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Introduction

Medical images obtained from MRI (Magnetic-Resonance-Imaging) are now a very common tool for diagnosing human diseases. These images are often affected by random noise arising during the acquisition process. Moreover, medical images constituted of low-contrast objects are a major challenge for biomedical researchers. The noise highly affects the visual interpretation of medical images, but also most of the segmentation or clustering algorithms. Therefore, denoising medical images is an important pre-step for medical image analysis.

Image denoising is one of the classical problems in image processing, and has been studied for several years due to its important role in various applications. Its goal is to remove noise and/or spurious details from a given corrupted image while maintaining its important features. Many denoising methods have been developed, such as methods based on variational methods, rank filters, frequency domain filters or sparse representations (curvelets, beamlets,...).

The general idea behind variational denoising methods is to considered an observed image f as a corrupted version of a noiseless image u. In denoising models, image u is then the solution of an inverse problem. One of the most successful variational algorithms is the Rudin-Osher-Fatemi (ROF) model ( [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Chambolle | Image recovery via total variation minimization and related problems Numerische Mathematik[END_REF][START_REF] Esedoglu | Recent Developments in total Variation Image Restoration[END_REF]) which uses Total-Variation regularization. The observed image to recover/denoise f is split into two components u and v, giving f = u + v, where u is the cartoon part (the smooth component), the remaining term v := f -u being the noise. The functional energy F on bounded variation space is:

F (u) = 1 2 f -u 2 L 2 (Ω) + λT V (u), u ∈ BV (Ω) (1) 
where T V (u) represents the total variation of u ∈ BV (Ω) [START_REF] Bergounioux | A second order model for 3D texture extraction[END_REF], and λ ≥ 0 is a regularization parameter. Solving this problem leads to the minimisation of the following expression: inf

u∈BV (Ω) F (u) (P ROF )
It has been shown that this problem has a unique solution in BV (Ω) ( [START_REF] Piffet | Décomposition d'image par modèles variationnels -Débruitage et extraction de texture[END_REF][START_REF] Bergounioux | On Poincare-Wirtinger inequalities in spaces of functions of bounded variation[END_REF]). However, the use of the BV -norm in the ROF model favours piecewise constant solutions, causing unsatisfying 'staircasing effects' [START_REF] Louchet | Variational and Bayesian models for image denoising: from total variation towards non-local means[END_REF]. This variational model has been improved by using different functional spaces. In [START_REF] Piffet | Décomposition d'image par modèles variationnels -Débruitage et extraction de texture[END_REF] it has been proposed to use the second order functional space of bounded variation -the BV 2 space. This model leads to the minimisation of the following expression:

inf u∈BV 2 (Ω) F 2 (u) (P ROF 2 )
where

F 2 (u) = 1 2 f -u 2 L 2 (Ω) + λT V 2 (u), u ∈ BV 2 (Ω) (2) 
In the following section, we generalize the model ROF to the new functional space BV 2 for 3D signals using second order total variation T V 2 [START_REF] Bergounioux | A second order model for 3D texture extraction[END_REF]. The problem is considered in the BV 2 discrete space.

2 Three-dimensional ROF2 model

Functional framework

Let Ω ⊂ R 3 be an open bounded set, we consider the finite-dimensional problem where function F ROF 2 :

F ROF 2 : BV 2 (Ω) → R + u → F ROF 2 (u)
is defined by:

F ROF 2 (u) = 1 2 f -u 2 L 2 (Ω) + λT V 2 (u)
Solving the second order model (ROF2) leads to the minimisation of the following expression:

inf u∈BV 2 (Ω) 1 2 f -u 2 L 2 (Ω) + λT V 2 (u) (P ROF 2 )
Theorem 1.

[9] If λ > 0, it has been shown that the problem has an unique solution.

Discretization of the ROF2 model

In the sequel, we denote by X the Euclidean space R N1×N2×N3 and Y = X × X × X. The space X is endowed with the inner product:

u, v X = 1≤i≤N1 1≤j≤N2 1≤k≤N3 u i,j,k v i,j,k
In the case of the ROF2 model, the second order total variation term T V 2 (u) can be discretized to J(u) (more details can be found in [START_REF] Piffet | Décomposition d'image par modèles variationnels -Débruitage et extraction de texture[END_REF][START_REF] Bergounioux | A second order model for 3D texture extraction[END_REF]). The discretization of the ROF2 model (P ROF 2 ) can be then defined as:

inf u∈X J(u) + 1 2λ f -u 2 X (d-P ROF 2 )
where J(u) stands for the discrete T V 2 . The following theorem comes from the convex duality theory [START_REF] Ekeland | Analyse convex et problemes variationnels[END_REF], and gives the approximated solution:

Theorem 2. The solution to problem ROF2 verifies:

u = f -P λK (f )
where P λK is the orthogonal projector operator on λK, and

K := {H * p | p ∈ X 9 , p i,j,k R 9 ≤ 1; 1 ≤ i, j, k ≤ N 1 , N 2 , N 3 }.
H is the Hessian operator and H * its adjoint. We refer to [START_REF] Piffet | Décomposition d'image par modèles variationnels -Débruitage et extraction de texture[END_REF][START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] for the proof of this theorem. Moreover, in order to approximate the projection term P λK (f ) of theorem 2, the following problem has to be solved [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] :

       min λH * p -f 2 X p ∈ X 9 p i,j,k 2 R 9 ≤ 1; 1 ≤ i, j, k ≤ N 1 , N 2 , N 3 (3) 
This problem can be solved by a fixed point method with an iterative scheme on the solution p: p 0 = 0 and

p n+1 i,j,k = p n i,j,k -τ H H * p n - f λ i,j,k 1 + τ H H * p n - f λ i,j,k R 9 (4) 
The discretization of the three-dimensional Hessian operator H and its adjoint operator H * as well as a sufficient condition ensuring the convergence of the algorithm can be found in [START_REF] Bergounioux | A second order model for 3D texture extraction[END_REF].

Theorem 3. [10] Let τ ≤ 1/12 2 , then λ(H * p n ) n converges to P λK (f ) as n → ∞.

3D Image Decomposition Model using Undecimated Wavelet Shrinkage

In this section, a decomposition model based on the second order variational model ROF2 is presented. Following the work of [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF][START_REF]Jean-Francois Aujol and Antonin Chambolle Dual norms and image decomposition models[END_REF], an undecimated wavelet transform (the 'a trous' algorithm) is introduced in order to better separate geometry from noise during the iteration process.

3D decomposition model. The proposed method aims at dividing a 3D image f into two components: the first component u ∈ BV 2 represents the geometrical information (smooth part) while the second component v contains the noise, with f = u + v. This decomposition model has been proposed in [START_REF]Jean-Francois Aujol and Antonin Chambolle Dual norms and image decomposition models[END_REF] and is computed by minimizing a convex functional which depends on two variables (u, v) as following:

inf (u,v)∈X 2 J(u) + B * (v/δ) + 1 2λ f -u -v 2 X (P)
where B * (v/δ) is the Legendre-Fenchel transform of B of the noise component v, [START_REF]Jean-Francois Aujol and Antonin Chambolle Dual norms and image decomposition models[END_REF]. Furthermore, let us denote δB E = {z/ z E ≤ δ}. In order to solve the problem (P), one considers to solve the two following problems:

1. v being fixed, we find u as solution of problem:

inf u∈X J(u) + 1 2λ f -u -v 2 X (5) 
2. u being then fixed, we search for v as the solution of:

inf v∈δB E f -u -v 2 X (6) 
The solution of problem ( 5) is given by u * = f -v -P λK (f -v). Solution of ( 6) is obtained using the universal threshold T during the iteration process [START_REF]Jean-Francois Aujol and Antonin Chambolle Dual norms and image decomposition models[END_REF] on an undecimated wavelet transform, the 'à trous' algorithm. Solution can be written v * = f -u -U W T (f -u, T ), where UWT denotes the undecimated wavelet thresholding operator that is detailed in the next section.

The " à trous" algorithm . The 'à trous' algorithm [START_REF] Holschneider | A real time algorithm for signal analysis with the help of the wavelet transform[END_REF] is a fast dyadic wavelet transform and is implemented with filter banks. It is similar to a fast biorthogonal wavelet transform but without subsampling. In our 3D implementation, the scaling and wavelet functions φ and ψ are a cubic B-splines that enable a nearly isotropic analysis of the 3D image, and filters are separable 1D filters. For any resolution level j ≥ 0, the approximation a j and the details d j (wavelet coefficients) are:

a j [n, m, l] =< f (x, y, z), φ 2 j (x -n)φ 2 j (y -m)φ 2 j (z -l) > (7) d j [n, m, l] =< f (x, y, z), ψ 2 j (x -n)ψ 2 j (y -m)ψ 2 j (z -l) > (8) 
and discrete image values are assimilated to a 0 [n, m, l].

A filter x[n] is dilated to make the filter x j [n] by inserting 2 j-1 zeros ('trous') between each sample. Let us denote xj [n] = x j [-n] and δ[n] the discrete Dirac. h is a low-pass filter associated with the scaling function φ and ḡ is a high-pass filter associated with the mother wavelet ψ.

The "à trous" algorithm then enables to compute the fast dyadic wavelet transform in the following way:

a j+1 [n, m, l] = ( hj hj hj * a j )[n, m, l], (9) 
d j+1 [n, m, l] = ([ hj hj hj -δδδ] * a j )[n, m, l] (10) 
where hj hj h and δδδ are 3D filters obtained from h and δ by tensor products.

As there is no downsampling of the original image, all the approximation and wavelet images have the same size. The undecimated wavelet thresholding operator UWT used for computing v * perform the 3D 'à trous' decomposition of the image, applies the universal threshold T on each 3D wavelet images and reconstructed the 3D thresholded image by summing the details and the last approximation.

Proposed Algorithm. Consequently, our decomposition model is solved by the following iterative algorithm:

1. Initialization:

u 0 = v 0 = 0, 2. Iterations on n: u n+1 = f -v n -P λK (f -v n ) (11) 
v n+1 = f -u n+1 -U W T (f -u n+1 , T ) (12) 
3. Stopping test: if the following condition is fullfilled:

max (|u n+1 -u n |, |v n+1 -v n |) ≤ ǫ (13) 
4 Application to 3D medical image denoising

The proposed method has been applied on the MRI of a trisomic mouse (Fig. 1). The mouse brain volume is the stack of 104 MRI images. This is a difficult case because the contrast between different objects in the brain is low, and there is moreover some acquisition noise (see top image of figure 3). Our 3D image decomposition method has been applied to this data, for different values of regularizing parameter λ (see figure 2). Since in practice there is no denoised volume to compare to, tuning of parameter λ often relies on visual inspection. The stopping criterion has been set to a maximal number of iterations which can be chosen arbitrary large.

One can observe that the algorithm is able to separate the initial MRI image into a component u that contains the regularized (denoised) image, and a component v that contains mostly noise with some texture and contours information. The good ability to denoise the initial 3D image is confirmed on figure 3, which shows one slice on the 3D image represented as a 2D surface, its regularized component u and its noise component v (λ = 10). In figure 3, component v can be viewed as a very highly oscillating function. In addition, one can notice in the denoise part that edges are not oversmoothed. Moreover, its behaviour is quite stable with respect to λ (for a large value of λ = 100, geometric details appear in the noise component v). A comparison using the same decomposition model without undecimated wavelet shrinkage has also been performed (using the same value for λ = 10). It can be noticed on Fig. 3 (right column), that the u component is a bit oversmoothed and thus region borders are blurred.

Conclusion

This article describes a new 3D decomposition method which separates a 3D image into two components: the first one containing the geometrical structure of the image, the second one containing the noise. The proposed method is based on a second order variational model and an undecimated wavelet thresholding operator. The numerical implementation is described, and an experiment for denoising a 3D MRI image of a mouse brain has been successfully performed. In future works, we shall focus on extending this model to a three component model f = u + v + w, which could discriminate between geometrical structures (u), textures (v) and noise (w). Application of this method to video is also under consideration.
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 12 Fig. 1. Original 3D MRI of a Mouse Brain.
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 3 Fig. 3. Surface representation of one slice of the original 3D volume (top). The u component (middle row) and its v component (bottom row). The proposed decomposition model with undecimated wavelet shrinkage (left column) and a comparison with no wavelet shrinkage (right column).