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From natural to mixed convection in horizontal and differentially heated annular ducts: linear stability analysis

Natural, forced and mixed convection in horizontal annuli is a fundamental issue of interest and has been extensively studied. This interest stems from the wide range of related engineering applications such as thermal energy storage systems, heat exchangers, transmission cables, solar collectors, etc.

Natural convection in dierentially heated horizontal annuli inspired numerous studies because of the role of curvature on the birth of thermal instabilities. Although early ex-perimental work dates from 1931 (Beckmann [START_REF] Beckmann | Die Wärmeübertragung in zylindrischen Gasschichten bei natürlicher Konvektion[END_REF]), it took forty years to have a qualitative description of ows depending on the Grashof number and radius ratio (Grigull and Hauf [START_REF] Grigull | Natural convection in horizontal cylindrical annuli[END_REF], Powe et al. [START_REF] Powe | A numerical solution for natural convection in cylindrical annuli[END_REF]). With the increase in computational resources, numerous numerical simulations were carried out, but mainly under the assumption of two-dimensional ows, invariant in the axial direction. These studies show that two-dimensional ow, which develops in the form of two large symmetrical and crescent-shaped cells, undergoes a Rayleigh-Bénard instability with the increase in the Rayleigh number, for radius ratio in the range 1.2 ≤ R ≤ 2 (see Petrone et al. [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF] for example). The supercritical ow pattern is then made of one or two pairs of additional convection rolls located at the top of the annulus, thereby enhancing heat transfer rate between the cylinder walls. However, these two-dimensional ows turn out to be unstable with respect to three-dimensional perturbations [58]. A critical review of buoyancy-induced ow transitions in horizontal annuli can be found in a recent paper by Angeli et al. [START_REF] Angeli | A critical review of buoyancy-induced ow transitions in horizontal annuli[END_REF].

Forced convection, and to a lesser extent mixed convection, have been the subject of many analytical, experimental and numerical investigations, concerning both the entrance regions (dynamical and thermal) and the heat transfer for fully developed ows [START_REF] Rohsenow | Handbook of Heat Transfer[END_REF]. Graetz [START_REF] Graetz | Über die Wärmeleitungsfähigkeit von Flüssigkeiten[END_REF] (1883), Nusselt [START_REF] Nusselt | Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge[END_REF] (1910) and later on Lévêque [START_REF] Lévêque | Les lois de la transmission de chaleur par convection[END_REF] (1928) were interested in the issue of the developing thermal regime for a uid owing in the laminar established regime in a pipe whose walls were maintained at uniform temperature. In this model, the axial diusion is neglected, such an assumption is justied when the Péclet number is suciently high (Pe > 100). Based on similar assumptions, the works of Lundberg et al. [START_REF] Lundberg | Heat transfer in annular passages. Hydrodynamically developed laminar ow with arbitrarily prescribed wall temperatures or heat uxes[END_REF] and Shah and London [START_REF] Shah | Laminar ow forced convection in ducts[END_REF] provided a comprehensive study on the establishment of thermal regime in an annular duct for several combinations of ow conditions and temperature applied at pipe walls. With similar assumptions, Kakaç and Yücel [START_REF] Kakaç | Laminar ow heat transfer in an annulus with simultaneous development of velocity and temperature elds[END_REF] studied the laminar ow heat transfer in annuli with simultaneous development of velocity and temperature elds. For low values of Péclet number, both axial diusion [START_REF] Hsu | Theoretical solutions for low-Péclet-number thermal-entry-region heat transfer in laminar ow through concentric annuli[END_REF][START_REF] Weigand | Heat transfer in laminar and turbulent ows in the thermal entrance region of concetric annuli: Axial heat conduction eects in uid[END_REF] and free convection [START_REF] Nieckle | Mixed convection in concentric annulus with horizontal axis[END_REF][START_REF] Nonino | Finite element analysis of laminar mixed convection in the entrance region of horizontal annular ducts[END_REF] become not negligible in respect of the establishment length value, which is also strongly aected by thermal conditions applied at the walls. Amongst the papers dealing with the entrance regions, a few are devoted to experimental investigations (see for example the recent paper of Mohammed et al. [START_REF] Mohammed | Experimental study of forced and free convective heat transfer in the thermal entry region of horizontal concentric annuli[END_REF] and references herein). Finally, to our best knowledge, few numerical studies were focused on the inuence of natural convection in dynamically and thermally fully developed ows in annular ducts for very low Reynolds number values, and only for large radii ratios [START_REF] Mojtabi | Analyse du transfert de chaleur en convection mixte laminaire entre deux cylindres coaxiaux horizontaux[END_REF].

Despite these numerous studies, there are still many aspects that need to be explored or thorough, especially concerning the eects of an axial ow on the multicellular secondary ows induced by the buoyancy force in narrow annular spaces. To this aim, a linear stability analysis of the fully developed ow is performed for air owing in an annular pipe of xed radius ratio R = 1.2. The rest of the paper is structured as follows. Section 2 is devoted to the presentation of the governing equations for the basic ow and the perturbed states. A numerical method, suitable for calculating the transition thresholds in a plane of Rayleigh number and Péclet number, is presented. It is built around an iterative method, coupling the calculation of the basic steady ow and determination of the dominant spectrum of the linearized problem. The iterative process, involving the wavenumber and Rayleigh number, is based on approximate Newton methods for which the derivatives are substituted by simple algebraic relations. Section 3 emphasizes the close link between our previous works about pure free convection and the nature of the ow that develops in the cross sections of uid ow in mixed convection. The sensitivity of the critical Rayleigh number is studied as a function of the Péclet number, and it is shown that topologies which are linearly unstable in natural convection turn out to be stable in mixed convection. In particular we show that multiple solutions are simultaneously stable for certain ranges of the couple(Pe, Ra). Finally, a conclusion is drawn that highlights the main issues of this work.

Equations

Physical model

The horizontal annular pipe is conned by two co-axial and innite cylinders of radii r i and r o > r i (Fig. 1). The temperature of the inner and outer cylinders is kept constant

θ -ge 3 r i r o Figure 1: Geometry such that T (r o ) < T (r i ).
The uid ow is assumed incompressible with constant physical properties except the density in the buoyancy term. The axial coordinate is scaled by the annulus gap r o -r i , the velocity components by the mean axial velocity w * , the dynamical pressure by ρ( w * ) 2 and the time by (r o -r i )/ w * . We also introduce the dimensionless temperature dierence T = (T -T r )/(T (r i ) -T (r o )) with T r = (T (r i ) + T (r o ))/2, and the reduced radial coordinate r = (r -r i )/(r o -r i ).

To shorten the writing of equations presented in this article, and to emphasize the role of two-dimensional ows that develop in planes transverse to the axis of the cylinders, the partial derivative operators have been split into an implicit part coupling the radial and azimuthal directions, and symbolically represented by "∇ 2d •", "∇ 2d •", "∇ 2 2d ", "∇ 2 2d " and "∇ 2d ", and an explicit part that deals only with the axial derivatives. Thus, by combining the radial and azimuthal components of the momentum equation into a single vectorial relation (see Eq.(1b)), we obtain the three-dimensional Navier-Stokes and energy equations as follows: 

∇ 2d • v + ∂(f w) ∂z = 0 (1a) ∂ ∂t (f u) e r + ∂ ∂t (f v) e θ + ∇ 2d • (v ⊗ v) + ∂(f
∂ ∂t (f w) + ∇ 2d • (wv) + ∂(f w 2 ) ∂z = -f ∂p ∂z + Pr Pe ∇ 2 2d + ∂ ∂z f ∂ ∂z w (1c) ∂ ∂t (f T ) + ∇ 2d • (T v) + ∂(f T w) ∂z = 1 Pe ∇ 2 2d + ∂ ∂z f ∂ ∂z T (1d)
with the following denitions for the two-dimensional operators:

• divergence of the vector eld Xv

∇ 2d • (Xv) = ∂(f Xu) ∂r + ∂(ηXv) ∂θ (2a) • divergence of the tensorial eld v ⊗ v ∇ 2d • (v ⊗ v) = ∇ 2d • (uv) -ηv 2 e r + (∇ 2d • (vv) + ηuv) e θ (2b) 
• Laplacian of the scalar variable X

∇ 2 2d X = ∂ ∂r f ∂X ∂r + ∂ ∂θ η 2 f ∂X ∂θ (2c) 
• Laplacian of the vector eld v

∇ 2 2d v = ∇ 2 2d u - 2η 2 f ∂v ∂θ - η 2 u f e r + ∇ 2 2d v + 2η 2 f ∂u ∂θ - η 2 v f e θ (2d) 
• gradient of the pressure p

∇ 2d p = f ∂p ∂r e r + η ∂p ∂θ e θ (2e) 
where η = R -1, with R = r o /r i , and f = ηr + 1 are geometric parameters while v = ue r + ve θ + we z and p represent the dimensionless velocity and pressure. The dimensionless parameters Ra = gβ(T (r i ) -T (r o ))(r o -r i ) 3 /(να), Pr = ν/α and Pe = w * (r o -r i )/α stand for the Rayleigh, Prandtl and Péclet numbers, with g, β, ν and α the gravitational acceleration, the thermal expansion coecient, the kinematic viscosity and the thermal diusivity, respectively. The set of equations ( 1) is solved with the dimensionless boundary conditions at the solid walls:

v = 0, T = +0.5 at r = 0 v = 0, T = -0.5 at r = 1 (3) 
with inow and outow boundary conditions and some prescribed initial conditions.

Fully developed ow -Basic solution

The linear stability analysis is performed for a steady and fully developed uid ow: under this assumption the time and axial derivatives for velocity and temperature cancel in Eqs [START_REF] Beckmann | Die Wärmeübertragung in zylindrischen Gasschichten bei natürlicher Konvektion[END_REF]. Because the ow is considered totally established, the pressure gradient in any transversal section of the pipe does not depend on the axial coordinate, and furthermore the axial pressure gradient along the pipe is constant. Thus, the dimensionless pressure term is rewritten as p(r, θ, z) = ∆P × z + p 0 (r, θ) where ∆P is the constant dimensionless axial pressure gradient and p 0 (r, θ) represents the uctuation pressure in any transversal section of the duct. By indexing the basic ow by "0", equations (1a)-(1d) are reduced to the (r, θ)-equations:

∇ 2d • v 0 = 0 (4a) ∇ 2d • (v 0 ⊗ v 0 ) = -∇ 2d p 0 + RaPr Pe 2 f T 0 e 3 + Pr Pe ∇ 2 2d v 0 (4b) ∇ 2d • (w 0 v 0 ) = -f ∆P + Pr Pe ∇ 2 2d w 0 (4c) ∇ 2d • (T 0 v 0 ) = 1 Pe ∇ 2 2d T 0 (4d) 
with v 0 = u 0 (r, θ)e r + v 0 (r, θ)e θ + w 0 (r, θ)e z , T 0 (r, θ) and p 0 (r, θ), and partial dierential operators dened by (2a)-(2e). The boundary conditions are identical to relations (3); inow and outow boundary conditions and initial conditions are disregarded. At this stage, the axial pressure gradient ∆P , which is a priori unknown, must be set so that the dimensionless axial velocity w equals to one, as prescribed by our velocity scaling. Notice that, with the decrease in Ra, one can expect that ∆P becomes closer to the analytical value -8η 2 Pr/Pe/(R 2 + 1 -(R 2 -1)/ ln R) obtained for fully developed forced convection ows (see Rohsenow et al. [START_REF] Rohsenow | Handbook of Heat Transfer[END_REF]). The next paragraph is devoted to the determination of ∆P for mixed ow congurations. The calculation of the axial pressure gradient ∆P is based on two fundamental remarks.

1. The mass conservation (4a) as well as the momentum (4b) and the energy (4d) equations do not depend on either the axial velocity w 0 or the axial pressure gradient. Therefore, any change in ∆P or w 0 will not aect the temperature eld, the radial and axial components of the velocity or the uctuation pressure p 0 . 2. In Eq. (4c), there exists a linear relation between ∆P and w 0 , that is between ∆P and w.

Thus, from a single computation performed choosing an arbitrary axial pressure gradient ∆P 1 = 0 and giving rise to a mean ow velocity w1 , the correct axial pressure gradient providing the mean velocity value equal to 1, as requested by the adopted procedure for scaling the velocity components, is simply ∆P = ∆P 1 / w1 . The axial velocity component needs also to be rescaled by w1 , and no additional computation is required.

Perturbed state equations

The ow consisting in the sum of the two-dimensional basic solution (v 0 , p 0 , T 0 ) and a small three-dimensional perturbation δv = δue r + δve θ + δwe z , δp and δT is also solution of equations (1a)-(1d). Taking into account the order of magnitude of disturbances, the nonlinear contributions are linearized with respect to perturbations. The Fourier transform in the axial direction (F :

Y (z) → Y k = F k (Y )
) is then applied to the linear equations where k stands for a real wavenumber. Let us now dene the transforms of the velocity, temperature and pressure perturbations in complex form as: δv k (r, θ, t) = F(δv(r, θ, z, t)), δT k (r, θ, t) = F(δT (r, θ, z, t)) and δp k (r, θ, t) = F(δp(r, θ, z, t)). The resulting complex equations for the perturbations are written as follows:

0 = ∇ 2d • δv k + ikf δw k (5a) ∂ ∂t (f δu k ) e r + ∂ ∂t (f δv k ) e θ = RHS (1) (δv k , δp k , δT k ) (5b) ∂ ∂t (f δw k ) = RHS (2) (δv k , δp k ) (5c) ∂ ∂t (f δT k ) = RHS (3) (δv k , δT k ) (5d) 
The right-hand sides of Eqs. (5b)-(5d) are dened as follows:

RHS (1) (δv k , δp k , δT k ) = -∇ 2d • (v 0 ⊗ δv k ) -∇ 2d • (δv k ⊗ v 0 ) -ikf (w 0 δu k + δw k u 0 )e r -ikf (w 0 δv k + δw k v 0 )e θ -∇ 2d δp k + RaPr Pe 2 f δT k e 3 + Pr Pe ∇ 2 2d δv k -k 2 f δu k e r -k 2 f δv k e θ (6a) RHS (2) (δv k , δp k ) = -∇ 2d • (w 0 δv k ) -∇ 2d • (δw k v 0 ) -2ikf δw k w 0 -ikf δp k + Pr Pe ∇ 2 2d -k 2 f δw k (6b) RHS (3) (δv k , δT k ) = -∇ 2d • (δT k v 0 ) -∇ 2d • (T 0 δv k ) -ikf (δT k w 0 + T 0 δw k ) + 1 Pe ∇ 2 2d -k 2 f δT k (6c)
The boundary conditions at the solid walls and the initial values write

δv k = 0, δT k = 0 at r = 0 and r = 1 (7a) 
and

δv k = δv k (t = 0 + ), δT k = δT k (t = 0 + ) (7b)
The evolution problem (5) associated with boundary and initial conditions, relations (7a) and (7b) respectively, can also be expressed by using a Laplace transform for time (L : X(t) → X λ = L λ (X)) with λ = λ r + iλ i , λ r , λ i being real values and i 2 = -1. In that case the variables δv k , δT k and δp k located in the right-hand sides of equations (5a)-(5d) write δv k,λ = L λ (δv k ), δT k,λ = L λ (δT k ) and δp k,λ = L λ (δp k ) and the temporal derivatives dened in the left-hand sides of equations (5b)-(5d) give (λδv k,λ -δv k (t = 0 + ))f and (λδT k,λ -δT k (t = 0 + ))f . Therefore, the growth or reduction of the perturbation magnitude is provided by the algebraic sign of the largest real eigenvalue of the eigenproblem obtained by setting the initial disturbances δv k (t = 0 + ) and δT k (t = 0 + ) to zero (namely the general solution of the problem):

0 = ∇ 2d • δv k,λ + ikf δw k,λ (8a) 
λ (f δu k,λ e r + f δv k,λ e θ ) = RHS (1) (δv k,λ , δp k,λ , δT k,λ ) (8b) λf δw k,λ = RHS (2) (δv k,λ , δp k,λ ) (8c) λf δT k,λ = RHS (3) (δv k,λ , δT k,λ ) (8d) 
provided with homogeneous boundary conditions on solid walls and with relations (6a)-(6c) for the right-hand side terms. Note that the eigenvalue problem ( 8) is generally determined by assuming a particular form for the perturbations of velocity (δv k,λ (r, θ) exp(ikz + λt)), temperature (δT k,λ (r, θ) exp(ikz+λt)) and pressure (δp k,λ (r, θ) exp(ikz+λt)) in the equations linearized around the basic ow. This choice results therefore only from a resolution of the perturbed equations in Fourier and Laplace spaces, as shown above.

Numerical methods 2.2.1. Discretization scheme

Continuous equations are discretized on a structured and staggered grid by a nite volume method. The spatial derivatives are approximated by a second-order centered scheme. The control volume [r i ; r i+1 ] × [θ j ; θ j+1 ] with (i, j) ∈ (N + ) 2 for the pressure and the temperature is dened by

r i = i -1 N r , 1 ≤ i ≤ N r + 1 θ j =      π exp 2πc θ j-1 N θ -1 exp (πc θ ) -1 , 1 ≤ j ≤ N θ 2 + 1 2π -θ N θ +2-j , N θ 2 + 1 ≤ j ≤ N θ + 1 (9)
where N r , N θ /2 are strictly positive integers and c θ is a strictly negative real value used to adjust the mesh size in the upper part of the annulus where small convective cells may develop. A time splitting method is adopted to uncouple the velocity and pressure elds [START_REF] Karniadakis | High order splitting method for incompressible Navier-Stokes equations[END_REF]. Time evolution is achieved by a rst-order Euler scheme, by an implicit treatment of the diusion terms, except those involving the coupling of velocity components (Eq. (2d)) that are explicitly approximated, as well as all nonlinear terms.

Steady state and eigenvalue problems

The steady ow, solution of the non-linear system (4) with boundary conditions [START_REF] Powe | A numerical solution for natural convection in cylindrical annuli[END_REF], is computed by the iterative Newton algorithm. The resulting tangent linear problem is also solved with an iterative technique, namely the Bi-Conjugate Gradient Stabilized method. The use of an iterative process for solving linear systems avoids the explicit construction of tangent matrices. Indeed, only the product of this matrix with a vector is required. That is easily performed by the method proposed by Mamun and Tuckerman [START_REF] Mamun | Asymmetry and Hopf bifurcation in spherical Couette ow[END_REF]. The left-hand side (matrix-vector product) and the right-hand side (vector) of each linear system are evaluated in a similar manner, by using specically modied time-marching codes which are derived from the governing equations. Details concerning the implementation can be found in a previous paper dealing with the stability of natural convection ows in horizontal annuli [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF].

In order to characterize the stability of the basic ow, a search for innitesimal disturbances having the largest growth rate is carried out. In what follows, we denote the largest growth rate by λ M r = max λr∈spr (λ r ) where sp r denotes the set of the real parts of the eigenvalues for problem (8); the pulsation λ M i is the imaginary part of the complex eigenvalue whose real part is λ M r . Two cases must be considered according to the sign of λ M r : the inequality λ M r > 0 guarantees an instability condition for the basic ow, whereas λ M r < 0 ensures stability with respect to small disturbances only (while it tells nothing about nite amplitude perturbations).

For a given set of the dimensionless parameters Pr, Ra and Pe and for a xed dimensionless wavenumber k, computation of the largest growth rate λ M r with its associated pulsation λ M i is achieved by solving the eigenvalue problem [START_REF] Adachi | Three-dimensional linear stability of natural convection in horizontal concentric annuli[END_REF] with the free software ARPACK [START_REF] Lehoucq | ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[END_REF] which is based upon an algorithmic variant of the Arnoldi process [START_REF] Arnoldi | The principle of minimized iterations in the solution of the matrix eigenvalue problem[END_REF]. This software is designed to compute some eigenvalues of largest real part or largest magnitude and the corresponding eigenvectors of a generic n by n matrix A. In our case, A is a complex matrix and the dimension of the Krylov subspace used by the Arnoldi method is typically 40. The iterative process then provides between 30 and 40 converged eigenvalues with largest real part. Let a complex variable x (0) = (δv k,λ , δT k,λ ) (0) provided by ARPACK [START_REF] Lehoucq | ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[END_REF], we have to compute the product between the discrete tangent operator A and x (0) . This computation is achieved with a rst order time approximation of equations ( 5), supplied with boundary conditions (7a): the dierence between two successive iterations x (1) -x (0) provides a good guess of exp(Aδt)x (0) -x (0) which in turn is a good estimate of Ax (0) δt for small δt (further details can be found in Petrone et al. [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF]).

Critical values -Algorithm

The estimate of the threshold Rayleigh number value Ra c is achieved by an iterative procedure where the Péclet and Prandtl numbers are assumed to be given. For a wavenumber k, we rst search Ra such that λ M r ( Ra, k) = 0. Afterwards, the threshold Rayleigh number value Ra c is dened by Ra c = min k ( Ra(k)) or Ra c = max k ( Ra(k)) depending on whether the basic ow is destabilized or stabilized when increasing Ra. As it is customary, the critical wavenumber k c is dened by k(Ra c ). In practice, this optimization problem is substituted by the calculation of the local optimum [d Ra/dk]| kc = 0. To compute Ra c and k c , the following iterative algorithm is applied.

Let k0 and Ra be some approximations of the critical wavenumber k c and Rayleigh number Ra c (k c ), and k, λ M r and Ra three small positive real values used as stopping criteria such that k > Ra . Set n = 0, Ra i 0 = Ra for i = -1, 0, 1 and do 1. Solve six steady state problems (4) dened by Ra = Ra i n and Ra = Ra

i n + δRa i (δRa i / Ra i n 1) with i = -1, 0, 1; 2.
Let us consider a set of three dimensionless wavenumbers k i n = kn + iδk for i = -1, 0, 1 (δk/ kn 1) and compute six eigenvalue problems dened by λ M r ( Ra

i n , k i n ) and λ M r ( Ra i n + δRa i , k i n )
, with i = -1, 0, 1, by solving equation ( 8); 3. For each wavenumber k i n , i = -1, 0, 1, compute the new approximation Ra i n+1 of the critical Rayleigh number through the relation It should be noted that the systems of linear equations ( 10) and ( 11) result from applications of the Newton method to solve λ M r ( Ra) = 0, for a given k-value, and [d Ra/dk]| kc = 0 where derivatives were approximated by algebraic relations resulting from Taylor expansions. A necessary condition for convergence of the iterative algorithm is that δk ∆k and δRa i ∆Ra i , otherwise it may fail. Note also that steady state and eigenvalue computations have to be accurate enough in order to avoid troubles in convergence of the approximated Newton methods (10)- [START_REF] Graetz | Über die Wärmeleitungsfähigkeit von Flüssigkeiten[END_REF]. At last, one further information can be added: computations of the six steady ows (step 1) and solution of the six eigenvalue problems (step 2) can be performed simultaneously on dierent computers or processors.

For i = -1, 0, 1 do      λ M r ( Ra i n + δRa i ) -λ M r ( Ra i n ) δRa i ∆Ra i = -λ M r ( Ra i n ) Ra i n+1 = Ra i n + ∆Ra i (10) 4. if λ M r ( Ra i n ) > λ M r or ∆Ra i / Ra

Results

The results were obtained for a xed radius ratio, R = 1.2, and for air, Pr = 0.7. The mesh is similar to that used in natural convection problems [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF], namely 60 regular cells in the radial direction and 240 cells in the azimuthal direction, with a ner mesh at the top of the annular space (c θ = -0.75 in Eq. ( 9)). Preliminary numerical tests indicated that the chosen grid enables to achieve solutions almost insensitive to extra mesh renements. The critical Rayleigh number was computed as a function of the Péclet number, starting from the natural convection problem.

For the linear stability analysis, we rst need the calculation of the steady ows. They consist of the superimposition of two motion elds: the rst one corresponds to the main ow which is mainly driven by the axial pressure gradient (see Eq. (4c)), the secondary ow, so-called because it develops in any transverse section of the annular duct, is due to the buoyancy eect induced by the temperature dierence imposed between the solid boundaries (see Eqs. (4b), and (4d) and boundary conditions (3)). Thus, except the axial component of the velocity, these secondary ows are identical to those obtained in free convection, namely for Pe = 0. The third velocity component, w 0 , is simply the solution of a transport equation wherein the source term is provided by the axial pressure gradient.

As for the natural convection problem [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF], the steady ows are shared out on two dierent branches of solutions. Figure 2 illustrates the bifurcation diagram for the free convection problem: the dimensional radial velocity component of the basic ow at r = 0.5 and θ = π is rescaled with respect to the thermal diusion velocity (u 0 (0.5, π) × Pe), and then drawn as a function of Ra. While this velocity scaling aims to provide curves insensitive to the Péclet number, it should be emphasized that the stability property of the solution depends on Pe, as it will be shown in sections 3.1 and 3.2. To easily distinguish the two branches, the Rayleigh number is labeled either by 1st or by 2nd depending on whether the corresponding ow can be computed or not by means of continuous increasing of the Rayleigh number from zero. Thus, the rst branch starts from Ra 1st = 0 and it is characterized by a secondary ow which rstly consists of two crescent shaped cells (labeled C2, Fig. 3(a)) for Ra 1st Ra 1st f 1 = 2068, and then of a hexa-cellular motion eld, made of two additional couples of convective rolls located above the crescent shaped ones (labeled C6, Fig. 3 Caltagirone [START_REF] Mojtabi | Analyse du transfert de chaleur en convection mixte laminaire entre deux cylindres coaxiaux horizontaux[END_REF] have presented for larger radius ratios.

For the sake of clarity, the presentation of the stability results for the two branches of solutions is divided into two sections. A third section is then devoted to present the stability diagram for the dierent established mixed convection ows in the Rayleigh-Péclet plane and to illustrate the characteristics of the marginal perturbations.

First branch of basic solutions

In natural convection, the two-crescent shaped ow pattern (Fig. 3(a)) and the hexacellular one (Fig. 3(b)) are found stable for two-dimensional perturbations [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF] when Ra is respectively lower and higher than two thresholds, identifying a supercritical (Ra 1st

f 1 = 2068)
and a sub-critical (Ra 1st f 2 = 2456) pitchfork bifurcation; in-between, the steady ows exhibit intermediate unstable patterns. Because the stability problem [START_REF] Choi | Three-dimensional linear stability of natural convective ow between concentric horizontal cylinders[END_REF], with k = 0, is identical to the one obtained for free convection problem, the range Ra 1st f 1 < Ra 1st < Ra 1st f 2 is then also unstable for any established axial ow. Now, by considering any three-dimensional perturbation, the natural convection is linearly stable only for Ra 1st < Ra 1st c (Pe = 0) = 1734, with a non-oscillatory marginal mode characterized by a wavenumber k c (Pe = 0) = 3.04 [START_REF] Choi | Three-dimensional linear stability of natural convective ow between concentric horizontal cylinders[END_REF][START_REF] Petrone | Stability analysis of natural convective ows in horizontal annuli: eects of axial and radial aspect ratios[END_REF].

Figure 4 shows dierent schematic continuation curves obtained by increasing the Péclet number: continuous lines stand for linearly stable solutions, dotted lines indicate unstable solutions with respect to uniform axial disturbances (k = 0), and dashed lines illustrate instabilities to three-dimensional perturbations. By increasing the Péclet number from Pe = 0 (Fig. 4(a) and the bifurcation diagram in Fig. 2) to about Pe = 30 (Fig. 4(b)), Ra 1st c moves from 1734 to Ra 1st f 1 = 2068. Then, the critical Rayleigh number value remains unchanged as long as Pe 65 (Fig. 4(c)). For 30 Pe 65, the transition threshold is given by the unstable perturbations which are uniform in the axial direction (see the dotted lines on the continuation curve in Fig. 4). Once Pe > 65, a new stable region appears for

Ra 1st f 2 < Ra 1st < Ra 1st c = min k ( Ra 1st
(k, Pe > 65)) (Fig. 4(d)). For a better understanding of the relation between the critical Rayleigh and Péclet number values, we also present the qualitative evolution of Ra 1st (k), which corresponds to a zero growth rate of disturbances, as a function of the wavenumber k, for specic Pe-values (Fig. 5). Stable (respectively unstable) regions are labeled with the upper case S (respectively U ). The hatched region denotes unstable ows, at least for two dimensional perturbations. In the (k) move according to the directions showed by the dashed-dotted arrows, in order to give rise to separated unstable regions. Upper case letters U and S emphasize the unstable or stable condition of the established steady ow.
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natural convection problem (Pe = 0), two stability curves represented by continuous lines in Fig. 5(a) begin from points (0, Ra 1st f 1 ) and (0, Ra 1st f 2 ). The stable ow regions are located below the lower curve and in the upper left portion of the plane bounded by the upper marginal stability curve. By increasing the Péclet number in the range 60 < Pe < 65, the following scenario occurs: the stability curves get more and more closer, they join together before to separate again in the form of two new stability curves. Beyond Pe = 65, one of the two curves links the two points (0, Ra 1st f 1 ) and (0, Ra 1st f 2 ), while the second curve is, from now on, released from any xed point in the ( Ra 1st , k)-plane. As a result, this second curve is free to move upwards and a new stable region dened by Ra 1st

f 2 < Ra 1st < Ra 1st c = min k ( Ra 1st (k, Pe > 65)) emerges.

Second branch of basic solutions

As mentioned at the beginning of this section, the tetra-cellular ows (Fig. 3(c for lines drawn in Fig. 4, dotted lines indicate unstable established ows with respect to two-dimensional perturbations (k = 0) and dashed lines symbolize instability of basic ows against three-dimensional disturbances. In agreement with the published results for natural convection [START_REF] Choi | Three-dimensional linear stability of natural convective ow between concentric horizontal cylinders[END_REF][START_REF] Petrone | Stability analysis of natural convective ows in horizontal annuli: eects of axial and radial aspect ratios[END_REF], solutions are always unstable as long as Pe 25. For Pe > 25, a small stability region dened by Ra 2nd for the stability region of the tetra-cellular ows is dened by a pitchfork bifurcation with a wavenumber equal to zero [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF].

The large modications in the continuation curve become clear by analyzing the change in the shape of the stability curves Ra 2nd (k) when the Pe value is increased (Fig. 7). For 0 ≤ Pe 10 (Fig. 7(a)), two continuous lines can be distinguished. The rst one is anchored at the pitchfork two-dimensional bifurcation at (k = 0, Ra 2nd f ). The second one is free to move, and it crosses the saddle-node bifurcation at Ra 2nd s . Increasing Pe leads to a shift of the stability curve: that is emphasized by the dashed lines drawn in the same gure 7(a). As the arrows indicate, the curve lying on the right side undergoes a rotation toward larger Ra-values and lower wavenumbers. In Fig. 7(b) it is shown how that curve continues to move upward and to the left, to nally go closer and closer to the stability curve extending from the xed point (k = 0, Ra 2nd f ). For Pe ≈ 25, the two curves combine together before getting reorganized so that the stability curve connected to the point (0, Ra 2nd f ) is, from now on, a decreasing function of Ra (Fig. 7(c)). On the other hand, this reorganization leads to the appearance of a marginal stability curve which can move upward when Pe increases: this allows a stable region for the basic ow to arise. 
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At last, beyond the hatched regions, the mixed convective ows are linearly unstable. For Pe 25 (see the enlargement in Fig. 8), the marginal Rayleigh curve, which bounds the stability region of uid ows made of two-crescent shaped cells, is more complex so that no relevant analytical approximation is given. In contrast, for Pe greater than about 25, the marginal stability curve for mixed convection ows is reasonably approximated by the analytical function Ra 

Pe) (Eq. 12) and Ra 2nd c (Pe) (Eq. 13) are also drawn with thick lines. accurate within ±2%. By focusing on the marginal curve associated with the C2 pattern (see the enlargement in Fig. 8), we can clearly distinguish two changes in the slope of the curve Ra 1st c (Pe) for Pe < 30. The rst change occurs for 9 < Pe < 10 and 1882 < Ra 1st < 1941, a Rayleigh interval in which the so-called virtual-transcritical bifurcation [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF][START_REF] Mizushima | Transitions of natural convection in a horizontal annulus[END_REF] (or imperfect pitchfork bifurcation [START_REF] Cadiou | Natural convection in a narrow horizontal annulus: the eects of thermal and hydrodynamic instabilities[END_REF]) was pointed out in natural convection, around Ra 1st = 1920. According to the works of Petrone et al. [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF], this pseudo-bifurcation indicates the beginning of a large modication of the secondary ow as a function of the Rayleigh number. Later on, these changes will give rise to the appearance of four new recirculation cells at Ra 1st 2270 and, therefore to the birth of the C6-secondary ow. Such a C6-secondary ow becomes stable for mixed convection under certain conditions (see Fig. 8). The sudden evolution in the slope of the critical Rayleigh number with respect to Pe is also combined with more or less pronounced discontinuities in the representation of the wavenumber as a function of Pe for the C2-secondary ow (see the circles in Fig. 9 drawn using the left and bottom axes). These jumps are due to the emergence of new global minima in the curve Ra 1st (k) (Fig. 5(a), dashed curve). Let us recall that our critical values are evaluated by using the algorithm presented in Sec. 2.2.3, a method providing the calculation of maximum or minimum values in a local sense, not in global one as it should be. The direct consequence of the adopted numerical approach is that solutions depend on the initialization of our iterative algorithm when the solution is not unique and therefore it may converge toward a wrong solution. Notice however that for a xed Péclet value, the critical Rayleigh number is generally less marred by mistakes than the critical wavenumber can be, especially when Ra varies weakly as a function of the wavenumber. The analytical approximation of the wavenumber as a function of the critical Péclet number can be written as follows:

• on the rst branch of solutions and for the C6-secondary ows with an accuracy within about 5%. Note also that we nd again a critical wavenumber slightly above 3 for the natural convection problem (Pe = 0), a value consistent with the literature data [START_REF] Choi | Three-dimensional linear stability of natural convective ow between concentric horizontal cylinders[END_REF][START_REF] Petrone | Stability analysis of natural convective ows in horizontal annuli: eects of axial and radial aspect ratios[END_REF].

Once the Péclet number exceeds zero, the dominant perturbation becomes oscillatory (Hopf bifurcation) for all transitions dierent from those occurring at Ra 1st f 1 , Ra 1st f 2 and Ra 2nd f for which Petrone et al. [START_REF] Petrone | Stability of free convection in air-lled horizontal annuli: Inuence of the radius ratio[END_REF] proved that they correspond to pitchfork bifurcations. The phase velocity at the transition, λ M i /k c , is almost constant, equal to 1.125 ± 3%. Thus, the linear disturbance propagates approximately 10% faster that the mean velocity w of the main axial ow.

Conclusion

The linear stability of the fully developed mixed convection ows of air has been numerically investigated for a narrow horizontal cylindrical duct of radius ratio R = 1.2 in the range 0 < Pe < 200 and Ra < 6000. The steady solutions were computed by a Newton algorithm. Both Laplace and Fourier transforms were used to express the time evolution of innitesimal perturbations and the resulting eigenvalue problem was solved by using the free software ARPACK [START_REF] Lehoucq | ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[END_REF]. The critical Rayleigh and Péclet numbers as well as the wavenumber and frequency were iteratively evaluated by means of approached Newton methods which necessitate successive computations of the basic ow and eigenvalue problem. Our algorithm has been successfully validated on the natural convection problem for which the critical Rayleigh and wavenumber are well established in the literature. For mixed convection problems, in addition to the usual secondary ow consisting of two crescent-shaped cells, we proved that two other ow patterns can also be stable by increasing the Péclet number. These new solutions are characterized by secondary thermal and dynamical elds identical to those encountered in natural convective congurations for a two-dimensional annular space, provided that the parameters are identical. As a result, the instability regions highlighted for 2D natural convection ows are preserved for mixed convection conditions. A stability diagram in the (Pe, Ra)-plane was drawn to dene the stability regions of the secondary ows which consist of the two crescent-shaped cells, with zero, two or four extra recirculation cells located at the top of the horizontal annular duct. Analytical expressions for the variations of the critical Rayleigh number and wavenumber were established as a function of the Péclet number. Two regions in the parameters space were pointed out in which two kinds of secondary ows are stable. This result indicates a multiplicity of solutions and thus a probable dependency of the fully developed ow to the initial conditions.
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  (b)) for Ra 1st Ra 1st f 2 = 2456. The secondary tetra-cellular ow (labeled C4, Fig. 3(c)) belongs to the second branch of solutions which emerges from Ra 2nd Ra 2nd s = 1911 through a saddle-node bifurcation. It may be noted that the uid ow with two transverse cells, C2, is consistent with what Mojtabi and
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Figure 2 :

 2 Figure 2: Bifurcation diagram for natural convection. Dimensional radial velocity component rescaled with respect to the thermal diusion velocity, u 0 (0.5, π) × Pe, as a function of Ra. Ra 1st c = 1734, Ra 1st f1 = 2068, Ra 1st f2 = 2456, Ra 2nd s = 1911, Ra 2nd f = 2000.
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 3 Figure 3: Representative examples of steady and fully developed ows which occur for (a) Ra 1st Ra 1st f1 = 2068, (b) Ra 1st Ra 1st f2 = 2456 and (c) Ra 2nd Ra 2nd s = 1911. Streamlines and axial velocity eld.
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 4 Figure 4: Schematic continuation curves for the rst branch of steady solutions as a function of Ra, for (a) Pe = 0, (b) Pe ≈ 30, (c) Pe ≈ 65 and (d) Pe > 65. Continuous lines stand for linearly stable solutions, dashed lines indicate unstable solutions with respect to three-dimensional perturbations and dotted lines specify instabilities also obtained for two-dimensional perturbations.
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 5 Figure 5: Schematic modications of Ra 1st (k) for dierent Pe range of variation. The hatched region indicates the unstable steady states against two-dimensional disturbances (k = 0). By increasing the Pe-value, the continuous curves Ra

  1st
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 25 )) are located on a second branch of solutions which emerges from a saddle-node bifurcation at Ra 2nd Ra 2nd s = 1911 (Fig.6or bifurcation diagram in Fig.2). By using the same labels (b) Pe > 25
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 6 Figure 6: Schematic continuation curves for the lower branch of steady solutions as a function of Ra, for (a) Pe 25 and (b) Pe > 25. Continuous lines stand for linearly stable solutions, dashed lines indicate unstable solutions with respect to three-dimensional perturbations and dotted lines specify instabilities also obtained for two-dimensional perturbations.
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Figure 7 :

 7 Figure 7: Schematic variation of Ra 2nd (k) as a function of Pe. See the legend of Fig. 5 for extra details.
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 3 Fig.8presents the marginal stability curves in the plane of the Rayleigh number and Péclet number, for mixed convection ows which are characterized by three dierent secondary patterns. The two-and tetra-cellular secondary ows are stable simultaneously in a narrow gap of the Rayleigh number, 2000 < Ra < Ra 1st f 1 = 2068, with Pe 25 (region doubly hatched). On the other hand, the co-existence of the tetra-and hexa-cellular secondary ows occurs in a wide range of the parameters, the region lled in gray, and dened by Pe > 65 and Ra 1st f 2 = 2456 < Ra < Ra 1st c (Pe > 65). Ra 1st c (Pe) may be approximated by the following quadratic law, accurate within ±0.5%Ra 1stc (Pe) = 0.02095Pe 2 + 4.951Pe + 2033, Pe ≥ 65[START_REF] Nusselt | Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge[END_REF] 
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 8 Figure 8: Stability diagram in the plane (Pe, Ra) for mixed convection solutions when secondary ows are made up either of two-cells (C2), of four cells (C4) or of six cells (C6). The labels C2-Stable, C4-Stable or C6-Stable indicate the stability regions of the corresponding secondary ows. Symbols lying on curves are result of numerical simulations. The marginal stability curves Ra 1stc (Pe) (Eq. 12) and Ra 2nd c (Pe) (Eq. 13) are also drawn with thick lines.
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 9 Figure 9: Evolution of the critical wavenumber k c as a function of Pe for the C2-secondary ow (left and bottom axes, with circles) and C4 -C6-secondary ow (right and top axes, with empty and full squares). The analytical approximations k 1st c (Pe) (Eq. 14) and k 2nd c (Pe) (Eq. 15) are drawn with lines.

  k 1st c (Pe) = 1 0.01709Pe + 0.8645 , Pe ≥ 65(14)• on the second branch of solutions and for the C4-secondary owsk 2nd c (Pe) = -2.468 • 10 -3 Pe + 0.7517 if 35 ≤ Pe ≤ 60 -1.657 • 10 -3 Pe + 0.7024 if 60 ≤ Pe ≤ 140 (15)
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