
HAL Id: hal-00682801
https://hal.science/hal-00682801

Submitted on 26 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Workflow Level Parametric Study Support by
MOTEUR and the P-GRADE Portal

Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, Péter
Kacsuk

To cite this version:
Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, Péter Kacsuk. Workflow Level
Parametric Study Support by MOTEUR and the P-GRADE Portal. Workflows for e-Science, Springer,
chap. 18, 279-299, 2007, ISBN 978-1-84628-519-6. �hal-00682801�

https://hal.science/hal-00682801
https://hal.archives-ouvertes.fr

18

Workflow Level Parametric Study Support by

MOTEUR and the P-GRADE Portal

Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, and Peter
Kacsuk

18.1 Introduction

Many large-scale scientific applications require the processing of complete data
sets made of individual data segments that can be manipulated independently
following a single analysis procedure. Workflow managers have been designed
for describing and controlling such complex application control flows. How-
ever, when considering very data-intensive applications, there is a large poten-
tial parallelism that should be properly exploited to ensure efficient processing.
Distributed systems such as Grid infrastructures are promising for handling
the load resulting from parallel data analysis and manipulation. Workflow
managers can help in exploiting the infrastructure parallelism, given that they
are able to handle the data flow resulting from the application’s execution.

To handle users’ processing requests, two main strategies have been pro-
posed and implemented in Grid middleware: the task-based approach, where a
computing task is formally described before being submitted; and the service-

based approach, where a computation handled by an external service is in-
voked through a standard interface. Both approaches have led to the design
of different workflow managers. They significantly differ

• in the way data flows are described and manipulated; and
• regarding the optimizations that can be achieved for executing the work-

flows.

In particular, in the context of scientific applications, it is often necessary
to run experiments following a single workflow but considering different, and
sometimes dynamic, input data sets. We will name as parametric applications

such data-intensive scientific procedures to underline the variable nature of
their data flows. Workflow managers are expected to offer both

• a high level of flexibility in order to enable parametric studies based on
these applications; and

• a Grid interface and workflow optimization strategies in order to ensure
efficient processing.

282 Glatard et al.

In Section 18.2, we introduce the task-based and the service-based ap-
proaches in more detail. We then study their differences in terms of managing
the resulting data flows (Section 18.3) and computation flows (Section 18.4).
In Section 18.7, we introduce P-GRADE portal, a generic interface to both
approaches. P-GRADE portal is able to use both the task-based DAGMan
and the service-based MOTEUR [209,238] (hoMe-made OpTimisEd scUfl en-
actoR) workflow managers. It conciliates to both approaches as much as pos-
sible (Section 18.5), and it offers a single interface to describe a data-intensive
workflow. The execution technique to be used can then be selected by the
user.

18.2 Task-Based and Service-Based Workflows

In the task-based strategy, also referred to as global computing , users define
computing tasks to be executed. Any executable code may be requested by
specifying the executable code file, input data files, and command-line pa-
rameters to invoke the execution. The task-based strategy, implemented in
Globus [194], LCG2 [282], or gLite [211] middleware for instance, has already
been used for decades in batch computing. It straightforwardly enables legacy
code execution without requiring any modification, provided that the user
knows the command line of the code to be launched. An emblematic workflow
manager using the task-based framework is the directed acyclic graph man-
ager (DAGMan [151]) from Condor (see Chapter 22) and other frameworks
(e.g., VDS), are built on top of this (see Chapters 17 and 23 for instance).

The service-based strategy, also referred to as meta computing , consists of
wrapping application codes into standard interfaces. Such services are seen as
black boxes from the workflow manager, for which only the invocation inter-
face is known. Various interfaces, such as Web services [467] (also see Chap-
ter 12) or GridRPC [331], have been standardized. The services paradigm has
been widely adopted by middleware developers for the high level of flexibil-
ity that it offers (e.g. in the Open Grid Service Architecture [196] and the
WS-RF extension to Web services). However, this approach is less common
for application code, as it requires all codes to be instrumented with the com-
mon service interface. Yet, the service-based approach has been adopted in
well-known workflow managers such as the Kepler system [302], Taverna (see
Chapter 19), Triana (see Chapter 20), and MOTEUR.

The main difference between the task-based and the service-based ap-
proaches is the way data sets to be processed are being handled. In the
task-based approach, input data segments are specified with each task. This
representation mixes data and processing descriptions. The dependency be-
tween two tasks is explicitly stated as a data dependency in these two task
descriptions. This representation is static and convenient for optimizing the
corresponding computations: The full oriented graph of tasks is known when
the computations are scheduled, thus enabling many optimization opportuni-

18 Parametric Workflow Support by MOTEUR and P-GRADE 283

ties for the workflow scheduler [109]. Conversely, the service-based approach
decouples data and processing. Input data sets are dynamically specified at
execution time as input parameters to the workflow manager. Each service is
defined independently from the data sets to be processed, and it is only at the
service invocation time that input data segments are sent to the service. This
eases the reexecution of application workflows on different input data. In this
framework, the dependencies between consequent services are logically defined
at the level of the workflow manager. Each service is designed independently
of the others.

18.3 Describing Parametric Application Workflows

18.3.1 Dynamic Data Sets

The nonstatic nature of data descriptions in the service-based approach en-
ables dynamic extensions of the data sets to be processed: A workflow can be
defined and executed even though the complete input data sets are not known
in advance, perhaps because the data segments are being dynamically fed in
as they are produced. Indeed, it is common in scientific applications that data
acquisition is a heavyweight process and that data are progressively produced.
Some workflows may even act on the data production source itself, stopping
data production when sufficient inputs are available to produce meaningful
results.

Due to the dynamic nature of data and data interdependencies, it is not
always possible to define loops and therefore task-based workflows are typi-
cally represented using directed and acyclic graphs (DAGs). Only in the case
where the number of iterations is statically known may a loop be expressed
by unfolding it in the DAG. However, if the loop condition is dynamically
determined (e.g. in optimization loops, which are very frequent in scientific
applications), the task-based approach cannot be used. In a workflow of ser-
vices, loops may exist since the circular dependence on the data segments is
not explicitly stated in the graph of services. This enables the implementation
of more complex control structures.

Most importantly, the dynamic extensibility of input data sets for each
service in a workflow can also be used for defining different data composition
strategies, as introduced in Section 18.3.2. The data composition patterns and
their combinations offer a very powerful tool for describing the complex data-
processing scenarios needed in scientific applications. For the users, this means
the ability to describe and schedule very complex processing in an elegant and
compact framework.

18.3.2 Data Composition Patterns

A very important feature associated with the service-based approach for de-
scribing scientific applications is the ability to define different data composi-

284 Glatard et al.

tion strategies over the input data set of a service. When a service owns two
or more input ports, a data composition strategy describes how the data seg-
ments received on the inputs are combined prior to service invocation. There
are two main composition strategies illustrated in Figure 18.1.

Let us consider two input data sets, A = {A0, A1, . . . , An} and B =
{B0, B1, . . . , Bm}, as an example. The most common data composition pat-
tern is a one-to-one association of the input data segments (A0 is being pro-
cessed with B0, A1 with B1, . . .) as illustrated in left of Figure 18.1. It results
in the invocation of the service min(n, m) times (usually, m = n in this con-
text) and the production of as many results. Another common strategy is an
all-to-all composition, illustrated on the right in Figure 18.1, where each data
segment in the first set is processed with all data segments in the second set.
It results in m × n service invocations. We will denote by A ⊕ B and A ⊗ B

the one-to-one and the all-to-all compositions of data sets A and B.
Many other strategies could be implemented, but these two are the most

commonly encountered and are sufficient for implementing most applications.
The consideration of binary composition strategies only is not a limitation, as
several strategies may be used pairwise for describing the data composition
pattern of a service with more than two inputs.

.

.

.

.

.

. .
.

.

.

.

.

A

A

A

0

1

n

B
0

B
1

B
n

A

A

A

0

1

n

B
0

B
1

B
n

A B A B

Fig. 18.1: One-to-one (left) and all-to-all (right) composition strategies.

18.3.3 Data Synchronization Barriers

Some special workflow services require the complete data set (not just one
data segment) to perform their computation. This is the case for many sta-
tistical operations computed on the data sets, such as the calculation of a
mean or a standard deviation over the produced results, for instance. Such
services are introducing data synchronization in the workflow execution, as
they represent real barriers, waiting for all input data to be processed before
being executed. They can be easily integrated into workflows of services. The
workflow manager will take care of invoking the service only once, as soon as
all input data sets are available.

18.3.4 Generating Parametric Workflows

The expressiveness of the application description language has consequences
for the kind of applications that can be described. Using composition strate-
gies to design complex data interaction patterns is a very powerful tool for

18 Parametric Workflow Support by MOTEUR and P-GRADE 285

data-intensive application developers. In the task-based framework, two in-
put data segments, even when processed by the same algorithm, result in the
definition of two independent tasks. This becomes very tedious and quickly
even humanly intractable when considering the very large data sets to be
processed (the all-to-all compositions may produce a considerable number of
tasks). Additional higher-level tools are needed to automatically produce the
huge resulting DAGs, such as the P-GRADE portal (see Section 18.7).

Workflows of services easily handle the description of input data sets in-
dependently from the workflow topology itself. Adding extra inputs or con-
sidering parametric inputs does not result in any additional complexity. For
instance, the Scufl description language from the Taverna workbench (see
Chapter 19) can define one-to-one and all-to-all compositions (known as dot

product and cross product iteration strategies). The service-based approach
offers the maximum flexibility when dealing with dynamically extensible data
sets.

18.4 Efficient Execution of Data-Intensive Workflows

When considering Grid infrastructures with a large potential for parallelism
and optimization in data-intensive applications, efficiency needs to be taken
into account to avoid performance drops. Although very convenient for repre-
senting workflows independently from data sets to be processed, the service-
based approach introduces an extra layer between the workflow manager and
the execution infrastructure that hides one from the other [210]. The work-
flow manager does not directly control the execution of computing tasks to a
target infrastructure but delegates this role to the services, which are seen as
black boxes. The infrastructure used and the way processings are handled are
fully dependent on the service implementation.

Many solutions have been proposed in the task-based paradigm to optimize
the scheduling of an application in distributed environments [134]. Concerning
workflow-based applications, previous works [109] propose specific heuristics
to optimize the resource allocation of a complete workflow. Even if it pro-
vides remarkable results, this kind of solution is not directly applicable to the
service-based approach. Indeed, in this latest approach, the workflow man-
ager is not responsible for the task submission and thus cannot optimize the
resource allocation.

Focusing on the service-based approach, nice developments such as DIET
middleware [132] and comparable approaches [88, 419] introduce specific
strategies such as hierarchical scheduling. In [131], for instance, the authors
describe a way to handle file persistence in distributed environments, which
leads to strong performance improvements. However, these works focus on
middleware design and do not include yat any workflow management. More-
over, those solutions require that specific middleware components be deployed

286 Glatard et al.

on the target infrastructure. Hence, there is a strong need for precisely iden-
tifying generic optimization solutions that apply to service-based workflows.

In the following sections, we explore different levels of parallelism that can
be exploited for optimizing workflow execution in a service-based approach,
thus offering the flexibility of services and the efficiency of tasks. We describe
them and study their theoretical impact on performance with respect to the
characteristics of the application considered.

18.4.1 Asynchronous Calls

To enable parallelism during the workflow execution, multiple application
tasks or services have to be called concurrently. In the task-based approach,
this means that the workflow manager should be able to concurrently submit
jobs, as is commonly the case (e.g. in DAGMan). In workflows of services, this
means that calls made from the workflow manager to the application services
need to be non-blocking. GridRPC services may be called asynchronously,
as defined in the standard [331]. Web services also theoretically enable asyn-
chronous calls. However, the vast majority of existing Web service imple-
mentations do not cover the whole standard, and none of the major imple-
mentations [249, 449] provide any asynchronous service calls for now. As a
consequence, asynchronous calls to Web services need to be implemented at
the workflow manager level by spawning independent system threads for each
service being executed.

18.4.2 Workflow Parallelism

Given that asynchronous calls are possible, the first level of parallelism that
can be exploited is the intrinsic workflow parallelism depending on the graph
topology. For instance, if we consider the meteorological application workflow
that is presented in Figure 18.2, services cummu, visib, and satel may be
executed in parallel. This optimization is usually implemented in all workflow
managers.

18.4.3 Data Parallelism

When considering data-intensive applications, several input data sets need to
be processed independently using a given workflow. Benefiting from the large
number of resources available in a Grid, the same workflow service can be
instantiated multiple times on different hardware resources to concurrently
process different data segments. Enabling data parallelism implies, on the one
hand, that the services are able to process many parallel connections and, on
the other hand, that the workflow engine is able to submit several simultane-
ous queries to a service, leading to the dynamic creation of several threads.
Moreover, a data parallel workflow engine should implement a dedicated data

18 Parametric Workflow Support by MOTEUR and P-GRADE 287

management system. Indeed, in the case of a data parallel execution, a data
segment is able to overtake another one during the processing, and this could
lead to a causality problem. To properly tackle this problem, data provenance
has to be monitored during the data parallel execution.

Consider the simple subworkflow made of three services and extracted from
a meteorological application (Figure 18.2). Suppose that we want to execute
this workflow on three independent input data sets D0, D1, and D2. The data
parallel execution diagram of this workflow is represented in Figure 18.3. In
this kind of diagram, the abscissa axis represents time. When a data set Di

appears on a row corresponding to a service Sj , it means that Di is being
processed by Sj at the current time. To facilitate legibility, we represented
with the Di notation the data segment resulting from the processing of the
initial input data set Di all along the workflow. For example, it is implicit
that on the S2 service row, D0 actually denotes the data segment resulting
from the processing of the input data segment D0 by S1. Moreover, on those
diagrams we made the assumption that the processing time of every data
set by every service is constant, thus leading to cells of equal width. Data
parallelism occurs when different data sets appear on a single square of the
diagram, whereas intrinsic workflow parallelism occurs when the same data set
appears many times on different cells of the same column. Crosses represent
idle cycles.

As demonstrated in the next sections, fully taking into account this level
of parallelism is critical in service-based workflows, whereas it does not make
any sense in task-based ones. Indeed, in this case it is covered by the workflow
parallelism because each task is explicitly described in the workflow descrip-
tion.

0 2 3

1 2 3

40

2

1

0

0

0

3

1
1

4

1 5

5

sub−workflow

Workflow link

Wokflow component

Job output port

Job input port

cummu

MPI

visib

MPI

delta

MPI

satel

MPI

ready

SEQ

Fig. 18.2: MEANDER nowcast meteorology application workflow.

288 Glatard et al.

18.4.4 Service Parallelism

Input data sets are likely to be independent from each other. For example,
this is the case when a single workflow is iterated in parallel on many input
data sets. Service parallelism denotes that the processing of two different data
sets by two different services is totally independent. This pipelining model,
very successfully exploited inside CPUs, can be adapted to sequential parts of
service-based workflows. Consider again the simple subworkflow represented
in Figure 18.2, to be executed on the three independent input data sets D0,
D1, and D2. Figure 18.3 (right) presents a service parallel execution diagram
of this workflow. Service parallelism occurs when different data sets appear
on different cells of the same column. We did not consider data parallelism in
this example.

Here again, we show in the next section that service parallelism is of major
importance to optimizing the execution of service-based workflows. In task-
based workflows, this level of parallelism does not make any sense because it is
included in the workflow parallelism. Data synchronization barriers, presented
in Section 18.3.3, are of course a limitation to service parallelism. In this case,
this level of parallelism cannot be exploited because the input data sets are
dependent on each other.

D0

S1: delta D1 X
D2

D0

S2: cummu X D1

D2

D0

S3: visib X D1

D2

S1: delta D0 D1 D2 X

S2: cummu X D0 D1 D2

S3: visib X D0 D1 D2

Fig. 18.3: Data parallel (left) and service parallel (right) execution diagrams
of the sub-workflow extracted from Figure 18.2.

18.4.5 Theoretical Performance Analysis

The data and service parallelisms described above are specific to the service-
based workflow approach. To precisely quantify how they influence the appli-
cation performance we model the workflow execution time for different con-
figurations. We first present general results and then study particular cases,
making assumptions on the type of application run.
Definitions and Notations

In the workflow, a path denotes a set of services linking an input to an
output. The critical path of the workflow denotes the longest path in terms
of execution time. nW denotes the number of services on the critical path

18 Parametric Workflow Support by MOTEUR and P-GRADE 289

of the workflow, and nD denotes the number of data sets to be executed by
the workflow. i denotes the index of the ith service of the critical path of the
workflow (i ∈ [0, nW − 1]). Similarly, j denotes the index of the jth data set
to be executed by the workflow (j ∈ [0, nD − 1]). Ti,j denotes the duration
in seconds of the treatment of the data set j by the service i. If the service
submits jobs to a Grid infrastructure, this duration includes the overhead
introduced by the submission, scheduling, and queuing times. σi,j denotes the
absolute time in seconds of the end of the treatment of the data set j by the
service i. The execution of the workflow is assumed to begin at t = 0. Thus
σ0,0 = T0,0 > 0. Σ = maxj<nD

(σnW −1,j) denotes the total execution time of
the workflow.
Hypotheses

The critical path is assumed not to depend on the data set. This hypothesis
seems reasonable for most applications but may not hold in some cases, as for
example when workflows include algorithms that contain optimization loops
whose convergence time is likely to vary in a complex way with respect to the
nature of the input data set.

Data parallelism is assumed not to be limited by infrastructure constraints.
We justify this hypothesis by considering that our target infrastructure is a
Grid whose computing power is sufficient for our application.

In this section, workflows are assumed not to contain any synchronization
service. Workflows containing synchronization barriers may be analyzed as
two subworkflows corresponding to the parts of the initial workflow preceding
and succeeding the synchronization barrier.
Execution Time Modeling

Under those hypotheses, we can determine the expression of the total execu-
tion time of the workflow for different execution policies:

Sequential case (no parallelism) : Σ =
∑

i<nW

∑

j<nD

Ti,j ,

Case DP, data parallelism only : ΣDP =
∑

i<nW

max
j<nD

{Ti,j} ,

Case SP, service parallelism only : ΣSP = TnW −1,nD−1 + mnW −1,nD−1,

with

{

∀i 6= 0,∀j 6= 0,mi,j = max(Ti−1,j + mi−1,j , Ti,j−1 + mi,j−1)
m0,j =

∑

k<j T0,k and mi,0 =
∑

k<i Tk,0,

Case DSP, data + service parallelism : ΣDSP = max
j<nD

{

∑

i<nW

Ti,j

}

.

All the expressions of the execution time above can easily be shown recursively.
Here is an example of such a proof for ΣSP . We first can write that, for a
service-parallel but not data-parallel execution:

∀i 6= 0,∀j 6= 0, σi,j = Ti,j + max(σi−1,j , σi,j−1). (18.1)

Indeed, without data parallelism, data sets are processed one by one and
service i has to wait for data segment j − 1 to be processed by service i

290 Glatard et al.

before starting to process the data segment j. This expression is illustrated
by the two configurations displayed in Figure 18.4. We, moreover, note that
(i) service 0 is never idle until the last data set has been processed and (ii)
D0 is sequentially processed by all services. Thus

σ0,j =
∑

k≤j

T0,k and σi,0 =
∑

k≤i

Tk,0. (18.2)

D
j−1

D
j−1

D
j

D
j

σ
i,j−1

i−1
S

i
S

D
j−1

D
j

D
j−1

D
ji−1

S

i
S

i,j
T

σ
i−1,j−1

σ
i−1,j

σ
i,j

time

σ
i−1,j−1

σ
i,j

σ
i,j−1

σ
i−1,j

i,j
T

time

Fig. 18.4: Two different configurations for an execution with service paral-
lelism but no data parallelism.

We can then use the following lemma, whose proof is deferred to the
end of the section: P (i, j) : σi,j = Ti,j + mi,j with ∀i 6= 0 and ∀j 6=
0,mi,j = max(Ti−1,j + mi−1,j , Ti,j−1 + mi,j−1), m0,j =

∑

k<j T0,k, and
mi,0 =

∑

k<i Tk,0. Moreover, we can deduce from Equation 18.1 that for every
nonnull integer j, σi,j > σi,j−1, which implies that ΣSP = σnW −1,nD−1 (by
definition of Σ).

Thus, according to the lemma, ΣSP = TnW −1,nD−1 + mnW −1,nD−1 with
∀i 6= 0,∀j 6= 0,mi,j = max(Ti−1,j+mi−1,j , Ti,j−1+mi,j−1), m0,j =

∑

k<j T0,k,
and mi,0 =

∑

k<i Tk,0.
The lemma can be shown via a double recurrence, first on i and then on

j. Recursively, with respect to i:

• i = 0: According to Equation 18.2:

∀j < nD, σ0,j =
∑

k≤j

T0,k = T0,j + m0,j with m0,j =
∑

k<j

T0,k.

Thus, ∀j < nD, P(0, j) is true.
• Suppose Hi: ∀j < nD, P(i,j) true. We are going to show recursively with

respect to j that Hi+1 is true:
– j = 0: According to Equation 18.2:

σi+1,0 =
∑

k≤i+1

Tk,0 = Ti+1,0 + mi+1,0 with mi+1,0 =
∑

k<i+1

Tk,0.

Hi+1 is thus true for j = 0.

18 Parametric Workflow Support by MOTEUR and P-GRADE 291

– Suppose Kj : Hi+1 is true for j. We are going to show that Kj+1 is
true.
According to Equation 18.1, σi+1,j+1 = Ti+1,j+1 + max(σi,j+1, σi+1,j).
Thus, according to Kj , σi+1,j+1 = Ti+1,j+1 + max(σi,j+1, Ti+1,j + mi+1,j)
and according to Hi,

σi+1,j+1 = Ti+1,j+1 + max(Ti,j+1 + mi,j+1, Ti+1,j + mi+1,j)

= Ti+1,j+1 + mi+1,j+1

with mi+1,j+1 = max(Ti,j+1 + mi,j+1, Ti+1,j + mi+1,j).

Kj+1 is thus true. Hi+1 is thus true. The lemma is thus true.

Asymptotic Speed-ups

To better understand the properties of each kind of parallelism, it is in-
teresting to study the asymptotic speedups resulting from service and data
parallelism in particular application cases.

Massively data-parallel workflows. Let us consider a massively (embarrass-

ingly) data-parallel application (a single service S0 and a very large number
of input data). In this case, nW = 1 and the execution time is

ΣDP = ΣDSP = max
j<nD

(T0,j) ≪ Σ = ΣSP =
∑

j<nD

T0,j .

In this case, data parallelism leads to a significant speedup. Service parallelism
is useless, but it does not lead to any overhead.

Non-data-intensive workflows. In such workflows, nD = 1 and the execu-
tion time is ΣDSP = ΣDP = ΣSP = Σ =

∑

i<nW
Ti,0. In this case, neither

data nor service parallelism lead to any speedup. Nevertheless, neither of them
introduce any overhead.

Data-intensive complex workflows. In this case, we will suppose that nW >

1 and nD > 1. In order to analyze the speedups introduced by service and
data parallelism, we make the simplifying assumption of constant execution
times: Ti,j = T . The workflow execution time then resumes to

Σ = nD × nW × T, ΣDP = ΣDSP = nW × T, ΣSP = (nD + nW − 1)× T.

The speedups associated to the different configurations are thus

SDP =
Σ

ΣDP

= nD, SDSP =
ΣSP

ΣDSP

=
nD + nW − 1

nW

, SSP =
Σ

ΣSP

=
nD × nW

nD + nW − 1
.

Service parallelism does not lead to any speedup if it is coupled with
data parallelism: SSDP = ΣDP

ΣDSP
= 1. Thus, under those assumptions, service

parallelism may not be of any use on fully distributed systems. However, in
practice, even in the case of homogeneous input data sets, T is hardly constant
in production systems because of the high variability of the overhead due to
submission, scheduling, and queuing times on such large-scale and multiuser
platforms. The constant execution time hypothesis does not hold. Figure 18.5

292 Glatard et al.

illustrates in a simple example why service parallelism can provide a speedup
even if data parallelism is enabled, if the assumption of constant execution
times does not hold. The left diagram does not take into account service
parallelism, whereas the right one does. The processing time of the data set
D0 is twice as long as the other ones on service S0, and the execution time
of the data set D1 is three times as long as the other ones on service S1.
This can, for example, occur if D0 was submitted twice because an error
occurred and if D1 remained blocked on a waiting queue. In this case, service
parallelism improves performance beyond data parallelism, as it enables some
computations to overlap.

D2

S3 X X D1 X X
D0

D0

S2 X X D2

D1D1D1

D2

S1 D1 X X X
D0D0

S3 X D1 X
D2D0

S2 X D2D0

D1D1D1

D2

S1 D1 X X
D0D0

Fig. 18.5: Workflow execution time without (left) and with (right) service
parallelism when the execution time is not constant.

18.4.6 Application-Level Parallelism

In addition, an application code may be instrumented to benefit from a parallel
execution through a standard library (e.g. MPI). The exploitation of this fine-
grain level of parallelism is very dependent on the application code and cannot
be controlled at the workflow management level. However, the procedure for
submitting parallel tasks is often specific in Grid middleware and the workflow
manager needs to recognize the specific nature of such jobs to handle them
properly. Usually, application-level parallelism can only be exploited intrasite
for performance reasons (intersite communication being too slow), while the
other levels of parallelism are coarse-grained and can be exploited intersite.

18.5 Exploiting Both Task- and Service-Based

Approaches in Parametric Data-Intensive Applications

To execute parametric and data-intensive applications, two approaches are
thus possible:

1. In the task-based approach, a high-level tool for transforming the para-
metric description of the application into a concrete execution DAG is
needed prior to the execution of the workflow manager.

18 Parametric Workflow Support by MOTEUR and P-GRADE 293

2. In the service-based approach, the separate description of the workflow
topology and the input data sets is sufficient. However, the efficient ex-
ecution relies on an optimized workflow manager capable of exploiting
parallelism through parallel service calls.

In the task-based framework, it is not possible to express dynamically ex-
pandable data sets and loops. However, parallelism is explicitly stated in the
application DAG and easy to exploit. The service-based approach offers more
flexibility but requires an optimized application enactor, such as MOTEUR,
to efficiently process the workflow, enabling all levels of parallelism described
above. In the following sections, we introduce the P-GRADE portal and MO-
TEUR. P-GRADE conciliates both approaches by providing a unique GUI
for describing the application workflow in a high-level framework. P-GRADE
is interfaced with both DAGMan, for dealing with task-based workflows, and
MOTEUR, for handling workflows of services.

18.6 MOTEUR Service-Based Workflow Enactor

MOTEUR [238] was designed with the idea that the service-based approach
is making services and data composition easier from the application developer
point of view. It is therefore more convenient, provided that it does not lead to
performance losses. The MOTEUR (hoMe-made OpTimisEd scUfl enactoR)
workflow manager was implemented to support workflow, data, and service
parallelism, described in Section 18.4. Our prototype was implemented in Java
in order to be platform independent. It is freely available under CeCILL public
license (a GPL-compatible open source license).

The workflow description language adopted is the Simple Conceptual Uni-
fied Flow Language (Scufl) used by the Taverna engine (see Chapter 19).
Apart from describing the data links between the services, the Scufl language
allows one to define coordination constraints that are control links enforcing
an order of execution between two services even if there is no data dependency
between them. We used those coordination constraints to identify services that
require data synchronization. The Scufl language also specifies the number of
threads of a service (fixed number of parallel data). In the case of MOTEUR,
this number is ignored, as it is dynamically determined during the execution,
considering the number of input data segments available for processing. We
developed an XML-based language to describe input data sets. This language
aims at providing a file format to save and store the input data set in order
to be able to re-execute workflows on the same data set. It simply describes
each item of the different inputs of the workflow.

Handling the composition strategies presented in Section 18.3 in a service
and data parallel workflow is not straightforward because the data sets pro-
duced have to be uniquely identified. Indeed, they are likely to be computed
in a different order in every service, which could lead to causality problems

294 Glatard et al.

and incorrect mapping of the input parameters in one-to-one composition
patterns. Moreover, due to service parallelism, several data sets are processed
concurrently and one cannot number all the produced data segments once
computations are completed. We have implemented a data provenance strat-
egy to sort out the causality problems that may occur. Attached to each
processed data is a history tree keeping track of all the intermediate results
computed to process it. This tree unambiguously identifies the data segment.

Finally, MOTEUR implements an interface to both Web services and
GridRPC instrumented application code. To ease application code wrapping
in services and job submissions on a Grid infrastructure, we provide a generic
submission Web service. It encapsulates the user code and handles the in-
terface with the Grid infrastructure. It has been interfaced with both the
EGEE [180] production Grid infrastructure and the Grid5000 [332] experi-
mental Grid infrastructure.

18.7 P-GRADE Portal

The goal of the P-GRADE portal is to provide a high-level user interface that
hides the low-level details of the underlying Grid systems. Users can construct
complex Grid applications as workflows without learning the specific Grid
interface. Moreover, the P-GRADE portal plays the role of a bridge between
different Grids, solving the interoperability problem at the portal level [260].
The components of a workflow can be executed on any Grid that is connected
to the portal and for which the user owns an access certificate. P-GRADE
portal 2.3 [376] serves as the production portal service for several different Grid
systems: VOCE (Virtual Organization Central Europe of EGEE), HunGrid
(Hungarian VO of EGEE), EGRID (Economics VO of EGEE), SEE-GRID
(South Eastern European Grid), and UK NGS (National Grid Service). If
a portal is configured to access all these Grids, then users can access any
resource of these Grids from the same workflow.

The portal provides a graphical interface through which users can easily
construct workflows based on the DAG concept. Nodes of the graph can be
jobs or GEMLCA legacy code services [170]. Arcs among the nodes represent
file transfers between the nodes. The workflow enactor of portal version 2.3
is based on DAGMan, which supports only the task-based strategy. There-
fore, parametric applications cannot be defined. This portal version supports
two levels of parallelism: application parallelism (Section 18.4.6), which is
employed when a node of the workflow is an MPI job that is assigned to
a multiprocessor Grid site; and workflow parallelism (Section 18.4.2). How-
ever, portal version 2.3 is not able to support data and service parallelisms
described in Sections 18.4.3 and 18.4.4, respectively.

In order to support the service-based strategy, parametric study appli-
cations, and all kinds of parallelism, we extended the portal with two new
features:

18 Parametric Workflow Support by MOTEUR and P-GRADE 295

1. We have extended the workflow creation interface of the portal in order
to enable the definition of parametric study applications.

2. We integrated the MOTEUR workflow enactor within the portal in order
to support the service-based strategy and to exploit data parallelism and
service parallelism.

This new portal version will support the development of DAGs consisting of
normal and parametric jobs as well as Web services. It will also support the
execution of components of such workflows in Globus-2, Globus-4, LCG-2,
gLite, and Web services Grids. While the normal and parametric job compo-
nents will be executed in Globus-based Grids using DAGMan, Web service
invocations will be forwarded to the MOTEUR workflow enactor as illustrated
in Figure 18.6.

The current section focuses on the parametric study extension of the portal
and shows the workflow user interface that can support both the MOTEUR
enactor described in Section 18.6 and the Condor DAGMan-based enactor.

Other grid related portal components

(e.g. MyProxy client)

DAGMan

workflow

definition

workflow

definition

SCUFL
Portal

front−end

services

Globus

services

LCG−2

services

Web

Parametric study

workflow editor

GT Broker

client
DAGMan

WS clientsMOTEUR

LCG2−2 clients

Parametric study portal server

GT Broker

Fig. 18.6: Structure of the parametric study version of the P-GRADE portal.

18.7.1 Interface to Workflow Managers

In order to enable parametric studies, the P-GRADE portal includes the new
concept of parametric value. It is based on multiple layers, from high-level
graphical definition of the workflows to low-level workflow enactment, as il-
lustrated in Figure 18.7. This architecture enables both the representation of
parametric application workflows and the transformation of the abstract work-
flow into a graph of services or a DAG of tasks as required by the underlying
workflow enactors.

At the top of the P-GRADE workflow definition process, parameter spaces

are defined. Parameter spaces enable the description of parametric values.
These parametric values are transformed into data segments corresponding
to the data streams (application input data sets) that will be handled by the
workflow manager. At this layer, there are two possibilities, depending on the
user setting: either the input data sets and the services description are sent to

296 Glatard et al.

Workflow

enactors

Parameter

spaces

P−GRADE portal Graphical User Interface

Common

Structural

Information 1

(CSI1)

K2
1

K2
2

Key2

K1
1

K1
2

K1
3

Key1

K3
1

2

K3
3

K3

Key3

Common

Structural

Information 2

(CSI2)

K4
1

K4
2

Key4

CSI1 & K1 & K2 = D1
1 11

CSI1 & K1 & K2 = D1
1 2 2

CSI1 & K1 & K2 = D1
2 31

CSI1 & K1 & K2 = D1
3 62

...

Binary Executable

(B)

...

3 62

2 31

1 2 2

CSI2 & K3 & K4 = D2
1 11

CSI2 & K3 & K4 = D2

CSI2 & K3 & K4 = D2

CSI2 & K3 & K4 = D2
Web Service endpoint

reference (E)

...
...

B+D1 D2 = T
6 6 36

B+D1 D2 = T
2 1 7

B+D1 D2 = T
1 6 6

B+D1 D2 = T
1 3 3

B+D1 D2 = T
1 2 2

B+D1 D2 = T
1 1 1

...
B+D1 D2 = T

6 6 6

B+D1 D2 = T
3 3

2 2

1 1 1

3

2

B+D1 D2 = T

B+D1 D2 = T

DAGMan MOTEUR

S
1

S
2

Tasks

GUI

Data streams

Fig. 18.7: The P-GRADE portal multilayer architecture.

MOTEUR for execution in the service-based framework, or data segments are
composed with binary executables according to the data composition patterns
to build tasks. The DAG of tasks can then be submitted to DAGMan for
workflow enactment in the task-based framework.

The P-GRADE portal defines all elements required for defining such para-
metric application workflows. It proposes a rich and intuitive GUI for de-
scribing the workflow graph, defining parameter spaces, and composing data
streams. During workflow execution, the P-GRADE portal handles the inter-
face to the workflow manager, monitors the execution, and provides graphical
feedback to the user. Examples of workflows described through the P-GRADE
GUI are given in Figures 18.2 and 18.8.

18.7.2 DAGMan Workflow Elements

Figure 18.2 illustrates the workflow elements available in P-GRADE portal
version 2.3 to define DAGMan workflows on a real application. They include
the following elements:

• Component. All components are normal jobs. A normal job is a program
that has one binary executable file and must be started in batch mode.

18 Parametric Workflow Support by MOTEUR and P-GRADE 297

The normal job can be either a sequential or an MPI job. The binary
executable of the program is taken from the portal user’s machine.

• Port. Input and output ports can optionally be connected to jobs. Normal

input ports represent one file to be used by the connected component as
input. A Normal output port represents one file to be generated by the
connected job during execution.

• Link. All links in a task-based workflow are normal file channels. They
define a data channel between a normal output port and a normal input
port that represents a transformation of an output file into an input file
of a subsequent task.

Based on these elements, a user can create complex workflow applications that
can exploit intrasite (MPI) and intersite (workflow) parallelism.

18.7.3 Parametric Workflow Elements

The parametric workflow elements are useful for representing parametric data-
intensive applications. In the P-GRADE portal, the same elements are used for
specifying parametric task-based or service-based workflows even though they
can be executed in different ways. Figure 18.8 displays the new parametric
elements.

3

0

0 1

1

1

0

4

2

10

0 1

1

2

4

0

1

0

Parametric job

Parametric

input port

Parametric

output port

Collector channel
Collector input port

Job_2

MPI

Job_3

MPI

Parametric channel
Job_1

MPI
Parametric

MPI

Job_5

Parametric

SEQ

Job_4

Parametric

SEQ

Job_6

Parametric

SEQ

Job_7

Fig. 18.8: Normal and parametric workflow elements in the P-GRADE portal
GUI.

Although represented identically in the GUI, the parametric elements dif-
fer in their nature. In particular, parametric job inputs are files, represented
through ports, while Web service inputs are strings (possibly identifying a
file), represented through fields. The new workflow elements are:

• Component. Parametric jobs represent a program that has one binary ex-
ecutable file and must be started in batch mode on independent input file
sets. Parametric Web services represent one operation of one Web service
that must be invoked multiple times with independent input string sets.

298 Glatard et al.

Depending on the service implementation, it can submit jobs to a Grid
infrastructure when serving the request. Graphically, parametric Web ser-
vices are identified by the “WS” label, while parametric jobs are labeled
“SEQ” or “MPI.”

• Port. For parametric jobs, parametric input ports represent the simulta-
neously processable instances of a single file (files with the same struc-
ture but different contents), and parametric output ports represent the
instances of a single output file generated by the instances of a paramet-
ric job component (files with the same structure but different contents).
Similarly for parametric Web services, parametric input fields represent
the simultaneously processable instances of an input string, and paramet-

ric output fields represent the instances of an output string generated by
a Web service component.

• Link. Parametric file (resp. parametric string) channels define a data
channel between a parametric output and a parametric input port (resp.
field). These channels “fire” each time an output data segment becomes
available.

In addition, collector ports and channels are introduced to represent data
synchronization barriers (Section 18.3.3). Collector input ports (resp. fields)
represent N files (resp. strings) with different structures and different con-
tents, which are expected by the connected component as input. They can be
connected to both parametric and nonparametric job components through col-

lector file (resp. string) channels. These channels fire only when every output
file is available.

Some constraints on the components apply in order to form a semantically
correct parametric study workflow application. It makes sense for normal input
ports to be connected to a parametric job (every instance of the job is using
the same file), while it is not the case for normal output ports. Parametric
input ports (resp. fields) can only be connected to parametric job (resp. Web
service) components. Parametric jobs (resp. Web services) always have at least
one input port (resp. field).

18.7.4 Parameter Spaces and Data Flows

The P-GRADE portal provides a flexible framework for defining variable val-
ues of parameters sent to parametric jobs and Web services. The property
window of an input parametric port (on the left in Figure 18.9) enables the
definition of keys (variable values) and common structural information (CSI)
of the parameters (the common structure of all inputs). The user defines the
CSIs for each parameter. A parameter may be n-dimensional, as it may de-
pend on n different input keys K1, . . . , Kn. The parameter key definition
window (on the right in Figure 18.9) enables the definition of a key value
generation rule (types of values, values read from files or generated according
to different rules, etc.).

18 Parametric Workflow Support by MOTEUR and P-GRADE 299

Fig. 18.9: Parameter space definition user interface.

The transformation between a parameter space definition and data streams
(see Figure 18.7) is an automatic generation process where every occurrence
of a key in the CSI is replaced with a parameter value, according to the algo-
rithm presented in Figure 18.10. This algorithm produces an indexed (ordered)
array of data segments D. It assumes a precedence order among the keys (pri-
mary, secondary. . .). This precedence order influences the indexing order of
data segments. In the P-GRADE portal, the precedence order of keys is the
key declaration order. For example, the CSI given in Figure 18.9 (<akulcs>,

112, asfas, <bkulcs>) contains two keys (akulcs and bkulcs). The algo-
rithm will produce the data segments (0, 112, asfas, 0), (0, 112, asfas,

0.1). . .

for i = 0 to (K1.length - 1)

primaryKey = K1[i]

for j = 0 to (K2.length - 1)

secondaryKey = K2[j]

D[i * K1.length + j] = replace(CSI, primaryKey, secondaryKey)

end

end

Fig. 18.10: Parameter generation algorithm.

18.7.5 Workflow Execution

Workflow applications are taken as input sets of data segments (Si = Dij).
In the case of the MOTEUR enactor, the definition of the input data sets

300 Glatard et al.

is sufficient to process the workflow. In the case of DAGMan, data streams
still need to be composed according to the data composition operators (Sec-
tion 18.3.2) to produce a list of tasks. The P-GRADE portal interface allows
the definition of the one-to-one and the all-to-all data composition strategies
on the parametric input data ports (or fields) pairwise. From this input, the
data elements, and the job binary, the system generates several computational
tasks for each parametric job component (see the tasks layer of Figure 18.7).

Each data segment generated has a unique index value within its set (these
values are denoted by the lower indexes in Figure 18.7). The indexes are used
by the workflow enactors during workflow execution to determine the order
of elements for a one-to-one or all-to-all data composition. Since the compu-
tational tasks or the service invocation requests represented by a parametric
component are independent from each other, their submission order is irrel-
evant. Even in the case of a known submission order, the completion time
of a task or service is unpredictable. It is the responsibility of the workflow
enactment system to keep track of the order of the execution results according
to the workflow description.

18.8 Conclusions

Task-based and service-based approaches are two very common frameworks
for handling scientific workflows. The service-based approach is very flexible,
enabling the expression of complex data composition patterns and dealing
with parametric data sets. The task-based approach is more static, but it
eases the optimization of the workflow execution since the complete DAG of
tasks is known prior to the application execution.

The MOTEUR service-based workflow manager was specifically designed
to exploit all levels of parallelism that can be automatically handled by the
workflow manager. Using a high-level tool such as the P-GRADE portal, it
is possible to describe parametric workflows that will be instantiated either
as workflows of services or DAGs of tasks. The P-GRADE portal conciliates
the two approaches to some extent, as it automatically produces large DAGs
corresponding to data-intensive parametric applications. Yet, the static nature
of DAGs does not permit dynamic input data set management, contrary to
workflows of services. The P-GRADE portal provides a unique interface for
exploiting both approaches. It is relying on MOTEUR and the DAGMan
workflow managers to deal with the low-level execution.

18.9 Acknowledgments

The work on MOTEUR is partially funded by the French research pro-
gram “ACI-Masse de données” (http://acimd.labri.fr/), AGIR project
(http://www.aci-agir.org/). The P-GRADE portal extension work is par-
tially funded by the EU SEEGRID-2 and CoreGrid projects.

