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WELL-POSEDNESS OF THE PRANDTL EQUATION IN
SOBOLEV SPACES

R. ALEXANDRE, Y.-G. WANG, C.-J. XU, AND T. YANG

ABSTRACT. We develop a new approach to study the well-posedness theory of
the Prandtl equation in Sobolev spaces by using a direct energy method under
a monotonicity condition on the tangential velocity field instead of using the
Crocco transformation. Precisely, we firstly investigate the linearized Prandtl
equation in some weighted Sobolev spaces when the tangential velocity of the
background state is monotonic in the normal variable. Then to cope with the
loss of regularity of the perturbation with respect to the background state due
to the degeneracy of the equation, we apply the Nash-Moser-Hérmander iter-
ation to obtain a well-posedness theory of classical solutions to the nonlinear
Prandtl equation when the initial data is a small perturbation of a monotonic
shear flow.
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In this work, we study the well-posedness of the Prandtl equation which is the
foundation of the boundary layer theory introduced by Prandtl in 1904, [20]. It
describes the behavior of the flow near a boundary in the small viscosity limit of
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an incompressible viscous flow with the non-slip boundary condition. We consider
the following initial-boundary value problem,

Up + Uy + VUy +Dp = Uyy, >0, 2R, y>0,
Uz + vy =0,
(1.1) Uly=0 = V|y=0 =0, lim uw="U(tx),

y—+oo
ule—o = uo(z,y),
where u(t, z,y) and v(t, x,y) represent the tangential and normal velocities of the
boundary layer, with y being the scaled normal variable to the boundary, while
U(t,z) and p(t,x) are the values on the boundary of the tangential velocity and
pressure of the outflow satisfying the Bernoulli law

OU + Ud,U + dyp = 0.

The well-posedness theories and the justification of the Prandtl equation remain
as the challenging problems in the mathematical theory of fluid mechanics. Up
to now, there are only a few rigorous mathematical results. Under a monotonic
assumption on the tangential velocity of the outflow, Oleinik was the first to obtain
the local existence of classical solutions for the initial-boundary value problems in
[18], and this result together with some of her works with collaborators were well
presented in the monograph [19]. In addition to Oleinik’s monotonicity assumption
on the velocity field, by imposing a so called favorable condition on the pressure, Xin
and Zhang obtained the existence of global weak solutions to the Prandtl equation
in [22]. All these well-posedness results were based on the Crocco transformation to
overcome the main difficulty caused by degeneracy and mixed type of the equation.

Without the monotonicity assumption, E and Engquist in [5] constructed some
finite time blowup solutions to the Prandtl equation. And in [21], Sammartino and
Caflisch obtained the local existence of analytic solutions to the Prandtl equation,
and a rigorous theory on the stability of boundary layers with analytic data in the
framework of the abstract Cauchy-Kowaleskaya theory. This result was extended
to the function space which is only analytic in the tangential variable in [14].

In recent years, there have been some interesting works concerning the linear
and nonlinear instability of the Prandtl equation in the Sobolev spaces. In [§],
Grenier showed that the unstable Euler shear flow (us(y),0) with us(y) having
an inflection point (the well-known Rayleigh’s criterion) yields instability for the
Prandtl equation. In the spirit of Grenier’s approach, in [6], Gérard-Varet and
Dormy showed that if the shear flow profile (u*(t,y),0) of the Prandtl equation
has a non-degenerate critical point, then it leads to a strong linear ill-posedness
of the Prandtl equation in the Sobolev framework. In a similar approach, in [7]
Gérard-Varet and Nguyen strengthened the ill-posedness result of [6] for the lin-
earized Prandtl equation for an unstable shear flow. Moreover, they also showed
that if a solution, as a small perturbation of the unstable shear flow, to the non-
linear Prandtl equation exists in the Sobolev setting, then it cannot be Lipschitz
continuous. Along this direction, Guo and Nguyen in [9] proved that the nonlinear
Prandtl equation is ill-posed near non-stationary and non-monotonic shear flows,
and showed that the asymptotic boundary-layer expansion is not valid for non-
monotonic shear layer flows in Sobolev spaces. Hong and Hunter [11] studied the
formation of singularities and instability in the unsteady inviscid Prandtl equation.
All these works show what happens in an unsteady boundary layer separation. For
the related mathematical results and discussions, also see the review papers [2, 4].
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As mentioned in [2, 6, 7], the local in time well-posedness of the Prandtl equation
for initial data in Sobolev space remains an open problem. Therefore, it would be
very interesting to recover Oleinik’s well-posedness results simply through direct
energy estimates. And this is the goal of this paper.

In this paper we consider the case of an uniform outflow U = 1, which implies p
being a constant. Consider the following problem for the Prandtl equation,

U + Uy +VUy —Uyy =0, t>0, xR, y>0,
Uy + vy = 0,

(12) U|y:0 = U|y:0 =0, ygr}_loou =1,

u|t:0 = ’LLO(SC,y) :

We are going to study the well-posedness of the Prandtl equation around a
monotonic shear flow. More precisely, assume that

uo(w,y) = ug(y) + o (@, y),
where v is monotonic in y
(1.3) Oyuy(y) >0, Yy >0.

To state the main result, we first introduce the following notations. Set Qp =
[0,7] x RZ. For any non-negative integer k and real number ¢, define

1/2
lullagion = (3 100, 08wl gorpez))
R[22 <k

and

ks
lullpr ) = > ||<y>l<9(t,z)0§2UI\L;o(Lg,m>,
k52 <k

with (y) = (1 + y2)2. When the function is independent of ¢ (or ) variable, we
use the same notations for the non-isotropic norms as above under the convention
that we do not take integration with respect to this variable.

The main result of this paper can be stated as follows.

Theorem 1.1. Concerning the problem (1.2), we have the following existence and
stability results.

(1) Given any integer k > 5 and real number ¢ > %, let the initial data uo(x,y) =
ud(y) + to(x,y) satisfy the compatibility conditions of the initial boundary value
problem (1.2) up to order k + 4. Assume the following two conditions:

(i) The monotonicity condition (1.3) holds for uf, and

0% u3(0) = 0, VO0<j<k+4,

) 82 s
1{y) (u§ — D)l przeso 2y + ||#Z§HH%+7(R2+) <C,

for a fized constant C' > 0.
(ii) There exists a small constant € > 0 depending only on uf), such that
Oyig

1. Uo|| 42 —=—| 42k <e.
(1.5) HUOHAEkJrQ(]Ri) + ||ayu8 ||A€k+9(R2+) <e
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Then there is T > 0, such that the problem (1.2) admits a classical solution u
satisfying
Oy(u —u®
1/(7)) S A?(QT), NS Dg_l(QT).
dyug
Here, note that (u®(t,y),0) is the shear flow of the Prandtl equation defined by the
initial data (u§(y),0).

(2) The solution is unique in the function space described in (1.6). Moreover,
we have the stability with respect to the initial data in the following sense. For any
given two initial data

(1.6) u—u® € Af(Qr),

1 _ s ~1 2 __ s ~2
Uy = Uy + Uy, Uy = Uy + Ug,

if u§ satisfy (1.3), (1.4), and @}, a3 satisfy (2.5), then the corresponding solutions
(ul, oY) and (u?,v?) of (1.2) satisfy

It = Lagany + 10" = g+ qapy < Ol (D) e
A7 (QT) Dy (Qr) = ay ayug A (R%)»
for allp < k—1, where the constant C' > 0 depends only on T and the upper bounds
of the norms of u}, u?.

Remark 1.2. Note that the solutions obtained in the above theorem are less regular
than the initial data mainly due to the degeneracy with respect to the tangential
variable x of the Prandtl equation.

Remark 1.3. (1) It is not difficulty to see from the proof of Theorem 1.1 that the
above main result holds also for the problem (1.2) defined in the torus T' for the
r—wvariable.

(2) It can be seen by using our approach that the above well-posedness result
can be generalized to the nonlinear problem (1.1) with a non-trivial Euler outflow.
For example, for a smooth positive tangential velocity U(t,x) of the outflow, if the
monotonic initial data ug(z,y) converges to U(0,x) exponentially fast as y — 400,
and there is a > 0 such that ug(x,y) — U(0,2)(1 — e~ ) is small in some weighted
Sobolev spaces, then a similar local well-posedness result holds for the nonlinear
Prandtl equation (1.1), with the role of u§ being replaced by U(0,2)(1 — e~ ).

The rest of the paper is organized as follows. In Section 2, we will introduce
some weighted non-isotropic Sobolev spaces which will be used later, and give
the properties of the monotonic shear flow produced by the initial data (u§(y),0).
Then, in Section 3, we will study the well-posedness of the linearized problem of
the Prandtl equation (1.2) in the Sobolev spaces by a direct energy method, when
the background tangential velocity is monotonic in the normal variable. Again,
note that without using the Crocco transformation, the approach introduced here
is completely new and will have further applications. The proof of Theorem 1.1 will
be presented in Section 4, Section 5 and Section 6. As we mentioned earlier, from the
energy estimates obtained in Section 3 for the linearized Prandtl equation, there is
a loss of regularity of solutions with respect to the background state and the initial
data. For this, we apply the Nash-Moser-Hérmander iteration scheme to study
the nonlinear Prandtl equation. In Section 4, we will first construct the iteration
scheme for the problem (1.2), then in Section 5 we will prove the convergence of
this iteration scheme by a series of estimates and then conclude the existence of
solutions to the Prandtl equation. The uniqueness and stability of the solution will
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be proved in Section 6. Finally, Section 7 is devoted to the proof of several technical
estimates used in Section 5.

2. PRELIMINARY

As a preparation, in this section we introduce some functions spaces which will
be used later. And the properties of a monotonic shear flow will also be given.

2.1. Weighted non-isotropic Sobolev spaces. Since the Prandtl equation given
in (1.2) is a degenerate parabolic equation coupled with the divergence-free condi-
tion, it is natural to work in some weighted anisotropic Sobolev spaces.

In addition to the spaces A;? and Dé? introduced already in Section 1, we also
need the following function spaces.

Denote by 8%“— the summation of tangential derivatives 85- = af 095 for all B =
(Bo, 1) € N? with |8] < k. Recall (y) = (1 + |y|?)"/2. For any given k,ky, ks €
N, A>0,/€R and 0 < T < 400, we introduce

3 . 1/2
e D D R T ety R

0<m<k1,0<q<kz

3 - 1/2
Hf”l%i}f? - ( Z lle /\t<y>ea7’agf”%*([o,T];LQ(Ri))) )

0<m<k1,0<q<ks
and

lak
uller = 1) 07 Oy ull L2 (s, )-
4 y s

i+ 52 <k

For the space A;? introduced in Section 1, obviously, we have

k
Ap =By,
j=0

As mentioned in Section 1, when the function is independent of ¢ (or ) variable,
we use the same notations for the non-isotropic norms defined above under the con-
vention that we do not take integration or supremum with respect to this variable.
Note that the parameter X is associated to the variable ¢t and the parameter ¢ to
the variable y.

The homogeneous norms || - ”A'Z’ Il - Hc-éc, | - Hb§ correspond to the summation

1 < ki + [22H] <k in the definitions.
For 1 <p < +00, we will also use HfHLg(Ri) = ||<y>efHLp(Ri).
By classical theory, it is easy to get the following Sobolev type embeddings

(2.1) luller < Csllull ge+2 lullpr < Csflul| gorr

Moreover, for any ¢ > 0 and k > 2, the space Ai? is continuously embedded into
05_2, the space of (k — 2)—th order continuously differentiable functions with all
derivatives being bounded.

In the following, we will use some Morse-type inequalities for the above four
function spaces, which are consequences of interpolation inequality and the fact
that the space L? N L™ is an algebra.
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Lemma 2.1. For any proper functions f and g, we have

1 gllax < Myl fl]a lgllze + 1 F e Nlgllar} 5
and
I1f gllay < Mi{l[fllcxlglipg + 1 Fllegllglpe -
Similar inequalities hold for the norms || - ||551'k2’ |- llex and || - ||lpr. Here, My >0
s a constant depending only on k.

This result can be obtained in a way similar to that given in [15].

2.2. Properties of a monotonic shear flow. Let u*(¢,y) be the solution of the
following initial boundary value problem

oru® = aius, t>0, y>0,
(2.2) u¥|y=0 = 0, yl}r_{loou (t,y) =1, t>0,
wl=0 = ug(y), y>0.
Note that (u®(t,y),0) is a shear flow for the Prandtl equation (1.2).

Proposition 2.2. For any fized k > 2, assume that the initial data u(y) satisfies
the monotonicity condition

and the compatibility conditions for (2.2) up to order k, i.e.
lim wj(y) =1, 0Xus(0)=0, V0<j<k.

y—+oo v

Moreover, assume that
2“8
lug = Ulzzy) + lugll ooy + lucller + 15— ller-1 < C
i Oyuf "' ©0

for a constant C' > 0, and a fixed £ > 0. Then, we have

(2.3) Oyus(t,y) >0, Vity=>0,
for any fixred T > 0, there is a constant C(T) such that
QUS
(2.4) llu®|| oo 0,7y xRy + [J0° ||Ck + H < Hck 1 < O(T).

Moreover, for a fited 0 < Ry < T, there is a constant C(T, Ro) > 0 such that

Oyu(t,y +9)
(2.5) oLuax ”WHC[’)‘*I([O,T]XR;) < C(T, Ro),

and
Oyus(t +1,y)

(2.6) oax, [ W||cg*2([o,T—Ro]xM) < C(T, Ro).

Proof. Obviously, the solution of (2.2) can be written as
_ (= y) WD g,
u®(t,y) 2\/—/ —e )%(y)dy

1

:J_E(/T € 42V + y)de — / “Cup(2viE — y)de)
NG




PRANDTL EQUATION 7

which gives

+o0 5
our(ty) =—=( [ & @u5)2viE + )i
O
- [, e OuieviE - ).
2T

By using 9;7u§(0) = 0 for 0 < j < k, it follows

“+o0
o) == ([, e @pup)evie+ e

_Y_
2Vt
+oo 5
st [ e @) Vi - ).
ZL\/Z
for all 1 < p < 2k, from which one immediately deduces the monotonicity property
(2.3).
To estimate the last term given in (2.4), denote
0%us
t,y) = L—(t,y).
a(t,y) ayus( 2 Y)

Then, from (2.2), we know that «(t,y) satisfies the following initial boundary value
problem for the Burgers equation,

da = Do+ 200,

(2.7) aly—o =0, t> 0,
a s

ali=o = a’(y) := #Zg(y)a y > 0.
It is easy to verify that the compatibility conditions of (2.7) hold up to order k —1,
the estimates on ||a[[ -1 can be obtained by standard energy method after an odd

0
extension of the initial data to the whole R.
To prove (2.5), note that

Oyu(ty+9) _ Oyu(t,y +7) — 9yu’(t,y) 1

(2:8) Oyus(t,y) Oyus(t,y) ’

and
Y
Oyus(t,y +9) — Oyus(t,y) = / Dou(t,y + 2)dz.
0
Hence, from (2.8), we have by using (2.4) that

Oyu’(t,y + 9) v Ogutty + 2)
2.9) 175t g oy < 1+C L ) et oy b=
By applying the Gronwall inequality to (2.9), it follows

Cy
dyus(t,y) llex=1(0,mxrs) < €Y

The estimate (2.6) can be proved similarly by noting that d;u® = ajus.
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3. WELL-POSEDNESS OF THE LINEARIZED PRANDTL EQUATION

In this section, we study the well-posedness of a linearized problem of the Prandtl
equation (1.2) in the Sobolev spaces by the energy method, when the background
tangential velocity is monotonic in the normal variable. Again, the main novelty
here is that unlike most of the previous works, the Crocco transformation will not
be used.

In the estimates on the solutions to the linearized problem, we will see that there
is a loss of regularity with respect to both the source term and the background state.
And this inspires us to use the Nash-Moser-Hormander iteration scheme to study
the nonlinear Prandtl equation in next section.

Let (@, D) be a smooth background state satisfying

Oyu(t,xz,y) > 0, Oz + 0y0 =0,
and other conditions that will be specified later. Consider the following linearized
problem of (1.2) around (a, v),
Oyu + wOyu + VOyu + udyt + vy — dfu = f,
Orzu + Oyv = 0,

d i
(3 ) uly:O = 'Uly:O =0, ygr-ir-loou(t’x’y) =0,

u|t§0 = 0

Unlike using the Crocco transformation, our main idea is to rewrite the problem
of (3.1) into a degenerate parabolic equation with an integral term without changing
the independent variables, for which we can perform the energy estimates directly.
For this purpose, we introduce the following change of unknown function:

Yy
w(t,w,y)=(%) (t,x,y), that is, U(t,w,y)Z(ay@)/O w(t,x,7)dy.
Y Y

By a direct calculation, we get that for classical solutions, the problem (3.1) is
equivalent to
Oyw + Oy (aw) + 0y (tw) — 20, (nw) )
+0y( Cfo tzydy) 8§w:8yf,

3.2
(3.2) (8yw + 277w)|y:0 = f|y—0a
wlt<o =0,
where
8511 (8t + 00y + 00y — 85)%& ~ f
n= Ta g = a ~ 9 f ~
yU yU y“

To simplify the notations in the estimates on solutions to the problem (3.2),
denote

Meks = 8= wllgonra + 107 052w 1z, + 107 020l e a2 )
+|o7 5’”77||L2<L o+ ln— nIIBm k2 (1€l g e

Ak = Z Aky ks s

B+t <k

and

where )
S
7 8yu
Iy

=3}
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The following estimate for the problem (3.2) can be obtained by a direct energy
method.

Theorem 3.1. For a given positive integer k, suppose that the compatibility condi-
tions of the problem (3.2) hold up to order k. Then for any fized ¢ > 1/2, we have
the following estimate

(33) lwll gy < Cr)1Flax + Co(a) Ml Fllaz,
where C1(A3), Ca(As) are polynomials of As of order less or equal to k.

Remark 3.2. (1) It is easy to see that the compatibility conditions for the problem
(3.2) up to order k follow immediately from the corresponding conditions of the
problem (3.1).

(2) From the estimate (3.3), one can easily deduce the estimates on the solution
(u,v) to the problem (3.1) in some weighted Sobolev spaces. Hence, from these
estimates we can obtain the well-posedness of the linearized Prandtl equation in the
Sobolev spaces.

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.3. ( L?-estimate) Under the assumptions of Theorem 3.1, for any fived
T > 0, there is a constant C(T) > 0 such that

I + AlwlZgs + 18,0100 < OO0
Proof. Multiplying (3.2) by e~?*(y)**w and integrating over R%, we get
SO Ol e+ MOl 23 e+ e Dy 000 s
< (25 +2[nllz + ||<||L°°(]RI;L§(R+@))) ||€7’\t3yw(t)||Lg(Ri) He”tw(t)Hng(Ri)
+ ol e M) 2y + 20le ™ F Oz @) le X w(t)ll a2 )

+ He_’\tf(t)Hng(Ri) He_)\tayw(t)HLf(]Ri)a

by using the boundary condition given in (3.2).
Using the classical Sobolev embedding theorem, it follows

2
a(20+ 2l + 1<l zz,)) + 2608l < (4601 + Ag0))*.

Thus, by taking A > (4€(1 + X3 0))?, we get
Oelle M w(t)l|7s gz ) + Ml w7z gz ) + lle™ Qyw(t) 722 )
-\ s
< dle tf(t)H%%(Ri),
which implies
2 2 2 112
[|w Hgg@ + )\||7~U|\lggfjZ + ||8yw||53,2 < C(T)HfHBg,?
for all fixed 0 < T < +4o00. (]

Lemma 3.4. (Energy estimate for tangential derivatives) Under the as-
sumptions of Theorem 3.1, for any fired T > 0, there is a constant C(T) > 0 such
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that
lwliFs + Mewleo + 19,0l < CT) (nfnzw
(3.4) (IS0 + NOF0 Tz + 195775 00s ) ol 3
(=l 0 + 195wz, + I =Tl )l )

Proof. Taking the differentiation 85 (18] < k) on the equation in (3.2), multiplying
it by e 2M (y)”@’ﬁw and integrating over R , as in the proof of Lemma 3.3, for

A > (40(14 A30))?, we have
Ol DR w()]24 s + MleORw(®)]25 ga) + e DL, 0(D)25 02

3.5 _
) < 4lleMORFO)|2; + Ar + s + A,

where we have used the compatibility conditions of the problem (3.2) and
05 (tw) |y—o = 0,

by noting (¢, z,y) = —fo 0. u(t,x,§)dy, and Ay, A2 and Az come from the com-

mutators between 85- and the nonlinear terms in (3.2). For brevity, the precise
definitions of A;, i = 1,2,3 are given as follows respectively.
Firstly,

A = > o

B1+B2<8;|821<|8|

+ > o

B1+B2<B;1B821<|B|

/R e ()2 (952 ) (04 B w) (Bgw) dedy

2
+

/ e ()2 (95 5) (952 w) (959, w) dady| .
R

2
+

Therefore,

Ar glle 05w ()| ) {0 | ez lle™ N (@) 12 ez
+ 0P @) —u (1)) p2qea) e Qaw ()| e ry )
+ 108" ()| 2 e~ Darw (@) | e, 22}
+ lle 07 0yw(t) | L2 2 { 1D | L=z e OF M w (B 12r2)
+ 1050l e 22y lle ™M w (Bl 22z}

where we have used Lemma 2.1. Here and in the sequel, for simplicity, we shall
use the notation A < B when there exists a generic positive constant C' such that
A < CB. Similar definition holds for A 2 B.

Secondly, for

Ay =

[, €00 6007 0,)dods |

+
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we have
A < t 7/\ta|5‘ t 7/\taﬂa t
2 SN | L2y le MO w(t)| a2l 0yw(t) | 2 z2)
B — — _
+ 107 0 = DOl 2zl w ()| Lo 22y le 0L Byw(®) | 12 e2)
Bl—= — _
+ DT | o g2 lle ™ w(E)]| 3 g2 le™ 07Dy w (D) L2 g2 )
Finally, for

Az =

i

Yy
/ e*”<y>”8§*—(< / wdg)(af—ayw)dxdy
Ri 0

we get for £ > 1/2,
Az SIC@ 2z o lle™ O w )] e e 05 Dyw(®) | 2 ez
+ 1) | L2y lle ™M w @l 2z, ey 07Dy w ()| 2 e -

Substituting these estimates of Aj, Ay, A3 into (3.5), and taking summation over
all |5] < k, it follows

5t||€_kta§'w(t)||ig(nxi) + )‘||€_’\ta§*w(t)||%g(m) + ||€_M5§*3yw(t)||ig(nxi)

S €0 FOI23 + 105 — u°) e e 0uw () 2 0
+ ||3§'US||%§||€7/\t5zw(t)||2L;?[(Lg) + ||8$5||2L50(Lg)||€7/\tw(t)||%§l(1:;o)
+ ||a§'ﬁ(t)”2L§(L§°)||67Atw(t)||2L;?[(Li) +[|0F(n - ﬁ)(ﬂ“%z(mﬁ)||€7’\tw(t)||%go(uai)
+ ||8§’<(t)“%l?(]Ri)||€7/\tw(t)||%§’g(Lg°)a

for any A > (40(1 + A3,0))?. Integrating the above inequality on [0,77], and using
the compatibility condition

(0F 4.y w)]=0 = 0,
we get for any fixed T" > 0,

[w [0 + Allwl e + [10yw] 5o < C(T){Ilfll
XL XL XL

2

B\

o (e + NP0 0 1k sno o ) e 0 7152 00

117 — G olle™ Opwl| L ey + 107017z lle™0rwlZee, 1oe 0,11, L2m0))
+ ||3§’ﬁ||2L§(L;°I)||€7/\tw||2L;f[(ng)

+lln — ﬁ”zgﬁ||€_/\tw||%;o([o,T]xRi }

Using the Sobolev embedding theorem in the above inequality, the estimate (3.4)
follows immediately. O

Remark 3.5. The estimate (3.4) implies
(36) s S 171 + A ollwles

Moreover, using the same argument as in the above proof together with Lemma 3.3,
when A > (40(1 + X3,0))?, we can obtain

(3.7) lollges S IFlgrs,  0<k <3,
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Proof of Theorem 3.1: Recall from (3.2) that

y
(38)  Opw = yw + Ww + VIyw — 20, (nw) + 0, (C/ w(t, z, g)dg) —0yf.
0

By applying 8;“-1 to this equation and using Lemma 2.1, we get

lwl g2 <l geosn + 1302l gor 0 + 10y g0 + 2wl e

+11@y0) / (e, 2,5)dl gy + 10l g + 19,7 g

S (Wl o)l g+ (1ol + mllzos)loll g

G Nl o + 117 = 0l o[z,
108 g o 9wl ey 2+ 1050l 2 IOl 2 am,

k
107 0Tl z oo wlliem, 2, ) + 10 =Tl gt [lwll 2,

t x, A
18y Pl + 10,0 e, Ml g o + €0 g1 ol s e,y
Then by using the Sobolev embedding theorem, it follows that
gz S Ao ol a0+ 0l ) + 19y Fll a0 + Mo ol
And from (3.6) and (3.7), we get
lllges> S Mot (1o + 1 1) + Goaersro + ) Fllage

For ko > 2, differentiating the equation (3.8) by 8;“-1 8;;2_2, we have

||’U_)||Bl;’1€,k2 < ||w||61;’1€+1,k2—2 + ||ﬂaxw||8§,lék2—2 + ||’L~)(9yw||61;’1€,k272

Yy
b2l s+ 10,0) [t gl g
P 0 P
+ ||Cw||3’;’1ék2*2 + ||6yf||3§}ék2*2
< (Ut il )l geasnna—2 + (1ol + il o) ol e s
H ¢l llwll e ra—2 + 10yCll e, () 1wl g na—2 + |I3yf||3k1wkr2
. k
Hlla = wl grire 2|0z Lse, + 107 05w |l L2 (ngey 10z Lo, (22 )
T 108 92l 20y 0l12 a
107 0y llz o 1wl e, 2y + Il — Ml g lwll e,
Gl g o Nl -
Therefore, we get
||w||3§}ék2 S )‘2,1(”1"”3?;1”“2*2 + ||w||3’;}ék2*1) + Akl,k2—1||WI|B§:; + ||f||3§}ék2*17
which immediately implies
lwll g S Aoa(llwll groiaea 2 + llwllgesea=1) + Ary o1 llwll g2 + IIfIIBm ko1,

by fixing A > (40(1 + X3,0))%.
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The proof of Theorem 3.1 can then be completed by induction on k.

4. ITERATION SCHEME FOR THE NONLINEAR PRANDTL EQUATION

From the estimate (3.3) given in Theorem 3.1, we see that there is a loss of
regularity in the solutions to the linearized Prandtl equation with respect to the
source term and the background state. In order to take care of this loss, we are
going to apply the Nash-Moser-Hormander iteration scheme, cf. [1, 10, 13, 16, 17],
to study the nonlinear problem (1.2).

4.1. The smoothing operators. For a function f defined on Q = [0, +0o[xR, X
R;, let f be its extension to R by 0. Then for a large constant 6, introduce a
family of smoothing operators Sy:

(Sof)(t,z,y) = /pe (1) (E)p, (M) f(t —T4+07 2 — &,y — n + 0~ )drdédn,

where p, (1) = 0 p(67), p € C§°(R) with Supp p C [—1,1] and ||p||,: = 1. One has
{Se}os0: AP(Q) — NizoAZ (),
together with

[Sullas < Co0= ||uf|ae, for all s, >0,

(4.1)

[(1 = Sp)ulla; < Cp0*~|ul|ag, forall0<s<a,

where the constant C', depends only on the function p and the orders of differenti-

ations s and «. For the smoothing parameter, we set 6, = \/02 + n for any n > 1
and a large fixed constant 6y. We have also

(4.2) 1(Se,, — Se, 1 )ulla; < Cp0;”*Abp|ul| ag, for all s,a >0,

where A0, = 6,11 — 0.

The operator Sy acting on the other three spaces introduced in Section 2.1 shares
the same properties.

The following commutator estimates will be used frequently later,

Lemma 4.1. For any proper function f, we have

1 /
(4.3) H[ayus , Sol(Oy )l ax < C’“”ayus [l 4
and
1 /
(14) 104 5 B0l Ly < Cutll 5 s

with the constant Cy, depends on the constant in (2.4). Similar inequalities hold for
the norms || - lgessa. | - e and || - |y

Proof. This lemma can be proved in a classical way, cf. [3, 12]. To be self-contained,
we give a brief proof of the estimate (4.3) here. Note that (4.4) can be proved
similarly.
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From the definition, we have
[ﬁ,se]b = gz—gfs)(t,:c,y) — Se (Tbus) (t,z,y)
Jyul (t—74+0"  y—n+0~ =9, u’ (¢,
= [ 0u(7)pu (€, () (Zirtmgmnts )t ()
(4.5) X (a%) (t—74+0" o —&y—n+0Y)drddy
=071 [ p, (&) (ﬁe (7)o, (Mar (t,7,y.1,0) + p, (1), (Maz(t, 7,y.n, 9))
X (a%u) (t—7+0""x—&y—n+0")drdédn,
with p, (1) =0 p(07)(1 —07),p,(n) =0 p(@n)(1 —0n), and
! 00yt (t+ N0 —7),y + MO~ — 7))

ay(t,7,y,n,0 z/ dA,
1 :16) 0 dyus(t,y)
and
LO2us(t + X071 —7),y + N0~ —
G/Q(taTayan’e) = / = ( ( ) J ( n))d)\
0 ayus(ta y)
Using (2.5) and (2.6), for j = 1,2, we have
(4.6) sup la(-.7, - m, O)llgres < C(T).
0<|7],In|<0~T<Ro
Thus, from (4.5) we get the estimate (4.3) immediately. O

4.2. The iteration scheme. Denote by
P(u,v) = Opu + ulyu + voyu — aiu,
the nonlinear operator associated with problem (1.2), and its linearized operator
around (u,v) by
Plasy (U, v) = Opu + @0y u + 50y u + udy + vyt — du.

In this subsection, we introduce an iteration scheme in order to construct an
approximate solution sequence {(u™,v™)} to the problem (1.2).

For a fixed integer k > 0, suppose that the initial data in the Prandtl equation
(1.2) satisfies the compatibility conditions up to order k, and that (u,v) is a classical
solution. If we set & = u — u® with u*(¢,y) being the heat profile defined in Section
2.2, then it is easy to see that

O+ (0 + u®)ly + vy (0 +u®) — Gy, =0, (z,y) €RZ, t >0,
0z + Oyv = 0,

U|y:0 = U|y:0 = 07 yggloou = 07

(4.7)

ili=0 = to(7,y).
The compatibility conditions for (4.7) follow from those for (1.2) immediately.
The zero-th order approximate solution: Denote

ﬁg)(wi = 8gﬂf|t:0; vg)('rvy) = a1{1)|t:0'

Then from the compatibility conditions for (4.7), {ﬁ%, vg} j<k are defined directly by
tio(z,y). We are going to construct the zero-th order approximate solution (a°,v%)
of (4.7), such that

agﬁ0|t:0 - ’EL]O(.’L',y), va0|t:0 = Ug(‘ray)a 0 S] S ka
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and (u®,v%) = (u® 4 @°,v°) satisfying

Oy’ + 00" =0, (z,y) €RZ, t >0,

Ol—o =10 =0, lim u®=1
(4.8) wly=o = 0’ly=0 =0, lim u®=1,

UO|t:O - UO(:E) y) .
Other properties of (u°,v%) will be studied in more details in Section 5.1.

The Nash-Moser iteration scheme: Assume that for all k = 0,...,n, we have con-
structed the approximate solutions (u*, v*) of (1.2) satisfying the same conditions
given in (4.8) for (u%,v"). We now construct the (n + 1)-th approximation solution
(untt v+ as follows. Set

(4.9) "t = U™ 4 Su" =t A"+ ou”, V" = 0" 4 G,

where the increment (du”,dv™) is the solution of the following initial-boundary
value problem,

Plun op (0u", 00") = f7,
0 Von
O (du™) + 9y (dv™) = 0,

ou|y—p = 0" |y=o =0 lim du™ =0
|y70 |y70 ’ Yy—+00o ’

(4.10)

5u”|t§0 == 0,
where ug = u® + Sp,u™ and vy = Sp, v".

Now, we define the source term f™ for the problem (4.10) in order to have
the convergence of the approximate solution sequence (u™,v™) to the solution of
the Prandtl equation (1.2) as n goes to infinity. Obviously, we have the following
identity,

(4.11) P(u™ "t — P(u™, 0" = Péug wn y(0u",60") + en

where
en = e%l) + 6512).
Here
e = Pu” 4 6u™,v" 4 60") = P(u™,0") = Pl yn)(0u", 60™)
= 0u" 0y (6u™) + 0v" 0, (du™),
is the error from the Newton iteration scheme, and
ed = Péun’vn)((;u", ™) — 'Péug,n mg,n)((;u", su™)
= ((1 = Sp,)(u™ = u®)) 0y (6u™) + 6u"y ((1 — Sp,, ) (u™ — u®))
4600y ((1 = Sp,, ) (u™ — u®)) + ((1 = Sy, )v™) Dy (6u™),
is the error coming from mollifying the coefficients.

From (4.11), we have
(4.12) Pu ot = Z(P(S%Mysw)(auj, 5v9) + ;) + £,
j=0
with
o =P’ %) = 0’ + u0,u’ + v 9,u’ — P u’.
Note that if the approximate solution (u™,v™) converges to a solution of the
problem (1.2), then the right hand side in the equation (4.12) should go to zero
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when n — 4o00. Thus, it is natural to require that (du™, jv™) satisfies the following
equation for all n > 0,
P(u (5un7 5,071) = fnv

vg)

where f" is defined by

—

n—

S ==80,0>¢) = So. [
j=0

=0

<.

by induction on n. Obviously, we have

fozfseofav flz(Seofsel)fa‘i’S@leOa

(413) n—2
f=1(S0,_, —S80,)( X ;) = So,en—1+ (So,_, — Sp,)f*% Yn>2.
i=0

5. EXISTENCE OF THE CLASSICAL SOLUTIONS

In this section, we study the iteration scheme (4.9)-(4.10) with f™ being given
n (4.13), by using the estimate (3.3) given in Theorem 3.1. To do this, let us first
state the main assumption (MA) on the initial data @ (z,y) of (4.7) as follows:
(MA) For any fixed integers k > 7, ko > k + 2, and a real number
¢ > L, suppose that 4y € A*T1(R%) satisfies the compatibility
conditions for the problem (4.7) up to order kg, and

8u0 <e€

HUOHAZ’“O*l(]}@ + ” ||_A2’“0+1(]R2) )

for a small quantity € > 0 dependmg on the norms of uf(y).

5.1. The zero-th order approximation. Let us construct the zero-th order ap-
proximate solution (u”,v") satisfying (4.8) to the problem (1.2). As mentioned in
Section 4.2, from the equation (4.7) one can easily obtain @) (z,y) = 9{a(0,z,y)
and v} (z,y) = 07v(0,2,y) in terms of Gg(x,y) for all 0 < j < ko, and then have
the following relations

J — 92 —1-k —1-k
(5.1) w(z,y) =0, Uo Z ( Fo,uld vkd,ud) ),

U(acy —foauoxf)df,

by induction on j, with u}(x,y) = @) (2, y) + (8u*)(0, ).
To construct (a°,v°) satisfying

0’1o = w)(z, y), 0v°im0 = v (2,y), 0 <3 < ko,
we can simply define
ko . ko .
(5.2) Wt z,y) =Y —ag(ey), Otzy) =Y —vhey).
j=0 J: Jj=0 J:

For this approximate solution, we have

Lemma 5.1. Under the assumption (MA), for any fired T > 0, there is a constant
C = C(ko,T) depends only on ko and T such that,

(5:3) <O, [o°llproqoinez) < Ce,

~0
HU |‘A§0+1([O,T] X]Ri)
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and

(5.4) < Ce.

a
I/ HAE”([O,T}xRi)
Here, we have used the notations

k

~0 . ~0
181 g 0,772 7= D8 s 0,155 2,
=0

and
o= 00" + (@° 4 u®)0,a° + 029, (@° + u®) — 92a°.

Proof. Since g € A;"T(R2), it follows immediately that

vo(,y) / By iio(w, m)dn € D (R3),
which implies
acl) = —(’ELO + Ug)am’ljo — ’any(’fj,o + UO) 82’&0 S A2k0 (R2 )

and

vg () / O uh(z,m)dn € Do~ H(R2).

In this way, using (5.1) and by induction on j we can deduce

He SHIRL), o e DRI(RL)

for all j < kg, and ‘
||’EL]OHAZ’€0*J'+1(R2+) < C(j)€,

for a constant C(j) depending only on j. Then, (5.3) and (5.4) follow immediately
from the construction (5.2). O

Remark 5.2. Denoting u’ = u9+u?, it is easy to see that (u°,v?) is an approzimate
solution to the original problem (1.2) satisfying

uf + vl + 0% —ud, = f*, >0, (z,y) €R3,
Opu’ +0,0° =0, (z,y) €RZ, ¢t >0,

0,0 _ : 0_
(u , U >|y:0*05 yEI}}oou — 4,

(5.5)

u0|t:0 - UO(-’I],y),
with 8 f%4—o =0 for all 0 < j < ko — 1.
Lemma 5.3. Under the assumptions (MA), for any fized T > 0, there is a constant
C(k,T) such that,

Oy a e < (.

(5.6) H HA’W“([O T)xR%) T ||3y 2l 0 ([0.T]xR3) =

This result can be proved in a way similar to the proof of Lemma 5.1, so we omit
it for brevity.

Remark 5.4. From the smallness of the first term given in (5.6), it is easy to see
that for a fized T > 0, there is a small € such that when the conditions of Lemmas
5.1 and 5.5 hold, we have the monotonicity

Gyuo(t,x,y) >0, (t,x,y) € [0,T] x Ri.
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5.2. Estimates of the approximate solutions. Obviously, the problem (4.10)
can be written as
Oy (0u™) + uy 0z (6u™) + vy 9y (0u™) + 0u™ 0y (uy, )
+5U”8y(ugn) — 85(51/’) = fn,

(5.7) Oy (du™) 4 0y (dv™) = 0, '
du"|y=o = " |y=0 = 0, ygr}rqoo ou™ =0,
5u"|t:0 == 0,

where

ug =ut 4 S, (@04 Y owl), g =S, (00 + D ).

0<j<n—1 0<j<n—1

n ou™

As in Section 3, from (5.7), we know that w™ satisfies

Opur™ + O, (uf, w™) + Oy (vf, w) — 20, (n"w")
+ay (Cn foy ’LU"(t, z, g)elg) _ a;wn _ ayf",

Set

5.8 0y (" Jo g
(5.8) (Oyw™ + 2n"w )}y:O =—f |y:0’
wn|t:O - 0,
where
L 02up (O g 8y v 8y — 02Dy
"= ¢ T - :
yUe, Oyug
and
~ n S 1_S 7}:2@‘_8’ en_+Sn71_Sn a
(5.9 f= f :( On— 9”')(ZJ—0 i) 9, €n—1+ (S0, 0.)f .

- n n
Oyug, Dyug,

From the above main assumption (MA) and the construction of the approximate
solution (@°,v%) to the problem (4.7), it is easy to show by induction on n that the
compatibility conditions for the problem (5.8) up to order ko hold for all n > 0.

Similar to Section 3, set

. k k
Moks = lug, —ullgeee + 1072 02 u®|| 2 (5= + 107052 V5, |l e (12,

& B _
+||(97—18§277n”L§(Lf,°I) + Hn" — 77””3[’;10,@ + ||<n||5(’§1l,k2a

. _ 82u®
with n" = anygn’ and
AP = S Mk
ey +[ 225 <k
That is,
(5.10) o= g, =l gy + 1w8lley + llvg, 1oy

7" leg + 0™ = 7" g + €7 []Lap-

By applying Theorem 3.1 to the problem (5.8), we have
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Proposition 5.5. Under the main assumption (MA), the solution w™ to the prob-
lem (5.8) satisfies

(5.11) ™ |Lag < CLODNF llag + CoONDAL N ]ag
where C1(Nf), C2(N5) are polynomials of Ny of order less or equal to k.

The key step in proving the convergence of the Nash-Moser-Hormander iteration
scheme (4.9)-(4.10) is given by the following result.

Theorem 5.6. Under the main assumption (MA), there exists a positive constant
Cy, such that

(5.12) lw"|| g < Coegmx=Rr=EIng,
holds for all n >0, 0 < k < kg where 0, = \/9(2) +n and A0, = 0,11 — 0,y

Theorem 5.6 will be proved by induction on n. First of all, to apply Proposition
5.5, we need to estimate A} and f" by induction on n also. For this purpose, we
first give the following estimates, some of the proofs being postponed to Section 7.
The proof of Theorem 5.6 will be completed at the end of this subsection.

Lemma 5.7. Suppose that the main assumption (MA), and (5.12) for w’, 0 < j <
n — 1, hold. Then there is a constant Cy > 0, such that

(5.13) 160 s < Creg?™EFREFIng, 0 <k <k,
! 3—k
(5.14) ”wHLx([O,T]XRi) < Cie0y " Ab;,
and
J J max{3—k, k—1—k
(5.15) H#Hw < Cuegm IRy <k,
Y

hold for all0 < j <n-—1.

Since the proof of this lemma is technical, it will be given in Section 7.
As vl (t,x,y) = — [ (0007 (¢, x, §)dy, from (5.13) we immediately have

Lemma 5.8. Under the same assumptions as for Lemma 5.7, there is a constant
Cy > 0, such that

(5.16) 1607 | pp < Coectf ™ ETRMHITRIAG 0 <k <y — 1,
holds for all 0 < j <n —1.
Based on Lemma 5.7 and Lemma 5.8, we have

Lemma 5.9. Under the same assumptions as for Lemma 5.7, there is a constant
C3 > 0, such that

(5.17) ™ — | g < CoemaxlOFFI=RY 0 < ko < g,
(5.18) 05, | o< (j0,71x&2 ) + VG, | L= (j0,00),.,L2([0,T)xR,) < C,
and

Collo™lpg < Cye O F27K g < o<y — 1,
519 loplog < L
CPG"an”DkU*l < 036 On e s k= ko,
0
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hold, where C, > 0 is given in (4.1).
Proof. From the identity
n—1
u"fus:ﬂOqLZ(Suj
j=0
we have immediately by using (5.3) and Lemma 5.7 that
) 0 n—1 .
o =l < Nalag + S 6L
J=
n—1 ~ ~
(520) < C% + Cle Z ez.nax{Bfk,kfk}Aej
§=0

< C% 4 Oy Cepmax {0 kr1=F}

Here, we have used the fact that

Jj—1 ~ pk+1—k 7

o ask—k>0

5.21 E 0FFAg, < {17 v ="
( ) p:Op p_{ , ask—k< -2

for an absolute constant C.
From (5.20), we obtain the estimate (5.17) immediately. Similarly, from the
identity

n—1
v =00+ g ov’,
=0

we can easily deduce the estimates (5.18) and (5.19) by using Lemma 5.8. O

As a direct consequence of the estimate (5.17), there is a constant Cs > 0 such
that

(5.22) luy, — u? || gp < Caedmm{OR+1=EY 0 < < kg,

2, n
To get the estimate of A}, we need to estimate the norms of n" = gy% and
yUg,,

(5.23) o = (0 + ug Oz + vy Oy — 85)8yugn
' ay“gn 7

which are given as follows. Again, the proofs of the next two Lemmas will be given
in Section 7.

Lemma 5.10. Under the same assumptions as for Lemma 5.7, there is a constant
Cy > 0, such that

Cye 9:{1'6\)({1,k—i—2—l~€}7 4<k< ko,
(5.24) ™ — 7| g <
046, k= 3,
and
(5.25) 17"l < Ca(1+ egxtOE+3=RY) =0 <k < ko,
n BSUS

where " = 520
Yy 2o
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Lemma 5.11. Under the same assumptions as for Lemma 5.7, for (" defined in
(5.23), there is a positive constant Cs such that

C’sezna,x{l,k-‘r?’—];}7 4 S k S kO,

(5.26) ¢ ap <
Cs, k= 3.

By plugging the estimates (5.19), (5.24), (5.25), (5.26) and (5.22) into the defi-
nition (5.10) of A}, we conclude

Proposition 5.12. Suppose that the main assumption (MA), and (5.12) for w?,
0<j<n-—1, hold. There exists a positive constant Cs > 0 depending on C, (1 <
p <5) given in Lemmas 5.7-5.11, such that

) C,Soglax{l,k+371~c}7 4< k < ko,
<
S

Cs, k=3.

To estimate f” defined in (5.9), we will need the following two estimates whose
proofs will be given in Section 7.

Lemma 5.13. Under the same assumptions as for Lemma 5.7, there is a constant
C7 > 0, such that

Oyup \—1 Oyul N —1 -
5.27 Y O - <2 Y, < O pmax{0kt1-F)
G2 I(GoE) lees2o I(GhE) g < Creds ,

hold, with 1 < k < ko.

Lemma 5.14. Under the same assumptions as for Lemma 5.7, there is a constant
Cs > 0, such that for the error terms 65-1) = 6u? 0, 0u? + 6v7 9, 6u’ and

e = ((1—Sp,) (Wl —u®))0u(0u) + 500, (1 — Sp,)(u! — u®))
+5vj8y((1 — ng)(uj — us)) + ((1 — Sgn)vj)[?y(éuj),

the following estimates
(1)

€ max{6—2k, k1+3—2k
(5.28) H%”A’;l < Cse?0), { ! N
and
e? 3—Fk,k1+5—2k
(5.29) 525l < Oy ta=2h A g,
Yy

hold for all ki <kg—1and0<j<n-—1.
In summary, for

n fn (Sanl — Sen)(27;02 €j) — Senenq =+ (S9n71 — Sen)fa

)

- ay“gn B ay“gn
with e,, = eg) + eg), we have

Proposition 5.15. Suppose that the main assumption (MA), and (5.12) for w,
0<j<n-—1, hold, there exists a constant Cq > 0 such that

(5.30) 17" ax < Coetimx3=Rb=RIAg, 0 <k < k.
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Py n n u? —1
Proof. From f™ = afun _ afus (65 ue;) by using Lemma 2.1 and Lemma 5.13
YT0n Y Yy
we have
||f"||,4'; < Mk{ ||L(,OC76 grax{0+1— k}}

On the other hand, using (4.1) and (4.2), for any k,k; >0 (5 = 1,2,3), we have

(531) { Z H HAkl 9}6 k1 Ao + H €n—1 HA’VZ 9(k7k2)+

a

e

oy ph—ka _
Oyu® HAZJ O AGn}

Thus, by using (5.28), (5.29) in (5.31), we get

n n—2 _ _
H—af Sllag < Op{zcg Z 20 TR ST A g -l A,
(5.32) 4202 R k5 N g glemka)s caeefjkmen},
for k1 < ko —1 and ks < kg — 1, provided ”a ||Ak3 < C%.

When k = 3, by setting k1 = ks = k and ky = 3 in (5.32) we get

(5.33) L(2Cs(1 4+ C)e + C%)03 7k AG,,.

When 4 < k < ko, by choosing k1 > 1+ k, ky = k — 2 and ks = k in (5.32) we
obtain

(5.34) ||$ lar < Co2Cs(1 + C)e2 + Coe)8E A0,
Yy

Here, we have used the fact that (k — ko) + ko + 5 — k<kforald<k< ko.
Combining (5.33) with (5.34), we conclude the estimate (5.30). O

Proof of Theorem 5.6:

We are now ready to conclude the proof of Theorem 5.6 by induction on n.

For n = 0, from the main assumption (MA), Lemma 5.1 and Lemma 5.5, we get
immediately that for any fixed T' > 0, there is a constant C* = C*(kg, T') such that

~O a
1°] grotr + H ot + 15 ,I\Ago < C%.
This 1mphes that f = m satisfies

170l 4o < G,

for a constant C.
A direct calculation yields
0 s aiué ~a
Ap < lw’lle + Hayus ey +C% < Oy Yk < ko,

for a constant C* depending on C* and ce given at above.
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By applying Proposition 5.5 for w®, and using the above estimates, it follows

(5.35) [’ a5 < Croe, Yk < ko,

for a constant Cy, depending on C® and C, given above. Hence, the estimate (5.12)
for the case n = 0 follows immediately from (5.35) with a constant Cy depends on
éko, /{30, ];5 and 90.

Now, assuming that (5.12) holds for all w’/ with 0 < j < n — 1, we are going to
prove it for w™. In fact, from the estimates (5.11) and (5.30), we get

™ |ag < CaNF)Coct > C=RIEY 1 Cy(AF) N} Coetly ™,
which implies by Proposition 5.12 that
" lLag < Coetly,

and -
[w" || 4 < Coebly™",
for all 4 < k < kg, with the constant Cy > (C1(Cs) + C2(Cs)Cs)Co.

5.3. Convergence of the iteration scheme. In this subsection, we will prove
the convergence of the iteration scheme and this immediately yields the existence
of classical solutions to the Prandtl equation (1.2).

From the iteration scheme (4.9)-(4.10) with f™ defined in (4.13), we know that
the approximate solution

n n
W=t + @l + g out, vt =20 + E o7,
7=0

=0

satisfies
Pt v th) = (1= 8p,) 3j_g € + So.en + (1= Sp,) f7,
amun-i-l + ayv"+1 =0,

(5.36) w1y = 0" ,—g =0, lim wntl =1,

y—r—+00
utHi—o = uo(z,y) -
From the estimates (5.13) and (5.16), we know that there exist u € u® 4 AE_Q
and v € Dgig, such that

. n__ - _ . no__ _ —
it —all g =0, Tim o = o s =0,

To verify that the limit (u,v) is a classical solution to the problem (1.2), it is
enough to show that the right hand side of the equation in (5.36) converges to zero
as n — +00.

Obviously, we have

n n
1L = S0, )0/ + D enllar < 67 (L Lasss + D lesllgesn)-
Jj=0 j=0
Thus, it is enough to prove the convergence of series ijog llesl] ap+1- Recall
e; = eg.l) + 65.2),

with ‘ ‘ ‘ ‘
el = 6ul 9, (6u?) + 6079, (5u?),
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and
e; ) = Dy (61}3 (1= Sp,) (W —u)) + ((1— ng)vj)(éuj)).
By using Lemma 2.1, it follows that
oSl gger < M (1100 | o 10| gron + 160 |2 607 | g2
607 pgeallowl oz ugs,)
< Croe? 94452k g,
and
lef N g < My (1507 oo ? =l ggso + 1807 g u? = w2 oz,
o 1o 0w | a7 lpgse 00 22 s )
< Croe? 9443 F Ay,

for a positive constant Cyy > 0, where we have used (5.13), (5.16) and (5.17).
Therefore, we obtain

“+o0 —+o0 B
> lejllgees < C> 0ERA; < CC,
7=0 ' =0

for all k < k — 5. And this concludes the convergence of the iteration scheme and
the existence of classical solutions to the Prandtl equation (1.2).

6. UNIQUENESS AND STABILITY

In this section, we study the stability of classical solutions to the Prandtl equation
(1.2), and thus the uniqueness of the classical solution obtained in Section 5 will
follow immediately.

Let (u',v!) and (u? v?) be two classical solutions to the problem (1.2) in the
solution spaces given in Theorem 1.1 with the initial data u}(z,y) and u3(z,y) as
two small perturbations of u{(y) as stated in Theorem 1.1. Denoting by

1 1 2 ul + u? vt +0?

_ 2 _ S 5o
u=u —u, v=v —v, u= 5 U= B

then from (1.2), we deduce that (u,v) satisfies

Orus + 10U + VOyu + u0, 0 + vOyU — agu =0,
Ou + Oyv = 0,

Uly—0 = V|y=0 =0 Iim =20
|y0 |y0 T yS¥eo )

(6.1)

uli—o = uo(z,y) = uf —ud.

As in Section 3, set

Yy
(6.2) w(t,z,y)(%) (t,z,y) that is, u(t,z,y):(ayﬂ)/ wt,z,y)dy'.
yu Yy 0
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Then, from (6.1) we know that w(t, z,y) satisfies
Dot -+ B () + By (3) — 20, () + By (¢ J2 wlt,, ) ) — 02w = 0,
6.3) { (@yw+2mw)]y—0 =0,

wheo = wo(e.9) = (3%) (x.0).

where
o924 (0 + w0, + 00, — 0 ) 0y
n= Fa g = ~ .
U Oyt

Similar to the proof for (3.3) in the problem (6.3), it follows
(6.4) 1wl ax o, xr2 ) < C(M)[woll apr2y, k< k-3,

for a constant C(T') depending on 7' > 0 and the norms of the initial data u},u3
in the spaces given in the existence part of Theorem 1.1.
From (6.4), and the transformation (6.2), we deduce

1 2 1 2 9 “(1) — “g
v —u HAg([o,T]xRi) +lv” —v ||D§*1([07T]><]R2+) < C||a—y o w HAQ(Rip
Y

for all k < k — 3. And this concludes the uniqueness and stability results stated in
Theorem 1.1.

7. PROOF OF SOME TECHNICAL ESTIMATES

Finally, in this section, we give the proofs for Lemmas 5.7, 5.10, 5.11, 5.13 and
5.14 stated in Section 5 about the iteration scheme (4.9)-(4.10).
We start with the proof for Lemma 5.7.

Proof of Lemma 5.7: Let us first prove the estimate (5.13). First of all, it holds
true for du®. Indeed, from

y
su’ = 9, (u® + 8’90110)/ w’dy,
0
by using Lemma 2.1 and the Sobolev embedding theorem, we have
10u°[| 4 < CRlw® g < CRCoely ™~ " Agy, K >2,
with
Of = g + 8] o

The estimate (5.13) holds obviously for §u’ when k = 0, 1.

Now, suppose that (5.13) holds for éu?, 0 < p < j — 1. We estimate du’ as

follows.

Recalling w/ = (=24

9, (u],)

)y, We have

Y

Su? = 8y(u§j)/ w’ djj.
0
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Using again Lemma 2.1, the Sobolev embedding theorem and (5.21), it follows
that, for kK > 4 and k > 6,

6w |lap < Mk((02+|\8y(U§!, u) ) 1w’ | az + 10y Nz roe 107 ]]ax)
—1
< Mi((CR + Cyb; Z 106l k) lw? [ az + 19yu7 22, (ree,) 1w [ ar)
< CoMiC, (CO+0169 SId o iR Ag yegd A0,

+CoCyMy(C + Cre X~ })95‘; EAG,) e B h k= k}AG
< €Colp My(CY + C1Ce )T t0 it ’“})93 FAG;
+eCoC, My, (CY + C1Ce )9“"{3 k= k}AG
< €CoC, My (CRO;" + CF + 20106)9 *Ab;,
where the constant C, comes from (4.1).
By setting C; = 4CoC, MC?9, we can choose 0 < € < ¢ and 6y > 0 large enough
such that

CoC, My, (CRO5 " + CF + 20, Ce) < Cy.
Therefore, we get
6w | 4x < Cre0FAG;,

for £ > 4. On the other hand, we have

l0w]lag < Mi(C§+C, Z 106l as) 1w | az + Mill Oy’ [l 2, e ) w07 ]| az
< CoMC,(CY —l—Cle S O AG, et ’{Aej
+CoCpMi(C§ + Cre Y00 037 A0, )e 9§*kA9j
< CietTFAG;,

for k > 6, by choosing a proper constant C; > 0. And this completes the proof of
the estimate (5.13).
We now turn to the estimates (5.14) and (5.15). When j = 0, from

uO aO Y
(7.1) O _ (14 %Sl [ e

Oyu® Oyu®
we have, by using the Sobolev embedding theorem and for some ¢ > 1/2, that

9y Sp,, (@° =
g e < (1425052 ) Collw®ll 2 o,
< (14 (1255 || \E 1,0
< (14 | 2508 | ) Gz,

where Cp = ( 0+OO(1 +42)~tdy)z. The estimate (5.14) with j = 0 follows immedi-
ately by choosing

8,5
Cy > CoCy(1 + ||L(

| zoo)-
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Applying Lemma 2.1 to (7.1) gives

ou
k1 aks
> 100k (5 ) e

k[ A <k—1

_ ) Dy Sp, (@°
SSVRC% S SR T (R T YT

— Oyu®
1<k +[E2H ] <k—1

0 Seo( )

A 1250 ) }

Then this yields the estimate (5.15) with 7 = 0 by choosing
- 0y S, (1°
Gz MGoCe{1+ Y ool ((H%U(s))) o }.
0<ky+[52 4] <k—1 Y
When 1 < 5 <n —1, by definition, we have

Sud 8yuf9'v vy

7.2 = . T(t,x,9)dyg.

(7.2) B~ Dyur /O w! (t, 2, 7)dy

By using Lemma 2.1 and the assumptions on w?, it is sufficient to obtain the bounds
of

S - S S
Oyu Oyu = Oyu

Oyup, Ly S, @) {2 0,8, 6ur

in the spaces L* and Dg_l respectively.

To obtain the estimate (5.14) with index j, suppose that (5.14) holds for g;fs
with 0 < p < j — 1 and prove it by induction. Note that ;7 = 0 holds by the above
argument.

For this, first we show

Lemma 7.1. Suppose that the estimate (5.12) holds for w’, 0 < j < n — 1, with
k > 7, then there exists a constant My, such that for all 0 < j <mn,
ayug
7.3 L pee < M,
(73) I3 e <

For continuity of the presentation, we postpone the proof of Lemma 7.1 later.
Then by Lemma 7.1, with (7.2), it follows

H Sul
dyu

“[| Lo < M,CeCoe 63~ FAG; < Cret}™ N
with
Cy > M, égCQ

To prove (5.15) with index j, we also suppose that it holds for =, 0<p<j-1
Then, obviously, we have the identity

=l 5,8, sur

¥ 2o = % {50 (5 + gk Sh 0,0}
=0

(7.4) p=0 .
z { (0,355) + So, (5 F=) + [+ 50,10, (5u”) }
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Thus, we have

-1
0y Sp, 0u
k1 qko
1300l (54 ) e
p=0

<BZ{|8§}8§28 8( )HLeo(L )+H3§33§2( D, )”L (Lm)}

<BZ{9 Haklakz( )HLw(L )+||a§18k2(§; )”L‘X’(L }

where the constant B depends on the commutators in (7.4) which is independent
of j and p. Using the induction hypothesis for (5.15), we have

i JuP
k1 qkso

)R DR A2 Gy [ P

P=0 gy 4 E2f )<k vt
j—1 - ~ -

< 016 Z eglax{3—k,k—1—k}A9p < ClCG e;nax{O,kfk}-
p=0
Therefore, we deduce

> Hakla’“(a %, )HLoo(L 2)
y

ke +[ 52 <k—1

6 Sg u
< T {iower (2
Y

k1+[m]<k71

9, S, du
(7.5) + IIZ8 18,2 <7> ||L;°<L%,m>}

y S
< Co%+ 2300169;?’&"{17’”1*’“}.
Now using Lemma 2.1, it follows

Sul
(7.6) Yo 1070 (5 ) ez,
ayu y ,

k22 <k—1

j
k1 ok Y20, j
smf Y Gy 8y2(5 0| IO Tl PP
B+t <k—1 v

dyu
Y Gl er [fwesaam)], .}

k[ 25 <k—1
< MkC*e((C“ + 230019}“““’ P e [w? || 42 + Msl\wjlugfl)

< 016 e;nax{élflg, kflflz}Aej,
by choosing C1 satisfying
C1 > MpCoCy((C* +2BCCH)e + M,).
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Then, we have proved (5.15) for 4 <k —1 < ko — 1.
On the other hand, similar to the argument to derive (7.5) from (7.4), one can
deduce

a J
> 1080 (G iz < Ce

R[] <3
for a positive constant C' > 0. Thus, as in (7.6), we obtain

ou’ _i
Y

This completes the proof of Lemma 5.7.
We now turn to the proof of Lemma 7.1.

Proof of Lemma 7.1: The case when 0 < j <1 is obvious. From (7.4), we have

88’9 ou?

uP
||Loo<2{|se ya Dl

82us 1
+ 1185, (3u? (ayus)2>|\m + H[m,s{aj]wy(aw’)n\m}
Y Yy

<Z{\se ya )||Loo+B|| e}

where we have used the estimate of commutators associated with the mollifier S,
given in Lemma 4.1.

Suppose now (7.3) holds for 0 < p < j — 1. Let us check the case when p = j.
Obviously, we have

IIZ

SuP Oyup v )
. . —) =5y, L t 7)dy
(7 7) SGJ (ay ayus) SGJ ay ( ayus /0 w ( 5zay) )

Dyuyp Y Oyuyp
— ya D >t -~ p y4
s ((0525) [ i) - ().

For the second term given on the right hand side of (7.7), using the induction
hypothesis, we get

ay 6
wp)IILoo < Z 5 llzee lw?| e
p=0 Oyu
— ]71 ~
< M, Z [wP| 42 < MCoe Y 0375 Af, < M,CoCe.

p=0 p=0

ZII 0;
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For the first term on the right hand side of (7.7), using Lemma 4.1 gives when
kE>7,

Jj—1 O uP y
v, p N
ZHS‘%‘ <(ay ayus )/O w (t,x,y)dy) ||L°°
8ySe, @0 %~ 8,8p,0uT\ [V o
*ZHSe et [wra gy o
yU q=0 yUu 0
sZ{C‘eHwPHLW (||ay ||Loo+2 92|
p=0

104 0,5, o Hm))}

< CCyCoe Z 93—%91, < C2CyCoe.

In summary, we conclude

Oy 6 3 Sp, ouP
ol <1+ H =+ ”ZTHL“

y

ay
(7.8) 52

<14+ C%+ CQCgCOG + M,CoCe + BCch,
which implies the estimate (7.3) by choosing
M, 2 2(1+ C% + C2CCoe + BC1Cee).

and

T 20,C
To prove Lemma 5.10 for ™, we need the following
Lemma 7.2. Under the assumptions of Lemma 7.1, there exists a constant C11,
such that for all 0 < j <n,
Ay (u) —u®)
(79) H ASD ||Ak < Op 6Gmax{O k+1— k}
Oyu®

Proof: This lemma can also be proved by induction on j. Suppose that it holds
for 0 <p <j—1, let us study the case when p = j.
From the identity

Oy, — ") _ 6 0,00 3y So,i”
8 us Oyu® dyus
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we have
Oy (u é L0, 59 SuP 8y Sp, @
|—F—— IIAk<IIZ A+l ya el PV
yUu
Jj—1 2,,8
ouP U
< ) e — k ) p__Y
(7.10) < 3 {1007y + 150, 00

1 0ySe
+ H[—S,sej]<ay<6up>>|ug}+ = g

ouP aySejﬁO
<Z{\59 ya g + Bl + 15 L

To estimate || Sy, (%%)HA?, we use the relation (7.7). For the second term on
the right hand side of (7.7), by using (7.3) we have

uy Oy (uh) —u?®)
Op Y\"o,
Z 150, (28 )y < Mkz (192 g+ 12 g
Jj—1 ~ B : }
< M, Z {MSCQG 9;&){{3—1@ k—k}Aep + Cll0062921ax{3—k,k+4—2k}A9p}
p=0

< Mkc 006(M + 0116) de{O k+1— k}
For the first term on the right hand side of (7.7), we have for k > 4,

it Dyuyp y
ng 0 2% / wP (t, x,7)dy k
;)n (( o) [, Wm0 ) I

! Oy(up —u®) "
< Mkejcez{pranE(LﬁnwyTnAk o g 10y s s }
p=0 S vt
i1 Oy (ul — u?) Oy (uh — u?)
~ y\Ug, » y\Ug,
< Mk@jclp;) {pr”A%”THA’g + [Jw HAQHTHA;}}

Jj—1 ~ ~ L
< Mi0;Coy_ { Co 20,y (ORI} . Ggmti=hE=REAg, €y}

p=0

and

< 2MyCyCoCCy 20727 R
j—1
ES ((ay
p=0

8yu§p v p B2
wP (¢, z,y)dy 3 < Bye®,
) [ e aii ) L < B
for a positive constant Bj.

By plugging the above three estimates into the first term on the right hand side
of (7.10), (7.9) follows by choosing a proper constant Cy; > 0.

Remark 7.3. From the above argument, it is easy to see that the estimates (7.3)
and (7.9) hold without mollifying (- )g,, but for k < ko — 1.
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We are now ready to prove Lemma 5.13.

Proof of Lemma 5.13: From the estimate (7.8), we get immediately that there
is g > 0 such that when 0 < € < ¢q, it holds that

ayug
| <2, inf |
y

J
ay“ej
Oyu?®

7.11 > =

(711) || B

for 0 < j < n. Hence, the first estimate given in (5.27) follows.
By using the following Fa Di Bruno formula,

1 1
m _ = () m;
O™ (g(f)) =m! 397 () [] —— 0" ],
1<r<m mi+-me=m,m;>1 J
we have,
Oyuy m! m?2 [ Oyug
n o\ e < J J n 2
G g =B > > 1T ool (G

1§k1+[k22+1]§k 1<r<ki+k: 1<j<r

ml 2 a n o __ .8
S D S [

LSki+[ "3 | <k 1STSkiths

ml m?2 /Oy(ug —u®
< 11 |an8¢(%)|“¢

1<j<r—1
0 (u” 711,5)

<B. > 3 ”(%)II o
Oyu ml [T

1<k +[ 52| <k 1Sr<hithe Al

(2l )y,
X H ("7) 24
1<5<r—1 3yu5 AQm}HHE%]’

where my+---m} = ki,mi+---m? = ka,mj+m3 > 1, with m} and m7 being sup-
posed to be the largest integers in the corresponding group of indices, respectively.
Then, by using (7.9) in the above inequality, it follows

n

ayUG 1 a k
n\— . max{0,k+1—k}
(7.12) () )y < Crety |

for a positive constant C; > 0. This completes the proof of the lemma.
2. n
y%on

. 0, .
Now, we turn to the estimates on n™ = o stated in Lemma 5.10.
yUg,,

Proof of Lemma 5.10: Obviously, we have

| 85 (ugn —u®

)
7.13 n gt .
(7.13) ™ =" || ax By g

02(ul —u®) Oyupy
M Y\ "0n Y0n\—1 -
k (n e P S

IN

0 W)y oy
Dyu® Li Dyuy As |-
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We now estimate term by term on the right hand side of (7.13). Since
aj(ugn —u®) _5 (ay(ugn - u‘s)) N Oy(up, —u®) GSUS
=0y

Oyu® Oyu® Oyu® Oyus’
by using (7.9), we have for k > 4
et
Oyu® A
02u® Oy (uy —u®) Oy(uy —u®)
Yy Y\ "0, y\%g,,
(114) S Ml el =g g+ 10y (F )
a2us a (un _ us) a (un _ ’U,S)
Y y\"o,, Yy
< Mill g gl =g Lag + Cotll (5 )
< élle 91+max{0,k+1—/~€}.
On the other hand, by using (7.9), it holds that
82( n ’U,S) 82 s a ( n us) a (un o us)
y 6 Yy Gn ) y\%e,,
|2y < Ml g | e g + | e g
2us
Y
(7.15) < (M| Dy llez +1)Chae.

Plugging the estimates (7.14), (7.15) and (7.12) into (7.13), we obtain the esti-
mate (5.24) given in Lemma 5.10.
To derive the estimate (5.25), from the definition of 7", we have

0%u® Oyu 0%u® Oyuy N —1
—n ] < M Yyt ( Yy 0 ) - y ( Yy Gn) .
Il < (| o e ) e+l () e
0%u® 2u Oyuy N —1
gy vy, y YO, )
< M, (| o erll(2 yus) o + gt lem 1 (%) |Ag+2>
82 s 2us 5
< Me@lF s + ||;s||L;oc7e9;na*{°vk+3*k}>,
yU '

where we have used (7.12) and (7.11). Thus, we get the estimate (5.25) immediately.
And this completes the proof of the lemma.
To estimate (™, similar to the proof for Lemma 7.1, from

02,Sp. u’ 92 (Sp.u) j—1 92 suP )
gyujs = yayui + Zp:() (S0] (#) + [6 s SG ](9 5up)
82 (Sy.a") 9%u

= Pt 5 (o, (0w + 0u(2) 5 ) + [k S0,002,007)

we have

Lemma 7.4. Under the assumptions of Lemma 7.1, there is a constant Cio > 0,

such that ]
2 7
1= | ag < Cazet)

3yu9j

14+max{0,k+1— k}

and

u
- 4z < Crze,
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hold for all 0 < j <n.

With this, we are now ready to prove Lemma 5.11.
Proof of Lemma 5.11: First of all, note that
U;‘n82u}}n B .
=25 e < Mi(llvg, Lo lln™ = 7" [l ax + 0G| oo 2 ) l10" llex
ayue ’ ‘ v , ‘

+ 0"z, ) 108, lpg)-

By using Lemma 5.9 and Lemma 5.10, we get

vl 02l - ,
Lo g < My (CoCaep™ 2R 1 0 (1 + efy{Oh+a=it)
yU,,

+ 20, Cyegit2-h)
< Cv592’1&)({1,k+371~c}7

when k > 4 for a positive constant C5. Moreover,

vy 85113
HWHA; < M3(C3C4e + C3C4 (1 + €) +2C3C4¢) < Ck.
y&o, )
Similarly, by using (2.1) and Lemma 7.4, we can show that

n 2 n 2 n 2 n
uena yuen amyuen amyuen

=gy lar < Milllug = ll55 Lay + 155 = llug, — ]l

8; u"’n s
Higs ez olele)
My (CL(C" 4 Cye)Cpety (04102

+CL (O + Cyel ™M) e
< C5emax{1,k+2—1;}.

IN

By noticing that
(0 — 07)0yu (0 — 0)0yug,  dyu® (O — 0))0y (ug, —u®) dyu®

Y
n - s no s n
Oyug Oyu Oyug Oyu Oyug

using (7.9) and (7.12), we have

2 n
MHM < Cygmax{0 b2k}
(4

Plugging the above estimates into the definition of ¢™ in (5.23), it leads to the
(5.26) given in Lemma 5.11 and then completes its proof.

n
ayuen

Finally, let us give the proof of Lemma 5.14.
Proof of Lemma 5.14: Recall the definition

etV = gund,ou" 4 Jv"d,0u",
and
e = (1= 5p,)(um — u®)) 0y (8u™) + 6umdy (1 — Sp, ) (u™ — u*))
+00"9y (1 = Sp, ) (u™ — u®)) + ((1 — S, )v™) 3y (0u™).
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We get
1)
II%IIAIP < Mk1{||3 ou? IIAMH HLoc + 1102607l 2, (1 )II HD k1
Dy 0u? Dy’ .
(7.16) 607 | e | 5 IIAkl 15 ez e 10Vl }

Obviously, from

. 2 7 J
Dydu’l  Oyup, Oyuy,

y
= J t’ ) y d~ . j)
Oyu® Oyu® /0 't §)dy + Oyu® v

we have
(7.17)
2( J s

Oy 5 B
5 a L < II7IIAM lw o + ||a w

e llw? [ 2
2 5 E .

u“;_ .
all 5;“8 Hcg||wj||A§1 + ||Tu5||L°°||wJ||A§1 + gt e 107 | e

< 00011629max{3_1~€’k1+5_2];}A9j + (Crie+ C’a)C’oet??laXB_k’ kl_l}}AQj

J

+COCHel R A, + 2000 TR NG 4 (04 OB IR | Gy pepd R Ay,

where we have used (7.9), (7.11) and (5.12).
If we choose a constant

Chy > Co(2+ 3C* 4+ 3C11€0),
then from (7.17), we get

Dyoul ~ max{3—F.ky —F
(7.18) [ o e < Crieg B Ag,

by using k > 7.
By using (7.18), Lemmas 5.7 and 5.8, from (7.16), there exists a constant Cg > 0
such that
(1)

H a ||Ak1 < 08629;[18.)({672]6, k1+372k}A9‘j,
yU

for all k1 < ko — 1.
Similarly,

(2)
€ . 5u
J < o J - N
gl < (= S0 —u)) 5

9y ((1 — 591)(uj —u®)) j 8y(5uj>
0, ) B

+ ||6v7
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by using Lemma 2.1, the second formula of (4.1) and (5.21), we get
o Sui
I s = M {Jlw? I\Ak1+1|\ Iz~

+00= 0,0 =007 HDW

j Oy (w! —u?) j Oy (u! — u®)
PN kupgl 10— 85,) (5Dl

- 9y (6u?) 9y (6u?)
+ (1 - SGJ)UJHL“JHTHAM + ||U]||D k1 HTHLy[(L )}
2k’ u’

< Mkl{lluj —u ||Ak1+1|| ||L°° +0775 |u? — ||_Ak/|| llppie

: Fy(uw? —u®) 2k || 5 Iy(u! —u )
+ (1607 || Lo ||y78|u§1 +0;77 1007 o ||'7J67|\A§’

8, (du)

ro , Dy (6u?)
—k
O 1 oy 12 s 17 g 1255 o b
for a fixed integer 2 < k' < kg — 2.
By applying Lemma 5.7, Lemma 5.8 and estimates (7.9), (7.18) to the above
inequality, and by setting k' > k — 2, it follows that for k; < kg — 1,

(2) _ _
J 2 pmax(3—k,k1+5—2k) )
Hayus ”Afl < Cse oj Ab;,

for a positive constant Cs. And this completes the proof of the lemma.
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