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Introduction

We wish to combine two fairly old concepts which have long been proven fruitful: Current Algebra [START_REF] Adler | Current Algebras and Applications to Particle Physics[END_REF] and Gell-Mann's use of "strong SU (3)" symmetry [2]): * much physics is conveyed by currents and is strongly constrained by their algebraic properties; * the laws of transformations of terms in a Lagrangian which break a given symmetry carry important physical information; this is how Gell-Mann deduced his famous mass formulae for hadrons. The currents under concern here are the gauge currents of the Standard Model of electroweak interactions, and the symmetry group flavor SU (2) f and its U (1) subgroup of flavor rotations between pairs of fermions carrying the same electric charge. 2 The Standard Model in flavor space for two generations of quarks

The classical Lagrangian

The basics are more easily explained with two generations of quarks only, (u, d) and (c, s). These are the usual SU (2) L doublets, that we immediately reshuffle into the two flavor doublets (u f , c f ) and (d f , s f ). We use the subscript " f " to denote (bare) flavor eigenstates. No transition exists at this order between c f and u f , nor between s f and d f : these states are (classically) orthogonal. It is convenient to embed the (global part of the) electroweak group into the chiral flavor group U (4) L × U (4) R . The electroweak SU (2) L generators write then at the classical level (1 is the 2 × 2 unit matrix)

T 3 = 1 2   1 -1   , T + =   1   , T -=   1   . (1) 
Gauge currents form an SU (2) L triplet: they are obtained by sandwiching the generators in eq. ( 1) between ((u, c), (d, s)) fermions and inserting the appropriate γ matrices. Neutral currents are controlled by T 3 ; they form two singlets of SU (2) f : classically there is no flavor changing neutral current (FCNC) (non-diagonal terms are vanishing) nor any violation of universality (diagonal terms are two by two identical).

The standard Cabibbo phenomenology makes use of Yukawa couplings to induce two mass matrices for the fermions, one for (u f , c f ), one for (d f , s f ). After they are diagonalized, which introduces two mixing angles θ u and θ d the SU (2) L generators write in the space of mass eigenstates (u m , c m ), (d m , s m )

T 3 = 1 2   1 -1   , T + =   C   , T -=   C †   , (2) 
in which C is the unitary Cabibbo matrix 

C =   cos θ c sin θ c -sin θ c cos θ c   , θ c = θ u -θ d .

Its symmetries

  u f c f   → R(θ)   u f c f   ,   d f s f   → R(φ)   d f s f   .
However, preserving SU (2) L symmetry requires that fermions belonging to the same SU (2) L doublet be transformed with the same phase; thus θ must be equal to φ, which leaves a U (1) invariance.

The Cabibbo angle θ c stays arbitrary, also corresponding to an arbitrary U (1) rotation. This symmetry (arbitrariness) gets broken in nature, but there is no hint at the classical level of how it is broken.

Notations

It is convenient for the following to introduce the set of three flavor SU (2) f generators, which depend on a (mixing) angle α:

T x (α) = 1 2   cos 2α sin 2α sin 2α -cos 2α   , T y = 1 2   -i i   , T z (α) = 1 2   sin 2α -cos 2α -cos 2α -sin 2α   . (3) 
A 2-dimensional flavor rotation also writes R(α) = e 2iαTy and T x,z (α) satisfy the relation

R † (ω) T x,z (α) R(ω) = T x,z (α + ω). (4) 

At 1-loop

s m → d m , c m → u m transitions spoil the orthogonality of bare flavor states and Cabibbo phenomenology [START_REF] Duret | Quark Lagrangian diagonalization versus non-diagonal kinetic terms[END_REF], unless one introduces a series of counterterms [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left handed-fermions[END_REF]. They are both kinetic and mass-like, with both chiralities. In the (d, s) sector, they write (the expressions are analogous in the (u, c) sector) [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF] -

A d dm p /(1 -γ 5 ) s m -B d dm (1 -γ 5 )s m -E d dm p /(1 + γ 5 ) s m -D d dm (1 + γ 5 )s m , (5) 
with

A d = m 2 d f d (p 2 = m 2 d ) -m 2 s f d (p 2 = m 2 s ) m 2 d -m 2 s , E d = m s m d f d (p 2 = m 2 d ) -f d (p 2 = m 2 s ) m 2 d -m 2 s , B d = -m s E d , D d = -m d E d , (6) 
In the unitary gauge for the W boson and dimensionally regularized

f d = g 2 sin θ c cos θ c (m 2 c -m 2 u ) 1 0 dx 2x(1 -x) ∆(p 2 ) + p 2 x 3 (1 -x) M 2 W ∆(p 2 ) + x + 3x 2 M 2 W ∆(p 2 ) 2-n/2 Γ(2 -n/2) . (7) n = 4 -ǫ is the dimension of space-time, ∆(p 2 ) = (1 -x)M 2 W + x m 2 u +m 2 c 2 -x(1 -x)p 2
, and Γ is the Euler Gamma function which satisfies in particular Γ(ǫ/2) = 2/ǫ -γ + . . . where γ ≈ 0.5772 . . . is the Euler constant. We shall come back later to more specific properties.

1-loop mixing and currents

Adding counterterms to the bare Lagrangian modifies its diagonalization and thus mixing matrices. We define the mixing matrix C d in the left-handed (d, s) sector by

  d f s f   = C d   d m s m   , in which d m , s m
are the new mass eigenstates (similar expressions hold in the (u, c) sector).

Finding the new expressions of gauge currents is simple [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF] thanks to a straightforward consequence of SU (2) L gauge invariance which dictates that the derivatives in the kinetic-like counterterms be replaced by the SU (2) L covariant derivatives. In a first step one shows that they are controlled by the unit matrix in the new mass basis. Stepping back to the original bare flavor basis, one finds [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF] that they are controlled by the

2 × 2 matrices (C -1 d ) † C -1 d = 1 + 2A d T z (θ d ) in the (d, s) sector, and (C -1 u ) † C -1 u = 1 + 2A u T z (θ u ) in the (u, c)
sector. These expressions exhibit in particular the non-unitarity of the mixing matrices C u,d connecting bare flavor states to 1-loop mass states, which has already been extensively commented upon [START_REF] Duret | Mixing Angles and Non-Degenerate Coupled Systems of Particles[END_REF][5][7] [START_REF] Novikov | Binary systems in QM and in QFT: CPT[END_REF].

Likewise, the charged current writes [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF] 

ūf cf [1 + A u T z (θ u ) + A d T z (θ d )] γ µ L   d f s f   ,
which is also controlled, in the bare flavor basis, by a non-unitary matrix 1 .

The back-reaction of introducing 1-loop counterterms is accordingly that the classical mixing angles θ u and θ d now occur inside the gauge currents expressed in the bare flavor basis. Some formal structure starts to appear through the SU (2) f generator T z . It is also important that only the A counterterms occur, because of the renormalization freedom attached to them, that we shall soon focus on.

Flavor rotations

Like in the classical case, we perform flavor rotations, respectively with angles θ on (u f , c f ) and φ on (d f , s f ). Since the classical Cabibbo angle θ c is unchanged, one easily shows that the counterterms also stay identical. The neat effect of these arbitrary transformations is finally the one obtained naively by transforming the neutral and charged currents given above and using the relations (4). The neutral currents get now controlled in bare flavor space by 1 + 2A d T z (θ d + φ) in the (d, s) sector, and 1 + 2A u T z (θ u + θ) in the (u, c) sector. The charged current becomes (omitting the fermions and the γ matrix)

1 + A u T z (θ u + (1/2)(θ + φ)) + A d T z (θ d + (1/2)(θ + φ)).
Like before, going through all the steps, one can show that the Cabibbo angle stays unchanged, whatever θ and φ, and so do the mass eigenvalues. So, "physics is unchanged". Arguing with SU (2) L symmetry to impose φ = θ, the arguments of all T z generators become θ u,d + φ. The arbitrariness of φ reflects an up-to-now unbroken U (1) invariance. At 1-loop, neutral currents are no longer flavor singlets of SU (2) f : there exist, in bare flavor space, both FCNC's and violations of universality (differences among diagonal terms); flavor rotations continuously transform FCNC's into violation of universality and vice-versa. 2 . This shows in particular that at least one non unitary mixing matrices occur in one of the two channels (u, c) and (d, s). After these manipulations, the neutral currents are respectively controlled by 1 in the (u, c) channel, (d,s) channel, and the charged currents by 1 + A d T z (θ d -θ u ), such that they all only depend on the arbitrary Cabibbo angle through the T z (θ c ) generator.

Left-over freedom

(m 2 c -m 2 u )A u -(m 2 s -m 2 d )A d is finite
1 + 2A d T z (θ d -θ u ) in the

How flavor rotations get broken

Once all freedom has been used, the arbitrariness of φ has become that of the Cabibbo angle.

We noticed that classical neutral gauge currents only project on SU (2) flavor singlets. The simplest extension is that quantum corrections add to it a part proportional to a triplet of SU (2) f , that is Comparing with the expressions obtained in subsection 2.5 and matching the term proportional to T z 3 with the formulae above, one gets the relation tan 2θ c = ±1/2, which corresponds with very good accuracy to the measured value of the Cabibbo angle. The choices that we made in order to align at 1-loop (u, c) flavor and mass states ensure that the same angle that occurs in the (d, s) neutral current also occurs inside charged currents, which get similar structures 4 .

d s     0 ±1 0 0   ,   0 0 ±1 0   , 1 2   1 0 0 -1     γ µ L   d s   ,

The last generator: T x and the mass matrix

Of the three SU (2) f generators, we have up to now only used T y , which, by exponentiation, triggers flavor rotations, and T z which controls gauge currents. It is natural to look for T x in the mass terms since it is the third element of the process: diagonalization → mixing matrix → gauge currents. And, indeed,

2 It is g 2 sin 2 θc (m 2 c -m 2 u )(m 2 s -m 2 d ) m 4 W 27 12 (m 2 c + m 2 u ) + 23 24 (m 2 s + m 2 d ) 1 + O(m 2 /m 2 W
) . 3 The general expression of Tz is given in eq. ( 3). 4 The U (1) breaking occurs in such a way that the violation of universality 1/2 -(-1/2) = 1 is identical to the "amount" of FCNC which is also 1. So, flavor rotations, which, as we stressed, continuously transform the former into the latter, are broken in such a way that the two violations occur with the same strength.

supposing, to simplify, that the mass matrix is symmetric, it writes

M =   a c c b   = m 2 +m 1 2 + (m 2 -m 1 )T x (θ)
, where m 1 and m 2 are the eigenvalues of M and tan 2θ = 2c a-b . This corresponds to the decomposition of the symmetric non-degenerate matrix M : M = m 1 P 1 + m 2 P 2 , where P 1 = 1 2 (1 -2T x (θ)) and P 2 = 1 2 (1 + 2T x (θ)) are the projectors on the sub-spaces of eigenvectors of M . So, the whole set {masses, currents} of the Standard Model is controlled by the SU (2) f flavor group with generators given by (3).

Most efforts have been devoted to establishing connections between the mass spectrum (m 1 , m 2 ) and the Cabibbo angle (see for example [START_REF] Giunti | Fundamentals of Neutrino Physics and Astrophysics[END_REF]). This is probably not the appropriate way to proceed for at least two reasons: * any homographic transformation on a mass matrix M : M → αM +β δM +γ leaves unchanged the eigenvectors of M and thus the mixing angles: an infinite number of different mass matrices, with different eigenvalues, therefore correspond to the same mixing angle; * the structure that we found within gauge currents stays hidden at the level of the mass matrix. Indeed, the (d, s) mass matrix corresponding to

tan 2θ d = 1 2 is M = ms+m d 2 + ms-m d √ 5   1 1 2 1 2 -1   =   m s ( 1 2 + 1 √ 5 ) + m d ( 1 2 -1 √ 5 ) ms-m d 2 √ 5 ms-m d 2 √ 5 m s ( 1 2 -1 √ 5 ) + m d ( 1 2 + 1 √ 5 )   . Though its part proportional to (m s - m d
) is obtained from the triplet part of neutral currents by a rotation θ → θ + π 4 , it has as a whole no conspicuous property.

Three generations of quarks

The simplest generalization of what has been done for two generations is to consider, inside each flavor triplet of quarks, (u, c, t) and (d, s, b), the three 2 × 2 flavor rotations associated with the three quark pairs, and the corresponding three sets of four currents, for example [

dγ µ L s, sγ µ L d, sγ µ L s, dγ µ L d], [ dγ µ L b, bγ µ L d, bγ µ L b, dγ µ L d] and [ bγ µ L s, sγ µ L b, sγ µ L s, bγ µ L b].
One then requests that each set decomposes into a trivial singlet part + a triplet of the corresponding SU (2) f . This is akin to requesting that the matrix (C -1 d ) † C -1 d which controls neutral currents, be of the form 5 [5]

(C -1 d ) † C -1 d = 1 +      α ±(α -β) ±(α -γ) ±(α -β) β ±(β -γ) ±(α -γ) ±(β -γ) γ      . ( 8 
)
Decomposing the 3 × 3 mixing matrix C d as a product of three "quasi-rotations" acting in each of the three 2-dimensional flavor sub-spaces, and introducing, like in the 2 × 2 case, two mixing angles for each 5 Eq. ( 8) also writes

(C -1 d ) † C -1 d = 1 + (α -β)      1/2 ±1 0 ±1 -1/2 0 0 0 0      + (β -γ)      0 0 0 0 1/2 ±1 0 ±1 -1/2      + (α -γ)      1/2 0 ±1 0 0 0 ±1 0 -1/2      + α 2      0 1 1      + β 2      1 0 1      + γ 2      1 1 0     
, making explicit its decomposition on SU (2) f singlets and triplets.

of them, this yields a set of trigonometric equations which have been investigated and solved in [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF]. Even if the whole set of solutions was not produced, it was shown that it includes values of the mixing angles in remarkable agreement with observation.

This accordingly supports the conjecture that 2 × 2 flavor rotations get spontaneously broken such that the corresponding neutral currents decompose onto a singlet + a (small) triplet component of SU (2) f . At this point it is useful to note that the decomposition ( 8) is more restrictive than a singlet + octet of SU (3) f , because the Gell-Mann matrices λ 2 , λ 5 and λ 7 do not appear.

It is still more hopeless than for two generations to look for any particular structure in the mass matrix.

Neutrinos

4.1 Where do they take their maximal mixing from?

• The perturbative vacuum of the Standard Model is unstable while the true vacuum, away from which one can safely quantize small variations, cannot be reached perturbatively from the former. Let us transpose this type of consideration to mixing angles. The usual "classical solution" corresponds here to a unitary C d = R(θ d ) mixing matrix with an arbitrary θ d . We call it "Cabibbo-like". Can there be other classical solutions? If we parametrize the mixing matrix by a rotation R(θ d ), we have no chance whatsoever to eventually find them. We should instead parametrize it in a general non-unitary form, since we know that this is how it is ultimately realized, then find all possible solutions at the "classical limit" C † d C d → 1. This has been done in [START_REF] Duret | Mixing Angles and Non-Degenerate Coupled Systems of Particles[END_REF] where we parametrized (for two generations)

C d =   e iα c 1 e iδ s 1 -e iβ s 2 e iγ c 2   , c 1 = cos θ 1 , s 2 = sin θ 2 etc.
The first type of solutions are "Cabibbolike" and correspond to * θ 2 = θ 1 + kπ associated with e i(α-δ) = e i(β-γ) , or to * θ 2 = -θ 1 + kπ associated with e i(α-δ) = -e i(β-γ) ; the second type of solutions are sets of discrete values

6 * [θ 1 = (k -n) π 2 , θ 2 = (k + n) π 2 ] or [θ 1 = π 4 + (n -k) π 2 , θ 2 = π 4 + (n + k) π 2 ], both associated with e i(α-δ) = e i(β-γ) , * [θ 1 = (n -k) π 2 , θ 2 = (n + k) π 2 ] or [θ 1 = -π 4 + (k -n) π 2 , θ 2 = π 4 + (k + n) π 2 ]
, both associated with e i(α-δ) = -e i(β-γ) , which include in particular the maximal mixing ± π 4 . • In the case of three generations, the measured values of the neutrino mixing angles point at two "Cabibbo-like" classical mixing angles θ 12 , θ 13 , combined with a maximal θ 23 . It is again simple to see how maximal mixing springs out there. Let us do this in the case where the third mixing angle θ 13 is, for the sake of simplicity, taken to vanish. One can even take a parametrization of the mixing matrix without the phases that were introduced in the case of two generations [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF]:

C -1 =      1 0 0 0 c 23 s 23 0 -s 23 c23           c 12 s 12 0 -s 12 c12 0 0 0 1     

Mixing angles

Solving the corresponding system of trigonometric equations in full generality is quite an involved task but it is not our goal. We can instead keep the value of θ 23 maximal as it has been obtained in the "classical" (unitary) limit, and solve in this limit the equations for θ 12 and θ 13 given by eq. ( 8). It is also convenient to start with θ 13 = 0. With these two constraints, one obtains [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF][5] for θ 12 the "golden ratio value" [START_REF] Duret | The emergence of the Cabibbo angle in non-degenerate coupled systems of fermions[END_REF][11] tan 2θ 12 = 2, which, associated with tan 2θ c = 1/2 ensures the so-called "quarksleptons complementarity" [12]. Imposing then this value for θ 12 and still keeping θ 23 maximal, one solves the equations for θ 13 coming from eq. ( 8) in the approximation that it is small (sin 2 θ 13 < .1). This gives [START_REF] Duret | Mixing angles of quarks and leptons in Quantum Field Theory[END_REF] two possible values sin 2 2θ 13 = 1.3 10 -4 and sin 2 2θ 13 = .267. They lie within the recent 90% c.l. interval of the T 2K experiment sin 2 2θ 13 < .5 [START_REF] Hartz | for the T2[END_REF]. In this framework accordingly perfectly accommodate a value of θ 13 not so small as it had long been expected.

Conclusion

We have used 1-loop counterterms to motivate explicit calculations of mixing angles at this order. However the results that we have obtained are general and only rely on two properties: * Quantum corrections always induce non-unitarity for the mixing matrices connecting classical flavor eigenstates to 1-loop mass eigenstates of non-degenerate coupled fermions [START_REF] Duret | Mixing Angles and Non-Degenerate Coupled Systems of Particles[END_REF] [5] [START_REF] Novikov | Binary systems in QM and in QFT: CPT[END_REF]; * Flavor rotations get broken in such a way that quantum corrections induce SU (2) f triplets in 1-loop neutral currents (expressed in terms of classical flavor eigenstates) while they only involve singlets at the classical level.

Among open issues one can mention: * Why do, at the classical (unitary) limit, quarks exhibit three continuous "Cabibbo-like" mixing angles while neutrinos get a discrete value for one of them? We have seen that, if one pays enough attention, all these choices are perfectly legitimate (and also ± π 2 values), but we have no dynamical explanation for them. In particular, why does, seemingly, only θ 23 get a finite "classical value" ? * The system of trigonometric equations resulting from the symmetry constraints that we impose has many solutions. That this set includes the subset of observed values gives no hint concerning why this subset is chosen by nature and why other allowed solutions are not. * Why does SU (2) seems to play again an important role? Is it more than an "opportunistic" (low-energy, at the best) symmetry only introduced because it is the simplest that comes to mind? Should it be given a more fundamental status like that of a (spontaneously broken or not) gauge symmetry?

Both the non-unitarity of mixing matrices in bare flavor space and the generation of SU (2) f triplets in neutral currents, which seemingly control mixing angles, originate from the existence of mass splittings. However, there is no direct connection between masses and mixing angles: the gap stays wide open and the mass spectrum remains apart. Gell-Mann's achievement to find relations among hadron masses from a specific breaking pattern of SU (3) (u, d, s) flavor symmetry still waits for its equivalent for fundamental fermions. There lies most probably the realm of physics beyond the standard model.

  Let R(ω) =   cos ω sin ω -sin ω cos ω   . The Cabibbo matrix C and the fermion masses stay unchanged if one makes arbitrary and independent flavor rotations

  Since an arbitrary rotation by φ does not change "physics", we can choose φ = -θ u , which aligns classical flavor and mass (u, c) fermions. The counterterms A d , B d , D d , E d satisfy the conditions B d = cst (thus E d = cst and E d = cst and there is no freedom on B, E, D). A u and A d have both a pole in n -4 = ǫ but the combination

4 ≈ 1 .

 41 One has the freedom to renormalize to 0 one among the two counterterms A u or A d . Let us choose A u = 0; the alignment of flavor and mass states that we imposed classically by choosing φ = -θ u is maintained at 1-loop. Then, A d can only be non-vanishing A d ≈ -g 2 sin 2 θ c 24 10 -7 .

  three components of the triplet are coupled to the same gauge boson, unlike what happens for the SU (2) L triplet of electroweak currents (1)).
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It is important to recall that the mixing matrices C d , C d and C which connect 1-loop mass eigenstates to 1-loop flavor states (instead of bare flavor states) are unitary and satisfy the relation C = C † u C d [5]. The standard Cabibbo (CKM) phenomenology is indeed restored at 1-loop by the counterterms.

which still satisfy θ2 = ±θ1 + kπ and are thus superposed to the continuous sets of Cabibbo-like solutions.
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