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MIXING AND 1-LOOP FLAVOR STRUCTURE OF FERMIONIC CURRENTS

IN THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

B. Machet 1 2

Abstract: We show that, unlike mass matrices, the fermionic gauge currents of the Standard Model

exhibit, at the quantum level, remarkable SU(2)f flavor properties at the observed values of the mixing

angles. They accommodate all measured mixing for three families of quarks, and, for neutrinos, maximal

θ23, quark-lepton complementarity tan 2θc = 1/2 ↔ tan 2θ12 = 2, and a not so small sin2 2θ13 = .267
within the present 90% c.l. interval of the T2K experiment.

PACS: 11.30.Hv 11.40.-q 12.15.Ff 12.15.Hh 12.15.Mm 14.60.Pq

1 Introduction

We wish to combine two fairly old concepts which have long been proven fruitful: Current Algebra [1]

and Gell-Mann’s use of “strong SU(3)” symmetry [2]):

* much physics is conveyed by currents and is strongly constrained by their algebraic properties;

* the laws of transformations of terms in a Lagrangian which break a given symmetry carry important

physical information; this is how Gell-Mann deduced his famous mass formulæ for hadrons.

The currents under concern here are the gauge currents of the Standard Model of electroweak interac-

tions, and the symmetry group flavor SU(2)f and its U(1) subgroup of flavor rotations between pairs of

fermions carrying the same electric charge.

2 The Standard Model in flavor space for two generations of quarks

2.1 The classical Lagrangian

The basics are more easily explained with two generations of quarks only, (u, d) and (c, s). These are the

usual SU(2)L doublets, that we immediately reshuffle into the two flavor doublets (uf , cf ) and (df , sf ).
We use the subscript “f ” to denote (bare) flavor eigenstates. No transition exists at this order between cf
and uf , nor between sf and df : these states are (classically) orthogonal.

It is convenient to embed the (global part of the) electroweak group into the chiral flavor group U(4)L ×
U(4)R. The electroweak SU(2)L generators write then at the classical level (1 is the 2× 2 unit matrix)

T 3 =
1

2





1

−1



 , T+ =





1


 , T− =





1



 . (1)

Gauge currents form an SU(2)L triplet: they are obtained by sandwiching the generators in eq. (1)

between ((u, c), (d, s)) fermions and inserting the appropriate γ matrices. Neutral currents are controlled
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by T 3; they form two singlets of SU(2)f : classically there is no flavor changing neutral current (FCNC)

(non-diagonal terms are vanishing) nor any violation of universality (diagonal terms are two by two

identical).

The standard Cabibbo phenomenology makes use of Yukawa couplings to induce two mass matrices for

the fermions, one for (uf , cf ), one for (df , sf ). After they are diagonalized, which introduces two mixing

angles θu and θd the SU(2)L generators write in the space of mass eigenstates (um, cm), (dm, sm)

T 3 =
1

2





1

−1



 , T+ =





C


 , T− =





C†



 , (2)

in which C is the unitary Cabibbo matrix C =





cos θc sin θc

− sin θc cos θc



, θc = θu − θd.

2.2 Its symmetries

Let R(ω) =





cosω sinω

− sinω cosω



. The Cabibbo matrix C and the fermion masses stay unchanged if one

makes arbitrary and independent flavor rotations





uf

cf



 → R(θ)





uf

cf



 ,





df

sf



 → R(φ)





df

sf



.

However, preserving SU(2)L symmetry requires that fermions belonging to the same SU(2)L doublet be

transformed with the same phase; thus θ must be equal to φ, which leaves a U(1) invariance.

The Cabibbo angle θc stays arbitrary, also corresponding to an arbitrary U(1) rotation. This symmetry

(arbitrariness) gets broken in nature, but there is no hint at the classical level of how it is broken.

2.3 Notations

It is convenient for the following to introduce the set of three flavor SU(2)f generators, which depend on

a (mixing) angle α:

Tx(α) =
1

2





cos 2α sin 2α

sin 2α − cos 2α



 , Ty =
1

2





−i

i



 , Tz(α) =
1

2





sin 2α − cos 2α

− cos 2α − sin 2α



 .

(3)

A 2-dimensional flavor rotation also writes R(α) = e2iαTy and Tx,z(α) satisfy the relation

R†(ω)Tx,z(α)R(ω) = Tx,z(α+ ω). (4)

2.4 At 1-loop

sm → dm, cm → um transitions spoil the orthogonality of bare flavor states and Cabibbo phenomenology

[3], unless one introduces a series of counterterms [4]. They are both kinetic and mass-like, with both

chiralities. In the (d, s) sector, they write (the expressions are analogous in the (u, c) sector) [5]

−Ad d̄m p/(1− γ5) sm −Bd d̄m(1− γ5)sm − Ed d̄m p/(1 + γ5) sm −Dd d̄m(1 + γ5)sm, (5)

with
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Ad =
m2

d fd(p
2 = m2

d)−m2
s fd(p

2 = m2
s)

m2
d −m2

s

, Ed =
msmd

(

fd(p
2 = m2

d)− fd(p
2 = m2

s)
)

m2
d −m2

s

,

Bd = −msEd, Dd = −md Ed, (6)

In the unitary gauge for the W boson and dimensionally regularized

fd = g2 sin θc cos θc(m
2
c −m2

u)

∫ 1

0
dx

[

2x(1 − x)

∆(p2)
+

p2x3(1− x)

M2
W∆(p2)

+
x+ 3x2

M2
W∆(p2)2−n/2

Γ(2− n/2)

]

.

(7)

n = 4− ǫ is the dimension of space-time, ∆(p2) = (1 − x)M2
W + xm2

u+m2
c

2 − x(1 − x)p2, and Γ is the

Euler Gamma function which satisfies in particular Γ(ǫ/2) = 2/ǫ− γ + . . . where γ ≈ 0.5772 . . . is the

Euler constant. We shall come back later to more specific properties.

2.5 1-loop mixing and currents

Adding counterterms to the bare Lagrangian modifies its diagonalization and thus mixing matrices. We

define the mixing matrix Cd in the left-handed (d, s) sector by





df

sf



 = Cd





dm

sm



, in which dm, sm

are the new mass eigenstates (similar expressions hold in the (u, c) sector).

Finding the new expressions of gauge currents is simple [5] thanks to a straightforward consequence of

SU(2)L gauge invariance which dictates that the derivatives in the kinetic-like counterterms be replaced

by the SU(2)L covariant derivatives. In a first step one shows that they are controlled by the unit matrix

in the new mass basis. Stepping back to the original bare flavor basis, one finds [5] that they are controlled

by the 2× 2 matrices (C−1
d )†C−1

d = 1+2AdTz(θd) in the (d, s) sector, and (C−1
u )†C−1

u = 1+2AuTz(θu)
in the (u, c) sector. These expressions exhibit in particular the non-unitarity of the mixing matrices Cu,d
connecting bare flavor states to 1-loop mass states, which has already been extensively commented upon

[6][5][7][8].

Likewise, the charged current writes [5]
(

ūf c̄f

)

[1 +AuTz(θu) +AdTz(θd)] γ
µ
L





df

sf



, which is

also controlled, in the bare flavor basis, by a non-unitary matrix 1.

The back-reaction of introducing 1-loop counterterms is accordingly that the classical mixing angles θu
and θd now occur inside the gauge currents expressed in the bare flavor basis. Some formal structure

starts to appear through the SU(2)f generator Tz. It is also important that only the A counterterms occur,

because of the renormalization freedom attached to them, that we shall soon focus on.

2.6 Flavor rotations

Like in the classical case, we perform flavor rotations, respectively with angles θ on (uf , cf ) and φ on

(df , sf ). Since the classical Cabibbo angle θc is unchanged, one easily shows that the counterterms

also stay identical. The neat effect of these arbitrary transformations is finally the one obtained naively by

transforming the neutral and charged currents given above and using the relations (4). The neutral currents

get now controlled in bare flavor space by 1+2AdTz(θd+φ) in the (d, s) sector, and 1+2AuTz(θu+ θ)
in the (u, c) sector. The charged current becomes (omitting the fermions and the γ matrix) 1+AuTz(θu+
(1/2)(θ + φ)) + AdTz(θd + (1/2)(θ + φ)). Like before, going through all the steps, one can show that

the Cabibbo angle stays unchanged, whatever θ and φ, and so do the mass eigenvalues. So, “physics

1It is important to recall that the mixing matrices Cd,Cd and C which connect 1-loop mass eigenstates to 1-loop flavor states

(instead of bare flavor states) are unitary and satisfy the relation C = C
†
uCd [5]. The standard Cabibbo (CKM) phenomenology

is indeed restored at 1-loop by the counterterms.
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is unchanged”. Arguing with SU(2)L symmetry to impose φ = θ, the arguments of all Tz generators

become θu,d + φ. The arbitrariness of φ reflects an up-to-now unbroken U(1) invariance.

At 1-loop, neutral currents are no longer flavor singlets of SU(2)f : there exist, in bare flavor space, both

FCNC’s and violations of universality (differences among diagonal terms); flavor rotations continuously

transform FCNC’s into violation of universality and vice-versa.

2.7 Left-over freedom

Since an arbitrary rotation by φ does not change “physics”, we can choose φ = −θu, which aligns

classical flavor and mass (u, c) fermions.

The counterterms Ad, Bd,Dd, Ed satisfy the conditions Bd = cst (thus Ed = cst and Ed = cst and

there is no freedom on B,E,D). Au and Ad have both a pole in n − 4 = ǫ but the combination

(m2
c −m2

u)Au − (m2
s −m2

d)Ad is finite 2. This shows in particular that at least one non unitary mixing

matrices occur in one of the two channels (u, c) and (d, s). One has the freedom to renormalize to 0
one among the two counterterms Au or Ad. Let us choose Au = 0; the alignment of flavor and mass

states that we imposed classically by choosing φ = −θu is maintained at 1-loop. Then, Ad can only be

non-vanishing Ad ≈ −g2 sin2 θc
27
12

(

mc

mW

)4
≈ 1.24 10−7.

After these manipulations, the neutral currents are respectively controlled by 1 in the (u, c) channel,

1 + 2AdTz(θd − θu) in the (d, s) channel, and the charged currents by 1 +AdTz(θd − θu), such that they

all only depend on the arbitrary Cabibbo angle through the Tz(θc) generator.

2.8 How flavor rotations get broken

Once all freedom has been used, the arbitrariness of φ has become that of the Cabibbo angle.

We noticed that classical neutral gauge currents only project on SU(2) flavor singlets. The simplest ex-

tension is that quantum corrections add to it a part proportional to a triplet of SU(2)f , that is

(

d̄ s̄
)









0 ±1

0 0



 ,





0 0

±1 0



 , 12





1 0

0 −1







 γµL





d

s



,

which corresponds in the Lagrangian to
(

d̄ s̄
)





1/2 ±1

±1 −1/2



 γµL





d

s



 (the three components

of the triplet are coupled to the same gauge boson, unlike what happens for the SU(2)L triplet of elec-

troweak currents (1)).

Comparing with the expressions obtained in subsection 2.5 and matching the term proportional to Tz
3 with the formulæ above, one gets the relation tan 2θc = ±1/2, which corresponds with very good

accuracy to the measured value of the Cabibbo angle. The choices that we made in order to align at

1-loop (u, c) flavor and mass states ensure that the same angle that occurs in the (d, s) neutral current

also occurs inside charged currents, which get similar structures 4.

2.9 The last generator: Tx and the mass matrix

Of the three SU(2)f generators, we have up to now only used Ty, which, by exponentiation, triggers

flavor rotations, and Tz which controls gauge currents. It is natural to look for Tx in the mass terms since

it is the third element of the process: diagonalization → mixing matrix → gauge currents. And, indeed,

2It is g2 sin2 θc
(m2

c
−m2

u
)(m2

s
−m2

d
)

m4

W

[

27
12
(m2

c +m2
u) +

23
24
(m2

s +m2
d)
] (

1 +O(m2/m2
W )

)

.

3The general expression of Tz is given in eq. (3).
4The U(1) breaking occurs in such a way that the violation of universality 1/2− (−1/2) = 1 is identical to the “amount” of

FCNC which is also 1. So, flavor rotations, which, as we stressed, continuously transform the former into the latter, are broken

in such a way that the two violations occur with the same strength.
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supposing, to simplify, that the mass matrix is symmetric, it writes

M =





a c

c b



 = m2+m1
2 + (m2 − m1)Tx(θ), where m1 and m2 are the eigenvalues of M and

tan 2θ = 2c
a−b . This corresponds to the decomposition of the symmetric non-degenerate matrix M :

M = m1P1 + m2P2, where P1 = 1
2(1 − 2Tx(θ)) and P2 = 1

2 (1 + 2Tx(θ)) are the projectors on the

sub-spaces of eigenvectors of M .

So, the whole set {masses, currents} of the Standard Model is controlled by the SU(2)f flavor group

with generators given by (3).

Most efforts have been devoted to establishing connections between the mass spectrum (m1,m2) and the

Cabibbo angle (see for example [9]). This is probably not the appropriate way to proceed for at least two

reasons:

* any homographic transformation on a mass matrix M : M → αM+β
δM+γ leaves unchanged the eigenvectors

of M and thus the mixing angles: an infinite number of different mass matrices, with different eigenval-

ues, therefore correspond to the same mixing angle;

* the structure that we found within gauge currents stays hidden at the level of the mass matrix. In-

deed, the (d, s) mass matrix corresponding to tan 2θd = 1
2 is M = ms+md

2 + ms−md√
5





1 1
2

1
2 −1



 =





ms(
1
2 + 1√

5
) +md(

1
2 − 1√

5
) ms−md

2
√
5

ms−md

2
√
5

ms(
1
2 − 1√

5
) +md(

1
2 + 1√

5
)



. Though its part proportional to (ms−

md) is obtained from the triplet part of neutral currents by a rotation θ → θ + π
4 , it has as a whole no

conspicuous property.

3 Three generations of quarks

The simplest generalization of what has been done for two generations is to consider, inside each fla-

vor triplet of quarks, (u, c, t) and (d, s, b), the three 2 × 2 flavor rotations associated with the three

quark pairs, and the corresponding three sets of four currents, for example [d̄γµLs, s̄γ
µ
Ld, s̄γ

µ
Ls, d̄γ

µ
Ld],

[d̄γµLb, b̄γ
µ
Ld, b̄γ

µ
Lb, d̄γ

µ
Ld] and [b̄γµLs, s̄γ

µ
Lb, s̄γ

µ
Ls, b̄γ

µ
Lb]. One then requests that each set decomposes into

a trivial singlet part + a triplet of the corresponding SU(2)f . This is akin to requesting that the matrix

(C−1
d )†C−1

d which controls neutral currents, be of the form 5 [5]

(C−1
d )†C−1

d = 1 +











α ±(α− β) ±(α− γ)

±(α− β) β ±(β − γ)

±(α− γ) ±(β − γ) γ











. (8)

Decomposing the 3 × 3 mixing matrix Cd as a product of three “quasi-rotations” acting in each of the

three 2-dimensional flavor sub-spaces, and introducing, like in the 2× 2 case, two mixing angles for each

5Eq. (8) also writes (C−1
d )†C−1

d =

1 + (α− β)











1/2 ±1 0

±1 −1/2 0

0 0 0











+ (β − γ)











0 0 0

0 1/2 ±1

0 ±1 −1/2











+ (α− γ)











1/2 0 ±1

0 0 0

±1 0 −1/2











+ α
2











0

1

1











+ β

2











1

0

1











+ γ

2











1

1

0











, making explicit its decomposition on SU(2)f singlets and

triplets.

5



of them, this yields a set of trigonometric equations which have been investigated and solved in [5]. Even

if the whole set of solutions was not produced, it was shown that it includes values of the mixing angles

in remarkable agreement with observation.

This accordingly supports the conjecture that 2 × 2 flavor rotations get spontaneously broken such that

the corresponding neutral currents decompose onto a singlet + a (small) triplet component of SU(2)f .

At this point it is useful to note that the decomposition (8) is more restrictive than a singlet + octet of

SU(3)f , because the Gell-Mann matrices λ2, λ5 and λ7 do not appear.

It is still more hopeless than for two generations to look for any particular structure in the mass matrix.

4 Neutrinos

4.1 Where do they take their maximal mixing from?

• The perturbative vacuum of the Standard Model is unstable while the true vacuum, away from which one

can safely quantize small variations, cannot be reached perturbatively from the former. Let us transpose

this type of consideration to mixing angles. The usual “classical solution” corresponds here to a unitary

Cd = R(θd) mixing matrix with an arbitrary θd. We call it ”Cabibbo-like”. Can there be other classical

solutions? If we parametrize the mixing matrix by a rotation R(θd), we have no chance whatsoever to

eventually find them. We should instead parametrize it in a general non-unitary form, since we know that

this is how it is ultimately realized, then find all possible solutions at the “classical limit” C†
dCd → 1. This

has been done in [6] where we parametrized (for two generations)

Cd =





eiαc1 eiδs1

−eiβs2 eiγc2



 , c1 = cos θ1, s2 = sin θ2 etc. The first type of solutions are “Cabibbo-

like” and correspond to

* θ2 = θ1 + kπ associated with ei(α−δ) = ei(β−γ),

or to

* θ2 = −θ1 + kπ associated with ei(α−δ) = −ei(β−γ);

the second type of solutions are sets of discrete values 6

* [θ1 = (k − n)π2 , θ2 = (k + n)π2 ] or [θ1 = π
4 + (n − k)π2 , θ2 = π

4 + (n + k)π2 ], both associated with

ei(α−δ) = ei(β−γ),

* [θ1 = (n− k)π2 , θ2 = (n+ k)π2 ] or [θ1 = −π
4 + (k − n)π2 , θ2 =

π
4 + (k + n)π2 ], both associated with

ei(α−δ) = −ei(β−γ),

which include in particular the maximal mixing ±π
4 .

• In the case of three generations, the measured values of the neutrino mixing angles point at two

“Cabibbo-like” classical mixing angles θ12, θ13, combined with a maximal θ23. It is again simple to

see how maximal mixing springs out there. Let us do this in the case where the third mixing angle θ13
is, for the sake of simplicity, taken to vanish. One can even take a parametrization of the mixing matrix

without the phases that were introduced in the case of two generations [5]:

C−1 =











1 0 0

0 c23 s23

0 −s̃23 c̃23





















c12 s12 0

−s̃12 c̃12 0

0 0 1











. It gives the following expression for the symmetric

matrix (C−1)†C−1 which controls neutral currents:

(C−1)†C−1 =











c212 + s̃212(c
2
23 + s̃223) c12s12 − c̃12s̃12(c

2
23 + s̃223) −s̃12(c23s23 − c̃23s̃23)

c212 + s̃212(c
2
23 + s̃223) s212 + c̃212(c

2
23 + s̃223) −c̃12(c23s23 − c̃23s̃23)

−s̃12(c23s23 − c̃23s̃23) −c̃12(c23s23 − c̃23s̃23) s223 + c̃223











,

6which still satisfy θ2 = ±θ1 + kπ and are thus superposed to the continuous sets of Cabibbo-like solutions.
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where we used the abbreviated notations s̃12 = sin θ̃12 etc . The “classical equations”, which corre-

spond to unitarity, are now five. Three constrain the non-diagonal elements to vanish and two express

the identity of diagonal elements. Excluding θ̃12 = 0, the vanishing of the [1, 3] and [2, 3] entries of

(C−1)†C−1 requires sin 2θ23 = sin 2θ̃23, that is: either θ̃23 = θ23 + kπ or θ̃23 = π
2 − θ23 + kπ. Choos-

ing the second possibility yields, for example s̃23 = c23. Then, that the [1, 2] entry vanishes requires

c12s12 = 2c223s̃12c̃12. That the entries [1, 1] and [2, 2] are identical writes c212 − s212 = 2c223(c̃
2
12 − s̃212),

and, last, that [2, 2] = [3, 3] requires s212+2c223c̃
2
12−2s223. These last three equations let us note (a), (b) and

(c). Making the ratio (a)/(b) yields tan 2θ12 = tan 2θ̃12, which requires θ̃12 = θ12 +
kπ
2 + nπ. The same

equations then yield 2c223 = 1, that is, θ23 maximal. It remains to verify that all equations are satisfied.

They are indeed with θ̃23 = π
2 − θ23 + kπ and θ̃12 = θ12 + pπ. So, the classical solution corresponds

here to a Cabibbo-like θ12, to maximal θ23, and to a (Cabibbo-like) θ13 = 0 (which is our simplifying

hypothesis). True values of the mixing angles are then sought for as solutions of eq. (8) restricted to lie

in the vicinity of this set.

4.2 Mixing angles

Solving the corresponding system of trigonometric equations in full generality is quite an involved task

but it is not our goal. We can instead keep the value of θ23 maximal as it has been obtained in the

“classical” (unitary) limit, and solve in this limit the equations for θ12 and θ13 given by eq. (8). It is also

convenient to start with θ13 = 0. With these two constraints, one obtains [10][5] for θ12 the “golden

ratio value” [10][11] tan 2θ12 = 2, which, associated with tan 2θc = 1/2 ensures the so-called “quarks-

leptons complementarity” [12]. Imposing then this value for θ12 and still keeping θ23 maximal, one

solves the equations for θ13 coming from eq. (8) in the approximation that it is small (sin2 θ13 < .1).

This gives [5] two possible values sin2 2θ13 = 1.3 10−4 and sin2 2θ13 = .267. They lie within the recent

90% c.l. interval of the T2K experiment sin2 2θ13 < .5 [13]. In this framework accordingly perfectly

accommodate a value of θ13 not so small as it had long been expected.

5 Conclusion

We have used 1-loop counterterms to motivate explicit calculations of mixing angles at this order. How-

ever the results that we have obtained are general and only rely on two properties:

* Quantum corrections always induce non-unitarity for the mixing matrices connecting classical flavor

eigenstates to 1-loop mass eigenstates of non-degenerate coupled fermions [6] [5] [8];

* Flavor rotations get broken in such a way that quantum corrections induce SU(2)f triplets in 1-loop

neutral currents (expressed in terms of classical flavor eigenstates) while they only involve singlets at the

classical level.

Among open issues one can mention:

* Why do, at the classical (unitary) limit, quarks exhibit three continuous “Cabibbo-like” mixing angles

while neutrinos get a discrete value for one of them? We have seen that, if one pays enough attention,

all these choices are perfectly legitimate (and also ±π
2 values), but we have no dynamical explanation for

them. In particular, why does, seemingly, only θ23 get a finite “classical value” ?

* The system of trigonometric equations resulting from the symmetry constraints that we impose has

many solutions. That this set includes the subset of observed values gives no hint concerning why this

subset is chosen by nature and why other allowed solutions are not.

* Why does SU(2) seems to play again an important role? Is it more than an “opportunistic” (low-energy,

at the best) symmetry only introduced because it is the simplest that comes to mind? Should it be given a

more fundamental status like that of a (spontaneously broken or not) gauge symmetry?

Both the non-unitarity of mixing matrices in bare flavor space and the generation of SU(2)f triplets in

neutral currents, which seemingly control mixing angles, originate from the existence of mass splittings.

However, there is no direct connection between masses and mixing angles: the gap stays wide open and

the mass spectrum remains apart. Gell-Mann’s achievement to find relations among hadron masses from a
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specific breaking pattern of SU(3) (u, d, s) flavor symmetry still waits for its equivalent for fundamental

fermions. There lies most probably the realm of physics beyond the standard model.
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