative of # 7! ½½U#
2 ��ðxÞ at 0 = 1 is

positive for x \ 0, while its left derivative is negative for

x \ D0. Hence # 7! ½½U#
2 ��ðxÞ is not differentiable at 0 = 1.

In a similar way, # 7! ½½U#
2 ��ðxÞ is not differentiable at 0 = 0

or 2. Its right derivative at 0 = 0 is negative for x \ 0. Its

left derivative at 0 = 2 is positive for x\D0 þ _‘ and hence

its left derivative at 0 = 0 is positive for x \ D0. Parti-

tioning the process zone by the sign of the left derivative of

the opening (see Remark 4), we obtain that all the process

zone is active at 0 = 0 as it was assumed.

It remains to verify that the dependence of D# on x is con-

sistent with the definitions of the three interval C#
B ;C

#
C and C#

D .

Using (41) with (36) and (38), it appears that D# is decreasing

on (-?, L0 ? D0] because ½½U#
2 �� is decreasing on

�1; L# þ D#
a

� �
and not increasing otherwise, because D0

is decreasing on (-?,D0] and not increasing otherwise,

and because L# þ D# ¼ max D0; L# þ D#
a

� �
. Since, by

construction, D# L#
� �

¼ Lc and D# L# þ D#
� �

¼ 0, we have

D# [ Lc on C#
D , 0\D#\Lc on C#

C and D# ¼ 0 on C#
B as

required.

Remark 8 Provided that Hypothesis H6 holds, we have

constructed a (smooth) solution for the small scale problem

which satisfies the set of conditions (29), see Figs. 5, 6 and

7 where are plotted the evolution of ½½U#
2 ��;R#

22;D
#; L# and

L0 ? D0 with 0 when G=Gc ¼ G=rcLc � 0:636. Of course,

since no uniqueness result is available, another solution

could exist (even in the restricted framework where it was

searched). However, the present solution does depend on

the large scale problem only through the stress intensity

factor and hence can be considered as a universal solution

for a crack in mode I in an homogeneous isotropic linear

elastic material under a simple cyclic loading.

3.4 A posteriori verification of the a priori Hypotheses

To finish this construction of the solution for the evolution

problem it remains to check that the a priori assumptions

are really satisfied. We reintroduce ‘ into the notations. The

verification consists in the following procedure.

First, make the following computations:

(I) Compute u½‘�; KI½‘�; KII½‘�; G½‘� and u½‘�R for every

‘ [ [0,Lc) by solving (21);

(II) Compute _‘ ¼ f ðGÞ for every G 2 ð0; rcLcÞ by solving

(39).

Then proceed to the two following verifications:

(i) For every ‘ [ [0,Lc), verify that KII½‘� ¼ 0, that

0\G½‘�\rcLc and that there exists no other singular

point than x̂ð‘Þ on Ĉ;

(ii) Verify that the ordinary differential equation d‘
dT ¼

f ðG½‘�Þ with the initial condition ‘(0) = 0 has a

unique solution T 7! ‘ðTÞ.

Both verifications have a global character and depend on

the geometry and on the loading. They can be non satisfied

for multiple reasons, for instance:

Fig. 6 Evolution of the cumulated opening and of the different zones

(non cohesive zone, active zone and process zone) during the loading

phase of a cycle when G/Gc&0.636 (then _‘ ¼ D0=3). Note the two

parts of the evolution: the first (0 B 0* &1.878) when the tip of the

process zone does not move and the second (0[0*) when both tips

propagate
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(a) It can happen that the process of fatigue never starts

because there is not or not sufficient stress concen-

tration in the uncracked body. In such a case G½0� ¼ 0

and ‘(T) = 0 for all T C 0 is solution of the

differential equation. That means that the nucleation

of a crack under cyclic loading requires a specific

study (which is outside the scope of our paper);

(b) It can happen that the propagation of the crack becomes

‘‘unstable’’ in the sense that the energy release rate

becomes larger than Gc. In such a case, the propagation of

the crack is no more governed by the fatigue law (but it can

still be governed by the evolution problem of Sect. 2.2);

(c) It can happen that several crack tips propagate

simultaneously.

If they are satisfied then it is possible to construct an

approximate solution for the evolution problem as follows

(e = dc/Lc is fixed):

1. Let t [ 0. Define N as the integer part of (t ? 1)/2,

0 = t ? 1 - 2N and T = eN;

2. Set ‘(T) as the solution of the differential equation
d‘
dT ¼ f ðG½‘�Þ at T;

3. Compute U#;D#;D# and L0 for every 0 [ [0,2) at the

given T (they depend on ‘(T));

4. Define ut, ‘t and dt by

utðxÞ ¼ -ð#þ 1Þ
ffiffi
�
p

u½‘ðTÞ�RðxÞ þ �U#ðx; yÞ;
dt ¼ �D#; ‘t ¼ ‘ðTÞ þ �L#

where

xtþ yn¼ 1

�
ðx� x̂ð‘ðTÞÞÞ; t¼ dx̂

ds
ð‘ðTÞÞ; n¼ e3 ^ t:

Then all the hypotheses H1–H6 are satisfied. (Of course,

this is not an exact solution because its construction comes

from a separation of scales.)

4 Properties of the fatigue law and its dependence

on the cohesive model and the loading

4.1 The fatigue law corresponding to Dugdale’s model,

cumulated opening and simple cycle in mode I

Let us reintroduce the real physical quantities instead of the

rescaled ones: ‘ denoting the position of the tip of the non

cohesive crack, d the current length of the process zone and

G the energy release rate at the end of the loading phase of

the cycle N, we have d ¼ �D0 and G ¼ �G½‘�. If we use the

classical notations of engineers and denote by d‘
dN the

increment of the length of the non cohesive crack during a

cycle, we get d‘
dN ¼ � _‘. Accordingly, (39) becomes

Xþ1

i¼0

V
i

d

d‘

dN

� �
G

Gc
¼ 1 with d ¼ p

8 1� m2ð Þ
E

rc

G

Gc
dc:

ð42Þ

The properties of this equation already obtained in Sect.

3.3.5 can be rephrazed and reinterpreted as follows:

1. If G [ Gc, then there is no solution for (42);

2. If G = Gc, then the solutions for (42) are all the d‘/dN

greater than or equal to pEdc

8 1�m2ð Þrc
;

3. If 0 \ G \ Gc, then there exists a unique solution for

(42) and it can read as

d‘

dN
¼ p

8 1� m2ð Þ
E

rc
f

G

Gc

� �
dc: ð43Þ

In other words, we obtain the same property as in Griffith’s

law: the energy release rate cannot be greater than Gc and

the growth rate of the crack is undetermined when the

energy release rate is equal to Gc. That means that the

propagation of the crack during a cycle is no more of

the order of dc if the energy release rate becomes greater

than Gc at the end of the loading phase. The propagation is

no more governed by fatigue concepts. That corresponds

to situation where the propagation is ‘‘brutal’’, that is

discontinuous in time. On the other hand, if the energy

release rate at the end of the loading phase of a cycle is less

than Gc, then the crack propagates progressively from one

cycle to the other (whereas there is no propagation with

Griffith’s law). The presence of this subcritical regime is

due to the introduction of cohesive forces and of the

cumulated opening concept into the model.

Let us establish additional properties for the function f.

P1 f is a dimensionless function, defined on (0,1), contin-

uously differentiable, increasing from 0 to 1, see Fig. 8.

P2 For small values of g = G/Gc, we have fðgÞ ¼
g2=3þ o g2ð Þ and the fatigue law is like a Paris’ law

with exponent 4 in terms of the stress intensity factor:

Fig. 7 Evolution of the opening

and of the normal stress during

the loading phase of a cycle

when G/Gc = 0.636 (then
_‘ ¼ D0=3). Note the growth of

the active zone
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d‘

dN
� p

24 1� m2ð Þ
E

rc

G

Gc

� �2

dc: ð44Þ

Let us prove P1. Setting F(f,g) = - 1 ?
P

i=0
??gV(if/g)

for f C 0 and g [ (0, 1], (42) reads then as FðfðgÞ; gÞ ¼ 0

with g = G/Gc. The regularity of f on (0,1) is a direct

consequence of the implicit function theorem, V being

continuously differentiable and V0=0 on (0,1). Since F is

an increasing function of g at fixed f and since f 7!Fðf ; gÞ
decreases from infinity to -1 ? g \ 0 when f goes from

0 to g, g 7!fðgÞ is increasing and 0\fðgÞ\g. Hence

limg!0fðgÞ ¼ 0. Since Fðf ; 1Þ ¼
Pþ1

i¼1 Vðif Þ;Fðf ; 1Þ[ 0

if f \ 1 and F(f,1) = 0 if f C 1. Hence limg!1fðgÞ ¼ 1

which completes P1.

Let us prove P2. We know by P1 that limg!0fðgÞ ¼ 0.

Let n(g) be the integer part of g=fðgÞ. Since
PnðgÞ

i¼0 gVðifðgÞ=gÞ ¼ 1, we have limg?0 n(g) = ? and

limg!0 nðgÞfðgÞ=g ¼ 1. Therefore

limg!0

fðgÞ
g2
¼ limg!0

XnðgÞ

i¼0

1

nðgÞV
i

nðgÞ

� �
¼
Z1

0

VðfÞdf ¼ 1

3

and the result follows.

The fatigue law depends on the choice of the surface

energy density (here, Dugdale’s law), on the choice of the

memory variable and more generally of the irreversibility

condition (here, the cumulated opening) and on the type of

cyclic loading (here, mode I simple cycle). In the next

subsections, we show what happens if one of these

parameters changes.

4.2 Influence of the type of cyclic loading: cycles

with partial unloading

Let us consider a cyclic loading with period 2 where the

rescaled stress intensity factor of the large scale problem

oscillates between KmI [ 0 and KMI [ KmI, see Fig. 9. We can

follow the same procedure as in the case of a simple cyclic

loading to obtain the fatigue law. Let us simply give the

main steps by emphasizing the changes in comparison with

the simple cycle case. All the process zone is active at the

end of the loading phase, the solution of the small scale

problem at 0 = 0 is unchanged, ½½U0
2 �� and D0 are still given

by (32) and (33) with KI ¼ KMI:

D0 ¼ pKMI
2

8r2
c

¼ pEGM

8 1� m2ð Þr2
c

; ½½U0
2 ��ðxÞ ¼ V

x

D0

� � GM

rc
: ð45Þ

At the end of the unloading phase, since KmI [ 0, only a part

of the process zone is passive, the remaining part being

neutral. The solution of the small scale problem at 0 = 1 is

the same as the one found in Sect. 3.3.3 at # ¼ 1� KmI=K
M
I

with KI ¼ KMI. Therefore, we get

½½U1
2 ��ðxÞ¼ V

x

D0

� �
�ð1�jÞ2V

x

ð1�jÞ2D0

 ! !
GM

rc
ð46Þ

where j¼KmI=K
M
I. During the unloading phase the opening

is non increasing, ½½ _U#
2 ���0, while during the loading phase

the opening is non decreasing, ½½ _U#
2 ���0. Accordingly, the

cumulated opening is such that

D0ðxÞ ¼ D�2ðxÞ þ
Z0

�2

½½ _U#
2 ��ðxÞ

� �þ
d#

¼ D�2ðxÞ þ ½½U0
2 ��ðxÞ � ½½U�1

2 ��ðxÞ
¼ D0 xþ _‘

� �
þ ½½U0

2 ��ðxÞ � ½½U1
2 ��ðxþ _‘Þ:

By induction we obtain

D0ðxÞ ¼
X1

i¼0

½½U0
2 ��ðxþ i _‘Þ �

X1

i¼1

½½U1
2 ��ðxþ i _‘Þ:

Using (45) and (46) the condition D0ð0Þ ¼ Lc giving the

equation for _‘ becomes

X1

i¼1

V
i _‘

ð1� jÞ2D0

 !

ð1� jÞ2GM ¼ rcLc � GM:

Reintroducing the true physical quantities, we finally

obtain the following equation for d‘/dN:

X1

i¼0

V
i

ð1� jÞ2d
d‘

dN

 !

ð1� jÞ2 GM

Gc
¼ 1� 2j� j2

� �GM

Gc

ð47Þ

Fig. 8 Graph of the function f giving the fatigue law

Fig. 9 Non simple cyclic loading: the rescaled stress intensity factor

KI oscillates between KmI and KMI (the true one KI ¼
ffiffi
�
p

KI)
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where

d ¼ p
8 1� m2ð Þ

E

rc

GM

Gc
dc; GM ¼ 1� m2

� �KM
I

2

E
;

j ¼ Km
I

KM
I

;

Km
I and KM

I being the real stress intensity factors at the end

of the loading phase and the unloading phase, respectively.

As is the case of a simple cycle, this equation admits a

unique (positive) solution if and only if 0 \ GM \ Gc.

Now, the solution d‘/dN depends both on the maximal

energy release rate GM and on DKI ¼ KM
I � Km

I . Specifi-

cally, using the function f defined in (43) we get

d‘

dN
¼ p

8 1� m2ð Þ
E

rc

Gc

Gc � 2j� j2ð ÞGM


 f
ð1� jÞ2GM

Gc � 2j� j2ð ÞGM

 !

dc: ð48Þ

When the amplitude of the cycle is small, i.e., when j is

close to 1, we obtain

d‘

dN
� p

24 1� m2ð Þ
E

rc

DKIð Þ4K2
Ic

K2
Ic � KM

Ið Þ2
� �3

dc ð49Þ

where KIc denotes the toughness, i.e., Gc ¼ ð1� m2ÞK2
Ic=E.

The dependence on the amplitude and on the maximal

value of the stress intensity factor is explicit. If,

furthermore, KM
I is small in comparison with KIc, we

recover the usual Paris’ law with the exponent 4, see [34]:

d‘

dN
� p

24 1� m2ð Þ
E

rc

DKI

KIc

� �4

dc: ð50Þ

4.3 Influence of the memory variable: cumulated

tearing in mode III

In mode III, since there is no opening, the non interpene-

tration condition is automatically satisfied but the cumu-

lated opening is no more a memory variable. A possible

candidate is the cumulated tearing

dtðsÞ ¼
Z t

0

½½ _ut0

3 ��
�� ��ðsÞdt0

where ut
3 denotes the anti-plane component of the

displacement field at time t. Thus, the cumulated tearing

evolves as soon as the anti-plane displacement changes,

whatever the sign of its rate. Let us still consider Dugdale’s

surface energy density /ðdÞ ¼ minfscd;Gcg where sc

denotes the critical shear stress and s = r3ini is the shear

stress on the crack lip. Following the same variational

procedure as in Sect. 2.2, the shear stress-cumulated tearing

conditions read as

stj j � sc on Ct
B

st ¼ 0 on Ct
D

	
;

st ¼ sign ½½ _ut
3��

� �
sc on Ct

Ca

stj j � sc on Ct
Cn

(

with

Ct
B ¼ s 2 Ĉ : dtðsÞ ¼ 0

� �

Ct
D ¼ s 2 Ĉ : dtðsÞ[ dc

� �

(

;

Ct
Ca ¼ s 2 Ĉ : 0\dtðsÞ\dc; ½½ _ut

3��ðsÞ 6¼ 0
� �

Ct
Cn ¼ s 2 Ĉ : 0\dtðsÞ\dc; ½½ _ut

3��ðsÞ ¼ 0
� �

(

and dc = Gc/sc. There does not exist a passive zone inside

the process zone. Let us consider symmetric cyclic loading

i.e. a proportional loading such that the seesaw function -
is the periodic function with period 2 defined on [-1,1] by

-ðtÞ ¼ 1� 2jtj, see Fig. 10. (Figs. 11 and 12)

Assuming that dc	 Lc, we can again follow the two-

scale approach to obtain the fatigue law giving the growth

rate of the non cohesive crack d‘/dN at each cycle in terms

of the maximal mode III stress intensity factor KIII (or

equivalently the maximal energy release rate during the

cycle). We simply report here the main results, see [2] for

details. The size d of the process zone CC is such that there

is no singularity at the tip of the process zone, d is of the

order of dc and given by

Fig. 10 Symmetric cyclic loading used in mode III

Fig. 11 Data of the generic small scale problem
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d ¼ p
4

G

Gc

l
sc

dc with G ¼ K2
III

2l
:

The cumulated tearing is equal to dc at the tip of the non

cohesive crack CD. That yields the equation for d‘/dN

which reads as

1� G

Gc
¼ G

Gc

X1

i¼1

2V
i

2d

d‘

dN

� �

where V is still given by (55). This equation enjoys the

same properties as (43): there exists no solution if G [ Gc,

an infinite number of solutions if G = Gc and a unique

solution if 0 \ G \ Gc. In this latter case the solution can

read as

d‘

dN
¼ p

4

l
sc

1þ G

Gc

� �
f

2G

Gc þ G

� �
dc

where f is the function defined in (43). When G/Gc is

small, we recover a Paris law with the exponent 4 in terms

of the stress intensity factor:

d‘

dN
� p

3

l
sc

G

Gc

� �2

dc:

The constant multiplier differs from that of the mode I case

with simple cyclic loading.

4.4 Influence of the surface energy density

If we replace Dugdale’s surface energy density by a more

general, Barenblatt’s type, surface energy density, we loose

the advantage of explicitely constructing the fatigue law.

Indeed, in general, it is no more possible to obtain the

solution of the small scale problem in a closed form.

Moreover the concept of non cohesive crack is not neces-

sarily meaningful, at least at a small scale. Indeed if / is

always increasing with /0[ 0, then the cohesive forces

never vanish. It is the case for example when /
(d) = Gc(1 - exp(- d/dc)). In such a case, the two-scale

approach must be refined. This is outside the scope of the

present paper and will the subject of future works, see

however [1] and [19] for some preliminary results in this

context.

5 Concluding remarks and perspectives

The construction of the fatigue law proposed in Sect. 3 is

based on a separation of scales in space and time which is

licit provided that the characteristic length of the material

is small by comparison to any characteristic length of the

body. The small scale problem consists in determining the

stationary regime governing the evolution of the crack and

of the process zone during one cycle of loading with the

effective stress intensity factor as the loading parameter.

This problem has a universal character since it depends

neither on the geometry of the body, neither of the crack

path nor of the boundary conditions. Therefore the result-

ing fatigue law is characteristic of the material properties

(including its bulk behavior and the cohesive model) for a

given type of cyclic loading. In the case of a linear elastic

material with a Dugdale-type surface energy depending

only on the cumulated opening, we have obtained a Paris-

type fatigue law which is approximatively a power law like

d‘=dN ¼ CDK4
I for small values of DKI. An interesting task

will be to understand the origin of this exponent 4 and to

obtain other exponents by changing the surface energy, the

loading-unloading condition or the bulk behavior of the

material. Another important issue is to see how one could

account for the concept of fatigue threshold from cohesive

models. Among all possible developments of our approach,

let us cite the most exciting: (1) to study the nucleation of a

crack by fatigue; (2) to study the effect of an overloading;

(3) to study the influence of different sequences of loading;

(4) to construct fatigue law under mixed mode conditions.

Appendix 1: The generic problem in the neighborhood

of the crack tip

The plane is equipped with the cartesian coordinate system

(x, y), the associated canonical basis is (i, j) and z ¼ xþ iy

denotes the affixe of the complex number associated with

the point (x, y). Let K, L and D be three given real numbers

with K[ 0 and D[ 0. Let us consider the following plane-

strain elastic problem whose unknowns are the displace-

ment and stress field U and R:

Fig. 12 Graphs of the normal

stress and of the function

V giving the jump of the normal

displacement on the crack path
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div R ¼ 0; R ¼ kdivUIþ 2leðUÞ
in R

2 n ð�1; Lþ DÞ 
 f0g;
R12 ¼ R22 ¼ 0 on ð�1; LÞ 
 f0g;
R12 ¼ 0;R22 ¼ rc on ðL; Lþ DÞ 
 f0g;

with the condition at infinity

limr!1 Uðx; yÞ � K

2l

ffiffiffiffiffiffi
r

2p

r
uSðhÞ

� �
¼ 0

where x ¼ r cos h; y ¼ r sin h and uSðhÞ ¼ ð3� 4m� cos hÞ
cos h

2
iþ sin h

2
j

� �
. This problem admits a unique solution

which can be obtained in a closed form by using the theory

of complex potentials, cf [26]. We simply recall here the

main results. The fields U et R are related to the function

u(z) of the complex variable z by

R22ðx;yÞ�iR12ðx;yÞ¼u0ðzÞþu0 zð Þþ z�zð Þu00ðzÞ;
2l U1ðx;yÞþiU2ðx;yÞð Þ¼ð3�4mÞuðzÞ�u zð Þ� z�zð Þu0ðzÞ;

u being holomorphic in the plane without the half-line

ð�1;LþDÞ
f0g, the bar denoting the complex conjugate.

By a standard procedure, we get

u0ðzÞ ¼ rc

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� L� D
p

ZLþD

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ D� x
p

x� z
dx

þ K

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� L� DÞ

p : ð51Þ

Near the tip z ¼ Lþ D;u0ðzÞ behaves like

u0ðzÞ �
ffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� L� D
p

and hence the stresses are singular with the usual

singularity in 1=
ffiffi
r
p

except if the factor
ffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p

vanishes. Specifically, the jump of the normal displacement

just behind the tip x ¼ Lþ D and the normal stress just

ahead the tip read as

½½U2��ðrÞ ¼
2 1� m2ð Þ

pE

ffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p� � ffiffi

r
p
þ � � � ;

R22ðrÞ ¼
ffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p

4p
ffiffi
r
p þ � � � :

Therefore, if it is required that R22� rc on the half-line

ðLþ D;þ1Þ 
 f0g; then K and D must be such thatffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p

. On the other hand, if it is required that

½½U2�� � 0 holds everywhere (by a non interpenetration

condition, for instance), then K and D must satisfy the

converse inequality
ffiffiffiffiffiffi
2p
p

K� 4rc

ffiffiffi
D
p

. Accordingly, in order

that both conditions are satisfied, the solution must be non

singular at the tip Lþ D. In such a case D and K are related

by

K ¼ 4rc

ffiffiffiffiffiffi
D

2p

r

: ð52Þ

Assuming from now on that (52) holds, (51) becomes

u0ðzÞ ¼ rc

2
þ irc

2p

�
Log

ffiffiffi
D
p
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� L� D
p� �

� Log
ffiffiffi
D
p
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� L� D
p� ��

: ð53Þ

In (53), Log denotes the principal determination of the

complex logarithm. After some calculations, one obtains

that the normal jump of the displacement along the x-axis

reads as

½½U2��ðxÞ ¼ V
x� L

D

� �
8 1� m2ð Þ

p
rc

E
D; ð54Þ

where V denotes the dimensionless real-valued function

defined by

VðfÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1� f
p

� f ln 1þ
ffiffiffiffiffiffiffiffiffiffi
1� f
p� �

þ f ln
ffiffiffiffiffi
jfj

p
if f�1;f 6¼ 0

0 if f�1

	

ð55Þ
and V(0) = 1. Let us note that V is continuously

differentiable everywhere (even at f = 0 and f = 1), is

concave for f B 0 and is strictly decreasing from ? to 0

when f goes from -? to 1. When f? -?,

VðfÞ ¼ 2
ffiffiffiffiffi
jfj

p
þ oð1Þ. The non interpenetration condition

½½U2���0 is satisfied everywhere. The normal stress R22

along the half-line ðLþ D;þ1Þ
f0g is given by

R22ðx; 0Þ ¼ 1� 2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� D

x� L

r !

rc: ð56Þ

It decreases from rc to 0 and, therefore, the condition

R22� rc is satisfied.
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