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WELL-POSEDNESS OF THE PRANDTL EQUATION IN

SOBOLEV SPACES

R. ALEXANDRE, Y.-G. WANG, C.-J. XU, AND T. YANG

Abstract. We develop a new approach to study the well-posedness theory of
the Prandtl equation in Sobolev spaces by using a direct energy method under
a monotonicity condition on the tangential velocity field instead of using the
Crocco transformation. Precisely, we firstly investigate the linearized Prandtl
equation in some weighted Sobolev spaces when the tangential velocity of the
background state is monotonic in the normal variable. Then to cope with the
loss of regularity of the perturbation with respect to the background state due
to the degeneracy of the equation, we apply the Nash-Moser-Hörmander iter-
ation to obtain a well-posedness theory of classical solutions to the nonlinear
Prandtl equation when the initial data is a small perturbation of a monotonic
shear flow.
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1. Introduction

In this work, we study the well-posedness of the Prandtl equation which is the
foundation of the boundary layer theory introduced by Prandtl in 1904, [20]. It
describes the behavior of the flow near a boundary in the small viscosity limit of
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an incompressible viscous flow with the non-slip boundary condition. We consider
the following initial-boundary value problem,

(1.1)















ut + uux + vuy + px = uyy, t > 0, x ∈ R, y > 0,
ux + vy = 0,
u|y=0 = v|y=0 = 0, lim

y→+∞
u = U(t, x),

u|t=0 = u0(x, y) ,

where u(t, x, y) and v(t, x, y) represent the tangential and normal velocities of the
boundary layer, with y being the scaled normal variable to the boundary, while
U(t, x) and p(t, x) are the values on the boundary of the tangential velocity and
pressure of the outflow satisfying the Bernoulli law

∂tU + U∂xU + ∂xp = 0.

The well-posedness theories and the justification of the Prandtl equation remain
as the challenging problems in the mathematical theory of fluid mechanics. Up
to now, there are only a few rigorous mathematical results. Under a monotonic
assumption on the tangential velocity of the outflow, Oleinik was the first to obtain
the local existence of classical solutions for the initial-boundary value problems in
[18], and this result together with some of her works with collaborators were well
presented in the monograph [19]. In addition to Oleinik’s monotonicity assumption
on the velocity field, by imposing a so called favorable condition on the pressure, Xin
and Zhang obtained the existence of global weak solutions to the Prandtl equation
in [22]. All these well-posedness results were based on the Crocco transformation to
overcome the main difficulty caused by degeneracy and mixed type of the equation.

Without the monotonicity assumption, E and Engquist in [5] constructed some
finite time blowup solutions to the Prandtl equation. And in [21], Sammartino and
Caflisch obtained the local existence of analytic solutions to the Prandtl equation,
and a rigorous theory on the stability of boundary layers with analytic data in the
framework of the abstract Cauchy-Kowaleskaya theory. This result was extended
to the function space which is only analytic in the tangential variable in [14].

In recent years, there have been some interesting works concerning the linear
and nonlinear instability of the Prandtl equation in the Sobolev spaces. In [8],
Grenier showed that the unstable Euler shear flow (us(y), 0) with us(y) having
an inflection point (the well-known Rayleigh’s criterion) yields instability for the
Prandtl equation. In the spirit of Grenier’s approach, in [6], Gérard-Varet and
Dormy showed that if the shear flow profile (us(t, y), 0) of the Prandtl equation
has a non-degenerate critical point, then it leads to a strong linear ill-posedness
of the Prandtl equation in the Sobolev framework. In a similar approach, in [7]
Gérard-Varet and Nguyen strengthened the ill-posedness result of [6] for the lin-
earized Prandtl equation for an unstable shear flow. Moreover, they also showed
that if a solution, as a small perturbation of the unstable shear flow, to the non-
linear Prandtl equation exists in the Sobolev setting, then it cannot be Lipschitz
continuous. Along this direction, Guo and Nguyen in [9] proved that the nonlinear
Prandtl equation is ill-posed near non-stationary and non-monotonic shear flows,
and showed that the asymptotic boundary-layer expansion is not valid for non-
monotonic shear layer flows in Sobolev spaces. Hong and Hunter [11] studied the
formation of singularities and instability in the unsteady inviscid Prandtl equation.
All these works show what happens in an unsteady boundary layer separation. For
the related mathematical results and discussions, also see the review papers [2, 4].
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As mentioned in [2, 6, 7], the local in time well-posedness of the Prandtl equation
for initial data in Sobolev space remains an open problem. Therefore, it would be
very interesting to recover Oleinik’s well-posedness results simply through direct
energy estimates. And this is the goal of this paper.

In this paper we consider the case of an uniform outflow U = 1, which implies p
being a constant. Consider the following problem for the Prandtl equation,

(1.2)















ut + uux + vuy − uyy = 0, t > 0, x ∈ R, y > 0,
ux + vy = 0,
u|y=0 = v|y=0 = 0, lim

y→+∞
u = 1,

u|t=0 = u0(x, y) .

We are going to study the well-posedness of the Prandtl equation around a
monotonic shear flow. More precisely, assume that

u0(x, y) = us
0(y) + ũ0(x, y),

where us
0 is monotonic in y

(1.3) ∂yu
s
0(y) > 0, ∀y ≥ 0.

To state the main result, we first introduce the following notations. Set ΩT =
[0, T ]× R

2
+. For any non-negative integer k and real number ℓ, define

‖u‖Ak
ℓ
(ΩT ) =

(

∑

k1+[ k2+1
2 ]≤k

‖〈y〉ℓ∂k1

(t,x)∂
k2
y u‖2L2([0,T ]×R

2
+)

)1/2

,

and

‖u‖Dk
ℓ
(ΩT ) =

∑

k1+[
k2+1

2 ]≤k

‖〈y〉ℓ∂k1

(t,x)∂
k2
y u‖L∞

y (L2
t,x)

,

with 〈y〉 = (1 + y2)
1
2 . When the function is independent of t (or x) variable, we

use the same notations for the non-isotropic norms as above under the convention
that we do not take integration with respect to this variable.

The main result of this paper can be stated as follows.

Theorem 1.1. Concerning the problem (1.2), we have the following existence and
stability results.

(1) Given any integer k ≥ 5 and real number ℓ > 1
2 , let the initial data u0(x, y) =

us
0(y) + ũ0(x, y) satisfy the compatibility conditions of the initial boundary value

problem (1.2) up to order k + 4. Assume the following two conditions:
(i) The monotonicity condition (1.3) holds for us

0, and

(1.4)

{

∂2j
y us

0(0) = 0, ∀ 0 ≤ j ≤ k + 4,

‖〈y〉ℓ(us
0 − 1)‖H2k+9(R2

+) + ‖∂2
yu

s
0

∂yus
0
‖H2k+7(R2

+) ≤ C ,

for a fixed constant C > 0.
(ii) There exists a small constant ǫ > 0 depending only on us

0, such that

(1.5) ‖ũ0‖A2k+9
ℓ

(R2
+) + ‖∂yũ0

∂yus
0

‖A2k+9
ℓ

(R2
+) ≤ ǫ.
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Then there is T > 0, such that the problem (1.2) admits a classical solution u
satisfying

(1.6) u− us ∈ Ak
ℓ (ΩT ),

∂y(u − us)

∂yus
0

∈ Ak
ℓ (ΩT ), v ∈ Dk−1

0 (ΩT ).

Here, note that (us(t, y), 0) is the shear flow of the Prandtl equation defined by the
initial data (us

0(y), 0).
(2) The solution is unique in the function space described in (1.6). Moreover,

we have the stability with respect to the initial data in the following sense. For any
given two initial data

u1
0 = us

0 + ũ1
0, u2

0 = us
0 + ũ2

0,

if us
0 satisfy (1.3), (1.4), and ũ1

0, ũ
2
0 satisfy (2.5), then the corresponding solutions

(u1, v1) and (u2, v2) of (1.2) satisfy

‖u1 − u2‖Ap

ℓ
(ΩT ) + ‖v1 − v2‖Dp−1

0 (ΩT ) ≤ C‖ ∂

∂y

(

u1
0 − u2

0

∂yus
0

)

‖Ap

ℓ
(R2

+),

for all p ≤ k−1, where the constant C > 0 depends only on T and the upper bounds
of the norms of u1

0, u
2
0.

Remark 1.2. Note that the solutions obtained in the above theorem are less regular
than the initial data mainly due to the degeneracy with respect to the tangential
variable x of the Prandtl equation.

Remark 1.3. (1) It is not difficulty to see from the proof of Theorem 1.1 that the
above main result holds also for the problem (1.2) defined in the torus T

1 for the
x−variable.

(2) It can be seen by using our approach that the above well-posedness result
can be generalized to the nonlinear problem (1.1) with a non-trivial Euler outflow.
For example, for a smooth positive tangential velocity U(t, x) of the outflow, if the
monotonic initial data u0(x, y) converges to U(0, x) exponentially fast as y → +∞,
and there is α > 0 such that u0(x, y)−U(0, x)(1− e−αy) is small in some weighted
Sobolev spaces, then a similar local well-posedness result holds for the nonlinear
Prandtl equation (1.1), with the role of us

0 being replaced by U(0, x)(1− e−αy).

The rest of the paper is organized as follows. In Section 2, we will introduce
some weighted non-isotropic Sobolev spaces which will be used later, and give
the properties of the monotonic shear flow produced by the initial data (us

0(y), 0).
Then, in Section 3, we will study the well-posedness of the linearized problem of
the Prandtl equation (1.2) in the Sobolev spaces by a direct energy method, when
the background tangential velocity is monotonic in the normal variable. Again,
note that without using the Crocco transformation, the approach introduced here
is completely new and will have further applications. The proof of Theorem 1.1 will
be presented in Section 4, Section 5 and Section 6. As we mentioned earlier, from the
energy estimates obtained in Section 3 for the linearized Prandtl equation, there is
a loss of regularity of solutions with respect to the background state and the initial
data. For this, we apply the Nash-Moser-Hörmander iteration scheme to study
the nonlinear Prandtl equation. In Section 4, we will first construct the iteration
scheme for the problem (1.2), then in Section 5 we will prove the convergence of
this iteration scheme by a series of estimates and then conclude the existence of
solutions to the Prandtl equation. The uniqueness and stability of the solution will
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be proved in Section 6. Finally, Section 7 is devoted to the proof of several technical
estimates used in Section 5.

2. Preliminary

As a preparation, in this section we introduce some functions spaces which will
be used later. And the properties of a monotonic shear flow will also be given.

2.1. Weighted non-isotropic Sobolev spaces. Since the Prandtl equation given
in (1.2) is a degenerate parabolic equation coupled with the divergence-free condi-
tion, it is natural to work in some weighted anisotropic Sobolev spaces.

In addition to the spaces Ak
ℓ and Dk

ℓ introduced already in Section 1, we also
need the following function spaces.

Denote by ∂k
T the summation of tangential derivatives ∂β

T = ∂β0

t ∂β1
x for all β =

(β0, β1) ∈ N
2 with |β| ≤ k. Recall 〈y〉 = (1 + |y|2)1/2. For any given k, k1, k2 ∈

N, λ ≥ 0, ℓ ∈ R and 0 < T < +∞, we introduce

‖f‖
B

k1,k2
λ,ℓ

=
(

∑

0≤m≤k1,0≤q≤k2

‖e−λt〈y〉ℓ∂m
T ∂q

yf‖2L2([0,T ]×R
2
+)

)1/2

,

‖f‖
B̃

k1,k2
λ,ℓ

=
(

∑

0≤m≤k1,0≤q≤k2

‖e−λt〈y〉ℓ∂m
T ∂q

yf‖2L∞([0,T ];L2(R2
+))

)1/2

,

and

‖u‖Ck
ℓ
=

∑

k1+[
k2+1

2 ]≤k

‖〈y〉ℓ∂k1

T ∂k2
y u‖L2

y(L
∞
t,x)

.

For the space Ak
ℓ introduced in Section 1, obviously, we have

Ak
ℓ =

k
⋂

j=0

Bk−j,2j
0,ℓ .

As mentioned in Section 1, when the function is independent of t (or x) variable,
we use the same notations for the non-isotropic norms defined above under the con-
vention that we do not take integration or supremum with respect to this variable.
Note that the parameter λ is associated to the variable t and the parameter ℓ to
the variable y.

The homogeneous norms ‖ · ‖Ȧk
ℓ
, ‖ · ‖Ċk

ℓ
, ‖ · ‖Ḋk

ℓ
correspond to the summation

1 ≤ k1 + [k2+1
2 ] ≤ k in the definitions.

For 1 ≤ p ≤ +∞, we will also use ‖f‖Lp

ℓ
(R2

+) = ‖〈y〉ℓf‖Lp(R2
+).

By classical theory, it is easy to get the following Sobolev type embeddings

(2.1) ‖u‖Ck
ℓ
≤ Cs‖u‖Ak+2

ℓ
, ‖u‖Dk

ℓ
≤ Cs‖u‖Ak+1

ℓ
.

Moreover, for any ℓ ≥ 0 and k ≥ 2, the space Ak
ℓ is continuously embedded into

Ck−2
b , the space of (k − 2)−th order continuously differentiable functions with all

derivatives being bounded.
In the following, we will use some Morse-type inequalities for the above four

function spaces, which are consequences of interpolation inequality and the fact
that the space L2 ∩ L∞ is an algebra.
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Lemma 2.1. For any proper functions f and g, we have

‖f g‖Ak
ℓ
≤ Mk{‖f‖Ak

ℓ
‖g‖L∞ + ‖f‖L∞ ‖g‖Ȧk

ℓ
} ,

and

‖f g‖Ak
ℓ
≤ Mk{‖f‖Ck

ℓ
‖g‖D0

0
+ ‖f‖C0

ℓ
‖g‖Ḋk

0
} .

Similar inequalities hold for the norms ‖ · ‖
B

k1,k2
ℓ

, ‖ · ‖Ck
ℓ
and ‖ · ‖Dk

ℓ
. Here, Mk > 0

is a constant depending only on k.

This result can be obtained in a way similar to that given in [15].

2.2. Properties of a monotonic shear flow. Let us(t, y) be the solution of the
following initial boundary value problem

(2.2)











∂tu
s = ∂2

yu
s, t > 0, y > 0,

us|y=0 = 0, lim
y→+∞

us(t, y) = 1, t > 0,

us|t=0 = us
0(y), y > 0.

.

Note that (us(t, y), 0) is a shear flow for the Prandtl equation (1.2).

Proposition 2.2. For any fixed k ≥ 2, assume that the initial data us
0(y) satisfies

the monotonicity condition

∂yu
s
0(y) > 0, ∀y ≥ 0 ,

and the compatibility conditions for (2.2) up to order k, i.e.

lim
y→+∞

us
0(y) = 1, ∂2j

y us
0(0) = 0, ∀ 0 ≤ j ≤ k.

Moreover, assume that

‖us
0 − 1‖L2(R+) + ‖us

0‖L∞(R+) + ‖us
0‖Ċk

ℓ
+ ‖

∂2
yu

s
0

∂yus
0

‖Ck−1
0

≤ C ,

for a constant C > 0, and a fixed ℓ > 0. Then, we have

(2.3) ∂yu
s(t, y) > 0, ∀ t, y ≥ 0,

for any fixed T > 0, there is a constant C(T ) such that

(2.4) ‖us‖L∞([0,T ]×R+) + ‖us‖Ċk
ℓ
+ ‖

∂2
yu

s

∂yus
‖Ck−1

0
≤ C(T ).

Moreover, for a fixed 0 < R0 < T , there is a constant C(T,R0) > 0 such that

(2.5) max
0≤ȳ≤R0

‖∂yu
s(t, y + ȳ)

∂yus(t, y)
‖Ck−1

0 ([0,T ]×R
+
y ) ≤ C(T,R0),

and

(2.6) max
0≤t̄≤R0

‖∂yu
s(t+ t̄, y)

∂yus(t, y)
‖Ck−2

0 ([0,T−R0]×R
+
y ) ≤ C(T,R0).

Proof. Obviously, the solution of (2.2) can be written as

us(t, y) =
1

2
√
πt

∫ +∞

0

(

e−
(y−ỹ)2

4t − e−
(y+ỹ)2

4t

)

us
0(ỹ)dỹ

=
1√
π

(

∫ +∞

− y

2
√

t

e−ξ2us
0(2

√
tξ + y)dξ −

∫ +∞

y

2
√

t

e−ξ2us
0(2

√
tξ − y)dξ

)

,
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which gives

∂tu
s(t, y) =

1√
πt

(

∫ +∞

− y

2
√

t

ξ e−ξ2(∂yu
s
0)(2

√
tξ + y)dξ

−
∫ +∞

y

2
√

t

ξ e−ξ2(∂yu
s
0)(2

√
tξ − y)dξ

)

.

By using ∂2j
y us

0(0) = 0 for 0 ≤ j ≤ k, it follows

∂p
yu

s(t, y) =
1√
π

(

∫ +∞

− y

2
√

t

e−ξ2(∂p
yu

s
0)(2

√
tξ + y)dξ

+ (−1)p+1

∫ +∞

y

2
√

t

e−ξ2(∂p
yu

s
0)(2

√
tξ − y)dξ

)

,

for all 1 ≤ p ≤ 2k, from which one immediately deduces the monotonicity property
(2.3).

To estimate the last term given in (2.4), denote

α(t, y) =
∂2
yu

s

∂yus
(t, y).

Then, from (2.2), we know that α(t, y) satisfies the following initial boundary value
problem for the Burgers equation,

(2.7)











∂tα = ∂2
yα+ 2α∂yα,

α|y=0 = 0, t > 0,

α|t=0 = α0(y) :=
∂2
yu

s
0

∂yus
0
(y), y > 0.

It is easy to verify that the compatibility conditions of (2.7) hold up to order k− 1,
the estimates on ‖α‖Ck−1

0
can be obtained by standard energy method after an odd

extension of the initial data to the whole R.
To prove (2.5), note that

(2.8)
∂yu

s(t, y + ȳ)

∂yus(t, y)
=

∂yu
s(t, y + ȳ)− ∂yu

s(t, y)

∂yus(t, y)
+ 1,

and

∂yu
s(t, y + ȳ)− ∂yu

s(t, y) =

∫ ȳ

0

∂2
yu

s(t, y + z)dz.

Hence, from (2.8), we have by using (2.4) that

(2.9) ‖∂yu
s(t, y + ȳ)

∂yus(t, y)
‖Ck−1

0 ([0,T ]×R
+
y ) ≤ 1 + C

∫ ȳ

0

‖∂yu
s(t, y + z)

∂yus(t, y)
‖Ck−1

0 ([0,T ]×R
+
y )dz.

By applying the Gronwall inequality to (2.9), it follows

‖∂yu
s(t, y + ȳ)

∂yus(t, y)
‖Ck−1

0 ([0,T ]×R
+
y ) ≤ eCȳ.

The estimate (2.6) can be proved similarly by noting that ∂tu
s = ∂2

yu
s.

�
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3. Well-posedness of the linearized Prandtl equation

In this section, we study the well-posedness of a linearized problem of the Prandtl
equation (1.2) in the Sobolev spaces by the energy method, when the background
tangential velocity is monotonic in the normal variable. Again, the main novelty
here is that unlike most of the previous works, the Crocco transformation will not
be used.

In the estimates on the solutions to the linearized problem, we will see that there
is a loss of regularity with respect to both the source term and the background state.
And this inspires us to use the Nash-Moser-Hörmander iteration scheme to study
the nonlinear Prandtl equation in next section.

Let (ũ, ṽ) be a smooth background state satisfying

∂yũ(t, x, y) > 0, ∂xũ+ ∂y ṽ = 0,

and other conditions that will be specified later. Consider the following linearized
problem of (1.2) around (ũ, ṽ),

(3.1)















∂tu+ ũ∂xu+ ṽ∂yu+ u∂xũ+ v∂y ũ− ∂2
yu = f,

∂xu+ ∂yv = 0,
u|y=0 = v|y=0 = 0, lim

y→+∞
u(t, x, y) = 0,

u|t≤0 = 0 .

Unlike using the Crocco transformation, our main idea is to rewrite the problem
of (3.1) into a degenerate parabolic equation with an integral term without changing
the independent variables, for which we can perform the energy estimates directly.
For this purpose, we introduce the following change of unknown function:

w(t, x, y) =

(

u

∂yũ

)

y

(t, x, y), that is, u(t, x, y) = (∂yũ)

∫ y

0

w(t, x, ỹ)dỹ.

By a direct calculation, we get that for classical solutions, the problem (3.1) is
equivalent to

(3.2)















∂tw + ∂x(ũw) + ∂y(ṽw) − 2∂y(ηw)

+∂y(ζ
∫ y

0
w(t, x, ỹ)dỹ)− ∂2

yw = ∂y f̃ ,
(

∂yw + 2ηw
)

|y=0 = −f̃ |y=0,
w|t≤0 = 0,

where

η =
∂2
y ũ

∂yũ
, ζ =

(

∂t + ũ∂x + ṽ∂y − ∂2
y

)

∂yũ

∂yũ
, f̃ =

f

∂yũ
.

To simplify the notations in the estimates on solutions to the problem (3.2),
denote

λk1,k2 = ‖ũ− us‖
B

k1,k2
0,0

+ ‖∂k1

T ∂k2
y us‖L2

t,y
+ ‖∂k1

T ∂k2
y ṽ‖L∞

y (L2
t,x)

+‖∂k1

T ∂k2
y η‖L2

y(L
∞
t,x)

+ ‖η − η‖
B

k1,k2
0,0

+ ‖ζ‖
B

k1,k2
0,ℓ

,

and
λk =

∑

k1+[
k2+1

2 ]≤k

λk1,k2 ,

where

η =
∂2
yu

s

∂yũ
.
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The following estimate for the problem (3.2) can be obtained by a direct energy
method.

Theorem 3.1. For a given positive integer k, suppose that the compatibility condi-
tions of the problem (3.2) hold up to order k. Then for any fixed ℓ > 1/2, we have
the following estimate

(3.3) ‖w‖Ak
ℓ
≤ C1(λ3)‖f̃‖Ak

ℓ
+ C2(λ3)λk‖f̃‖A3

ℓ
,

where C1(λ3), C2(λ3) are polynomials of λ3 of order less or equal to k.

Remark 3.2. (1) It is easy to see that the compatibility conditions for the problem
(3.2) up to order k follow immediately from the corresponding conditions of the
problem (3.1).

(2) From the estimate (3.3), one can easily deduce the estimates on the solution
(u, v) to the problem (3.1) in some weighted Sobolev spaces. Hence, from these
estimates we can obtain the well-posedness of the linearized Prandtl equation in the
Sobolev spaces.

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.3. ( L2-estimate) Under the assumptions of Theorem 3.1, for any fixed
T > 0, there is a constant C(T ) > 0 such that

‖w ‖2
B̃0,0

λ,ℓ

+ λ‖w‖2
B0,0

λ,ℓ

+ ‖∂yw‖2B0,0
λ,ℓ

≤ C(T )‖f̃‖2
B0,0

λ,ℓ

.

Proof. Multiplying (3.2) by e−2λt〈y〉2ℓw and integrating over R2
+, we get

1

2
∂t‖e−λtw(t)‖2L2

ℓ
(R2

+) + λ‖e−λtw(t)‖2L2
ℓ
(R2

+) + ‖e−λt∂yw(t)‖2L2
ℓ
(R2

+)

≤
(

2ℓ+ 2‖η‖L∞ + ‖ζ‖L∞(Rx;L2
ℓ
(R+,y))

)

‖e−λt∂yw(t)‖L2
ℓ
(R2

+) ‖e−λtw(t)‖L2
ℓ
(R2

+)

+ ℓ‖ṽ‖L∞
−1
‖e−λtw(t)‖2L2

ℓ
(R2

+) + 2ℓ‖e−λtf̃(t)‖L2
ℓ−1(R

2
+) ‖e−λtw(t)‖L2

ℓ
(R2

+)

+ ‖e−λtf̃(t)‖L2
ℓ
(R2

+) ‖e−λt∂yw(t)‖L2
ℓ
(R2

+),

by using the boundary condition given in (3.2).
Using the classical Sobolev embedding theorem, it follows

4
(

2ℓ+ 2‖η‖L∞ + ‖ζ‖L∞
t,x(L

2
ℓ,y

)

)2

+ 2ℓ‖ṽ‖L∞ ≤ (4ℓ(1 + λ3,0))
2.

Thus, by taking λ ≥ (4ℓ(1 + λ3,0))
2, we get

∂t‖e−λtw(t)‖2L2
ℓ
(R2

+) + λ‖e−λtw(t)‖2L2
ℓ
(R2

+) + ‖e−λt∂yw(t)‖2L2
ℓ
(R2

+)

≤ 4‖e−λtf̃(t)‖2L2
ℓ
(R2

+),

which implies

‖w ‖2
B̃0,0

λ,ℓ

+ λ‖w‖2
B0,0

λ,ℓ

+ ‖∂yw‖2B0,0
λ,ℓ

≤ C(T )‖f̃‖2
B0,0

λ,ℓ

,

for all fixed 0 < T < +∞. �

Lemma 3.4. (Energy estimate for tangential derivatives) Under the as-
sumptions of Theorem 3.1, for any fixed T > 0, there is a constant C(T ) > 0 such
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that

‖w ‖2
B̃k,0

λ,ℓ

+ λ‖w‖2
Bk,0

λ,ℓ

+ ‖∂yw‖2Bk,0
λ,ℓ

≤ C(T )

(

‖f̃‖2
Bk,0

λ,ℓ

+
(

‖ζ‖2
Bk,0

0,ℓ

+ ‖∂k
T ṽ‖2L∞

y (L2
t,x)

+ ‖∂k
T η‖2L2

y(L
∞
t,x)

)

‖w‖2
B2,1

λ,ℓ

(3.4)

+
(

‖ũ− us‖2
Bk,0

0,0

+ ‖∂k
T u

s‖L2
t,y

+ ‖η − η‖2
Bk,0

0,0

)

‖w‖2
B3,1

λ,ℓ

)

.

Proof. Taking the differentiation ∂β
T (|β| ≤ k) on the equation in (3.2), multiplying

it by e−2λt〈y〉2ℓ∂β
T w and integrating over R

2
+, as in the proof of Lemma 3.3, for

λ > (4ℓ(1 + λ3,0))
2, we have

(3.5)
∂t‖e−λt∂β

T w(t)‖2L2
ℓ
(R2

+)
+ λ‖e−λt∂β

T w(t)‖2L2
ℓ
(R2

+)
+ ‖e−λt∂β

T ∂yw(t)‖2L2
ℓ
(R2

+)

≤ 4‖e−λt∂β
T f̃(t)‖2L2

ℓ

+A1 +A2 +A3,

where we have used the compatibility conditions of the problem (3.2) and

∂β
T

(

ṽw
)

|y=0 = 0,

by noting ṽ(t, x, y) = −
∫ y

0
∂xũ(t, x, ỹ)dỹ, and A1, A2 and A3 come from the com-

mutators between ∂β
T and the nonlinear terms in (3.2). For brevity, the precise

definitions of Ai, i = 1, 2, 3 are given as follows respectively.
Firstly,

A1 =
∑

β1+β2≤β;|β2|<|β|

Cβ1

β

∣

∣

∣

∣

∣

∫

R
2
+

e−2λt〈y〉2ℓ(∂β1

T ũ)(∂β2

T ∂xw)(∂
β
T w)dxdy

∣

∣

∣

∣

∣

+
∑

β1+β2≤β;|β2|<|β|

Cβ1

β

∣

∣

∣

∣

∣

∫

R
2
+

e−2λt〈y〉2ℓ(∂β1

T ṽ)(∂β2

T w)(∂β
T ∂yw)dxdy

∣

∣

∣

∣

∣

.

Therefore,

A1 .‖e−λt∂β
T w(t)‖L2

ℓ
(R2

+)

{

‖ũ(t)‖L∞(R2
+)‖e−λt∂

|β|
T w(t)‖L2

ℓ
(R2

+)

+ ‖∂|β|
T (ũ(t)− us(t))‖L2(R2

+)‖e−λt∂xw(t)‖L∞
ℓ

(R2
+)

+ ‖∂|β|
T us(t)‖L2

y
‖e−λt∂xw(t)‖L∞

y,ℓ
(L2

x)

}

+ ‖e−λt∂β
T ∂yw(t)‖L2

ℓ
(R2

+)

{

‖ṽ(t)‖L∞(R2
+)‖e−λt∂

|β|−1
T w(t)‖L2

ℓ
(R2

+)

+ ‖∂|β|
T ṽ(t)‖L∞

y (L2
x)
‖e−λtw(t)‖L2

y,ℓ
(L∞

x )

}

,

where we have used Lemma 2.1. Here and in the sequel, for simplicity, we shall
use the notation A . B when there exists a generic positive constant C such that
A ≤ CB. Similar definition holds for A & B.

Secondly, for

A2 =

∣

∣

∣

∣

∣

∫

R
2
+

e−2λ〈y〉2ℓ∂β
T (ηw)(∂

β
T ∂yw)dxdy

∣

∣

∣

∣

∣

,
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we have

A2 .‖η(t)‖L∞(R2
+)‖e−λt∂

|β|
T w(t)‖L2

ℓ
(R2

+)‖e−λt∂β
T ∂yw(t)‖L2

ℓ
(R2

+)

+ ‖∂|β|
T (η − η)(t)‖L2(R2

+)‖e−λtw(t)‖L∞
ℓ

(R2
+)‖e−λt∂β

T ∂yw(t)‖L2
ℓ
(R2

+)

+ ‖∂|β|
T η(t)‖L∞(R2

+)‖e−λtw(t)‖L2
ℓ
(R2

+)‖e−λt∂β
T ∂yw(t)‖L2

ℓ
(R2

+).

Finally, for

A3 =

∣

∣

∣

∣

∣

∫

R
2
+

e−2λ〈y〉2ℓ∂β
T

(

ζ

∫ y

0

wdỹ
)

(∂β
T ∂yw)dxdy

∣

∣

∣

∣

∣

,

we get for ℓ > 1/2,

A3 .‖ζ(t)‖L2
y,ℓ

(L∞
x )‖e−λt∂

|β|
T w(t)‖L2

ℓ
(R2

+)‖e−λt∂β
T ∂yw(t)‖L2

ℓ
(R2

+)

+ ‖∂|β|
T ζ(t)‖L2

ℓ
(R2

+)‖e−λtw(t)‖L2
y,ℓ

(L∞
x )‖e−λt∂β

T ∂yw(t)‖L2
ℓ
(R2

+).

Substituting these estimates of A1, A2, A3 into (3.5), and taking summation over
all |β| ≤ k, it follows

∂t‖e−λt∂k
T w(t)‖2L2

ℓ
(R2

+) + λ‖e−λt∂k
T w(t)‖2L2

ℓ
(R2

+) + ‖e−λt∂k
T ∂yw(t)‖2L2

ℓ
(R2

+)

. ‖e−λt∂k
T f̃(t)‖2L2

ℓ
+ ‖∂k

T (ũ− us)‖2L2(R2
+)‖e−λt∂xw(t)‖2L∞

ℓ
(R2

+)

+ ‖∂k
T u

s‖2L2
y
‖e−λt∂xw(t)‖2L∞

y,ℓ
(L2

x)
+ ‖∂k

T ṽ‖2L∞
y (L2

x)
‖e−λtw(t)‖2L2

y,ℓ
(L∞

x )

+ ‖∂k
T η(t)‖2L2

y(L
∞
x )‖e−λtw(t)‖2L∞

y,ℓ
(L2

x)
+ ‖∂k

T (η − η)(t)‖2L2(R2
+)‖e−λtw(t)‖2L∞

ℓ
(R2

+)

+ ‖∂k
T ζ(t)‖2L2

ℓ
(R2

+)‖e−λtw(t)‖2L2
y,ℓ

(L∞
x ),

for any λ > (4ℓ(1 + λ3,0))
2. Integrating the above inequality on [0, T ], and using

the compatibility condition
(∂k

t,x,yw)|t=0 = 0,

we get for any fixed T > 0,

‖w ‖2
B̃k,0

λ,ℓ

+ λ‖w‖2
Bk,0

λ,ℓ

+ ‖∂yw‖2Bk,0
λ,ℓ

≤ C(T )
{

‖f̃‖2
Bk,0

λ,ℓ

+
(

‖ζ‖2
Bk,0

0,ℓ

+ ‖∂k
T ṽ‖2L2([0,T ]×Rx;L∞(R+))

)

‖e−λtw‖2L∞([0,T ]×Rx;L2
y,ℓ

(R+))

+ ‖ũ− us‖2
Bk,0

0,0

‖e−λt∂xw‖2L∞
ℓ

(R2
+) + ‖∂k

T u
s‖2L2

t,y
‖e−λt∂xw‖2L∞

y,ℓ
(L∞([0,T ],L2

x(R)))

+ ‖∂k
T η‖2L2

y(L
∞
t,x)

‖e−λtw‖2L∞
y,ℓ

(L2
t,x)

+ ‖η − η‖2
Bk,0

0,0

‖e−λtw‖2L∞
ℓ

([0,T ]×R
2
+)

}

.

Using the Sobolev embedding theorem in the above inequality, the estimate (3.4)
follows immediately. �

Remark 3.5. The estimate (3.4) implies

(3.6) ‖w‖2
Bk,1

λ,ℓ

. ‖f̃‖2
Bk,0

λ,ℓ

+ λ2
k,0‖w‖2B3,1

λ,ℓ

.

Moreover, using the same argument as in the above proof together with Lemma 3.3,
when λ > (4ℓ(1 + λ3,0))

2, we can obtain

(3.7) ‖w‖Bk,1
λ,ℓ

. ‖f̃‖Bk,0
λ,ℓ

, 0 ≤ k ≤ 3.
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Proof of Theorem 3.1: Recall from (3.2) that

(3.8) ∂2
yw = ∂tw + ũ∂xw + ṽ∂yw − 2∂y(ηw) + ∂y

(

ζ

∫ y

0

w(t, x, ỹ)dỹ
)

− ∂y f̃ .

By applying ∂k1

T to this equation and using Lemma 2.1, we get

‖w‖
B

k1,2

λ,ℓ

≤ ‖w‖
B

k1+1,0

λ,ℓ

+ ‖ũ∂xw‖Bk1,0

λ,ℓ

+ ‖ṽ∂yw‖Bk1,0

λ,ℓ

+ 2‖ηw‖
B

k1,1

λ,ℓ

+ ‖(∂yζ)
∫ y

0

w(t, x, ỹ)dỹ‖
B

k1,0

λ,ℓ

+ ‖ζw‖
B

k1 ,0

λ,ℓ

+ ‖∂yf̃‖Bk1,0

λ,ℓ

. (1 + ‖ũ‖L∞)‖w‖
B

k1+1,0

λ,ℓ

+ (‖ṽ‖L∞ + ‖η‖L∞)‖w‖
B

k1,1

λ,ℓ

+ ‖ζ‖L∞‖w‖
B

k1,0

λ,ℓ

+ ‖ũ− us‖
B

k1,0
0,0

‖∂xw‖L∞
λ,ℓ

+ ‖∂k1

T us‖L2
y(L

∞
t )‖∂xw‖L∞

y,ℓ
(L2

t,x,λ
) + ‖∂k1

T ṽ‖L∞
y (L2

t,x)
‖∂yw‖L2

y,ℓ
(L∞

t,x,λ
)

+ ‖∂k1

T ∂yη‖L2
y(L

∞
t,x)

‖w‖L∞
y,ℓ

(L2
t,x,λ

) + ‖η − η‖
B

k1,1
0,0

‖w‖L∞
λ,ℓ

+ ‖∂yf̃‖Bk1,0

λ,ℓ

+ ‖∂yζ‖L∞
t,x(L

2
ℓ
)‖w‖Bk1,0

λ,ℓ

+ ‖ζ‖
B

k1,1

0,ℓ

‖w‖L∞
t,x(L

2
λ,ℓ

).

Then by using the Sobolev embedding theorem, it follows that

‖w‖
B

k1,2

λ,ℓ

. λ2,1(‖w‖Bk1+1,0

λ,ℓ

+ ‖w‖
B

k1,1

λ,ℓ

) + ‖∂yf̃‖Bk1,0

λ,ℓ

+ λk1,1‖w‖B3,1
λ,ℓ

.

And from (3.6) and (3.7), we get

‖w‖
B

k1,2

λ,ℓ

. λ2,1

(

‖f̃‖
B

k1+1,0

λ,ℓ

+ ‖f̃‖
B

k1,1

λ,ℓ

)

+ (λ2,1λk1+1,0 + λk1,1)‖f̃‖B3,0
λ,ℓ

.

For k2 > 2, differentiating the equation (3.8) by ∂k1

T ∂k2−2
y , we have

‖w‖
B

k1,k2
λ,ℓ

≤ ‖w‖
B

k1+1,k2−2

λ,ℓ

+ ‖ũ∂xw‖Bk1,k2−2

λ,ℓ

+ ‖ṽ∂yw‖Bk1,k2−2

λ,ℓ

+ 2‖ηw‖
B

k1,k2−1

λ,ℓ

+ ‖(∂yζ)
∫ y

0

w(t, x, ỹ)dỹ‖
B

k1,k2−2

λ,ℓ

+ ‖ζw‖
B

k1 ,k2−2

λ,ℓ

+ ‖∂y f̃‖Bk1,k2−2

λ,ℓ

. (1 + ‖ũ‖L∞)‖w‖
B

k1+1,k2−2

λ,ℓ

+ (‖ṽ‖L∞ + ‖η‖L∞)‖w‖
B

k1,k2−1

λ,ℓ

+ ‖ζ‖L∞‖w‖
B

k1,k2−2

λ,ℓ

+ ‖∂yζ‖L∞
t,x(L

2
ℓ
)‖w‖Bk1,k2−2

λ,ℓ

+ ‖∂yf̃‖Bk1,k2−2

λ,ℓ

+ ‖ũ− us‖
B

k1,k2−2
0,0

‖∂xw‖L∞
λ,ℓ

+ ‖∂k1

T ∂k2−2
y us‖L2

y(L
∞
t )‖∂xw‖L∞

y,ℓ
(L2

t,x,λ
)

+ ‖∂k1

T ∂k2−2
y ṽ‖L∞

y (L2
t,x)

‖∂yw‖L2
y,ℓ

(L∞
t,x,λ

)

+ ‖∂k1

T ∂k2−1
y η‖L2

y(L
∞
t,x)

‖w‖L∞
y,ℓ

(L2
t,x,λ

) + ‖η − η‖
B

k1,k2−1
0,0

‖w‖L∞
λ,ℓ

+ ‖ζ‖
B

k1,k2−1

0,ℓ

‖w‖L∞
y,ℓ

(L2
t,x,λ

) .

Therefore, we get

‖w‖
B

k1,k2
λ,ℓ

. λ2,1(‖w‖Bk1+1,k2−2

λ,ℓ

+ ‖w‖
B

k1,k2−1

λ,ℓ

) + λk1,k2−1‖w‖B3,1
λ,ℓ

+ ‖f̃‖
B

k1,k2−1

λ,ℓ

,

which immediately implies

‖w‖
B

k1,k2
0,ℓ

. λ2,1(‖w‖Bk1+1,k2−2

0,ℓ

+ ‖w‖
B

k1,k2−1

0,ℓ

) + λk1,k2−1‖w‖B3,1
0,ℓ

+ ‖f̃‖
B

k1,k2−1

0,ℓ

,

by fixing λ > (4ℓ(1 + λ3,0))
2.



PRANDTL EQUATION 13

The proof of Theorem 3.1 can then be completed by induction on k2.

4. Iteration scheme for the nonlinear Prandtl equation

From the estimate (3.3) given in Theorem 3.1, we see that there is a loss of
regularity in the solutions to the linearized Prandtl equation with respect to the
source term and the background state. In order to take care of this loss, we are
going to apply the Nash-Moser-Hörmander iteration scheme, cf. [1, 10, 13, 16, 17],
to study the nonlinear problem (1.2).

4.1. The smoothing operators. For a function f defined on Ω = [0,+∞[×Rx ×
R

+
y , let f̃ be its extension to R

3 by 0. Then for a large constant θ, introduce a
family of smoothing operators Sθ:

(Sθf)(t, x, y) =

∫

ρ
θ
(τ)ρ

θ
(ξ)ρ

θ
(η)f̃(t− τ+θ−1, x− ξ, y − η + θ−1)dτdξdη,

where ρ
θ
(τ) = θ ρ(θτ), ρ ∈ C∞

0 (R) with Supp ρ ⊆ [−1, 1] and ‖ρ‖L1 = 1. One has

{Sθ}θ>0 : A0
ℓ(Ω) −→ ∩s≥0As

ℓ(Ω),

together with

(4.1)







‖Sθu‖As
ℓ
≤ Cρθ

(s−α)+‖u‖Aα
ℓ
, for all s, α ≥ 0,

‖(1− Sθ)u‖As
ℓ
≤ Cρθ

s−α‖u‖Aα
ℓ
, for all 0 ≤ s ≤ α,

where the constant Cρ depends only on the function ρ and the orders of differenti-

ations s and α. For the smoothing parameter, we set θn =
√

θ20 + n for any n ≥ 1
and a large fixed constant θ0. We have also

(4.2) ‖(Sθn − Sθn−1)u‖As
ℓ
≤ Cρθ

s−α
n ∆θn‖u‖Aα

ℓ
, for all s, α ≥ 0,

where ∆θn = θn+1 − θn.
The operator Sθ acting on the other three spaces introduced in Section 2.1 shares

the same properties.
The following commutator estimates will be used frequently later,

Lemma 4.1. For any proper function f , we have

(4.3) ‖[ 1

∂yus
, Sθ](∂yf)‖Ak

ℓ
≤ Ck‖

f

∂yus
‖Ak

ℓ
,

and

(4.4) ‖∂y[
1

∂yus
, ∂ySθ]f‖Ak

ℓ
≤ Ckθ‖

f

∂yus
‖Ak

ℓ
,

with the constant Ck depends on the constant in (2.4). Similar inequalities hold for
the norms ‖ · ‖

B
k1,k2
ℓ

, ‖ · ‖Ck
ℓ
and ‖ · ‖Dk

ℓ
.

Proof. This lemma can be proved in a classical way, cf. [3, 12]. To be self-contained,
we give a brief proof of the estimate (4.3) here. Note that (4.4) can be proved
similarly.
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From the definition, we have

(4.5)

[ 1
∂yus , Sθ]b =

Sθ(b)
∂yus (t, x, y)− Sθ

(

b
∂yus

)

(t, x, y)

=
∫

ρ
θ
(τ)ρ

θ
(ξ)ρ

θ
(η)
(

∂yu
s(t−τ+θ−1,y−η+θ−1)−∂yu

s(t,y)
∂yus(y)

)

×
(

b̃
∂yus

)

(t− τ + θ−1, x− ξ, y − η + θ−1)dτdξdη

= θ−1
∫

ρ
θ
(ξ)
(

ρ̃
θ
(τ)ρ

θ
(η)a1(t, τ, y, η, θ) + ρ

θ
(τ)ρ̃

θ
(η)a2(t, τ, y, η, θ)

)

×
(

b̃
∂yus

)

(t− τ + θ−1, x− ξ, y − η + θ−1)dτdξdη,

with ρ̃
θ
(τ) = θ ρ(θ τ)(1 − θ τ), ρ̃

θ
(η) = θ ρ(θ η)(1 − θ η), and

a1(t, τ, y, η, θ) =

∫ 1

0

∂t∂yu
s(t+ λ(θ−1 − τ), y + λ(θ−1 − η))

∂yus(t, y)
dλ,

and

a2(t, τ, y, η, θ) =

∫ 1

0

∂2
yu

s(t+ λ(θ−1 − τ), y + λ(θ−1 − η))

∂yus(t, y)
dλ.

Using (2.5) and (2.6), for j = 1, 2, we have

(4.6) sup
0≤|τ |,|η|≤θ−1≤R0

‖aj( · , τ, · , η, θ)‖Ck+1
0

≤ C̃(T ).

Thus, from (4.5) we get the estimate (4.3) immediately. �

4.2. The iteration scheme. Denote by

P(u, v) = ∂tu+ u∂xu+ v∂yu− ∂2
yu,

the nonlinear operator associated with problem (1.2), and its linearized operator
around (ũ, ṽ) by

P ′
(ũ,ṽ)(u, v) = ∂tu+ ũ∂xu+ ṽ∂yu+ u∂xũ+ v∂yũ− ∂2

yu.

In this subsection, we introduce an iteration scheme in order to construct an
approximate solution sequence {(un, vn)} to the problem (1.2).

For a fixed integer k ≥ 0, suppose that the initial data in the Prandtl equation
(1.2) satisfies the compatibility conditions up to order k, and that (u, v) is a classical
solution. If we set ũ = u− us with us(t, y) being the heat profile defined in Section
2.2, then it is easy to see that

(4.7)























∂tũ+ (ũ+ us)ũx + v∂y(ũ+ us)− ũyy = 0, (x, y) ∈ R
2
+, t > 0,

∂xũ+ ∂yv = 0,

ũ|y=0 = v|y=0 = 0, lim
y→+∞

ũ = 0,

ũ|t=0 = ũ0(x, y).

.

The compatibility conditions for (4.7) follow from those for (1.2) immediately.

The zero-th order approximate solution: Denote

ũj
0(x, y) = ∂j

t ũ|t=0, vj0(x, y) = ∂j
t v|t=0.

Then from the compatibility conditions for (4.7), {ũj
0, v

j
0}j≤k are defined directly by

ũ0(x, y). We are going to construct the zero-th order approximate solution (ũ0, v0)
of (4.7), such that

∂j
t ũ

0|t=0 = ũj
0(x, y), ∂j

t v
0|t=0 = vj0(x, y), 0 ≤ j ≤ k,
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and (u0, v0) = (us + ũ0, v0) satisfying

(4.8)















∂xu
0 + ∂yv

0 = 0, (x, y) ∈ R
2
+, t ≥ 0,

u0|y=0 = v0|y=0 = 0, lim
y→+∞

u0 = 1,

u0|t=0 = u0(x, y) .

.

Other properties of (u0, v0) will be studied in more details in Section 5.1.

The Nash-Moser iteration scheme: Assume that for all k = 0, . . . , n, we have con-
structed the approximate solutions (uk, vk) of (1.2) satisfying the same conditions
given in (4.8) for (u0, v0). We now construct the (n+1)-th approximation solution
(un+1, vn+1) as follows. Set

(4.9) un+1 = un + δun = us + ũn + δun, vn+1 = vn + δvn ,

where the increment (δun, δvn) is the solution of the following initial-boundary
value problem,

(4.10)























P ′
(un

θn
,vn

θn
)(δu

n, δvn) = fn,

∂x(δu
n) + ∂y(δv

n) = 0,

δun|y=0 = δvn|y=0 = 0, lim
y→+∞

δun = 0,

δun|t≤0 = 0,

where un
θn

= us + Sθn ũ
n and vnθn = Sθnv

n.
Now, we define the source term fn for the problem (4.10) in order to have

the convergence of the approximate solution sequence (un, vn) to the solution of
the Prandtl equation (1.2) as n goes to infinity. Obviously, we have the following
identity,

(4.11) P(un+1, vn+1)− P(un, vn) = P ′
(un

θn
,vn

θn
)(δu

n, δvn) + en ,

where
en = e(1)n + e(2)n .

Here

e
(1)
n = P(un + δun, vn + δvn)− P(un, vn)− P ′

(un,vn)(δu
n, δvn)

= δun∂x(δu
n) + δvn∂y(δu

n),

is the error from the Newton iteration scheme, and

e
(2)
n = P ′

(un,vn)(δu
n, δvn)− P ′

(un
θn

,vn
θn

)(δu
n, δvn)

=
(

(1− Sθn)(u
n − us)

)

∂x(δu
n) + δun∂x

(

(1− Sθn)(u
n − us)

)

+δvn∂y
(

(1− Sθn)(u
n − us)

)

+
(

(1− Sθn)v
n
)

∂y(δu
n),

is the error coming from mollifying the coefficients.
From (4.11), we have

(4.12) P(un+1, vn+1) =

n
∑

j=0

(P ′
(Sθj

uj ,Sθj
vj)(δu

j , δvj) + ej) + fa,

with
fa = P(u0, v0) := ∂tu

0 + u0∂xu
0 + v0∂yu

0 − ∂2
yu

0.

Note that if the approximate solution (un, vn) converges to a solution of the
problem (1.2), then the right hand side in the equation (4.12) should go to zero
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when n → +∞. Thus, it is natural to require that (δun, δvn) satisfies the following
equation for all n ≥ 0,

P ′
(un

θn
,vn

θn
)(δu

n, δvn) = fn,

where fn is defined by

n
∑

j=0

f j = −Sθn(

n−1
∑

j=0

ej)− Sθnf
a,

by induction on n. Obviously, we have

(4.13)











f0 = −Sθ0f
a, f1 = (Sθ0 − Sθ1)f

a + Sθ1e0,

fn = (Sθn−1 − Sθn)
(

n−2
∑

j=0

ej
)

− Sθnen−1 + (Sθn−1 − Sθn)f
a, ∀n ≥ 2.

5. Existence of the classical solutions

In this section, we study the iteration scheme (4.9)-(4.10) with fn being given
in (4.13), by using the estimate (3.3) given in Theorem 3.1. To do this, let us first
state the main assumption (MA) on the initial data ũ0(x, y) of (4.7) as follows:

(MA) For any fixed integers k̃ ≥ 7, k0 ≥ k̃+ 2, and a real number
ℓ > 1

2 , suppose that ũ0 ∈ A2k0+1(R2
+) satisfies the compatibility

conditions for the problem (4.7) up to order k0, and

‖ũ0‖A2k0+1

ℓ
(R2

+)
+ ‖∂yũ0

∂yus
0

‖
A

2k0+1

ℓ
(R2

+)
≤ ǫ,

for a small quantity ǫ > 0 depending on the norms of us
0(y).

5.1. The zero-th order approximation. Let us construct the zero-th order ap-
proximate solution (u0, v0) satisfying (4.8) to the problem (1.2). As mentioned in

Section 4.2, from the equation (4.7) one can easily obtain ũj
0(x, y) = ∂j

t ũ(0, x, y)

and vj0(x, y) = ∂j
t v(0, x, y) in terms of ũ0(x, y) for all 0 ≤ j ≤ k0, and then have

the following relations

(5.1)







uj
0(x, y) = ∂2

yu
j−1
0 −

j−1
∑

k=0

Ck
j−1

(

uk
0∂xu

j−1−k
0 + vk0∂yu

j−1−k
0

)

,

vj0(x, y) = −
∫ y

0 ∂xu
j
0(x, ξ)dξ,

by induction on j, with uj
0(x, y) = ũj

0(x, y) + (∂j
t u

s)(0, y).
To construct (ũ0, v0) satisfying

∂j
t ũ

0|t=0 = ũj
0(x, y), ∂j

t v
0|t=0 = vj0(x, y), 0 ≤ j ≤ k0,

we can simply define

(5.2) ũ0(t, x, y) =

k0
∑

j=0

tj

j!
ũj
0(x, y), v0(t, x, y) =

k0
∑

j=0

tj

j!
vj0(x, y) .

For this approximate solution, we have

Lemma 5.1. Under the assumption (MA), for any fixed T > 0, there is a constant
C = C(k0, T ) depends only on k0 and T such that,

(5.3) ‖ũ0‖
Ã

k0+1

ℓ
([0,T ]×R

2
+)

≤ Cǫ, ‖v0‖Dk0([0,T ]×R
2
+) ≤ Cǫ,
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and

(5.4) ‖fa‖
Ã

k0
ℓ

([0,T ]×R
2
+)

≤ Cǫ.

Here, we have used the notations

‖ũ0‖Ãk
ℓ
([0,T ]×R

2
+) :=

k
∑

j=0

‖ũ0‖W j,∞(0,T ;Ak−j

ℓ
(R2

+)),

and
fa = ∂tũ

0 + (ũ0 + us)∂xũ
0 + v0∂y(ũ

0 + us)− ∂2
y ũ

0.

Proof. Since ũ0 ∈ A2k0+1
ℓ (R2

+), it follows immediately that

v0(x, y) = −
∫ y

0

∂xũ0(x, η)dη ∈ D2k0 (R2
+),

which implies

ũ1
0 = −(ũ0 + us

0)∂xũ0 − v0∂y(ũ0 + us
0) + ∂2

y ũ0 ∈ A2k0

ℓ (R2
+),

and

v10(x, y) = −
∫ y

0

∂xũ
1
0(x, η)dη ∈ D2k0−1(R2

+).

In this way, using (5.1) and by induction on j we can deduce

ũj
0 ∈ A2k0+1−j

ℓ (R2
+), vj0 ∈ D2k0−j(R2

+),

for all j ≤ k0, and

‖ũj
0‖A2k0−j+1

ℓ
(R2

+)
≤ C(j)ǫ,

for a constant C(j) depending only on j. Then, (5.3) and (5.4) follow immediately
from the construction (5.2). �

Remark 5.2. Denoting u0 = ũ0+us, it is easy to see that (u0, v0) is an approximate
solution to the original problem (1.2) satisfying

(5.5)























u0
t + u0u0

x + v0u0
y − u0

yy = fa, t > 0, (x, y) ∈ R
2
+,

∂xu
0 + ∂yv

0 = 0, (x, y) ∈ R
2
+, t ≥ 0,

(u0, v0)|y=0 = 0, lim
y→+∞

u0 = 1,

u0|t=0 = u0(x, y),

with ∂j
t f

a|t=0 = 0 for all 0 ≤ j ≤ k0 − 1.

Lemma 5.3. Under the assumptions (MA), for any fixed T > 0, there is a constant
C(k, T ) such that,

(5.6) ‖∂yũ
0

∂yus
‖
A

k0+1

ℓ
([0,T ]×R

2
+)

+ ‖ fa

∂yus
‖
A

k0
ℓ

([0,T ]×R
2
+)

≤ Cǫ.

This result can be proved in a way similar to the proof of Lemma 5.1, so we omit
it for brevity.

Remark 5.4. From the smallness of the first term given in (5.6), it is easy to see
that for a fixed T > 0, there is a small ǫ such that when the conditions of Lemmas
5.1 and 5.5 hold, we have the monotonicity

∂yu
0(t, x, y) > 0, (t, x, y) ∈ [0, T ]× R

2
+.
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5.2. Estimates of the approximate solutions. Obviously, the problem (4.10)
can be written as

(5.7)



























∂t(δu
n) + un

θn
∂x(δu

n) + vnθn∂y(δu
n) + δun∂x(u

n
θn
)

+δvn∂y(u
n
θn
)− ∂2

y(δu
n) = fn,

∂x(δu
n) + ∂y(δv

n) = 0,
δun|y=0 = δvn|y=0 = 0, lim

y→+∞
δun = 0,

δun|t=0 = 0 ,

where

un
θn = us + Sθn(ũ

0 +
∑

0≤j≤n−1

δuj), vnθn = Sθn(v
0 +

∑

0≤j≤n−1

δvj).

Set

wn = ∂y

(

δun

∂yun
θn

)

.

As in Section 3, from (5.7), we know that wn satisfies

(5.8)















∂tw
n + ∂x(u

n
θn
wn) + ∂y(v

n
θn
wn)− 2∂y(η

nwn)

+∂y
(

ζn
∫ y

0
wn(t, x, ỹ)dỹ

)

− ∂2
yw

n = ∂y f̃
n,

(

∂yw
n + 2ηnwn

)∣

∣

y=0
= −f̃n

∣

∣

y=0
,

wn|t=0 = 0 ,

where

ηn =
∂2
yu

n
θn

∂yun
θn

, ζn =
(∂t + un

θn
∂x + vnθn∂y − ∂2

y)∂yu
n
θn

∂yun
θn

,

and

(5.9) f̃n =
fn

∂yun
θn

=
(Sθn−1 − Sθn)

(
∑n−2

j=0 ej
)

− Sθnen−1 + (Sθn−1 − Sθn)f
a

∂yun
θn

.

From the above main assumption (MA) and the construction of the approximate
solution (ũ0, v0) to the problem (4.7), it is easy to show by induction on n that the
compatibility conditions for the problem (5.8) up to order k0 hold for all n ≥ 0.

Similar to Section 3, set

λn
k1,k2

= ‖un
θn − us‖

B
k1,k2
0,0

+ ‖∂k1

T ∂k2
y us‖L2

y(L
∞
t ) + ‖∂k1

T ∂k2
y vnθn‖L∞

y (L2
t,x)

+‖∂k1

T ∂k2
y η̄n‖L2

y(L
∞
t,x)

+ ‖ηn − η̄n‖
B

k1,k2
0,0

+ ‖ζn‖
B

k1,k2
0,l

,

with η̄n =
∂2
yu

s

∂yun
θn

, and

λn
k =

∑

k1+[
k2+1

2 ]≤k

λn
k1,k2

.

That is,

λn
k = ‖un

θn − us‖Ak
0
+ ‖us‖Ck

0
+ ‖vnθn‖Dk

0
(5.10)

+‖η̄n‖Ck
0
+ ‖ηn − η̄n‖Ak

0
+ ‖ζn‖Ak

l
.

By applying Theorem 3.1 to the problem (5.8), we have
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Proposition 5.5. Under the main assumption (MA), the solution wn to the prob-
lem (5.8) satisfies

(5.11) ‖wn‖Ak
ℓ
≤ C1(λ

n
3 )‖f̃n‖Ak

ℓ
+ C2(λ

n
3 )λ

n
k‖f̃n‖A3

ℓ
,

where C1(λ
n
3 ), C2(λ

n
3 ) are polynomials of λn

3 of order less or equal to k.

The key step in proving the convergence of the Nash-Moser-Hörmander iteration
scheme (4.9)-(4.10) is given by the following result.

Theorem 5.6. Under the main assumption (MA), there exists a positive constant
C0, such that

‖wn‖Ak
ℓ
≤ C0 ǫ θ

max{3−k̃, k−k̃}
n ∆θn,(5.12)

holds for all n ≥ 0, 0 ≤ k ≤ k0 where θn =
√

θ20 + n and ∆θn = θn+1 − θn.

Theorem 5.6 will be proved by induction on n. First of all, to apply Proposition
5.5, we need to estimate λn

k and f̃n by induction on n also. For this purpose, we
first give the following estimates, some of the proofs being postponed to Section 7.
The proof of Theorem 5.6 will be completed at the end of this subsection.

Lemma 5.7. Suppose that the main assumption (MA), and (5.12) for wj , 0 ≤ j ≤
n− 1, hold. Then there is a constant C1 > 0, such that

‖δuj‖Ak
ℓ
≤ C1ǫ θ

max{3−k̃, k−k̃}
j ∆θj , 0 ≤ k ≤ k0,(5.13)

(5.14) ‖ δuj

∂yus
‖L∞([0,T ]×R

2
+) ≤ C1ǫθ

3−k̃
j ∆θj ,

and

(5.15) ‖ δuj

∂yus
‖Dk−1

0
≤ C1ǫ θ

max{3−k̃, k−1−k̃}
j ∆θj , 1 ≤ k ≤ k0,

hold for all 0 ≤ j ≤ n− 1.

Since the proof of this lemma is technical, it will be given in Section 7.
As δvj(t, x, y) = −

∫ y

0
(∂xδu

j)(t, x, ỹ)dỹ, from (5.13) we immediately have

Lemma 5.8. Under the same assumptions as for Lemma 5.7, there is a constant
C2 > 0, such that

(5.16) ‖δvj‖Dk
0
≤ C2ǫθ

max{3−k̃,k+1−k̃}
j ∆θj , 0 ≤ k ≤ k0 − 1,

holds for all 0 ≤ j ≤ n− 1.

Based on Lemma 5.7 and Lemma 5.8, we have

Lemma 5.9. Under the same assumptions as for Lemma 5.7, there is a constant
C3 > 0, such that

(5.17) ‖un − us‖Ak
l
≤ C3ǫθ

max{0, k+1−k̃}
n , 0 ≤ k ≤ k0,

(5.18) ‖vnθn‖L∞([0,T ]×R
2
+) + ‖vnθn‖L∞([0,∞)y,L2([0,T ]×Rx) ≤ C3,

and

(5.19) ‖vnθn‖Dk
0
≤







Cρ‖vn‖Dk
0
≤ C3ǫ θ

max{0, k+2−k̃}
n , 0 ≤ k ≤ k0 − 1,

Cρθn‖vn‖Dk0−1
0

≤ C3ǫ θ
max{1, k0+2−k̃}
n , k = k0,
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hold, where Cρ > 0 is given in (4.1).

Proof. From the identity

un − us = ũ0 +

n−1
∑

j=0

δuj

we have immediately by using (5.3) and Lemma 5.7 that

(5.20)

‖un − us‖Ak
l

≤ ‖ũ0‖Ak
l
+

n−1
∑

j=0

‖δuj‖Ak
l

≤ Caǫ+ C1ǫ
n−1
∑

j=0

θ
max{3−k̃, k−k̃}
j ∆θj

≤ Caǫ+ C1C̃ǫθ
max{0, k+1−k̃}
n .

Here, we have used the fact that

(5.21)

j−1
∑

p=0

θk−k̃
p ∆θp ≤

{

C̃θk+1−k̃
j , as k − k̃ ≥ 0,

C̃, as k − k̃ ≤ −2,

for an absolute constant C̃.
From (5.20), we obtain the estimate (5.17) immediately. Similarly, from the

identity

vn = v0 +

n−1
∑

j=0

δvj ,

we can easily deduce the estimates (5.18) and (5.19) by using Lemma 5.8. �

As a direct consequence of the estimate (5.17), there is a constant C̃3 > 0 such
that

(5.22) ‖un
θn − us‖Ak

ℓ
≤ C̃3ǫθ

max{0, k+1−k̃}
n , 0 ≤ k ≤ k0.

To get the estimate of λn
k , we need to estimate the norms of ηn =

∂2
yu

n
θn

∂yun
θn

and

(5.23) ζn =
(∂t + un

θn
∂x + vnθn∂y − ∂2

y)∂yu
n
θn

∂yun
θn

,

which are given as follows. Again, the proofs of the next two Lemmas will be given
in Section 7.

Lemma 5.10. Under the same assumptions as for Lemma 5.7, there is a constant
C4 > 0, such that

(5.24) ‖ηn − η̄n‖Ak
ℓ
≤







C4ǫ θ
max{1,k+2−k̃}
n , 4 ≤ k ≤ k0,

C4ǫ, k = 3,

and

(5.25) ‖η̄n‖Ck
ℓ
≤ C4(1 + ǫθmax{0, k+3−k̃}

n ), 0 ≤ k ≤ k0,

where η̄n =
∂2
yu

s

∂yun
θn

.
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Lemma 5.11. Under the same assumptions as for Lemma 5.7, for ζn defined in
(5.23), there is a positive constant C5 such that

‖ζn‖Ak
ℓ
≤







C5θ
max{1, k+3−k̃}
n , 4 ≤ k ≤ k0,

C5, k = 3.
(5.26)

By plugging the estimates (5.19), (5.24), (5.25), (5.26) and (5.22) into the defi-
nition (5.10) of λn

k , we conclude

Proposition 5.12. Suppose that the main assumption (MA), and (5.12) for wj ,
0 ≤ j ≤ n− 1, hold. There exists a positive constant C6 > 0 depending on Cp (1 ≤
p ≤ 5) given in Lemmas 5.7-5.11, such that

λn
k ≤







C6θ
max{1, k+3−k̃}
n , 4 ≤ k ≤ k0,

C6, k = 3.

To estimate f̃n defined in (5.9), we will need the following two estimates whose
proofs will be given in Section 7.

Lemma 5.13. Under the same assumptions as for Lemma 5.7, there is a constant
C7 > 0, such that

(5.27) ‖
(∂yu

n
θn

∂yus

)−1

‖L∞ ≤ 2, ‖
(∂yu

n
θn

∂yus

)−1

‖Ȧk
0
≤ C7ǫ θ

max{0,k+1−k̃}
n ,

hold, with 1 ≤ k ≤ k0.

Lemma 5.14. Under the same assumptions as for Lemma 5.7, there is a constant

C8 > 0, such that for the error terms e
(1)
j = δuj∂xδu

j + δvj∂yδu
j and

e
(2)
j =

(

(1− Sθj )(u
j − us)

)

∂x(δu
j) + δuj∂x

(

(1− Sθj )(u
j − us)

)

+δvj∂y
(

(1− Sθj )(u
j − us)

)

+
(

(1− Sθn)v
j
)

∂y(δu
j),

the following estimates

(5.28) ‖
e
(1)
j

∂yus
‖
A

k1
ℓ

≤ C8ǫ
2θ

max{6−2k̃, k1+3−2k̃}
j ∆θj ,

and

‖
e
(2)
j

∂yus
‖
A

k1
l

≤ C8ǫ
2θ

max(3−k̃,k1+5−2k̃)
j ∆θj ,(5.29)

hold for all k1 ≤ k0 − 1 and 0 ≤ j ≤ n− 1.

In summary, for

f̃n =
fn

∂yun
θn

=
(Sθn−1 − Sθn)

(
∑n−2

j=0 ej
)

− Sθnen−1 + (Sθn−1 − Sθn)f
a

∂yun
θn

,

with en = e
(1)
n + e

(2)
n , we have

Proposition 5.15. Suppose that the main assumption (MA), and (5.12) for wj ,
0 ≤ j ≤ n− 1, hold, there exists a constant C9 > 0 such that

(5.30) ‖f̃n‖Ak
ℓ
≤ C9ǫθ

max{3−k̃, k−k̃}
n ∆θn , 0 ≤ k ≤ k0.
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Proof. From f̃n = fn

∂yun
θn

= fn

∂yus

(

∂yu
n
θn

∂yus

)−1

, by using Lemma 2.1 and Lemma 5.13

we have

‖f̃n‖Ak
ℓ
≤ Mk

{

2‖ fn

∂yus
‖Ak

ℓ
+ ‖ fn

∂yus
‖L∞

ℓ
C7ǫ θ

max{0,k+1−k̃}
n

}

.

On the other hand, using (4.1) and (4.2), for any k, kj ≥ 0 (j = 1, 2, 3), we have

‖ fn

∂yus
‖Ak

ℓ
≤ Cρ

{

n−2
∑

j=0

‖ ej
∂yus

‖
A

k1
ℓ

θk−k1
n ∆θn + ‖en−1

∂yus
‖
A

k2
ℓ

θ(k−k2)+
n(5.31)

+ ‖ fa

∂yus
‖
A

k3
ℓ

θk−k3
n ∆θn

}

.

Thus, by using (5.28), (5.29) in (5.31), we get

‖ fn

∂yus
‖Ak

ℓ
≤ Cρ

{

2C8

n−2
∑

j=0

ǫ2θ
max{3−k̃, k1+5−2k̃}
j ∆θjθ

k−k1
n ∆θn

+ 2C8ǫ
2θ

max{3−k̃, k2+5−2k̃}
n−1 ∆θn−1θ

(k−k2)+
n + Caǫ θk−k3

n ∆θn

}

,(5.32)

for k1 ≤ k0 − 1 and k2 ≤ k0 − 1, provided ‖ fa

∂yus ‖Ak3
l

≤ Caǫ.

When k = 3, by setting k1 = k3 = k̃ and k2 = 3 in (5.32) we get

‖ fn

∂yus
‖A3

ℓ
≤ Cρ(2C8(1 + C̃)ǫ2 + Caǫ)θ3−k̃

n ∆θn.(5.33)

When 4 ≤ k ≤ k0, by choosing k1 ≥ 1 + k̃, k2 = k̃ − 2 and k3 = k̃ in (5.32) we
obtain

‖ fn

∂yus
‖Ak

ℓ
≤ Cρ(2C8(1 + C̃)ǫ2 + Caǫ)θk−k̃

n ∆θn.(5.34)

Here, we have used the fact that (k − k2)+ + k2 + 5− k̃ ≤ k for all 4 ≤ k ≤ k0.
Combining (5.33) with (5.34), we conclude the estimate (5.30). �

Proof of Theorem 5.6:
We are now ready to conclude the proof of Theorem 5.6 by induction on n.
For n = 0, from the main assumption (MA), Lemma 5.1 and Lemma 5.5, we get

immediately that for any fixed T > 0, there is a constant Ca = Ca(k0, T ) such that

‖ũ0‖
A

k0+1

ℓ

+ ‖∂yũ
0

∂yus
‖
A

k0+1

ℓ

+ ‖ fa

∂yus
‖
A

k0
ℓ

≤ Caǫ.

This implies that f̃0 = fa

∂y(us+Sθ0
ũ0) satisfies

‖f̃0‖
A

k0
ℓ

≤ C̃aǫ,

for a constant C̃a.
A direct calculation yields

λ0
k ≤ ‖us‖Ck

0
+ ‖

∂2
yu

s

∂yus
‖Ck

0
+ C̄aǫ ≤ Ck0 , ∀k ≤ k0,

for a constant C̄a depending on Ca and C̃a given at above.
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By applying Proposition 5.5 for w0, and using the above estimates, it follows

(5.35) ‖w0‖Ak
ℓ
≤ C̄k0ǫ, ∀k ≤ k0,

for a constant C̄k0 depending on C̃a and Ck0 given above. Hence, the estimate (5.12)
for the case n = 0 follows immediately from (5.35) with a constant C0 depends on

C̄k0 , k0, k̃ and θ0.
Now, assuming that (5.12) holds for all wj with 0 ≤ j ≤ n− 1, we are going to

prove it for wn. In fact, from the estimates (5.11) and (5.30), we get

‖wn‖Ak
ℓ
≤ C1(λ

n
3 )C9ǫθ

max{3−k̃,k−k̃}
n + C2(λ

n
3 )λ

n
kC9ǫθ

3−k̃
n ,

which implies by Proposition 5.12 that

‖wn‖A3
ℓ
≤ C0ǫθ

3−k̃
n ,

and
‖wn‖Ak

ℓ
≤ C0ǫθ

k−k̃
n ,

for all 4 ≤ k ≤ k0, with the constant C0 ≥ (C1(C6) + C2(C6)C6)C9.

5.3. Convergence of the iteration scheme. In this subsection, we will prove
the convergence of the iteration scheme and this immediately yields the existence
of classical solutions to the Prandtl equation (1.2).

From the iteration scheme (4.9)-(4.10) with fn defined in (4.13), we know that
the approximate solution

un+1 = us + ũ0 +

n
∑

j=0

δuj, vn+1 = v0 +

n
∑

j=0

δvj ,

satisfies

(5.36)



















P(un+1, vn+1) = (1− Sθn)
∑n

j=0 ej + Sθnen + (1− Sθn)f
a,

∂xu
n+1 + ∂yv

n+1 = 0,
un+1|y=0 = vn+1|y=0 = 0, lim

y→+∞
un+1 = 1,

un+1|t=0 = u0(x, y) .

From the estimates (5.13) and (5.16), we know that there exist u ∈ us + Ak̃−2
ℓ

and v ∈ Dk̃−3
0 , such that

lim
n→+∞

‖un − u‖
Ak̃−2

ℓ

= 0, lim
n→+∞

‖vn − v‖
Dk̃−3

0

= 0.

To verify that the limit (u, v) is a classical solution to the problem (1.2), it is
enough to show that the right hand side of the equation in (5.36) converges to zero
as n → +∞.

Obviously, we have

‖(1− Sθn)(f
a +

n
∑

j=0

ej)‖Ak
ℓ
≤ θ−1

n (‖fa‖Ak+1
ℓ

+

n
∑

j=0

‖ej‖Ak+1
ℓ

).

Thus, it is enough to prove the convergence of series
∑+∞

j=0 ‖ej‖Ak+1
ℓ

. Recall

ej = e
(1)
j + e

(2)
j ,

with
e
(1)
j = δuj∂x(δu

j) + δvj∂y(δu
j),
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and

e
(2)
j = ∂y

(

δvj
(

(1 − Sθj)(u
j − us)

)

+
(

(1− Sθj )v
j
)

(δuj)
)

.

By using Lemma 2.1, it follows that

‖e(1)j ‖Ak+1
ℓ

≤ Mk

(

‖δuj‖L∞‖δuj‖Ak+2
ℓ

+ ‖δvj‖L∞‖δuj‖Ak+2
ℓ

+ ‖δvj‖Dk+2
0

‖δuj‖L2
y,ℓ

(L∞
t,x)

)

≤ C10ǫ
2 θk+5−2k̃

j ∆θj ,

and

‖e(2)j ‖Ak+1
ℓ

≤ Mk

(

‖δvj‖L∞‖uj − us‖Ak+2
ℓ

+ ‖δvj‖Dk+2
0

‖uj − us‖L2
y,ℓ

(L∞
t,x)

+ ‖vj‖L∞‖δuj‖Ak+2
ℓ

+ ‖vj‖Dk+2
0

‖δuj‖L2
y,ℓ

(L∞
t,x)

)

≤ C10ǫ
2 θk+3−k̃

j ∆θj ,

for a positive constant C10 > 0, where we have used (5.13), (5.16) and (5.17).
Therefore, we obtain

+∞
∑

j=0

‖ej‖Ak+1
ℓ

≤ C

+∞
∑

j=0

θk+3−k̃
j ∆θj ≤ CC̃,

for all k ≤ k̃ − 5. And this concludes the convergence of the iteration scheme and
the existence of classical solutions to the Prandtl equation (1.2).

6. Uniqueness and stability

In this section, we study the stability of classical solutions to the Prandtl equation
(1.2), and thus the uniqueness of the classical solution obtained in Section 5 will
follow immediately.

Let (u1, v1) and (u2, v2) be two classical solutions to the problem (1.2) in the
solution spaces given in Theorem 1.1 with the initial data u1

0(x, y) and u2
0(x, y) as

two small perturbations of us
0(y) as stated in Theorem 1.1. Denoting by

u = u1 − u2, v = v1 − v2, ũ =
u1 + u2

2
, ṽ =

v1 + v2

2
,

then from (1.2), we deduce that (u, v) satisfies

(6.1)















∂tu+ ũ∂xu+ ṽ∂yu+ u∂xũ+ v∂yũ− ∂2
yu = 0,

∂xu+ ∂yv = 0,
u|y=0 = v|y=0 = 0, lim

y→+∞
u = 0,

u|t=0 = u0(x, y) := u1
0 − u2

0 .

As in Section 3, set

(6.2) w(t, x, y) =

(

u

∂yũ

)

y

(t, x, y) that is, u(t, x, y) = (∂yũ)

∫ y

0

w(t, x, y′)dy′.
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Then, from (6.1) we know that w(t, x, y) satisfies

(6.3)











∂tw + ∂x(ũw) + ∂y(ṽw) − 2∂y(ηw) + ∂y(ζ
∫ y

0 w(t, x, ỹ)dỹ)− ∂2
yw = 0,

(

∂yw + 2ηw
)

|y=0 = 0,

w|t=0 = w0(x, y) =
(

u0

∂y ũ

)

y
(x, y),

where

η =
∂2
y ũ

∂yũ
, ζ =

(

∂t + ũ∂x + ṽ∂y − ∂2
y

)

∂yũ

∂yũ
.

Similar to the proof for (3.3) in the problem (6.3), it follows

(6.4) ‖w‖Ak
ℓ
([0,T ]×R

2
+) ≤ C(T )‖w0‖Ak

ℓ
(R2

+), k ≤ k̃ − 3,

for a constant C(T ) depending on T > 0 and the norms of the initial data u1
0, u

2
0

in the spaces given in the existence part of Theorem 1.1.
From (6.4), and the transformation (6.2), we deduce

‖u1 − u2‖Ak
ℓ
([0,T ]×R

2
+) + ‖v1 − v2‖Dk−1

0 ([0,T ]×R
2
+) ≤ C‖ ∂

∂y

(

u1
0 − u2

0

∂yus
0

)

‖Ak
ℓ
(R2

+),

for all k ≤ k̃ − 3. And this concludes the uniqueness and stability results stated in
Theorem 1.1.

7. Proof of some technical estimates

Finally, in this section, we give the proofs for Lemmas 5.7, 5.10, 5.11, 5.13 and
5.14 stated in Section 5 about the iteration scheme (4.9)-(4.10).

We start with the proof for Lemma 5.7.

Proof of Lemma 5.7: Let us first prove the estimate (5.13). First of all, it holds
true for δu0. Indeed, from

δu0 = ∂y(u
s + Sθ0 ũ

0)

∫ y

0

w0dỹ,

by using Lemma 2.1 and the Sobolev embedding theorem, we have

‖δu0‖Ak
l
≤ C0

k‖w0‖Ak
l
≤ C0

kC0ǫθ
max{3−k̃, k−k̃}
0 ∆θ0, k ≥ 2,

with

C0
k = ‖us‖Ck+1

ℓ
+ ‖ũ0‖Ak+1

ℓ
.

The estimate (5.13) holds obviously for δu0 when k = 0, 1.
Now, suppose that (5.13) holds for δup, 0 ≤ p ≤ j − 1. We estimate δuj as

follows.
Recalling wj = ( δuj

∂y(u
j

θj
)
)y, we have

δuj = ∂y(u
j
θj
)

∫ y

0

wjdỹ.
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Using again Lemma 2.1, the Sobolev embedding theorem and (5.21), it follows

that, for k ≥ 4 and k̃ ≥ 6,

‖δuj‖Ak
l

≤ Mk((C
0
k + ‖∂y(uj

θj
− us)‖Ak

l
)‖wj‖A2

l
+ ‖∂yuj

θj
‖L2

y,ℓ
(L∞

t,x)
‖wj‖Ak

l
)

≤ Mk((C
0
k + Cρθj

j−1
∑

p=0
‖δup‖Ak

l
)‖wj‖A2

l
+ ‖∂yuj‖L2

y,ℓ
(L∞

t,x)
‖wj‖Ak

l
)

≤ C0MkCρ(C
0
k + C1ǫ θj

∑j−1
p=0 θ

max{3−k̃, k−k̃}
p ∆θp)ǫθ

3−k̃
j ∆θj

+C0CρMk(C
0
3 + C1ǫ

∑j−1
p=0 θ

3−k̃
p ∆θp)ǫθ

max{3−k̃, k−k̃}
j ∆θj

≤ ǫC0CρMk(C
0
k + C1C̃ǫ θ

1+max{0, k+1−k̃}
j )θ3−k̃

j ∆θj

+ǫC0CρMk(C
0
3 + C1C̃ǫ)θ

max{3−k̃, k−k̃}
j ∆θj

≤ ǫC0CρMk(C
0
kθ

−1
0 + C0

3 + 2C1C̃ǫ)θk−k̃
j ∆θj ,

where the constant Cρ comes from (4.1).
By setting C1 = 4C0CρMkC

0
3 , we can choose 0 < ǫ ≤ ǫ0 and θ0 > 0 large enough

such that

C0CρMk(C
0
kθ

−1
0 + C0

3 + 2C1C̃ǫ) ≤ C1.

Therefore, we get

‖δuj‖Ak
l
≤ C1ǫθ

k−k̃
j ∆θj ,

for k ≥ 4. On the other hand, we have

‖δuj‖A3
ℓ

≤ Mk(C
0
3 + Cρ

j−1
∑

p=0
‖δup‖A4

ℓ
)‖wj‖A2

ℓ
+Mk‖∂yuj‖L2

y,ℓ
(L∞

t,x)
‖wj‖A3

ℓ

≤ C0MkCρ(C
0
3 + C1ǫ

∑j−1
p=0 θ

4−k̃
p ∆θp)ǫθ

3−k̃
j ∆θj

+C0CρMk(C
0
3 + C1ǫ

∑j−1
p=0 θ

3−k̃
p ∆θp)ǫθ

3−k̃
j ∆θj

≤ C1ǫθ
3−k̃
j ∆θj ,

for k̃ ≥ 6, by choosing a proper constant C1 > 0. And this completes the proof of
the estimate (5.13).

We now turn to the estimates (5.14) and (5.15). When j = 0, from

(7.1)
δu0

∂yus
= (1 +

∂ySθ0(ũ
0)

∂yus
)

∫ y

0

w0(t, x, ỹ)dỹ,

we have, by using the Sobolev embedding theorem and for some ℓ > 1/2, that

‖ δu0

∂yus ‖L∞ ≤ (1 + ‖∂ySθ0
(ũ0)

∂yus ‖L∞)C̄ℓ‖w0‖L2
y,ℓ

(L∞
t,x)

≤ (1 + ‖∂ySθ0
(ũ0)

∂yus ‖L∞)C̄ℓ‖w0‖A2
ℓ
,

where C̄ℓ = (
∫ +∞

0
(1 + y2)−ℓdy)

1
2 . The estimate (5.14) with j = 0 follows immedi-

ately by choosing

C1 ≥ C0C̄ℓ(1 + ‖∂ySθ0(ũ
0)

∂yus
‖L∞).
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Applying Lemma 2.1 to (7.1) gives

∑

k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

(

δu0

∂yus

)

‖L∞
y (L2

t,x)

≤ MkC̄ℓ











∑

1≤k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

(

∂ySθ0(ũ
0)

∂yus

)

‖L∞‖w0‖L2
ℓ

+(1 + ‖∂ySθ0(ũ
0)

∂yus
‖L∞)‖w0‖Ak−1

ℓ

}

.

Then this yields the estimate (5.15) with j = 0 by choosing

C1 ≥ MkC0C̄ℓ

{

1 +
∑

0≤k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

(

(1 +
∂ySθ0(ũ

0)

∂yus
)

)

‖L∞

}

.

When 1 ≤ j ≤ n− 1, by definition, we have

(7.2)
δuj

∂yus
=

∂yu
j
θj

∂yus

∫ y

0

wj(t, x, ỹ)dỹ.

By using Lemma 2.1 and the assumptions on wj , it is sufficient to obtain the bounds
of

∂yu
j
θj

∂yus
= 1 +

∂ySθj (ũ
0)

∂yus
+

j−1
∑

p=0

∂ySθjδu
p

∂yus

in the spaces L∞ and Dk−1
0 respectively.

To obtain the estimate (5.14) with index j, suppose that (5.14) holds for δup

∂yus

with 0 ≤ p ≤ j − 1 and prove it by induction. Note that j = 0 holds by the above
argument.

For this, first we show

Lemma 7.1. Suppose that the estimate (5.12) holds for wj, 0 ≤ j ≤ n − 1, with

k̃ ≥ 7, then there exists a constant Ms, such that for all 0 ≤ j ≤ n,

‖
∂yu

j
θj

∂yus
‖L∞ ≤ Ms(7.3)

For continuity of the presentation, we postpone the proof of Lemma 7.1 later.
Then by Lemma 7.1, with (7.2), it follows

‖ δuj

∂yus
‖L∞ ≤ MsC̄ℓC0ǫ θ

3−k̃
j ∆θj ≤ C1ǫ θ

3−k̃
j ∆θj ,

with
C1 ≥ MsC̄ℓC0.

To prove (5.15) with index j, we also suppose that it holds for δup

∂yus , 0 ≤ p ≤ j−1.

Then, obviously, we have the identity

(7.4)

j−1
∑

p=0

∂ySθj
δup

∂yus =
j−1
∑

p=0

{

Sθj(
∂y(δu

p)
∂yus ) + [ 1

∂yus , Sθj ](∂y(δu
p))
}

=
j−1
∑

p=0

{

Sθj(∂y
δup

∂yus ) + Sθj (
δup

∂yus

∂2
yu

s

∂yus ) + [ 1
∂yus , Sθj ](∂y(δu

p))
}

.
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Thus, we have

‖
j−1
∑

p=0

∂k1

T ∂k2
y

(

∂ySθjδu
p

∂yus

)

‖L∞
y (L2

t,x)

≤ B̃

j−1
∑

p=0

{

‖∂k1

T ∂k2
y Sθj∂y

( δup

∂yus

)

‖L∞
y (L2

t,x)
+ ‖∂k1

T ∂k2
y

( δup

∂yus

)

‖L∞
y (L2

t,x)

}

≤ B̃

j−1
∑

p=0

{

θj‖∂k1

T ∂k2
y

( δup

∂yus

)

‖L∞
y (L2

t,x)
+ ‖∂k1

T ∂k2
y

( δup

∂yus

)

‖L∞
y (L2

t,x)

}

,

where the constant B̃ depends on the commutators in (7.4) which is independent
of j and p. Using the induction hypothesis for (5.15), we have

j−1
∑

p=0

∑

k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

( δup

∂yus

)

‖L∞
y (L2

t,x)

≤ C1ǫ

j−1
∑

p=0

θmax{3−k̃,k−1−k̃}
p ∆θp ≤ C1C̃ǫ θ

max{0,k−k̃}
j .

Therefore, we deduce

∑

k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

(∂yu
j
θj

∂yus

)

‖L∞
y (L2

t,x)

≤
∑

k1+[
k2+1

2 ]≤k−1

{

‖∂k1

T ∂k2
y

(

∂ySθj ũ
0

∂yus

)

‖L∞
y (L2

t,x)

+ ‖
j−1
∑

p=0

∂k1

T ∂k2
y

(

∂ySθjδu
p

∂yus

)

‖L∞
y (L2

t,x)

}

(7.5)

≤ Caǫ + 2B̃C̃C1ǫθ
max{1,k+1−k̃}
j .

Now using Lemma 2.1, it follows

∑

k1+[
k2+1

2 ]≤k−1

‖∂k1

T ∂k2
y

(

δuj

∂yus

)

‖L∞
y (L2

t,x)
(7.6)

≤ Mk

{

∑

k1+[
k2+1

2 ]≤k−1

C̄ℓ

∥

∥

∥
∂k1

T ∂k2
y

(∂yu
j
θj

∂yus

)∥

∥

∥

L∞
y (L2

t,x)
‖wj‖L2

y,ℓ
(L∞

t,x)

+
∑

k1+[
k2+1

2 ]≤k−1

∥

∥

∥

(∂yu
j
θj

∂yus

)∥

∥

∥

L∞

∥

∥

∥

(

∂k1

T ∂k2
y

∫ y

0

wj(t, x, ỹ)dỹ
)∥

∥

∥

L∞
y (L2

t,x)

}

≤ MkC̄ℓ

(

(Ca + 2B̃C̃C1θ
max{1, k+1−k̃}
j )ǫ ‖wj‖A2

ℓ
+Ms‖wj‖Ak−1

ℓ

)

≤ C1ǫ θ
max{4−k̃, k−1−k̃}
j ∆θj ,

by choosing C1 satisfying

C1 ≥ MkC0C̄ℓ((C
a + 2B̃C̃C1)ǫ+Ms).



PRANDTL EQUATION 29

Then, we have proved (5.15) for 4 ≤ k − 1 ≤ k0 − 1.
On the other hand, similar to the argument to derive (7.5) from (7.4), one can

deduce

∑

k1+[
k2+1

2 ]≤3

‖∂k1

T ∂k2
y

(∂yu
j
θj

∂yus

)

‖L∞
y (L2

t,x)
≤ Cǫ,

for a positive constant C > 0. Thus, as in (7.6), we obtain

‖ δuj

∂yus
‖D3

0
≤ C1ǫ θ

3−k̃
j ∆θj .

This completes the proof of Lemma 5.7.
We now turn to the proof of Lemma 7.1.

Proof of Lemma 7.1: The case when 0 ≤ j ≤ 1 is obvious. From (7.4), we have

‖
j−1
∑

p=0

∂ySθjδu
p

∂yus
‖L∞ ≤

j−1
∑

p=0

{

‖Sθj(∂y
δup

∂yus
)‖L∞

+ ‖Sθj(δu
p

∂2
yu

s

(∂yus)2
)‖L∞ + ‖[ 1

∂yus
, Sθj ](∂y(δu

p))‖L∞

}

≤
j−1
∑

p=0

{

‖Sθj (∂y
δup

∂yus
)‖L∞ +B‖ δup

∂yus
‖L∞

}

,

where we have used the estimate of commutators associated with the mollifier Sθj

given in Lemma 4.1.
Suppose now (7.3) holds for 0 ≤ p ≤ j − 1. Let us check the case when p = j.

Obviously, we have

Sθj (∂y
δup

∂yus
) = Sθj∂y

(

∂yu
p
θp

∂yus

∫ y

0

wp(t, x, ỹ)dỹ

)

(7.7)

= Sθj

(

(

∂y
∂yu

p
θp

∂yus

)

∫ y

0

wp(t, x, ỹ)dỹ

)

+ Sθj

(

∂yu
p
θp

∂yus
wp

)

.

For the second term given on the right hand side of (7.7), using the induction
hypothesis, we get

j−1
∑

p=0

‖Sθj(
∂yu

p
θp

∂yus
wp)‖L∞ ≤

j−1
∑

p=0

‖
∂yu

p
θp

∂yus
‖L∞‖wp‖L∞

≤ Ms

j−1
∑

p=0

‖wp‖A2
0
≤ MsC0ǫ

j−1
∑

p=0

θ3−k̃
p ∆θp ≤ MsC0C̃ǫ .
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For the first term on the right hand side of (7.7), using Lemma 4.1 gives when

k̃ ≥ 7,

j−1
∑

p=0

‖Sθj

(

(

∂y
∂yu

p
θp

∂yus

)

∫ y

0

wp(t, x, ỹ)dỹ

)

‖L∞

=

j−1
∑

p=0

‖Sθj

{

∂y

(

∂ySθp ũ
0

∂yus
+

p−1
∑

q=0

∂ySθpδu
q

∂yus

)

∫ y

0

wp(t, x, ỹ)dỹ

}

‖L∞

≤
j−1
∑

p=0

{

C̄ℓ‖wp‖L2
y,ℓ

(L∞
t,x)

(

‖∂y
∂ySθp ũ

0

∂yus
‖L∞ +

p−1
∑

q=0

(

θ2p‖
δuq

∂yus
‖L∞

+ ‖∂y[
1

∂yus
, ∂ySθp ]δu

q‖L∞

)

)}

≤ C̃C̄ℓC0ǫ

j−1
∑

p=0

θ3−k̃
p ∆θp ≤ C̃2C̄ℓC0ǫ .

In summary, we conclude

‖
∂yu

j
θj

∂yus
‖L∞ ≤ 1 + ‖

∂yũ
0
θj

∂yus
‖L∞ + ‖

j−1
∑

p=0

∂ySθjδu
p

∂yus
‖L∞(7.8)

≤ 1 + Caǫ+ C̃2C̄ℓC0ǫ+MsC0C̃ǫ+BC1C̃ǫ,

which implies the estimate (7.3) by choosing

Ms ≥ 2
(

1 + Caǫ+ C̃2C̄ℓC0ǫ+BC1C̃ǫ
)

,

and

0 < ǫ ≤ 1

2C0C̃
.

To prove Lemma 5.10 for ηn, we need the following

Lemma 7.2. Under the assumptions of Lemma 7.1, there exists a constant C11,
such that for all 0 ≤ j ≤ n,

(7.9) ‖
∂y(u

j
θj

− us)

∂yus
‖Ak

ℓ
≤ C11ǫθ

max{0,k+1−k̃}
j .

Proof: This lemma can also be proved by induction on j. Suppose that it holds
for 0 ≤ p ≤ j − 1, let us study the case when p = j.

From the identity

∂y(u
j
θj

− us)

∂yus
=

j−1
∑

p=0

∂ySθjδu
p

∂yus
+

∂ySθj ũ
0

∂yus
,
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we have

‖
∂y(u

j
θj

− us)

∂yus
‖Ak

ℓ
≤ ‖

j−1
∑

p=0

∂ySθjδu
p

∂yus
‖Ak

ℓ
+ ‖∂ySθj ũ

0

∂yus
‖Ak

ℓ

≤
j−1
∑

p=0

{

‖Sθj (∂y
δup

∂yus
)‖Ak

ℓ
+ ‖Sθj(δu

p
∂2
yu

s

(∂yus)2
)‖Ak

ℓ
(7.10)

+ ‖[ 1

∂yus
, Sθj ](∂y(δu

p))‖Ak
ℓ

}

+ ‖∂ySθj ũ
0

∂yus
‖Ak

ℓ

≤
j−1
∑

p=0

{

‖Sθj (∂y
δup

∂yus
)‖Ak

ℓ
+ B̃‖ δup

∂yus
‖Ak

ℓ

}

+ ‖∂ySθj ũ
0

∂yus
‖Ak

ℓ
.

To estimate ‖Sθj(∂y
δup

∂yus )‖Ak
ℓ
, we use the relation (7.7). For the second term on

the right hand side of (7.7), by using (7.3) we have

j−1
∑

p=0

‖Sθj(
∂yu

p
θp

∂yus
wp)‖Ak

ℓ
≤ Mk

j−1
∑

p=0

{

‖
∂yu

p
θp

∂yus
‖L∞‖wp‖Ak

ℓ
+ ‖

∂y(u
p
θp

− us)

∂yus
‖Ak

ℓ
‖wp‖L∞

}

≤ Mk

j−1
∑

p=0

{

MsC0ǫ θ
max{3−k̃, k−k̃}
p ∆θp + C11C0ǫ

2θmax{3−k̃,k+4−2k̃}
p ∆θp

}

≤ MkC̃ C0ǫ(Ms + C11ǫ)θ
max{0,k+1−k̃}
j .

For the first term on the right hand side of (7.7), we have for k ≥ 4,

j−1
∑

p=0

‖Sθj

(

(

∂y
∂yu

p
θp

∂yus

)

∫ y

0

wp(t, x, ỹ)dỹ

)

‖Ak
ℓ

≤ MkθjC̄ℓ

j−1
∑

p=0

{

‖wp‖L2
y,ℓ

(L∞
t,x)

‖∂y
∂y(u

p
θp

− us)

∂yus
‖Ak−1

ℓ

+ ‖wp‖Ak−1
ℓ

‖∂y
∂yu

p
θp

∂yus
‖L2

y,ℓ
(L∞

t,x)

}

≤ MkθjC̄ℓ

j−1
∑

p=0

{

‖wp‖A2
ℓ
‖
∂y(u

p
θp

− us)

∂yus
‖Ak

ℓ
+ ‖wp‖Ak

ℓ
‖
∂y(u

p
θp

− us)

∂yus
‖A3

ℓ

}

≤ MkθjC̄ℓ

j−1
∑

p=0

{

C0θ
3−k̃
p ∆θpC11ǫ

2θmax{0,k+1−k̃}
p + C0θ

max{3−k̃, k−k̃}
p ∆θp C11ǫ

2
}

≤ 2MkC̄ℓC0C̃C11ǫ
2θ

max{1, k+2−k̃}
j ,

and
j−1
∑

p=0

‖Sθj

(

(

∂y
∂yu

p
θp

∂yus

)

∫ y

0

wp(t, x, ỹ)dỹ

)

‖A3
ℓ
≤ B1ǫ

2 ,

for a positive constant B1.
By plugging the above three estimates into the first term on the right hand side

of (7.10), (7.9) follows by choosing a proper constant C11 > 0.

Remark 7.3. From the above argument, it is easy to see that the estimates (7.3)
and (7.9) hold without mollifying ( · )θj , but for k ≤ k0 − 1.
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We are now ready to prove Lemma 5.13.

Proof of Lemma 5.13: From the estimate (7.8), we get immediately that there
is ǫ0 > 0 such that when 0 < ǫ ≤ ǫ0, it holds that

(7.11) ‖
∂yu

j
θj

∂yus
‖L∞ ≤ 2, inf |

∂yu
j
θj

∂yus
| ≥ 1

2
,

for 0 ≤ j ≤ n. Hence, the first estimate given in (5.27) follows.
By using the following Fà Di Bruno formula,

∂m(g(f)) = m!
∑

1≤r≤m

1

r!
g(r)(f)

∏

m1+···mr=m,mj≥1

1

mj !
∂mjf,

we have,

‖(
∂yu

n
θn

∂yus
)−1‖Ȧk

0
≤Bk

∑

1≤k1+[ k2+1
2 ]≤k

∑

1≤r≤k1+k2

‖
∏

1≤j≤r

∂
m1

j

T ∂
m2

j
y

(∂yu
n
θn

∂yus

)

‖L2

≤Bk

∑

1≤k1+[ k2+1

2 ]≤k

∑

1≤r≤k1+k2

‖∂m1
r

T ∂
m2

r
y

(∂y(u
n
θn

− us)

∂yus

)

‖L2

×
∏

1≤j≤r−1

‖∂m1
j

T ∂
m2

j
y

(∂y(u
n
θn

− us)

∂yus

)

‖L∞

≤Bk

∑

1≤k1+[ k2+1
2 ]≤k

∑

1≤r≤k1+k2

‖
(∂y(u

n
θn

− us)

∂yus

)

‖
A

m1
r+[

m2
r+1

2
]

0

×
∏

1≤j≤r−1

‖
(∂y(u

n
θn

− us)

∂yus

)

‖
A

m1
j
+2+[

m2
j
+2

2
]

0

,

where m1
1+ · · ·m1

r = k1,m
2
1+ · · ·m2

r = k2,m
1
j+m2

j ≥ 1, with m1
r and m2

r being sup-
posed to be the largest integers in the corresponding group of indices, respectively.
Then, by using (7.9) in the above inequality, it follows

‖(
∂yu

n
θn

∂yus
)−1‖Ȧk

0
≤ C7ǫ θ

max{0,k+1−k̃}
n ,(7.12)

for a positive constant C7 > 0. This completes the proof of the lemma.

Now, we turn to the estimates on ηn =
∂2
yu

n
θn

∂yun
θn

stated in Lemma 5.10.

Proof of Lemma 5.10: Obviously, we have

‖ηn − η̄n‖Ak
ℓ

= ‖
∂2
y(u

n
θn

− us)

∂yun
θn

‖Ak
ℓ

(7.13)

≤ Mk

(

‖
∂2
y(u

n
θn

− us)

∂yus
‖Ak

ℓ
‖(

∂yu
n
θn

∂yus
)−1‖L∞

+‖
∂2
y(u

n
θn

− us)

∂yus
‖L∞

ℓ
‖ ∂yu

s

∂yun
θn

‖Ȧk
0

)

.
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We now estimate term by term on the right hand side of (7.13). Since

∂2
y(u

n
θn

− us)

∂yus
= ∂y

(∂y(u
n
θn

− us)

∂yus

)

+
∂y(u

n
θn

− us)

∂yus

∂2
yu

s

∂yus
,

by using (7.9), we have for k ≥ 4

‖
∂2
y(u

n
θn

− us)

∂yus
‖Ak

ℓ

≤ Mk‖
∂2
yu

s

∂yus
‖Ck

0
‖
∂y(u

n
θn

− us)

∂yus
‖Ak

ℓ
+ ‖∂y

(∂y(u
n
θn

− us)

∂yus

)

‖Ak
ℓ

(7.14)

≤ Mk‖
∂2
yu

s

∂yus
‖Ck

0
‖
∂y(u

n
θn

− us)

∂yus
‖Ak

ℓ
+ Cρθn‖

(∂y(u
n − us)

∂yus

)

‖Ak
ℓ

≤ C̃11ǫ θ
1+max{0,k+1−k̃}
n .

On the other hand, by using (7.9), it holds that

‖
∂2
y(u

n
θn

− us)

∂yus
‖A3

ℓ
≤ M3‖

∂2
yu

s

∂yus
‖C3

0
‖
∂y(u

n
θn

− us)

∂yus
‖A3

ℓ
+ ‖

∂y(u
n
θn

− us)

∂yus
‖A4

ℓ

≤ (M3‖
∂2
yu

s

∂yus
‖C3

0
+ 1)C11ǫ.(7.15)

Plugging the estimates (7.14), (7.15) and (7.12) into (7.13), we obtain the esti-
mate (5.24) given in Lemma 5.10.

To derive the estimate (5.25), from the definition of η̄n, we have

‖η̄n‖Ck
ℓ

≤ Mk

(

‖
∂2
yu

s

∂yus
‖Ck

ℓ
‖
(∂yu

n
θn

∂yus

)−1

‖L∞ + ‖
∂2
yu

s

∂yus
‖L∞

ℓ
‖
(∂yu

n
θn

∂yus

)−1

‖Ċk
0

)

≤ Mk

(

‖
∂2
yu

s

∂yus
‖Ck

ℓ
‖
(∂yu

n
θn

∂yus

)−1

‖L∞ + ‖
∂2
yu

s

∂yus
‖L∞

ℓ
‖
(∂yu

n
θn

∂yus

)−1

‖Ȧk+2
0

)

≤ Mk(2‖
∂2
yu

s

∂yus
‖Ck

ℓ
+ ‖

∂2
yu

s

∂yus
‖L∞

ℓ
C7ǫθ

max{0, k+3−k̃}
n ),

where we have used (7.12) and (7.11). Thus, we get the estimate (5.25) immediately.
And this completes the proof of the lemma.

To estimate ζn, similar to the proof for Lemma 7.1, from

∂2
xySθj

uj

∂yus =
∂2
xy(Sθj

ũ0)

∂yus +
∑j−1

p=0

(

Sθj (
∂2
xyδu

p

∂yus ) + [ 1
∂yus , Sθj ]∂

2
xyδu

p
)

=
∂2
xy(Sθj

ũ0)

∂yus +
∑j−1

p=0

(

Sθj

(

∂xw
p + ∂x(

δup

∂yus )
∂2
yu

s

∂yus

)

+ [ 1
∂yus , Sθj ]∂

2
xyδu

p
)

,

we have

Lemma 7.4. Under the assumptions of Lemma 7.1, there is a constant C12 > 0,
such that

‖
∂2
xyu

j
θj

∂yu
j
θj

‖Ak
ℓ
≤ C12ǫθ

1+max{0,k+1−k̃}
j ,

and

‖
∂2
xyu

j
θj

∂yu
j
θj

‖A3
ℓ
≤ C12ǫ,
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hold for all 0 ≤ j ≤ n.

With this, we are now ready to prove Lemma 5.11.

Proof of Lemma 5.11: First of all, note that

‖
vnθn∂

2
yu

n
θn

∂yun
θn

‖Ak
ℓ
≤ Mk(‖vnθn‖L∞‖ηn − η̄n‖Ak

ℓ
+ ‖vnθn‖L∞

y (L2
t,x)

‖η̄n‖Ck
ℓ

+ ‖ηn‖L2
y,ℓ

(L∞
t,x)

‖vnθn‖Dk
0
).

By using Lemma 5.9 and Lemma 5.10, we get

‖
vnθn∂

2
yu

n
θn

∂yun
θn

‖Ak
ℓ
≤ Mk

(

C3C4ǫθ
max{1,k+2−k̃}
n + C3C4(1 + ǫθmax{0,k+3−k̃}

n )

+ 2C4C3ǫθ
max{1,k+2−k̃}
n

)

≤ C5θ
max{1,k+3−k̃}
n ,

when k ≥ 4 for a positive constant C5. Moreover,

‖
vnθn∂

2
yu

n
θn

∂yun
θn

‖A3
ℓ
≤ M3(C3C4ǫ+ C3C4(1 + ǫ) + 2C3C4ǫ) ≤ C8.

Similarly, by using (2.1) and Lemma 7.4, we can show that

‖un
θn

∂2
xyu

n
θn

∂yun
θn

‖Ak
ℓ

≤ Mk(‖un
θn
‖L∞‖∂2

xyu
n
θn

∂yun
θn

‖Ak
ℓ
+ ‖∂2

xyu
n
θn

∂yun
θn

‖L∞‖un
θn

− us‖Ak
ℓ

+‖∂2
xyu

n
θn

∂yun
θn

‖L∞
y (L2

t,x)
‖us‖Ck

ℓ
)

≤ Mk

(

Cs(C
a + C3ǫ)C12ǫθ

1+max{0,k+1−k̃}
n

+Cs(C
a + C3ǫθ

max{0,k+1−k̃}
n )C12ǫ

)

≤ C5θ
max{1,k+2−k̃}
n .

By noticing that

(∂t − ∂2
y)∂yu

n
θn

∂yun
θn

=
(∂t − ∂2

y)∂yu
n
θn

∂yus
· ∂yu

s

∂yun
θn

=
(∂t − ∂2

y)∂y(u
n
θn

− us)

∂yus

∂yu
s

∂yun
θn

,

using (7.9) and (7.12), we have

‖
(∂t − ∂2

y)∂yu
n
θn

∂yun
θn

‖Ak
ℓ
≤ C5θ

max{0, k+2−k̃}
n .

Plugging the above estimates into the definition of ζn in (5.23), it leads to the
(5.26) given in Lemma 5.11 and then completes its proof.

Finally, let us give the proof of Lemma 5.14.

Proof of Lemma 5.14: Recall the definition

e(1)n = δun∂xδu
n + δvn∂yδu

n,

and

e
(2)
n =

(

(1− Sθn)(u
n − us)

)

∂x(δu
n) + δun∂x

(

(1− Sθn)(u
n − us)

)

+δvn∂y
(

(1− Sθn)(u
n − us)

)

+
(

(1− Sθn)v
n
)

∂y(δu
n).
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We get

‖
e
(1)
j

∂yus
‖
A

k1
ℓ

≤ Mk1

{

‖∂xδuj‖
A

k1
ℓ

‖ δuj

∂yus
‖L∞ + ‖∂xδuj‖L2

y,ℓ
(L∞

t,x)
‖ δuj

∂yus
‖
D

k1
ℓ

+‖δvj‖L∞‖∂yδu
j

∂yus
‖
A

k1
ℓ

+ ‖∂yδu
j

∂yus
‖L2

y,l
(L∞

t,x)
‖δvj‖

D
k1
0

}

.(7.16)

Obviously, from

∂yδu
j

∂yus
=

∂2
yu

j
θj

∂yus

∫ y

0

wj(t, x, ỹ)dỹ +
∂yu

j
θj

∂yus
wj ,

we have
(7.17)

‖∂yδu
j

∂yus ‖
A

k1
ℓ

≤ ‖
∂2
y(u

j

θj
−us)

∂yus ‖
A

k1
ℓ

‖wj‖C0
ℓ
+ ‖∂2

yu
s

∂yus ‖Ck1
ℓ

‖wj‖L2
ℓ

+‖
∂2
yu

j

θj

∂yus ‖C0
ℓ
‖wj‖

A
k1
ℓ

+ ‖
∂yu

j

θj

∂yus ‖L∞‖wj‖
A

k1
ℓ

+ ‖
∂yu

j

θj

∂yus ‖Ȧk1 ‖wj‖L∞
ℓ

≤ C0C11ǫ
2θ

max{3−k̃,k1+5−2k̃}
j ∆θj + (C11ǫ+ Ca)C0ǫθ

max{3−k̃, k1−k̃}
j ∆θj

+CaC0ǫθ
3−k̃
j ∆θj + 2C0ǫθ

max{3−k̃, k1−k̃}
j ∆θj + (C11ǫθ

max{0, k1+1−k̃}
j + Ca)C0ǫθ

3−k̃
j ∆θj ,

where we have used (7.9), (7.11) and (5.12).
If we choose a constant

C̃11 ≥ C0(2 + 3Ca + 3C11ǫ0),

then from (7.17), we get

(7.18) ‖∂yδu
j

∂yus
‖
A

k1
ℓ

≤ C̃11ǫθ
max{3−k̃,k1−k̃}
j ∆θj ,

by using k̃ ≥ 7.
By using (7.18), Lemmas 5.7 and 5.8, from (7.16), there exists a constant C8 > 0

such that

‖
e
(1)
j

∂yus
‖
A

k1
ℓ

≤ C8ǫ
2θ

max{6−2k̃, k1+3−2k̃}
j ∆θj ,

for all k1 ≤ k0 − 1.
Similarly,

‖
e
(2)
j

∂yus
‖
A

k1
ℓ

≤ ‖
(

(1 − Sθj)(u
j − us)

) δuj

∂yus
‖
A

k1+1

ℓ

+ ‖δvj ∂y((1− Sθj )(u
j − us))

∂yus
‖
A

k1
ℓ

+ ‖
(

(1− Sθj )v
j
)∂y(δu

j)

∂yus
‖
A

k1
ℓ

,
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by using Lemma 2.1, the second formula of (4.1) and (5.21), we get

‖
e
(2)
j

∂yus
‖
A

k1
ℓ

≤ Mk1

{

‖uj − us‖
A

k1+1

ℓ

‖ δuj

∂yus
‖L∞

+ ‖(1− Sθj )(u
j − us)‖L2

y,ℓ
(L∞

t,x)
‖ δuj

∂yus
‖
D

k1+1
0

+ ‖δvj‖L∞ ‖∂y(u
j − us)

∂yus
‖
A

k1
ℓ

+ ‖δvj‖
D

k1
0

‖(1− Sθj )(
∂y(u

j − us)

∂yus
)‖L2

y,ℓ
(L∞

t,x)

+ ‖(1− Sθj )v
j‖L∞‖∂y(δu

j)

∂yus
‖
A

k1
ℓ

+ ‖vj‖
D

k1
0

‖∂y(δu
j)

∂yus
‖L2

y,ℓ
(L∞

t,x)

}

≤ Mk1

{

‖uj − us‖
A

k1+1

ℓ

‖ δuj

∂yus
‖L∞ + θ2−k′

j ‖uj − us‖Ak′
ℓ
‖ δuj

∂yus
‖
D

k1+1
0

+ ‖δvj‖L∞ ‖∂y(u
j − us)

∂yus
‖
A

k1
ℓ

+ θ2−k′

j ‖δvj‖
D

k1
0

‖∂y(u
j − us)

∂yus
‖Ak′

ℓ

+ θ2−k′

j ‖vj‖Dk′
0
‖∂y(δu

j)

∂yus
‖
A

k1
ℓ

+ ‖vj‖
D

k1
0

‖∂y(δu
j)

∂yus
‖L2

y,ℓ
(L∞

t,x)

}

,

for a fixed integer 2 ≤ k′ ≤ k0 − 2.
By applying Lemma 5.7, Lemma 5.8 and estimates (7.9), (7.18) to the above

inequality, and by setting k′ ≥ k̃ − 2, it follows that for k1 ≤ k0 − 1,

‖
e
(2)
j

∂yus
‖
A

k1
l

≤ C8ǫ
2θ

max(3−k̃,k1+5−2k̃)
j ∆θj ,

for a positive constant C8. And this completes the proof of the lemma.
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Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray, France

E-mail address: Chao-Jiang.Xu@univ-rouen.fr

Tong Yang

Department of mathematics, City University of Hong Kong, Hong Kong, P. R. China

E-mail address: matyang@cityu.edu.hk


