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Abstract

A truncated sequential procedure is constructed for estimating the

drift coefficient at a given state point based on discrete data of ergodic

diffusion process. A nonasymptotic upper bound is obtained for a

pointwise absolute error risk. The optimal convergence rate and a

sharp constant in the bounds are found for the asymptotic pointwise

minimax risk. As a consequence, the efficiency is obtained of the

proposed sequential procedure.
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1 Introduction

In this paper we consider the following diffusion model:

dyt = S(yt) dt+ σ(yt)dWt , 0 ≤ t ≤ T , (1.1)

where (Wt)t≥0 is a scalar standard Wiener process, S(·) and σ(·) are unknown
functions. This model appears in a number of applied problems of stochastic
control, filtering, spectral analysis, identification of dynamic system, financial
mathematics and others (see [1], [3], [23], [27], [28] and others for details).

The problem is to estimate the function S(x) at a point x0 based on the
discrete time observations

(ytj )1≤j≤N , tj = jδ , (1.2)

where N = [T/δ] and the frequency δ = δT ∈ (0, 1) is a function of T that
will be specified later.

The estimation problem of the function S was studied in a number of pa-
pers in the case of complete observations, that is when a continuous trajectory
(yt)0≤t≤T was observed. In the parametric case this problem was considered
apparently for the first time in the paper [2] for diffusion model of the axis of
the equator precession. In that paper a non-asymptotic distribution of the
maximum likelihood estimator was found for a special Ornstein-Uhlenbeck
process.

It should be noted that investigating non asymptotic properties of para-
metric estimators in the models like to (1.1) comes to the analysis of non
linear functionals of observations. At the most cases this analysis is un-
productive in non asymptotic setting. In order to overcome the technique
difficulties the sequential analysis methods were used in [28] and [29] for
estimating a scalar parameter. In [25] these methods were extended to esti-
mating a multi-dimensional parameter as well. Moreover, in [26] truncated
sequential procedures were developed that economizes the observation time.

In [7] and [8] a sequential approach was proposed for the pointwise non-
parametric estimation in the ergodic models (1.1). Later in [10] the efficiency
was studied of the proposed sequential procedures .

A sufficiently complete survey one can find in [27] on the nonparametric
estimation in the ergodic model (1.1) when non sequential approaches are
used.

In the cited papers estimation problems were studied based on complete
observations (yt)0≤t≤T . In practice, usually one has at disposal discrete time
observations even for continuous time models.
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A natural question arises about proprieties and the behavior of estimates
based on discrete time observations for such models. These problems were
studied for several models. We cite some of them.

The LAN property was studied in the papers [17], [24] and [30] for para-
metric ergodic diffusion models observed at discrete times. Parametric esti-
mation was investigated in [21] for a non ergodic diffusion. Nonparametric
estimation setting for models of kind (1.1) was considered firstly for estimat-
ing the unknown diffusion coefficient σ(·) based on discrete time observations
on the interval [0, 1] (see, for example, [6], [15], [19], [20] and the references
therein). Later, in [18] kernel estimates of drift and diffusion coefficients were
studied for non ergodic process (1.1) taking the values into the interval [0, 1].

So far as concerning the estimation in ergodic case, it should be noted
that a sequential procedure was proposed in [19] for nonparametric estimating
the drift coefficient of the process (1.1) in the integral metric. Some upper
and lower asymptotic bounds were found for the Lp−risks. Later, in the
paper [5] a nonasymptotic oracle inequality was proved for the drift coefficient
estimation problem in a special empiric quadratic risk based on discrete time
observations.

This paper deals with the drift coefficient efficient nonparametric esti-
mating at a given state point based on discrete time observations (1.2) in the
absolute error risk. We find the optimal minimax convergence rate and we
study the lower bound normalized by this convergence rate.

Our approach is based on the sequential analysis and it was developed in
the papers [7], [8], and [10] for the nonparametric estimation.

Let us remind that in the case of complete observations (that is, when a
whole trajectory is observed) the sequential estimate efficiency was proved
by making use of uniform concentration inequalities (see [11]), besides the
weak Hölder space functions S were used.

As it turns out later in [13], the efficient kernel estimate in the above
given sense provides to construct a selection model adaptive procedure that
appears efficient in the quadratic L2−metric.

Therefore, in order to realize this program in the case of discrete time
observations, one needs to obtain the relative concentration inequalities, that
is done in [14]. It should be noted that to obtain nonasymptotic concentration
inequalities we make use of nonasymptotic bounds uniform over functions S
and σ for the convergence rate in the ergodic theorem for the process (1.1).
The latest result is proved in [12] and it based on a new approach using
Lyapounov’s functions and the coupling method.

Further in this paper, by making use of the concentration inequalities we
find the explicit constant in the upper bound for weak Hölder’s risk normal-
ized by the optimal convergence rate and we prove that this upper bound is
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best over all possible estimates. It means the procedure is efficient.
The paper is organized as follows. In Section 2 we describe the functional

classes. In Section 3 the sequential procedure is constructed. In Section 4
we obtain a nonasymptotic upper bound for the absolute error pointwise
risk of the sequential procedure. In Section 5 we show that the proposed
procedure is asymptotically efficient for the pointwise risk. All proofs are
given in Section 6. In the Appendix we give all necessary technical results.

2 Functional class

We consider the pointwise estimation problem for the function S(·) at a fixed
point x0 ∈ R for the model (1.1) with unknown diffusion coefficient σ. It
is clear that to obtain a good estimate for the function S(·) at the point x0
it is necessary to impose some conditions on the function ϑ = (S, σ) which
provide that the observed process (yt)0≤t≤T returns to any vicinity of the
point x0 infinitely many times.

In this Section we describe the weak Hölder functional class which guar-
antees the ergodicity property for this model. Firstly, for some x∗ ≥ |x0|+1,
M > 0 and L > 1 we denote by ΣL,M the class of functions S from C1(R)
such that

sup
|x|≤x

∗

(
|S(x)|+ |Ṡ(x)|

)
≤M

and
−L ≤ inf

|x|≥x
∗

Ṡ(x) ≤ sup
|x|≥x

∗

Ṡ(x) ≤ −L−1 .

Moreover, for some fixed parameters 0 < σmin ≤ σmax we denote by V the
class of the functions σ from C2(R) such that

0 < σmin ≤ inf
x∈R

min (|σ(x)| , |σ̇(x)| , |σ̈(x)|)

≤ sup
x∈R

max (|σ(x)| , |σ̇(x)| , |σ̈(x)|) ≤ σmax <∞ . (2.1)

In this paper we make use of the week Hölder functions introduced in [9].

Definition 2.1. We say that a function S satisfies the weak Hölder condition
at the point x0 ∈ R with the parameters h,ǫ > 0 and exponent β = 1 + α,
α ∈ (0, 1), if S ∈ C1(R) and its derivative satisfies the following inequality

∣∣∣∣
∫ 1

−1

z

∫ 1

0

(Ṡ(x0 + uzh)− Ṡ(x0)) du dz

∣∣∣∣ ≤ ǫ hα . (2.2)

We will denote the set of all such functions by Hw
x
0

(ǫ, β, h).
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Note that the inequality (2.2) implies that

sup
S∈Hw

x
0

(ǫ,β,h)

∣∣∣Ωx
0
,h(S)

∣∣∣ ≤ ǫ hβ , (2.3)

where

Ωx
0
,h(S) =

∫ 1

−1

(S(x0 + hz)− S(x0)) dz .

Let us denote by Hw
x
0
,M
(ǫ, β, h) the set of all functions D from Hw

x
0

(ǫ, β, h)

such that supx∈R(|D(x)|+ |Ḋ(x)|) ≤M/2 and D(x) = 0 for |x| ≥ x∗.
Let S0 be a function from ΣL,M/2 such that

lim
h→0

h−β Ωx
0
,h(S0) = 0 . (2.4)

We denote
UM(x0, β) = S0 +Hw

x
0
,M
(ǫ, β, h) , (2.5)

where h = T−1/(2β+1) and

ε = εT =
1

(lnT )1+γ
(2.6)

for some 0 < γ < 1. Obviously that UM(x0, β) ⊂ ΣL,M . Now we set

Θβ = UM(x0, β)× V . (2.7)

It should be noted that, for any ϑ ∈ Θβ, there exists the invariant density
which is defined as

qϑ(x) =

(∫

R

σ−2(z) eS̃(z)dz

)−1

σ−2(x) eS̃(x) , (2.8)

where S̃(x) = 2
∫ x

0
σ−2(v)S(v)dv (see,e.g., [16], Ch.4, 18, Th2). It is easy to

see that this density is uniformly bounded in the class (2.7) , i.e.

q∗ = sup
x∈R

sup
ϑ∈Θβ

qϑ(x) < +∞ (2.9)

and bounded away from zero on the interval [x0 − 1, x0 + 1], i.e.

q∗ = inf
x
0
−1≤x≤x

0
+1

inf
ϑ∈Θβ

qϑ(x) > 0 . (2.10)
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For any R → R function f from L1(R) we set

mϑ(f) =

∫

R

f(x) qϑ(x) dx . (2.11)

Assume that the frequency δ in the observations (1.2) is of the following
asymptotic form (as T → ∞)

δ = δT = O
(εT
T

)
, (2.12)

where the function εT is introduced in (2.6).
Now, for any estimate (i.e. any (yt)0≤t≤T measurable function) S̃T (x0) of

S(x0), we define the pointwise risk as follows

Rϑ(S̃T ) = Eϑ |S̃T (x0)− S(x0)| . (2.13)

3 Sequential procedure

In order to construct an efficient pointwise estimate of S we begin with esti-
mating the ergodic density q = qϑ at the point x0 from first N0 observations.
We choose

N0 = Nγ
0 and 2/3 < γ0 < 1 . (3.1)

We will make use of the following kernel estimate

q̂T (x0) =
1

2(N0 − 1)ς

N
0
−1∑

j=0

Q

(ytj − x0

ς

)
, (3.2)

where Q(y) = 1(|y|≤1) and ς = ςT is a function of T such that

ςT = o(T−γ
0
/2) as T → ∞ .

For T ≥ 3 we set

q̃T (x0) =




(υT )
1/2 , if q̂T (x0) < (υT )

1/2 ;

q̂T (x0) , if (υT )
1/2 ≤ q̂T (x0) ≤ (υT )

−1/2 ;

(υT )
−1/2 , if q̂T (x0) > (υT )

−1/2 ,

(3.3)

where

υT =
1

(lnT )a0
and a0 =

√
γ + 1− 1

10
.
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The properties of the estimates q̂T (x0) and q̃T (x0) are studied in the Ap-
pendix. Let us define the following stopping time

̟ = ̟T = inf



j ≥ N0 :

j∑

i=N
0

φi ≥ HT



 , (3.4)

where φi = χh,x
0

(yti−1

)1{i≤N} + 1{i>N}, χh,x
0

(y) = Q ((y − x0)/h) and h is a

positive bandwidth. We put ̟ = ∞ if the set {·} is empty. Obviously, that
in our case ̟ <∞ a.s. since

∑
i≥N

0

φi = +∞ a.s.

Now we have to choose the threshold HT . Note that in order to construct
an efficient estimate one should use all, i.e. N , observations. Therefore, the
threshold HT should provide the asymptotic relations ̟T ≈ N and

N∑

i=N
0

φi =
N∑

i=N
0

χh,x
0

(yti−1

) as T → ∞ .

In order to obtain these relations, note that due to the ergodic theorem

N∑

i=N
0

χh,x
0

(yti−1

) ≈ 2h(N −N0)qT (x0) .

Hence, replacing in the right-hand side term the ergodic density with its
corrected estimate yields the following definition of the threshold

H = HT = h(N −N0)(2q̃T (x0)− υT ) . (3.5)

Note that in [7] it has been shown that the such form of the threshold HT

provides the optimal convergence rate. It is clear that

̟ ≤ N +HT < N + h(N −N0)/
√
υT ,

i.e. the stopping time ̟ is bounded.
Now on the set ΓT = {̟ ≤ N} we define the correction coefficient α = αT

as

αT =
HT −∑̟−1

j=N
0

χh,x
0

(ytj−1

)

χh,x
0

(yt̟−1

)
,

i.e. on the set ΓT

̟−1∑

j=N
0

χh,x
0

(ytj−1

) + αχh,x
0

(yt̟−1

) = HT .
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Moreover, on the Γc
T
we set αT = 1. Using this definition we introduce the

weight sequence
α̃j = 1{j<̟} + α1{j=̟} . (3.6)

One can check directly that, for any j ≥ 1, the coefficients α̃j are Ftj−1

measurable, where Ft = σ (yu , 0 ≤ u ≤ t). Now we define the sequential
estimate for S(x0) as

S∗
h,T

(x0) =
1

δHT




N∑

j=N
0

α̃jχh,x
0

(ytj−1

)∆ytj


 1ΓT

. (3.7)

In the next section we study the non asymptotic properties of this procedure.

Remark 3.1. Note that the correction coefficient of type (3.6) was used
firstly in the paper [4] in order to construct an unbiased estimate of a scalar
parameter in autoregressive processes AR(1). Here we make use of the same
idea but for a nonparametric procedure.

4 Non asymptotic estimation

As we will see later in studying the estimate (3.7), the approximation term
plays the crucial role. In our case, this term is of the following form

Υ1,T =
1

δHT

N∑

j=N
0

α̃jχh,x
0

(ytj−1

) ̺j , (4.1)

where ̺j =
∫ tj
tj−1

(S(yu)− S(ytj−1

))du. One can show the following result.

Proposition 4.1. For any T ≥ 3,

sup
ϑ∈ΣL,M×[0,σmax]

Eϑ Υ
2
1,T

≤ L̃2L1 δ , (4.2)

where L̃ = max(L,M) and L1 = 2
(
σ2
max

+ 2δ(M2 + L3D∗ + L2 x2
∗
)
)
.

Moreover, we set

Υ2,T =
1

δHT

N∑

j=N
0

α̃jχh,x
0

(ytj−1

) ̺∗
j
, (4.3)

where ̺∗
j
=
∫ tj
tj−1

(σ(yu)− σ(ytj−1

))dWu.
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Proposition 4.2. For any T ≥ 3 for which 0 < δ ≤ 1, one has

sup
ϑ∈ΣL,M×[0,σmax]

Eϑ

(
Υ2,T

)2 ≤ σ2
max

L1

h(N −N0)
√
υT

. (4.4)

Proofs of Propositions 4.1–4.2 are given in the Appendix.
Now we introduce the approximation term, i.e.

BT =
1

HT

N∑

j=N
0

α̃jfh(ytj−1

) (4.5)

with fh(y) = χh,x
0

(y)(S(y)− S(x0)). Taking into account this formula, we
can represent the error of estimate (3.7) on the set ΓT as

S∗
h,T

(x0)− S(x0) = Υ1,T +BT +MT , (4.6)

where

MT =
1

δHT




N∑

j=N
0

α̃jχh,x
0

(ytj−1

)ηj




with ηj =
∫ tj
tj−1

σ(yu) dWu. Obviously, for any function S from ΣL,M , the

term BT can be bounded as

|BT | ≤ h max
|x−x

0
|≤h

|Ṡ(x)| ≤M h .

Proposition 4.3. For any T ≥ 3, one has

sup
ϑ∈ΣL,M×[0,σmax]

EϑM
2
T

≤ σ2
max

δh(N −N0)
√
υT

. (4.7)

Hence, we obtain the following upper bound.

Theorem 4.4. For any h > 0 and T ≥ 3, one has

sup
ϑ∈ΣL,M×[σmin , σmax]

Eϑ |S∗
h,T

(x0)− S(x0)| ≤ U∗(δ, h, T ) +M Π∗
T
, (4.8)

where
U∗(δ, h, T ) = L̃

√
δL1 +M h+

σmax√
δ h (N −N0)υ

1/4
T

and
Π∗

T
= sup

ϑ∈ΣL,M×[σmin , σmax]

Pϑ

(
Γc
T

)
.
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Let us study now the last term in (4.8).

Proposition 4.5. Assume that the parameter δ is of the following form
(2.12) and h ≥ T−1/2. Then, for any a > 0,

lim
T→∞

T aΠ∗
T

= 0 . (4.9)

Proof of this proposition is given in the Appendix.

5 Asymptotic efficiency

First of all we study a lower bound for the risk (2.13). To this end we set

ς∗
ϑ
(x0) =

2qϑ(x0)

σ(x0)
. (5.1)

This parameter provides a sharp asymptotic lower bound for the pointwise
risk normalized by the minimax rate ϕT = T β/(2β+1).

Theorem 5.1. The risk defined in (2.13) admits the following lower bound

limT→∞ϕT inf
S̃T

sup
ϑ∈Θβ

√
ς∗
ϑ
(x0)Rϑ(S̃T ) ≥ E|ξ| , (5.2)

where infimum is taken over all possible estimate S̃T , ξ is a (0, 1) gaussian
random variable.

Theorem 5.2. The kernel estimate S∗
h,T

defined in (3.7) with h = T−1/(2β+1)

satisfies the following asymptotic inequality

limT→∞ ϕT sup
ϑ∈Θβ

√
ς∗
ϑ
(x0)Rϑ(S

∗
h,T

) ≤ E|ξ| .

where ξ is a (0, 1) gaussian random variable.

Notice that the Theorem 5.1 and Theorem 5.2 imply the following efficiency
property

Theorem 5.3. The sequential procedure (3.7) with h = T−1/(2β+1) is asymp-
totically efficient in the following sense

limT→∞ ϕT sup
ϑ∈Θβ

√
ς∗
ϑ
(x0)Rϑ(S

∗
h,T

) = limT→∞ϕT inf
S̃T

sup
ϑ∈Θβ

√
ς∗
ϑ
(x0)Rϑ(S̃T ) ,

where infimum is taken over all possible estimate S̃T .
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Remark 5.1. Note that the constant (5.1) provides the sharp lower bound
for the minimax pointwise risk. The calculation of this constant is possible by
making use of the weak Hölder class. This functional class was introduced in
[9] for regression models. For the first time, the constant (5.1) was obtained
in the paper [10] at the pointwise estimation problem of the drift based on
continuous time observations of the process (1.1) with the unit diffusion.
Later this constant was used in the paper [13] to obtain the Pinsker constant
for a quadratic risk at the adaptive estimation problem of the drift in the
model (1.1) based on continuous time observations.

Remark 5.2. Note also that in this paper the efficient procedure is con-
structed when the regularity is known of the function to be estimated. In
the case of unknown regularity we shall use an approach based on the model
selection similarly to that in the paper [13] which deals with continuous time
observations. The announced result will be published in the next paper which
is in the work.

6 Proofs

6.1 Lower bound

In this section the Theorem 5.1 will be proved. Let us introduce the model
(1.1) with σ = 1, i.e.

dyt = S(yt) dt+ dWt . (6.1)

Now we define the risk corresponding to this model as follows

R∗
S
(S̃T ) = ES |S̃T (x0)− S(x0)| , (6.2)

where ES denotes the expectation with respect to the distribution PS of the
process (6.1) in the space of continuous functions C[0, T ]. It is clear that

sup
ϑ∈Θβ

√
ς∗
ϑ
(x0)Rϑ(S̃T ) ≥ sup

S∈UM (x
0
,β)

√
2qS(x0)R∗

S
(S̃T ) , (6.3)

where qS is the invariant density for the process (6.1) which equals to qϑ with
σ = 1. Let now g be a continuously differentiable probability density on the
interval [−1, 1]. Then, for any u ∈ R and 0 < ν < 1/4, we set

Su,ν(x) = S0(x) +
u

ϕT

Vν

(
x− x0
h

)
,
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where h = T−1/(2β+1) and

Vν(x) =
1

ν

∫ ∞

−∞

(
1(|u|≤1−2ν) + 21(1−2ν≤|u|≤1−ν)

)
g

(
u− x

ν

)
du .

It is easy to see directly that, for any 0 < ν < 1/4,

Vν(0) = 1 and

∫ 1

−1

Vν(x) dx = 2 .

Therefore, denoting D(x) = Su,ν(x)− S0(x), we obtain

∫ 1

−1

(D(x0 + hz)−D(x0))dz = 0 .

Moreover, note that

|Ḋ(x)| = |u|ϕ−1
T
h−1|V̇ν

(
x− x0
h

)
| ≤ |u| T−α/(2β+1)ν−2ġ∗ ,

where ġ∗ = supx |ġ(x)|. Therefore, for any fixed u ∈ R and 0 < ν < 1/4,
the functions Su,ν belong to the class UM(x0, β) for sufficiently large T . It
implies that, for any b > 0 and for sufficiently large T , we can estimate from
below the right-hand term in the inequality (6.3) as

sup
S∈UM (x

0
,β)

√
2qS(x0)R∗

S
(S̃T ) ≥ sup

|u|≤b

√
2qSu

(x0)R∗
Su
(S̃T ) .

Taking into account here that

lim
T→∞

sup
|u|≤b

∣∣∣qSu
(x0)− qS

0

(x0)
∣∣∣ = 0 ,

we obtain the inequality (5.2) by making use of the Theorem 4.1 from [10].
Thus we obtain the Theorem 5.1.

6.2 Upper bound

We begin with stating the following result for the term (4.5).

Proposition 6.1. The function BT defined in (4.5) satisfies the following
asymptotic property

lim sup
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |BT | = 0 . (6.4)
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The result is proved in the Appendix.
Now we prove Theorem 5.2. To this end we set

φ̃(u) =

+∞∑

j=N
0

φi 1{ti−1
<u≤ti} ,

where the random variables (φi)i≥1 are defined in (3.4). Using this function
we introduce the stopping time

τ = τT = inf

{
t ≥ T0 :

∫ t

T
0

φ̃(u) du ≥ δHT

}
,

where T0 = tN
0

= δN0. As usually, we put τ = ∞ if the set {·} is empty.
Obviously that

τ ≤ T + δH ≤ T + δh(N −N0)/
√
υT .

Due to the equality
∫∞

T
0

φ̃(u) du = ∞, we obtain immediately that the ran-

dom variable

ξT =
1√
δHT

∫ τ

T
0

φ̃(u) dWu (6.5)

is gaussian N (0, 1) (see, for example [28], Ch.17). Now, using this property,
we can rewrite the deviation (4.6) on set ΓT as

S∗
h,T

(x0)− S(x0) = B∗
T
+M

(1)
T + σ(x0)M

(2)
T +

σ(x0)√
δHT

ξT , (6.6)

where B∗
T
= Υ1,T +Υ2,T +BT ,

M
(1)
T =

1

δHT

N∑

j=N
0

α̃j χh,x
0

(ytj−1

) (σ(ytj−1

)− σ(x0))∆Wtj

and

M
(2)
T =

1

δHT


∑̟

j=N
0

α̃j φj ∆Wtj
−
∫ τ

T
0

φ̃(u) dWu


 .

First we note that the definition of the sequence (α̃j)j≥1 in (3.6) implies

N∑

j=N
0

α̃jχh,x
0

(ytj−1

) ≤ HT a.s. (6.7)

13



Therefore, through the condition (2.1)

Eϑ

(
M

(1)
T

)2
= Eϑ


 1

δH2
T

N∑

j=N
0

α̃2
j
χh,x

0

(ytj−1

)
(
σ(ytj−1

)− σ(x0)
)2



≤ Eϑ

hσ2
max

δHT

.

Taking into account here that, for T ≥ 3,

HT ≥ h(N −N0)(2
√
υT − υT ) ≥ h(N −N0)

√
υT , (6.8)

we obtain
lim
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |M(1)
T | = 0 .

Now we study the term M
(2)
T . To this end note that t̟−1 < τ ≤ t̟. There-

fore, we can represent this term as

M
(2)
T =

1

δHT

(
α φ̟∆Wt̟

− φ̟

(
Wτ −Wt̟−1

))
.

Moreover, taking into account that the stopping times ̟ and τ are bounded,
one gets

E
(
∆Wt̟

)2
= δ and E

(
Wτ −Wt̟−1

)2
= E

(
τ − t̟−1

)
≤ δ .

Therefore, from here and (6.8), we get

Eϑ

(
M

(2)
T

)2
≤ 2Eϑ

1

δH2
T

≤ 2

δ h2υT (N −N0)
2

and
lim
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |M(2)
T | = 0 .

To put an end to the proof of this theorem we have to show that

lim
T→∞

sup
ϑ∈Θβ

EϑKT |ξT | = 0 , (6.9)

where

KT =

∣∣∣∣∣
1√

2q̃T (x0)− υT
− 1√

2qϑ(x0)

∣∣∣∣∣ .
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It is easy to see that, for any T > 0, the random variable ξT is conditionally
gaussian with respect to FT

0

with the parameters (0, 1). Therefore,

EϑKT |ξT | =
√

2

π
EϑKT .

Taking into account here Lemma 8.5 we come to the equality (6.9). Hence
Theorem 5.2.

7 Conclusions

In the paper we studied the estimation problem of the function S when
its smoothness is known. In the case of unknown smoothness, in order to
construct an adaptive estimate based on discrete time observations (1.2) in
the model (1.1) we shall use the approach developed in [7] for continuous
time observations. The approach make use of Lepskii’s procedure and se-
quential estimating. Note that Lepskii’s procedure works here just thanks
to sequential estimating since, for the sequential estimate of the function
S, the stochastic term in the deviation (6.6) is a gaussian random variable.
This provides correct estimating the tail distribution of a kernel estimate
and adapting for the pointwise risk. Moreover, for adaptive estimating in
the case of quadratic risk, we shall apply the selection model developed in
[13] to sequential kernel estimates (3.7). Note once more, that gaussianity
of the stochastic term in (6.6) is a cornerstone result for obtaining a sharp
oracle inequality. It permits to find Pinsker’s constant like to [13] and then
to study the proposed procedure efficiency.

These both programs will be realized in the next paper.

8 Appendix

8.1 Geometric ergodicity

First of all we recall that in [12] we have proved the following result.

Theorem 8.1. For any ǫ > 0, there exist constants R = R(ǫ) > 0 and
κ = κ(ǫ) > 0 such that

sup
u≥0

eκu sup
‖g‖

∗
≤1

sup
x∈R

sup
ϑ∈ΣL,M×V

|Eϑ,x g(yu)−mϑ(g)|
(1 + x2)ǫ

≤ R ,

where Eϑ,x (·) = Eϑ (·|y0 = x), ‖g‖∗ = sup
x
|g(x)|.
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8.2 Concentration inequalities

For any R → R function f belonging to L1(R) we set

Dn(f) =
n∑

k=1

(
f(ytk)−mϑ(f)

)
. (A.1)

Now we assume that the frequency δ in the observations (1.2) is of the
following form

δ = δT =
1

(T + 1)lT
, (A.2)

where the function lT is such that,

lim
T→∞

lT
T 1/2

= 0 and lim
T→∞

lT
lnT

= +∞ , (A.3)

in particular, the function lT = (ln T )1+γ from (2.6) is of this kind. Moreover,
let κ = κT be a positive function satisfying the following properties

lim
T→∞

κT = 0 and lim
T→∞

κ
5
T
lT

lnT
= +∞ . (A.4)

Theorem 8.2. ([14]) Assume that the frequency δ satisfies (A.2)- (A.3).
Then, for any a > 0,

lim
T→∞

T a sup
h≥T−1/2

sup
ϑ∈Θβ

Pϑ

(
|DN(χh,x

0

)| ≥ κT T
)
= 0 . (A.5)

8.3 Proof of Proposition 4.1

First, we note that by the Bunyakovskii - Cauchy - Schwarz inequality

Eϑ

(
̺2
j
(S)|Ftj−1

)
≤ δL̃2

∫ tj

tj−1

Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
du ,

where L̃ = max(L, M). Note now that, for tj−1 ≤ u ≤ tj,

Eϑ((yu − ytj−1

)2|Ftj−1

) ≤ 2δ

(∫ u

tj−1

Eϑ(S
2(yv)|Ftj−1

) dv + σ2
max

)

≤ 2δ

(
2

∫ u

tj−1

(M2 + L2Eϑ(y
2
v
|Ftj−1

) )dv + σ2
max

)
.
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Due to Proposition 8.6, we can estimate the last conditional expectation as

sup
ϑ∈ΣL,M×[0,σmax]

sup
tj−1

≤u≤tj

Eϑ

(
y2
u
|Ftj−1

)
≤ D∗L+ y2

tj−1

.

Therefore, taking into account that χh,x
0

(ytj−1

)y2
tj−1

≤ x2
∗
, we obtain

sup
tj−1

≤u≤tj

sup
ϑ∈ΣL,M×[0,σmax]

χh,x
0

(ytj−1

)Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
≤ L1 δ . (A.6)

Therefore,

sup
j≥1

sup
ϑ∈ΣL,M×[0,σmax]

χh,x
0

(ytj−1

)Eϑ

(
̺2
j
(S)|Ftj−1

)
≤ L̃2 L1 δ

3 .

Making use of the inequality (6.7) yields the following upper bound, through
the Bunyakovskii - Cauchy - Schwarz inequality,

EϑΥ
2
T
≤ Eϑ

1

δ2HT

N∑

j=N
0

α̃jχh,x
0

(ytj−1

)̺2
j

= Eϑ

1

δ2HT

N∑

j=N
0

α̃jχh,x
0

(ytj−1

)Eϑ

(
̺2
j
|Ftj−1

)

≤ L̃2 L1 δ .

Hence Proposition 4.1.

8.4 Proof of Proposition 4.2

Note that by the condition (2.13)

Eϑ

(
(̺∗

j
)2|Ftj−1

)
=

∫ tj

tj−1

Eϑ

(
σ(yu)− σ(ytj−1

))2|Ftj−1

)
du

≤ σ2
max

∫ tj

tj−1

Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
du .

Therefore, using the inequality (A.6) we obtain

sup
j≥1

sup
ϑ∈ΣL,M×[0,σmax]

χh,x
0

(ytj−1

)Eϑ

(
(̺∗

j
)2|Ftj−1

)
≤ σ2

max
L1 δ

2 .
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From here and (6.7) and, taking into account that 0 < α̃j ≤ 1, we obtain

EϑΥ
2
2,T

= Eϑ

1

δ2H2
T

N∑

j=N
0

α̃2
j
χh,x

0

(ytj−1

)Eϑ

(
(̺∗

j
)2|Ftj−1

)

≤ σ2
max

L1Eϑ

1

HT

.

Now the inequality (6.8) yields (4.4). Hence Proposition 4.2.

8.5 Proof of Proposition 4.3

Indeed, taking into account the inequalities (6.7) and (6.8), we obtain that,
for any T ≥ 3,

EϑM
2
T

= Eϑ

1

δ2H2
T

N∑

j=N
0

χh,x
0

(ytj−1

) α̃2
j
Eϑ

(
η2
j
|Ftj−1

)

≤ Eϑ

1

δ2H2
T

N∑

j=N
0

α̃j χh,x
0

(ytj−1

)

∫ tj

tj−1

σ2(yu) du

≤ σ2
max

δh(N −N0)
√
υT

.

Hence Proposition 4.3.

8.6 Proof of Proposition 6.1

We start with setting

rT =
(2q̃T − υT )h

mϑ(χh,x
0

)
and N1 = N0 + rT (N −N0) .

Note that N1−N0 ≤
(
q∗
√
υT
)−1

N := N∗
1
, for sufficiently large T . Moreover,

we set

GT =
1

HT

N
1∑

j=N
0

fh(ytj−1

) and ĜT = GT − BT .

Using (2.11) we can represent the term GT as

GT =
N1 −N0

HT

mϑ(fh) +
1

HT

N
1∑

j=N
0

f̃h(ytj−1

) := G1(T ) +G2(T ) ,
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where f̃h(y) = fh(y)−mϑ(fh). Taking into account that mϑ(χh,x
0

) ≥ 2hq∗,
we obtain

|G1(T )| =
rT (N −N0)h

HT

|m∗
ϑ
(h)| ≤ 1

2q∗
|m∗

ϑ
(h)| , m∗

ϑ
(h) =

mϑ(fh)

h
.

Let us represent the last term as

m∗
ϑ
(h) = qϑ(x0)Ωx

0
,h(S) + m̃ϑ(h) ,

where m̃ϑ(h) =
∫ 1

−1
(S(x0 + hz)− S(x0)) (qϑ(x0 + hz)− qϑ(x0)) dz. Fur-

therer, by the definition (2.5), one has

Ωx
0
,h(S) = Ωx

0
,h(S0) + Ωx

0
,h(D) ,

for some function D from Hw
x
0

(ǫ, β, h). Therefore, the properties (2.3)-(2.4)

and (2.6) yield

lim
h→0

ϕT sup
S∈UM (x

0
,β)

∣∣∣Ωx
0
,h(S)

∣∣∣ = 0 .

Obviously, that
lim sup

h→0

h−2 sup
ϑ∈Θβ

|m̃ϑ(h)| <∞ .

Hence,
lim sup
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |G1(T )| = 0 .

Now we note that,

EϑG
2
2
(T ) = Eϑ

1

H2
T




N
1
−1∑

j=N
0

Ψj + f̃ 2
h
(ytN

1
−1

)


 ,

where Ψj = f̃ 2
h
(ytj−1

) + 2f̃h(ytj−1

)
∑N

1

l=j+1
Eϑ

(
f̃h(ytl−1

)|Ftj−1

)
and

Ft = σ{ys , 0 ≤ s ≤ t}. Taking into account that (yt)t≥0 is a homogeneous

Markov process and that |f̃h(y)| ≤ 2Mh, we estimate from above the last
conditional expectation, through the Theorem 8.1 (for ǫ = 1/2), as

∣∣∣Eϑ

(
f̃h(ytl−1

)|Ftj−1

)∣∣∣ =
∣∣∣Eϑ,ytj−1

f̃h(ytl−j
)
∣∣∣ ≤ 2MhR

(
1 + y2

tj−1

)1/2
e−κtl−j

≤ 2MhR
(
1 + |ytj−1

|
)
e−κδ(l−j) .
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Therefore,

|Ψj| ≤ 4M2h2

(
1 +

2R(1 + |ytj−1

|)
eκδ − 1

)
.

From here, bounding eκδ − 1 by κδ, we get

EϑG
2
2
(T ) ≤ 8M2h2Eϑ

1

H2
T

N
1∑

j=N
0

(
1 +

R

κδ
(1 + |ytj−1

|)
)

≤ 8M2h2
(
1 +

R

κδ

)
Eϑ

(N1 −N0)

H2
T

+ 8M2h2
R

κδ
Eϑ

1

H2
T

N
1∑

j=N
0

(
Eϑ(y

2
tj−1

|FtN
0
−1

)
)1/2

.

By making use of Proposition 8.6 one obtains

EϑG
2
2
(T ) ≤ 8M2h2

(
1 +

R

κδ

)
Eϑ

N1 −N0

H2
T

(
1 +

√
D∗L+ |ytN

0
−1

|
)
.

Now from (6.8) it follows that

N1 −N0

H2
T

=
1

HTmϑ(χh,x
0

)
≤ 1

2h2
√
υT (N −N0)q∗

.

Thus,

sup
ϑ∈Θβ

EϑG
2
2
(T ) ≤ G∗

δ
√
υT (N −N0)

,

where G∗ = 4M2(κ + R)
(
1 + 2

√
D∗L+ |y0|

)
/(κq∗). From this equality we

obtain immediately

lim
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |G2(T )| = 0 .

Let us estimate the term ĜT . Taking into account the lower bound (6.8) we
get

|ĜT | ≤
Mh

HT

∣∣∣∣∣∣

N
1∑

j=N
0

χh,x
0

(ytj−1

)−HT

∣∣∣∣∣∣
+

2Mh

HT

≤ M√
υT (N −N0)

N
1∑

j=N
0

∣∣∣χ̃h(ytj−1

)
∣∣∣+ 2M√

υT (N −N0)
,
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where χ̃h(y) = χh,x
0

(y)−mϑ(χh,x
0

). By making use of the Theorem 8.1 with
ǫ = 1/2 one gets

∑

j≥N
0

Eϑ,y
0

|χ̃h(ytj−1

)| ≤ Re−κδ(N
0
−1)

1− e−κδ

(
1 +

√
D∗L+ |y0|

)
.

This inequality implies directly

lim
T→∞

ϕT sup
ϑ∈Θβ

Eϑ |ĜT | = 0 .

Hence Proposition 6.1.

8.7 Properties of the estimate (3.3)

Lemma 8.3. Assume that the parameter δ is of the form (2.12). Then, for
any a > 0,

lim
T→∞

T a sup
ϑ∈Θβ

Pϑ(|q̂T (x0)− qϑ(x0)| > υT ) = 0 .

Proof. Denoting ψς(y) = (1/ς)Q((y − x0)/ς) one has

q̂T (x0)− qϑ(x0) =
1

2

∫ 1

−1

(qϑ(x0 + ςz)− qϑ(x0)) dz

+
1

2(N0 − 1)
DN

0
−1(ψς) .

Therefore
Pϑ(|q̂T (x0)− qϑ(x0)| > υT )

≤ Pϑ(|
∫ 1

−1

(qϑ(x0+ ςz)− qϑ(x0)) dz| > υT )+Pϑ(
1

(N0 − 1)
DN

0
−1(ψς) > υT ) .

The first term on the right-hand side equals to zero for sufficiently large T
since

|
∫ 1

−1

(qϑ(x0 + ςz)− qϑ(x0)) dz| ≤ ς2q̈∗ < υT ,

for sufficiently large T , where q̈∗ = supx supϑ |q̈ϑ(x)| < ∞. Applying The-
orem 8.2 to the second term on the right-hand side of the same inequality
yields the Lemma 8.3.
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Lemma 8.4. Assume that the parameter δ is of the form (2.12). Then, for
any a > 0,

lim
T→∞

T a sup
ϑ∈Θβ

Pϑ(|q̃T (x0)− qϑ(x0)| > υT ) = 0 .

Proof. Note, that for sufficiently large T (for that lnT ≥ max(q∗2, 1/q2
∗
)),

|q̃T (x0)− qϑ(x0)| ≤ |q̂T (x0)− qϑ(x0)| .

The Lemma follows immediately from Lemma 8.3.

Lemma 8.5. Assume that the parameter δ is of the form (2.12). Then,

lim sup
T→∞

1

υ
1/2
T

sup
ϑ∈Θβ

Eϑ

∣∣∣∣
1

q̃T (x0)− υT
− 1

qϑ(x0)

∣∣∣∣ ≤
4

q∗
< ∞ . (A.7)

Proof. Indeed, for sufficiently large T for which

υT ≤ min
(
1/(q∗)2 , 1/4

)
,

we obtain

Eϑ

∣∣∣∣
1

q̃T (x0)− υT
− 1

qϑ(x0)

∣∣∣∣ ≤
2υ

1/2
T

q∗
+

2

q∗υ
1/2
T

Eϑ |q̃T (x0)− qϑ(x0)|

≤ 4υ
1/2
T

q∗
+

2

q∗υT
Pϑ (|q̃T (x0)− qϑ(x0)| > υT ) .

Now Lemma 8.4 implies the equality (A.7). Hence Lemma 8.5.

8.8 Moment inequality for the process (1.1)

We state the moment bound from [12].

Proposition 8.6. Let (yt)t≥0 be a solution of the equation (1.1). Then, for
any z ∈ R and m ≥ 1,

sup
u≥0

sup
ϑ∈ΣL,M×[0,σmax]

Eϑ,z (yu)
2m ≤ (2m− 1)!! (D∗L+ z2)m , (A.8)

where Eϑ,z(·) = Eϑ(·|y0 = z) and D∗ = (M + Lx∗ + 2x∗)
2(L+M) + σ2

max
.
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Proof. To obtain this inequality we make use of the method proposed in
([22], p.20) for linear stochastic equations. First of all, note that thanks to
Theorem 4.7 from [28], for any T > 0, there exists some ǫ > 0 such that, for
each ϑ ∈ Θβ and z ∈ R,

sup
0≤t≤T

Eϑ,z e
ǫy2

t <∞ . (A.9)

Let us denote Dϑ(y) = 2yS(y) + σ2(y) + κy2 and κ = L−1. Taking into
account that 0 < κ < 1 and x∗ ≥ 1 we obtain that, for |y| ≤ x∗,

|Dϑ(y)| ≤ x2
∗
(2M + 1) + σ2

max
.

Let now |y| ≥ x∗. Denoting by y∗ the projection of y onto the interval
[−x∗ , x∗] we obtain that

2yS(y) = 2yS(y∗) + 2y∗ (S(y)− S(y∗)) + 2(y − y∗) (S(y)− S(y∗))

≤ 2|y|M + 2Lx∗ |y − y∗| − 2κ|y − y∗|2

≤ 2(M + Lx∗ + 2x∗)|y| − 2κy2 .

Therefore,
sup

ϑ∈ΣL,M×[0,σmax]

sup
y∈R

Dϑ(y) ≤ D∗ .

By the Ito formula we obtain

dy2m
u

= −mκy2m
u

dt+my2(m−1)
u

(
Dϑ(yu) + 2(m− 1)σ2(yu)

)
dt

+ 2my2m−1
u

σ(yu)dWt .

Moreover, the property (A.9) yields that, for any m ≥ 1,

Eϑ

∫ t

0

e−mκ(t−s) y2m−1
s

σ(ys)dWs = 0 .

Therefore, Eϑy
2m
t

≤ z2m +m(2m− 1)D∗

∫ t

0
e−mκ(t−s) Eϑy

2(m−1)
s

ds. Now the
induction implies directly the bound (A.8). Hence Proposition 8.6.

Proposition 8.7. Let (yt)t≥0 be a solution of the equation (1.1). Then, for
any z ∈ R and m ≥ 1, and for any stopping time τ taking values in [0, T ],
one has

sup
ϑ∈ΣL,M×[0,σmax]

Eϑ,z (yτ)
2m ≤ B∗(m, z) T (A.10)
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and
sup

ϑ∈ΣL,M×[0,σmax]

Eϑ,z sup
0≤u≤T

(yu)
2m ≤ B∗

1
(m, z) T , (A.11)

where B∗(m, z) = (2m− 1)!! (D∗L+ z2)m (D∗ + 2(m− 1)σ2
max

) and
B∗

1
(m, z) = 1 +mB∗(m+ 1, z).

The proof of this proposition follows immediately from Proposition 1.1.5
in [22].

8.9 Proof of Proposition 4.5

It is clear, that to show (3.7) it suffices to check that, for any a > 0,

lim
T→∞

T a sup
ϑ∈ΣL,M×[σmin , σmax]

Pϑ(Γ
c
T
) = 0 . (A.12)

Indeed, by the definition of ̟

Pϑ(Γ
c
T
) = Pϑ




N∑

j=N
0

χh,x
0

(ytj−1

) < HT




= Pϑ

(
DN0,N−1(χh,x

0

) < (2q̃T − υT −m∗
ϑ
(χh,x

0

)) (N −N0)h
)
,

where Dk,n(f) = Dn(f)−Dk(f) and

m∗
ϑ
(χh,x

0

) =
mϑ(χh,x

0

)

h
=

∫ 1

−1

qϑ(x0 + hz) dz .

Taking into account the definition of υT in (3.3) we obtain that, for sufficiently
large T ,

sup
ϑ∈Θβ

∫ 1

−1

|qϑ(x0 + hz)− qϑ(x0)| dz ≤ υT/4 .

Therefore, for such T ,

Pϑ(̟ > N) ≤ Pϑ (|q̃T (x0)− qϑ(x0)| > υT/8)

+Pϑ

(
|DN0,N−1(χh,x

0

)| > NhυT/2
)
.

Now we estimate the last term as

Pϑ

(
|DN0,N−1(χh,x

0

)| > NhυT/2
)
≤ Pϑ

(
|DN−1(χh,x

0

)| > NhυT/4
)

+Pϑ

(
|DN0

(χh,x
0

)| > NhυT /4
)
.

By applying Lemma 8.3 and the inequality (A.5) we obtain (A.12).
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