
HAL Id: hal-00682782
https://hal.science/hal-00682782v5

Submitted on 29 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON KAC’S CHAOS AND RELATED PROBLEMS
Maxime Hauray, Stéphane Mischler

To cite this version:
Maxime Hauray, Stéphane Mischler. ON KAC’S CHAOS AND RELATED PROBLEMS. Journal of
Functional Analysis, 2014, 266 (10), pp.6055-6157. �hal-00682782v5�

https://hal.science/hal-00682782v5
https://hal.archives-ouvertes.fr


ON KAC’S CHAOS AND RELATED PROBLEMS

M. HAURAY AND S. MISCHLER

Abstract. This paper is devoted to establish quantitative and qualitative estimates
related to the notion of chaos as firstly formulated by M. Kac [41] in his study of mean-
field limit for systems of N undistinguishable particles as N → ∞.

First, we quantitatively liken three usual measures of Kac’s chaos, some involving the
all N variables, other involving a finite fixed number of variables. The cornerstone of the
proof is a new representation of the Monge-Kantorovich-Wasserstein (MKW) distance
for symmetric N-particle probability measures in terms of the distance between the law
of the associated empirical measures on the one hand, and a new estimate on some MKW
distance on probability measures spaces endowed with a suitable Hilbert norm taking
advantage of the associated good algebraic structure.

Next, we define the notion of entropy chaos and Fisher information chaos in a similar
way as defined by Carlen et al [17]. We show that Fisher information chaos is stronger
than entropy chaos, which in turn is stronger than Kac’s chaos. More importantly,
with the help of the HWI inequality of Otto-Villani, we establish a quantitative esti-
mate between these quantities, which in particular asserts that Kac’s chaos plus Fisher
information bound implies entropy chaos.

We then extend the above quantitative and qualitative results about chaos in the
framework of probability measures with support on the Kac’s spheres, revisiting [17] and
giving a possible answer to [17, Open problem 11]. Additionally to the above mentioned
tool, we use and prove an optimal rate local CLT in L∞ norm for distributions with
finite 6-th moment and finite Lp norm, for some p > 1.

Last, we investigate how our techniques can be used without assuming chaos, in the
context of probability measures mixtures introduced by De Finetti, Hewitt and Savage.
In particular, we define the (level 3) Fisher information for mixtures and prove that it is
l.s.c. and affine, as that was done in [64] for the level 3 Boltzmann’s entropy.
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1. Introduction and main results

The Kac’s notion of chaos rigorously formalizes the intuitive idea for a family of stochas-
tic valued vectors with N coordinates to have asymptotically independent coordinates as
N goes to infinity. We refer to [67] for an introduction to that topics from a probabilistic
point of view, as well as to [54] for a recent and short survey.

Definition 1.1. [41, section 3] Consider E ⊂ Rd, f ∈ P(E) a probability measure on
E and GN ∈ Psym(E

N ) a sequence of probability measures on EN , N ≥ 1, which are
invariant under coordinates permutations. We say that (GN ) is f -Kac’s chaotic (or has
the “Boltzmann property”) if

(1.1) ∀ j ≥ 1, GNj ⇀ f⊗j weakly in P(Ej) as N → ∞,

where GNj stands for the j-th marginal of GN defined by

GNj :=

∫

EN−j

GN dxj+1 ... dxN .

Interacting N -indistinguishable particle systems are naturally described by exchange-
able random variables (which corresponds to the fact that their associated probability laws
are symmetric, i.e. invariant under coordinates permutations) but they are not described
by random variables with independent coordinates (which corresponds to the fact that
their associated probability laws are tensor products) except for situations with no inter-
action! Kac’s chaos is therefore a well adapted concept to formulate and investigate the
infinite number of particles limit N → ∞ for these systems as it has been illustrated by
many works since the seminal article by Kac [41]. Using the above definition of chaos, it
is shown in [41, 49, 50, 35, 55] that if f(t) evolves according to the nonlinear space homo-
geneous Boltzmann equation, GN (t) evolves according to the linear Master/Kolmogorov
equation associated to the stochastic Kac-Boltzmann jumps (collisions) process and GN (0)
is f(0)-chaotic, then for any later time t > 0 the sequence GN (t) is also f(t)-chaotic: in
other words propagation of chaos holds for that model. As it is explained in the latest
reference and using the uniqueness of statistical solutions proved in [2], some of these prop-
agation of chaos results can be seen as an illustration of the “BBGKY hierarchy method”
whose most famous success is the Lanford’s proof of the “Boltzmann-Grad limit” [43].

In order to investigate quantitative version of Kac’s chaos, the above weak convergence
in (1.1) can be formulated in terms of the Monge-Kantorovich-Wasserstein (MKW) trans-
portation distance between GNj and f⊗j. More precisely, given dE a bounded distance on

E, we define the normalized distance dEj on Ej , j ∈ N∗, by setting

(1.2) ∀X = (x1, ..., xj), Y = (y1, ..., yj) ∈ Ej dEj(X,Y ) :=
1

j

j∑

i=1

dE(xi, yi),
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and then we define W1 (without specifying the dependence on j) the associated MKW
distance in P(Ej) (see the definition (2.2) below). With the notations of Definition 1.1,
GN is f -Kac’s chaotic if, and only if,

∀ j ≥ 1, Ωj(G
N ; f) :=W1(G

N
j , f

⊗j) → 0 as N → ∞.

Let us introduce now another formulation of Kac’s chaos which we firstly formulate in a
probabilistic language. For any X = (x1, ..., xN ) ∈ EN , we define the associated empirical
measure

(1.3) µNX(dy) :=
1

N

N∑

i=1

δxi(dy) ∈ P(E).

We say that an exchangeable EN -valued random vector XN is f -chaotic if the associated
P(E)-valued random variable µNXN converges to the deterministic random variable f in
law in P(E):

(1.4) µNXN ⇒ f in law as N → ∞.

In the framework of Definition 1.1, the convergence (1.4) can be equivalently formulated
in the following way. Introducing GN := L (XN ) the law of XN , the exchangeability

hypothesis means that GN ∈ Psym(E
N ). Next the law ĜN := L (µNXN ) of µ

N
XN is nothing

but the (unique) measure ĜN ∈ P(P(E)) such that

〈ĜN ,Φ〉 =
∫

EN

Φ(µNX)G
N (dX) ∀Φ ∈ Cb(P(E)),

or equivalently the push-forward of GN by the “empirical distribution” application.
Then the convergence (1.4) just means that

(1.5) ĜN → δf weakly in P(P(E)) as N → ∞,

where this definition does not refer anymore to the random variables XN or µNXN . It is
well known (see for instance [36, section 4], [41, 69, 66] and [67, Proposition 2.2]) that for
a sequence (GN ) of Psym(E

N ) and a probability measure f ∈ P(E) the three following
assertions are equivalent:

(i) convergence (1.1) holds for any j ≥ 1;

(ii) convergence (1.1) holds for some j ≥ 2;

(iii) convergence (1.5) holds;

so that in particular (1.1) and (1.5) are indeed equivalent formulations of Kac’s chaos.
The chaos formulation (ii) has been used since [41], while the chaos formulation (iii) is
widely used in the works by Sznitman [65], see also [66, 52, 59], where the chaos property is
established by proving that the “empirical process” µNXN converges to a limit process with
values in P(E) which is a solution to a nonlinear martingale problem associated to the
mean-field limit equation. Formulation (1.5) is also well adapted for proving quantitative
propagation of chaos for deterministic dynamics associated to the Vlasov equation with
regular interaction force [27] as well as singular interaction force [39, 38]. Let us briefly
explain this point now, see also [54, section 1.1]. On the one hand, introducing the MKW
transport distance W1 := WW1 on P(P(E)) based on the MKW distance W1 on P(E),
(see definition (2.6) below), the weak convergence (1.5) is nothing but the fact that

Ω∞(GN ; f) := W1(Ĝ
N , δf ) → 0 as N → ∞.
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On the other hand, for the Vlasov equation with smooth and bounded force term, it is
proved in [27] that

(1.6) ∀T > 0, ∀ t ∈ [0, T ] W1(µ
N
XN

t
, ft) ≤ CT W1(µ

N
XN

0
, f0),

where ft ∈ P(E) is the solution to the Vlasov equation with initial datum f0 and XN
t ∈ EN

is the solution to the associated system of ODEs with initial datum XN
0 . Inequality (1.6)

is a consequence of the fact that t 7→ µNXN
t

solves the Vlasov equation and that a local W1

stability result holds for such an equation. When X0 is distributed according to an initial
density GN0 ∈ Psym(E

N ) we may show that Xt is distributed according to GNt ∈ Psym(E
N )

obtained as the transported measure along the flow associated to the above mentioned
system of ODEs or equivalently GNt is the solution to the associated Liouville equation
with initial condition GN0 . Taking the expectation in both sides of (1.6), we get

∫

EN

W1(µ
N
Y , ft)G

N
t (dY ) = E[W1(µ

N
XN

t
, ft)]

≤ CT E[W1(µ
N
XN

0
, f0)] = CT

∫

EN

W1(µ
N
Y , f0)G

N
0 (dY ),

for any t ∈ [0, T ]. We conclude with the following quantitative chaos propagation estimate

∀ t ∈ [0, T ] Ω∞(GNt ; ft) ≤ CT Ω∞(GN0 ; f0).

It is worth mentioning that partially inspired from [36], it is shown in [57, 55] a similar
inequality as above for more general models including drift, diffusion and collisional in-
teractions where however the estimate may mix several chaos quantification quantities as
Ω∞ and Ω2 for instance.

There exists at least one more way to guaranty chaoticity which is very popular because
that chaos formulation naturally appears in the probabilistic coupling technique, see [67],
as well as [47, 12, 11] and the references therein.

Thanks to the coupling techniques we typically may show that an exchangeable EN -
valued random vector XN satisfies

E
( 1

N

N∑

i=1

|XN
i − YNi |

)
→ 0 as N → ∞,

for some EN -valued random vector YN with independent coordinates. Denoting by GN ∈
Psym(E

N ) the law of XN , f the law of one coordinate YNi , and W1 the MKW transport
distance on P(EN ) based on the normalized distance dEN in EN defined by (1.2), the
above convergence readily implies

(1.7) ΩN (G
N ; f) :=W1(G

N , f⊗N ) → 0 as N → ∞,

which in turn guaranties that (GN ) is f -chaotic. It is generally agreed that the convergence
(1.7) is a strong version of chaos, maybe because it involves the all N variables, while the
Kac’s original definition only involves a finite fixed number of variables.

Summary of Section 2. The first natural question we consider is about the equivalence
between these definitions of chaos, and more precisely the possibility to liken them in a
quantitative way. The following result gives a positive answer, we also refer to Theorem 2.4
in section 2 for a more accurate statement.

Theorem 1.2 (Equivalence of measure for Kac’s chaos). For any moment order k > 0 and
any positive exponent γ < (d+1+ d/k)−1, there exists a constant C = C(d, k, γ) ∈ (0,∞)
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such that for any f ∈ P(E), any GN ∈ Psym(E
N ), N ≥ 1, and any j, ℓ ∈ {1, ..., N}∪{∞},

ℓ 6= 1, there holds

Ωj(G
N ; f) ≤ CM

1/k
k

(
Ωℓ(G

N ; f) +
1

N

)γ
,

where Mk =Mk(f) +Mk(G
N
1 ) is the sum of the moments of order k of f and GN1 .

It is worth emphasizing that the above inequality is definitively false in general for
ℓ = 1. The first outcome of our theorem is that it shows that, regardless of the rate,
the propagation of chaos results obtained by the coupling method is of the same nature
as the propagation of chaos result obtained by the “BBGKY hierarchy method” and the
“empirical measures method”.

The proof of Theorem 2.4 (from which Theorem 1.2 follows) will be presented in sec-
tion 2. Let us briefly explain the strategy. First, the fact that we may control Ωj by Ωℓ for
1 ≤ j ≤ ℓ ≤ N is classical and quite easy. Next, we will establish an estimate of Ω∞ by Ω2

following an idea introduced in [55]: we begin to prove a similar estimate where we replace
Ω∞ by the MKW distance in P(P(E)) associated to the H−s(Rd) norm, s > (d+1)/2, on
P(E) in order to take advantage of the good algebraic structure of that Hilbert norm and
then we come back to Ω∞ thanks to the “uniform topological equivalence” of metrics in
P(E) and the Hölder inequality. Finally, and that is the other key new result, we compare
Ω∞ and ΩN : that is direct consequence of the following identity

∀FN , GN ∈ Psym(E
N ) W1(G

N , FN ) = W1(Ĝ
N , F̂N )

applied to FN := f⊗N and a functional version of the law of large numbers.

Summary of section 3. A somewhat stronger notion of chaos can be formulated in terms
of entropy functionals. Such a notion has been explicitly introduced by Carlen, Carvahlo,
Le Roux, Loss, Villani in [17] (in the context of probability measures with support on the
“Kac’s spheres”) but it is reminiscent of the works [42, 6]. We also refer to [64, 53, 13, 14]
where the N particles entropy functional below is widely used in order to identify the
possible limits for a system of N particles as N → ∞. Consider E ⊂ Rd an open set
or the adherence of a open space, in order that the gradient of a function may be well
defined. For a (smooth and/or decaying enough) probability measure GN ∈ Psym(E

N ) we
define (see section 3 for the suitable definitions) the Boltzmann’s entropy and the Fisher
information by

H(GN ) :=
1

N

∫

EN

GN logGN dX, I(GN ) :=
1

N

∫

EN

|∇GN |2
GN

dX.

It is worth emphasizing that contrarily to the most usual convention, adopted for instance
in [17, Definition 8], we have put the normalized factor 1/N in the definitions of the entropy
and the Fisher information. Moreover we use the same notation for these functionals
whatever is the dimension. As a consequence, we have H(f⊗N) = H(f) and I(f⊗N ) =
I(f) for any probability measures f ∈ P(E).

Definition 1.3. Consider (GN ) a sequence of Psym(E
N ) such that for k > 0 the k-th

moment Mk(G
N
1 ) is uniformly bounded in N , and f ∈ P(E). We say that

(a) (GN ) is f -entropy chaotic (or f -chaotic in the sense of the Boltzmann’s entropy) if

GN1 ⇀ f weakly in P(E) and H(GN ) → H(f), H(f) <∞;
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(b) (GN ) is f -Fisher information chaotic (or f -chaotic in the sense of the Fisher in-
formation) if

GN1 ⇀ f weakly in P(E) and I(GN ) → I(f), I(f) <∞.

Our second main result is the following qualitative comparison of the three above notions
of chaos convergence.

Theorem 1.4. Assume E = Rd, d ≥ 1, or E is a bi-Lipschitz volume preserving defor-
mation of a convex set of Rd, d ≥ 1. Consider (GN ) a sequence of Psym(E

N ) such that
the k-th moment Mk(G

N
1 ) is bounded, k > 2, and f ∈ P(E).

In the list of assertions below, each one implies the assertion which follows:
(i) (GN ) is f -Fisher information chaotic;
(ii) (GN ) is f -Kac’s chaotic and I(GN ) is bounded;
(iii) (GN ) is f -entropy chaotic;
(iv) (GN ) is f -Kac’s chaotic.

More precisely, the following quantitative estimate of the implication (ii) ⇒ (iii) holds:

(1.8) |H(GN )−H(f)| ≤ CE K ΩN(G
N ; f)γ ,

with γ := 1/2− 1/k, K := supN I(G
N )1/2 supN Mk(G

N
1 )1/k and CE is a constant depend-

ing on the set E (one can choose CE = 8 when E = Rd).

The implication (ii) ⇒ (iii) is the most interesting part and hardest step in the proof
of Theorem 1.4. It is based on estimate (1.8) which is a mere consequence of the HWI
inequality of Otto and Villani proved in [61] when E = Rd

together with our equivalence of chaos convergences previously established. It is also
the most restrictive one in term of moment bound: the implication (ii) ⇒ (iii) requires
a k-th moment bound of order k > 2 while the other implications only require k-th
moment bound of order k > 0 or no moment bound condition (we refer to the proof
of Theorem 1.4 in section 3 for details). The proofs of the implications (i) ⇒ (ii) and
(iii) ⇒ (iv) use the fact that the subadditivity inequalities of the Fisher information and
of the entropy are saturated if and only if the probability measure is a tensor product.
For functionals involving the entropy, similar ideas are classical and they have been used
in [53, 37, 76, 13, 58] for instance.

We believe that this result gives a better understanding of the different notions of chaos.
Other but related notions of entropy chaos are introduced and discussed in [17, 56]. The
entropy chaos definition in [17], which consists in asking for point (iii) and (iv) above, is
in fact equivalent to ours thanks to Theorem 1.4.

It is worth emphasizing that Theorem 1.4 may be very useful in order to obtain entropic
propagation of chaos (possibly with rate estimate) in contexts where some bound on the
Fisher information is available and propagation of Kac’s chaos is already proved. Unfortu-
nately, a bound on the Fisher information is not easy to propagate for N particle systems.
However, for the so-called “Maxwell molecules cross-section”, following the proof of the
fact that the Fisher information decreases along time for solutions to the homogeneous
nonlinear Boltzmann equation [48, 70, 74] and for solutions to the homogeneous nonlinear
Landau equation [75], it has been established that the N particle Fisher information also
decreases along time for the law of solutions to the stochastic Kac-Boltzmann jumps pro-
cess in [55, Lemma 7.4] and for the law of solutions to the stochastic Kac-Landau diffusion
process in [20]. In these particular cases, Theorem 1.4 provides a quantitative version of
the entropic propagation of chaos proved in [55], and we refer to [19, 20] for details.

Summary of Section 4.
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Here we consider the framework of probability measures with support on the “Kac’s
spheres” KSN defined by

KSN := {V = (v1, ..., vN ) ∈ RN , v21 + ...+ v2N = N},
as firstly introduced by Kac in [41]. Our aim is mainly to revisit the recent work [17] and
to develop “quantitative” versions of the chaos analysis.

We start proving a quantified “Poincaré Lemma” establishing that the sequence of
uniform probability measures σN on KSN is γ-Kac’s chaotic, with γ the standard gaussian
on R, i.e. γ(v) = (2π)−1/2 exp(−|v|2/2), in the sense that we prove a rate of converge to 0
for the quantification of chaos ΩN (σ

N ; γ). We also prove that for a large class of probability
densities f ∈ P(E) the corresponding sequence (FN ) of “conditioned to the Kac’s spheres
product measures” (see section 4.2 for the precise definition) is f -Kac’s chaotic in the
sense that we prove a rate of converge to 0 for the quantification of chaos Ω2(F

N ; f).
That last result generalizes the “Poincaré Lemma” since f = γ implies FN = σN . The
main argument in the last result is a (maybe new) L∞ optimal rate version of the Berry-
Esseen theorem, also called local central limit theorem, which is nothing but an accurate
(but less general) version of [17, Theorem 27]. Together with Theorem 1.2, or the more
accurate version of it stated in section 2, we obtain the following estimates.

Theorem 1.5. The sequence (σN ) of uniform probability measures on the “Kac’s spheres”
is γ-Kac’s chaotic, and more precisely

(1.9) ∀N ≥ 1 Ω2(σ
N ; γ) ≤ C1

N
, ΩN (σ

N ; γ) ≤ C2

N
1
2

, Ω∞(σN ; γ) ≤ C3
(lnN)

1
2

N
1
2

,

for some numerical constants Ci, i = 1, 2, 3.

More generally, consider f ∈ P(R) with bounded moment Mk(f) of order k ≥ 6 and
bounded Lebesgue norm ‖f‖Lp of exponent p > 1. Then, the sequence (FN ) of associ-
ated “conditioned (to the Kac’s spheres) product measures” is f -Kac’s chaotic, and more
precisely

(1.10) ∀N ≥ 1 Ω2(F
N ; f) ≤ C4

N
1
2

, ΩN (F
N ; f) ≤ C5

N
γ
2

, Ω∞(FN ; f) ≤ C6

N
γ
2

,

for any γ ∈ (0, (2 + 2/k)−1) and for some constants Ci = Ci(f, γ, k), i = 4, 5, 6.

Let us briefly discuss that last result. The question of establishing the convergence for
the empirical law of large numbers associated to i.i.d. samples is an important question
in theoretical statistics known as Glivenko-Cantelli theorem, and the historical references
seems to be [33, 15, 71]. Next the question of establishing rates of convergence in MKW
distance in the above convergence has been addressed for instance in [28, 1, 26, 62, 55, 10],
while the optimality of that rates have been considered for instance in [1, 68, 26, 4]. We
refer to [4, 10] and the references therein for a recent discussion on that topics. With our
notations, the question consists in establishing the estimate

(1.11) E(W1(µ
N
XN , f)) = Ω∞(f⊗N ; f) ≤ C

N ζ
,

for some constants C = C(f) and ζ = ζ(f). In the above left hand side term, XN is a EN -
valued random vector with independent coordinates with identical law f or equivalently
XN = X is the identity vector in EN and E is the expectation associated to the tensor
product probability measure f⊗N . When E = Rd, estimate (1.11) has been proved to
hold with ζ = 1/d, if d ≥ 3 and supp f is compact in [26], with ζ < ζc := (d′ + d′/k)−1,
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d′ = max(d, 2), if d ≥ 1 and Mk(f) < ∞ in [55] and with ζ = ζc if furthermore d ≥ 3 in
[10].

To our knowledge, (1.9) and (1.10) are the first rates of convergence in MKW distance for
the empirical law of large numbers associated to triangular array XN which coordinates
are not i.i.d. random variables but only Kac’s chaotic exchangeable random variables.
The question of the optimality of the rates in (1.9) and (1.10) is an open (and we believe
interesting) problem.

Now, following [17], we introduce the notion of entropy chaos and Fisher information
chaos in the context of the “Kac’s spheres” as follows. For any j ∈ N, and f, g ∈ P(Ej),
we define the usual relative entropy and usual relative Fisher information

H(f |g) := 1

j

∫

Ej

u log u g(dv), I(f |g) := 1

j

∫

Ej

|∇u|2
u

g(dv), u :=
df

dg
,

where u = df
dg stands for the Radon-Nikodym derivative of f with respect to g.

For f ∈ P(E) and GN ∈ Psym(KSN ) such that GN1 ⇀ f weakly in P(E), we say that
(GN ) is

(a′) f -entropy chaotic if H(GN |σN ) → H(f |γ), H(f |γ) <∞;

(b′) f -Fisher information chaotic if I(GN |σN ) → I(f |γ), I(f |γ) <∞.

In a next step, we prove that for a large class of probability measures f ∈ P(R) the
sequence (FN ) of associated “conditioned (to the Kac’s spheres) product measures” is
f -entropy chaotic as well as f -Fisher information chaotic, and we exhibit again rates for
these convergences. The proof is mainly a careful rewriting and simplification of the proofs
of the similar results (given without rate) in Theorems 9, 10, 19, 20 & 21 in [17].

We next generalize Theorem 1.4 to the Kac’s spheres context. Additionally to the yet
mentioned arguments, we use a general version of the HWI inequality proved by Lott and
Villani in [46], see also [73, Theorem 30.21], and some entropy and Fisher inequalities on
the Kac’s spheres established by Carlen et al. [18] and improved by Barthe et al. [3].

All these results are motivated by the question of giving quantified strong version of
propagation of chaos for Boltzmann-Kac jump model studied in [55] by Mouhot and the
second author, where only quantitative uniform in time Kac’s chaos is established. As
a matter of fact, K. Carrapatoso in [19] extends the present analysis to the probability
measures with support to the Boltzmann’s spheres and proves a quantitative propagation
result of entropy chaos.

Another outcome of our results is that we are able to give the following possible answer
to [17, Open problem 11]:

Theorem 1.6. Consider (GN ) a sequence of Psym(R
N ) with support on the Kac’s spheres

KSN such that

(1.12) Mk(G
N
1 ) ≤ C, I(GN |σN ) ≤ C,

for some k ≥ 2 and C > 0. Also consider f ∈ P(R), satisfying
∫
v2f(v) dv = 1 and

(1.13) f ≥ exp(−α |v|k′ + β) on R,

with 0 < k′ < k, α > 0, β ∈ R. If (GN ) is f -Kac’s chaotic, then for any fixed j ≥ 1, there
holds

H(GNj |f⊗j) → 0 as N → ∞,

where H(·|·) stands for the usual relative entropy functional defined in the flat space Ej .
Remark that the boundedness of the k-th moment of GN is useless when k ≤ 2 (because
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the support condition implies M2(G
N
1 ) = 1) while the condition on the second moment of

f is useless if k > 2 (because it is inherited from the properties of (GN1 )).

Contrarily to the conditioned tensor product assumption made in [17, Theorem 9] which
can be assumed at initial time for the stochastic Kac-Boltzmann process but which is not
propagated along time, our assumptions (1.12) and (1.13) in Theorem 1.6, which may
seem to be stronger in some sense, are in fact more natural since they are propagated
along time. We refer to [55, 19] where such problems are studied.

Summary of Section 5. Here we investigate how our techniques can be used in the
context of probability measures mixtures as introduced by De Finetti, Hewitt and Savage
[24, 40] and general sequences of probability densities GN of N undistinguishable particles
as N → ∞, without assuming chaos, as it is the case in [53, 13, 14] for instance. The
results developed in that section are also used in a fundamental way in the recent work
[32].

In a first step, we give a new proof of De Finetti, Hewitt and Savage theorem which is
based on the use of the law of the empirical measure associated to the j first coordinates
like in Diaconis and Freedman’s proof [25] or Lions’ proof [44], but where the compactness
arguments are replaced by an argument of completeness. As a back product, we give a
quantified equivalence of several notions of convergences of sequences of Psym(E

N ) to its
possible mixture limit.

In a second step, we revisit the level 3 entropy and level 3 Fisher information theory
for a probability measures mixture as developed since the work by Robinson and Ruelle
[64] at least. We give a comprehensive and elementary proof of the fundamental result

(1.14) K(π) :=

∫

P(E)
K(ρ)π(dρ) = lim

j→∞
1

j

∫

Ej

K(πj)

for any probability measures mixture π ∈ Pk(P(E)), k > 0 (see paragarph 5.1 where
the space Pk(P(E)) is defined), where πj stands for the De Finetti, Hewitt and Savage
projection of π on the j first coordinates and K stands for the Boltzmann’s entropy or the
Fisher information functional. It is worth noticing that while the representation formula
(1.14) is well known when K stands for the Boltzmann’s entropy, we believe that it is
new when K stands for the Fisher information. The representation formula for the Fisher
information is interesting for its own sake and it has also found an application as a key
argument in the proof of propagation of chaos for system of vortices established in [32].

In our last result we establish a rate of convergence for the above limit (1.14) when K is
the entropy functional mainly under a boundedness of the Fisher information hypothesis
and we generalize such a quantitative result establishing links between several weak notions
of convergence as well as strong (entropy) notion of convergence for sequences of probability
densities GN ∈ Psym(E

N ) as N → ∞, without assuming chaos.

Acknowledgement. The authors would like to thank F. Bolley and C. Mouhot for
many stimulating discussions about mean field limit and chaos, as well as N. Fournier for
his suggestions that make possible to improve the statement and simplify the proof of the
result on the level-3 Fisher information in section 5. The second author also would like
to acknowledge I. Gentil and C. Villani for discussions about the HWI inequality and
P.-L. Lions for discussions about entropy and mollifying tricks in infinite dimension. The
second author acknowledges support from the project ANR-MADCOF.
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2. Kac’s chaos

In this section we show the equivalence between several ways to measure Kac’s chaos as
stated in Theorem 1.2. We start presenting the framework we will deal with in the sequel,
and thus making precise the definitions and notations used in the introductory section.

2.1. Definitions and notations. In all the sequel, we denote by E a closed subset of
Rd, d ≥ 1, endowed with the usual topology, so that it is a locally compact Polish space.
We denote by P(E) the space of probability measures on the Borel σ-algebra BE of E.

Monge-Kantorovich-Wasserstein (MKW) distances.
As they will be a cornerstone in that article, used in different setting, we briefly recall

their definition and main properties, and refer to [72] for a very nice presentation.
On a general Polish space Z, for any distance D : Z×Z → R+ and p ∈ [1,∞),we define

WD,p on P(Z)×P(Z) by setting for any ρ1, ρ2 ∈ P(Z)

[WD,p(ρ1, ρ2)]
p := inf

π∈Π(ρ1,ρ2)

∫

Z×Z
D(x, y)p π(dx, dy)

where Π(ρ1, ρ2) is the set of proability measures π ∈ P(Z ×Z) with first marginal ρ1 and
second marginal ρ2, that is π(A × Z) = ρ1(A) and π(Z × A) = ρ2(A) for any Borel set
A ⊂ Z. It defines a distance on P(Z).

The phase spaces EN (its marginal’s space Ej) and P(E).
When we study system of N particles, the natural phase space is EN . The space of

marginals Ej for 1 ≤ j ≤ N are also important. We present here the different distances
we shall use on these spaces.
• On E we will use mainly two distances :

− the usual Euclidean distance denoted by |x− y|;
− a bounded version of the square distance : dE(x, y) = |x− y| ∧ 1 for any x, y ∈ E.

• On the space Ej for 1 ≤ j, we will also use the two distances

− the normalized square distance |X − Y |2 defined for any X = (x1, . . . , xj) ∈ Ej

and Y = (y1, . . . , yj) ∈ Ej by

|X − Y |22 :=
1

j

j∑

i=1

|xi − yj|2;

− the normalized bounded distance dj = dEj defined by

(2.1) dEj(X,Y ) :=
1

j

j∑

i=1

dE(xi, yi).

It is worth emphasizing that the normalizing factor 1/j is important in the sequel in order
to obtain formulas independant of the number j of variables.

• The introduction of the empirical measures allows to “identify” our phase space EN to a
subspace of P(E). To be more precise, we denote by PN (E) the set of empirical measures

PN (E) :=
{
µNX , X = (x1, ..., xN ) ∈ EN

}
⊂ P(E),

where µNX stands for the empirical measure defined by (1.3) and associated to the config-

uration X = (x1, . . . , xn) ∈ EN . We denote by pN : EN → PN (E) the application that
maps a configuration to its empirical measure : pN (X) := µNX .

• On our phase space P(E), we will use three different distances
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- The usual MKW distance of order two W2 defined as above with the choice D(x, y) =
|x− y|2

W2(ρ1, ρ2)
2 =W|·|2,2(ρ1, ρ2)

2 := inf
π∈Π(ρ1,ρ2)

∫

E×E
|x− y|2 π(dx, dy).

- The MKW distance W1 associated to dE defined by

(2.2) W1(ρ1, ρ2) =WdE ,1(ρ1, ρ2) := inf
π∈Π(ρ1,ρ2)

∫

E×E
dE(x, y)π(dx, dy).

From the Kantorovich-Rubinstein duality theorem (see for instance [72, Theorem 1.14])
we have the following alternative characterization

(2.3) ∀ ρ1, ρ2 ∈ P(E) W1(ρ1, ρ2) = sup
‖ϕ‖Lip≤1

∫

E
ϕ(x) (ρ1(dx)− ρ2(dx)),

where ‖ϕ‖Lip := supx 6=y
|ϕ(x)−ϕ(y)|
dE(x,y) is the Lipschitz semi-norm relatively to the distance

dE . This semi-norm is closely related to the usual Lipschitz semi-norm since it satisfies

(2.4)
1

2
(‖∇ϕ‖∞ + ‖ϕ− ϕ(0)‖∞) ≤ ‖ϕ‖Lip ≤ 2 (‖∇ϕ‖∞ + ‖ϕ‖∞) =: 2 ‖ϕ‖W 1,∞ .

It implies that W1 is equivalent to the (W 1,∞)′-distance, denoted by DW 1,∞ ,

DW 1,∞(ρ1, ρ2) := sup
‖ϕ‖

W1,∞≤1

∫

E
ϕ(x) (ρ1(dx) − ρ2(dx)),

and more precisely

(2.5)
1

2
DW 1,∞ ≤W1 ≤ 2DW 1,∞ .

- The distance induced by the H−s norm for s > d
2 : for any ρ, η ∈ P(E)

‖ρ− η‖2H−s :=

∫

Rd

|ρ̂(ξ)− η̂(ξ)|2 dξ

〈ξ〉2s

where ρ̂ denotes the Fourier transform of ρ (which may always be seen as a measure on

the whole Rd), and 〈ξ〉 =
√

1 + |ξ|2.
• We will often restrict ourself to the spaces Pk(E) of probability measures with finite
moment of order k > 0 defined by

Pk(E) := {ρ ∈ P(E) s.t. Mk(ρ) :=

∫

E
〈v〉k ρ(dv) < +∞}.

The probability measures space P(EN ), its marginals spaces P(Ej), and P(P(E)).
The next step is to consider probability measures on the configuration spaces.

• The space P(EN ) will be endowed with two distances

− W1 the MKW distance on P(EN ) associated to dEN and p = 1, which has the
same properties as the one constructed on P(E) and satisfies in particular the
Kantorovich-Rubinstein formulation (2.3).

− W2 the MKW distance associated to the normalized square distance | · |2 defined
above.
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Remark that we will only work on the subspace Psym(E
N ) of borelian probability measures

which are invariant under coordinates permutations.

• On the probability measures space P(P(E)), we can define different distances thanks to
the Monge-Kantorovich-Wasserstein construction. We will use three of them

− W1, the MKW distance induced by the cost function W1 on P(E). In short

(2.6) W1(α1, α2) =WW1,1(α1, α2) := inf
π∈Π(α1,α2)

∫

P(E)×P(E)
W1(ρ1, ρ2)π(dρ1, dρ2),

− W2, the MKW distance induced by the cost function W 2
2 on P(E). In short

W2(α1, α2)
2 =WW2,2(α1, α2)

2 := inf
π∈Π(α1,α2)

∫

P(E)×P(E)
W 2

2 (ρ1, ρ2)π(dρ1, dρ2),

− WH−s , the MKW distance induced by the cost function ‖ ·‖2H−s on P(E). In short

WH−s(α1, α2)
2 = W‖·‖H−s ,2(α1, α2)

2 := inf
π∈Π(α1,α2)

∫

P(E)×P(E)
‖ρ1 − ρ2‖2H−s π(dρ1, dρ2).

• Remark that the application ”empirical measure“ pN allows to define by push-forward
a canonical map between P(EN ) and P(P(E)). For GN ∈ P(EN ) we denote its image

under the application pN by ĜN ∈ P(P(E)) : ĜN := GN#pN . In other words, ĜN is the

unique probability measure in P(P(E)) which satisfies the duality relation

(2.7) ∀Φ ∈ Cb(P(E)) 〈ĜN ,Φ〉 =
∫

EN

Φ(µNX)G
N (dX).

More properties of the space P(P(E)).
• Marginals of probability measures on P(P(E)). We can define a mapping form

P(P(E)) onto P(Ej) in the following way. For any α ∈ P(P(E)) we define the projection
αj ∈ P(Ej) thanks to the relation

αj :=

∫
ρ⊗j dα(ρ).

It may also be restated using polynomial fonctions : for any ϕ ∈ Cb(E
j) we define the

monomial (of order j) function Rϕ ∈ Cb(P(E)) by

(2.8) ∀ ρ ∈ P(E) Rϕ(ρ) :=

∫

Ej

ϕ(X) ρ⊗j(dX).

We remark that the monomial functions of all orders generate an algebra of continous
fonction (for the weak convergence of measures) that are called polynomials. When E is
compact so that P(E) is also compact, they form a dense subset of Cb(P(E)) thanks to
the Stone-Weierstrass theorem.

In terms of polynomial fonctions, the marginal αj may be defined by

∀ϕ ∈ Cb(E
j) 〈αj , ϕ〉 := 〈α,Rϕ〉.

• Starting from GN ∈ Psym(E
N ), we can define its push-forward ĜN and then for any

1 ≤ j ≤ N the marginals of the push-forward ĜNj := (ĜN )j ∈ Psym(E
j). They satisfy the

duality relation

(2.9) ∀ϕ ∈ Cb(E
j) 〈ĜNj , ϕ〉 :=

∫

EN

Rϕ(µ
N
X)G

N (dX).
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We emphasize that it is not equal to GNj the j-th marginal of GN , but we will see later

that the two probability measures GNj and ĜNj are close (a precise version is recalled in

Lemma 2.8).

Different quantities mesuring chaoticity. Now that everything has been defined, we
introduce the quantities that we will use to quantify the chaoticity of a sequence GN ∈
Psym(E

N ) of symmetric probability measure with respect to a profil f ∈ P(E):

− The chaoticity can be mesured on Ej for j ≥ 2. For any 1 ≤ j ≤ N , we set

Ωj(G
N ; f) :=W1(G

N
j , f

⊗j),

− and also on P(E) by

Ω∞(GN ; f) := W1(Ĝ
N , δf ) =

∫

EN

W1(µ
N
X , f)G

N (dX),

since there is only one transference plan α⊗ δf in Π(α, δf ).

2.2. Equivalence of distances on P(E), Psym(E
N ) and P(P(E)). .

To quantify the equivalence between the distances defined above on P(E), we will
need some assumption on the moments. The metrics W1, W2 and ‖.‖H−s are uniformly
topologicaly equivalent in Pk(E) for any k > 0. More precisely, we have

Lemma 2.1. Choose f, g ∈ P(E). For any k > 0, denote Mk :=Mk(f) +Mk(g).

(i) For any k > 0 and s ≥ 1, there exists C := C(d)
[
1 +

(
s−1
2

) s−1
2

]
, such that there

holds

(2.10) W1(f, g) ≤ CM

d
d+2ks

k ‖f − g‖
2k

d+2ks

H−s .

(ii) For any k > 2, there holds

(2.11) W2(f, g) ≤ 2
3
2 M

1/k
k W1(f, g)

1/2−1/k .

(iii) Without moment assumptions and for any s > d+1
2 , there exists a constant C =

C(s, d) such that there holds

W1(f, g) ≤W2(f, g), ‖f − g‖H−s ≤ CW1(f, g)
1
2 .

We remark that we have kept the explicit dependance on s of the constant appearing
in (i) in order to be able to perform some optimization on s later. The important point is
that the constant may be choosen independant of s if s varies in a compact set.

Proof of Lemma 2.1. The proof is a mere adaptation of classical results on comparison
of distances in probability measures spaces as it can be found in [62, 21, 55] for instance.
We nevertheless sketch it for the sake of completness.

Proof of i). We consider a truncation sequence χR(x) = χ(x/R), R > 0, with χ ∈
C∞
c (Rd), ‖∇χ‖∞ ≤ 1, 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1), and the sequence of mollifiers γε(x) =

ε−d γ(x/ε), ε > 0, with γ(x) = (2π)−d/2 exp(−|x|2/2), so that γ̂ε(ξ) = exp(−ε2 |ξ|2/2). In
view of the equivalence of distance (2.5), we choose a ϕ ∈W 1,∞(Rd) such that ‖ϕ‖W 1,∞ ≤
1, we define ϕR := ϕχR, ϕR,ε = ϕR ∗ γε and we write
∫
ϕ (df − dg) =

∫
ϕR,ε (df − dg) +

∫
(ϕR − ϕR,ε) (df − dg) +

∫
(ϕ− ϕR) (df − dg).
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For the last term, we have

∀R > 0

∣∣∣∣
∫

(ϕR − ϕ) (df − dg)

∣∣∣∣ ≤
∫

Bc
R

‖ϕ‖∞
|x|k
Rk

(df + dg) ≤ Mk

Rk
.

For the second term, we observe that

‖ϕR − ϕR,ε‖∞ ≤ ‖∇ϕR‖∞
∫

Rd

γε(x) |x| dx ≤ C(d) ε,

and we get ∣∣∣∣
∫

(ϕR − ϕR,ε) (df − dg)

∣∣∣∣ ≤ C(d) ε.

Finally, the first term can be estimated by∣∣∣∣
∫
ϕR,ε (df − dg)

∣∣∣∣ ≤ ‖ϕR,ε‖Hs ‖f − g‖H−s ,

with for any R ≥ 1 and ε ∈ (0, 1]

‖ϕR,ε‖Hs =

(∫
〈ξ〉2 |ϕ̂ χR|2 〈ξ〉2(s−1) |γ̂ε|2 dξ

)1/2

≤ ‖ϕχR‖H1 ‖〈ξ〉s−1 γ̂ε(ξ)‖L∞ ≤ C(d)Rd/2‖〈ξ〉s−1 γ̂ε(ξ)‖L∞

The infinite norm is finite and a simple optimization leads to

‖〈ξ〉s−1 γ̂ε(ξ)‖L∞ ≤
(s− 1

2

) s−1
2
ε−(s−1)+ ,

with the natural convention 00 = 1. All in all, we have

W1(f, g) ≤ C(d)

[
1 +

(s− 1

2

) s−1
2

](
ε+

Mk

Rk
+R

d
2 ε−(s−1) ‖f − g‖H−s

)
.

This yields to (2.10) by optimizing the paramater ε and R with

R =M
2s

d+2ks

k ‖f − g‖−
2

d+2ks

H−s , and ε =M
d

d+2ks

k ‖f − g‖
2k

d+2ks

H−s .

Proof of ii). We have for any R ≥ 1 the inequality

∀x, y ∈ E, |x− y|2 ≤ R2 dE(x, y) +
2k

Rk−2
(|x|k + |y|k)

from which we deduce

W2(f, g)
2 ≤ R2 inf

π∈Π(f,g)

∫

E×E
dE(x, y)π(dx, dy)

+
2k

Rk−2
sup

π∈Π(f,g)

∫

E×E
(|xi|k + |yi|k)π(dx, dy)

≤ R2W1(f, g) +
2k

Rk−2
(Mk(f) +Mk(g)),

and then we get with (R/2)k = Mk/W1

(2.12) W2(f, g) ≤ 23/2M
1/k
k W1(f, g)

1/2−1/k .

Proof of iii). The first point is classical. The second relies on the fact that
‖δx − δy‖2H−s ≤ CdE(x, y). �

There is also a similar result on EN , where the H−s norm is less usefull.
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Lemma 2.2. Choose FN , GN ∈ Psym(E
N ). For any k > 0, denotes

Mk :=Mk(F
N
1 ) +Mk(G

N
1 ).

For any k > 2, it holds that

(2.13) W2(F
N , GN ) ≤ 2

3
2 M

1/k
k W1(F

N , GN )1/2−1/k .

It also holds without moment assumptions that W1(F
N , GN ) ≤W2(F

N , GN ).

Proof of Lemma 2.2. The proof is a simple generalization of (2.11) to the case of N
variables. We skip it. �

The inequalities of Lemma 2.1 also sum well on P(P(E)) in order to get

Lemma 2.3. Choose α, β ∈ P(P(E)), and for k > 0 define

Mk :=Mk(α) +Mk(β) :=

∫
Mk(ρ) [α+ β](dρ) =Mk(α1) +Mk(β1).

(i) For any s ≥ 1 and with the same constant C(d, s) as in point (i) of Lemma 2.1 we
have for any k > 0,

(2.14) W1(α, β) ≤ CM

d
d+2ks

k WH−s(α, β)
2k

d+2ks .

ii) For any k > 2, it also holds

(2.15) (ii) W2(α, β) ≤ 2
3
2 M

1
k
k W1(α, β)

1
2
− 1

k ,

iii) It holds without moment assumption that W1 ≤ W2 and WH−s ≤ CW
1
2
1 for s > d+1

2
with a constant C = C(s, d).

Proof of Lemma 2.3. All the above estimates are simple summations of the correspond-
ing estimate of Lemma 2.1. We only prove i).

W1(α, β) = inf
Π∈Π(α,β)

∫
W1(ρ, η)Π(dρ, dη)

≤ C inf
Π∈Π(α,β)

∫
[Mk(ρ) +Mk(η)]

d
d+2ks ‖ρ− η‖

2k
d+2ks

H−s Π(dρ, dη)

≤ C

(∫
Mk(ρ) [α + β](dρ)

) d
d+2ks

(
inf

Π∈Π(α,β)

∫
‖ρ− η‖

1
s

H−s Π(dρ, dη)

) 2ks
d+2ks

≤ C[Mk(α) +Mk(β)]
d

d+2ks

(
inf

Π∈Π(α,β)

∫
‖ρ− η‖2H−s Π(dρ, dη)

) k
d+2ks

≤ CM

d
d+2ks

k WH−s(α, β)
2k

d+2ks

where we have successively used the inequality (2.10), Hölder inequality, the definition of
the moment of α and β, and Jensen inequality. �
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2.3. Quantified equivalence of chaos. This section is devoted to the proof of Theo-
rem 1.2, or more precisely, to the proof of the following accurate version of Theorem 1.2.

Theorem 2.4. For any GN ∈ Psym(E
N ) and f ∈ P(E), there holds

(i) ∀ 1 ≤ j ≤ ℓ ≤ N Ωj(G
N ; f) ≤ 2Ωℓ(G

N ; f),(2.16)

(ii) ∀ 1 ≤ j ≤ N Ωj(G
N ; f) ≤ Ω∞(GN ; f) +

j2

N
.(2.17)

For any k > 0 and any 0 < γ < 1
d+1+ d

k

, there exists a explicit constant C := C(d, γ, k)

such that

(2.18) (iii) Ω∞(GN ; f) ≤ CM
1
k
k

(
Ω2(G

N ; f) +
1

N

)γ
,

where as usual Mk := Mk(f) +Mk(G
N
1 ).

For any k > 0 and any 0 < γ < 1

d′+ d′
k

, with d′ = max(d, 2), there exists a constant

C := C(d, γ, k) such that

(2.19) (iv) |ΩN (GN ; f)− Ω∞(GN ; f)| ≤ C
Mk(f)

1/k

Nγ
.

Let us make some remarks about the above statement. Roughly speaking, the two
first inequalities are in the good sense: the measure of chaos for a certain number of
particles is bounded by the measure of chaos with more particles, and even in the sense
of empirical measure (i.e. with Ω∞). Let us however observe that the second inequality
is meaningful only when the number j of particles in the left hand side is not too high,
typically j = o(

√
N). The third inequality is in the ”bad sense” and it is maybe the

most important one, since it provides an estimate of the measure of chaos in the sense of
empirical measures by the measure of chaos for two particles only. It is for instance a key
ingredient in [55]. See also corollary 2.11 for versions adapted to probability measures with
compact support or with exponential moment. The last inequality compares the measure
of chaos at N particles to its measure in the sense of empirical distribution. It seems new
and it will be a key argument in the next sections in order to make links between the
Kac’s chaos, the entropy chaos and the Fisher information chaos.

Remark 2.5. In the inequality (2.18), the Ω2 term in the right hand side may be replaced
by any Ωℓ for ℓ ≥ 2, but it cannot be replaced by Ω1, which does not measures chaoticity,
as it is well known. We give a counter-example for the sake of completeness. We choose
g and h two distinct probability measures on E, and take f := 1

2( g+ h). We consider the

probability measure G ∈ P(P(E)), and its associated sequence (GN ) of marginal probability
measures on P(EN ) defined by

G =
1

2
(δg + δh), GN :=

1

2
g⊗N +

1

2
h⊗N .

As G1 = f , Ω1(G
N , f) = 0 for all N , inequality (2.18) with Ω2 replaced by Ω1 will imply

that Ω∞(GN , f) goes to zero. But from inequality (2.17) of Theorem 2.4

W1(G
2, f⊗2) = Ω2(G

N , f) ≤ Ω∞(GN , f) +
C

N
.

There is a contradiction since G2 6= f⊗2 except if g = h.
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We begin with some probably well known elementary inequalities and identities concern-
ing Monge-Kantorovich-Wasserstein distances in space product. For the sake of complete-
ness we will nevertheless sketch the proofs of them. Remark that the two first formulas are
particularly simple thanks to the choice of the normalization (2.1), and that they remains
valid if we replace dj by the normalized l1-distance 1

j

∑
i |xi − yi|.

Proposition 2.6. a) - For any FN , GN ∈ Psym(E
N ) and 1 ≤ j ≤ N , there hods

(2.20) W1(F
N
j , G

N
j ) ≤

( j
N

[N
j

])−1
W1(F

N , GN ) ≤ 2W1(F
N , GN ).

b) - For any f, g ∈ P (E), there holds

(2.21) W1(f
⊗N , g⊗N ) =W1(f, g).

c) - For any f, g, h ∈ P (E), there holds

(2.22) 2W1(f ⊗ h, g ⊗ h) =W1(f, g).

As a immediate corollary of (2.20) with N := ℓ, F ℓ := f⊗ℓ and Gℓ := GNℓ , we obtain
the first inequality (2.16) of Theorem 2.4.

As can be seen in the following proof, similar results also holds for MKW distances
constructed with arbitrary distance D and exponents p, and therefore for theW2 distance.
We do not state them precisely, but they will be useful in the proof of the next Lemma 2.7.

Proof of Proposition 2.6.
Proof of (2.20). Consider π ∈ Π(FN , GN ) an optimal transference plan in (2.2). Introduc-
ing the Euclidean division, N = n j+ r, 0 ≤ r ≤ j−1, and writing X = (X1, ...,Xn,X0) ∈
EN , Y = (Y1, ..., Yn,X0) ∈ EN , with Xi, Yi ∈ Ej , 1 ≤ i ≤ n, X0, Y0 ∈ Er, we have

W1(F
N , GN ) =

∫

E2N

dEN (X,Y )π(dX, dY )

=
1

N

∫

E2N

(
n∑

i=1

j dEj (Xi,Xi) + r dEr(X0, Y0)

)
π(dX, dY )

≥ j

N

n∑

i=1

∫

E2j

dEj (Xi, Yi) π̃i(dXi, dXi),

with π̃i ∈ Π(F̃i, G̃i), where F̃i and G̃i ∈ P(Ej) denote the marginal probability measures
of FN and GN on the i-th block of variables. From the symmetry hypothesis, we have
F̃i = F̃1 = FNj and G̃i = G̃1 = GNj for any 1 ≤ i ≤ n. As a consequence, we have

∫

E2j

dEj(Xi, Yi) π̃i(dXi, dXi) ≥W1(F
N
j , G

N
j ),

and we then deduce the first inequality in (2.20). Since the integer portion n := [N/j] is
larger than 1, we have

j

N

[N
j

]
=

n j

n j + r
≥ n j

n j + j
≥ 1

2
,

from which we deduce the second inequality in (2.20).

Proof of (2.21). We consider α ∈ Π(f, g) an optimal transference plan for the W1(f, g)
distance and we define the associated transference plan π̄ := α⊗N ∈ Π(f⊗N , g⊗N ) by

∀Ai, Bi ∈ E π̄(A1 × ...×AN ×B1 × ...×BN ) = α(A1 ×B1)× ...× α(AN ×BN ).
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By definition of W1(f
⊗N , g⊗N ), we then have

W1(f
⊗N , g⊗N ) ≤ 1

N

N∑

i=1

∫

E2N

d(xi, yi) π̄(dX, dY ) =W1(f, g).

Since the first inequality in (2.20) in the case j = 1 implies the reverse inequality, the
above inequality is an equality.

Proof of (2.22). On the one hand, from the definition of the distance W1 by transference
plans, we have for an optimal transference plan π ∈ Π(f ⊗ h, g ⊗ h) the inequality

W1(f ⊗ h, g ⊗ h) =
1

2

∫

E4

(dE(x1, y1) + dE(x2, y2))π(dx1, dx2, dy1, dy2)

≥ 1

2

∫

E4

dE(x1, y1)π1(dx1, dy1) ≥
1

2
W1(f, g),

since the 1-marginal π1 defined by π1(A × B) = π(A × E × B × E) for any A,B ∈ BE

belongs to the transference plans set Π(f, g).
On the other hand, considering an optimal transference plan π ∈ Π(f, g) for theW1 dis-

tance, we define the associated transference plan π̄(dx, dy) := π(dx1, dy1)⊗ h(dx2)δy2=x2 ∈
Π(f ⊗ h, g ⊗ h), and we observe that

W1(f ⊗ h, g ⊗ h) ≤ 1

2

∫

E4

(dE(x1, y1) + dE(x2, y2)) π̄(dx1, dx2, dy1, dy2)

=
1

2

∫

E4

dE(x1, y1)π(dx1, dy1) =
1

2
W1(f, g).

We obtain (2.22) by gathering these two inequalities. �

We next prove another lemma that allows to compare a distance between measures on
P(P(E)) and a distance between their marginals on Ej , and thus to compare Ωℓ and Ω∞.

Lemma 2.7. For any distance D on E and p ≥ 1, extend D on Ej with Dj,p(V,W )p =
1
j

∑
iD(vi, wi)

p, and define the associated MKW distance WDj,p,p on P(Ej) and the MKW

distance WWD,p on P(P(E)) associated to WD and p. Let α and β be two probability
measures on P(P(E)). Then, for any j ∈ N,

(2.23) WDj,p,p(αj , βj) ≤ WWD,p,p(α, β)

That is in particular true for the MKW distances W1 and W2 defined in section 2.1

∀j ∈ N, W2(αj , βj) ≤ W2(α, β), W1(αj , βj) ≤ W1(α, β).

Proof of lemma 2.7. For simplicity we denote for any j, WDj,p,p = WD. We choose
any transference plan Π between α and β and write

[WD(αj , βj)]
p =

[
WD

(∫
ρ⊗j α(dρ),

∫
ρ⊗j β(dρ)

)]p

=

[
WD

(∫
ρ⊗j π(dρ, dη),

∫
η⊗j π(dρ, dη)

)]p

≤
[∫

WD

(
ρ⊗j , η⊗j

)
π(dρ, dη)

]p

≤
∫

[WD(ρ, η)]
p π(dρ, dη),
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where we have used the convexity property of the Wasserstein distance, the equivalent of
equality (2.21) in our general case, and Jensen inequality. By optimisation on π we obtain
the claimed inequality. �

As a consequence of a classical combinatory trick, which goes back at least to [36], we
have

Lemma 2.8 (Quantification of the equivalence GNj ∼ ĜNj ). For any G
N ∈ Psym(E

N ) and

any 1 ≤ j ≤ 1 +N/2, we have

‖GNj − ĜNj ‖TV ≤ 2
j(j − 1)

N
and W1(G

N
j , Ĝ

N
j ) =

j(j − 1)

N
,

and in particular the first marginals are equal: GN1 = ĜN1 .

Proof of Lemma 2.8. The second inequality is a straightforward consequence of the
first inequality together with the use of

W1(G
N
j , Ĝ

N
j ) ≤

1

2
‖GNj − ĜNj ‖TV .

A proof of the later may be found in [72, Proposition 7.10], in a slightly different context.
Here, the better factor 1/2 can be obtained because of the stronger assumptions of our
setting (the distance dEj we deal with here is bounded by 1).

The first inequality is a simple and classical combinatorial computation, see for instance
[36], [67, Proposition 2.2], [57, Lemma 4.2] or [55, Lemma 3.3]. We briefly sketch the proof
for the convenience of the reader.

For 1 ≤ j ≤ N , we denote by CNj the set of maps from {1, . . . , j} into {1, . . . , N}, and
by AN

j the subset of CNj made of the one-to-one maps. Remark that we have

∣∣CNj
∣∣ = N j,

∣∣AN
j

∣∣ = N !

(N − j)!
.

Thanks to the symmetry assumption made on GN , we may write for any ϕ ∈ Cb(E
j)

〈GNj , ϕ〉 =
∫

EN

ϕ(x1, . . . , xj)G
N (dX) =

(N − j)!

N !

∑

s∈AN
j

∫

EN

ϕ(xs(1), . . . , xs(j))G
N (dX)

From the definition of ĜNj we also get

〈ĜNj , ϕ〉 =

∫

P(E)

(∫
ϕ(y1, . . . , yj)ρ

⊗j(dY j)

)
ĜN (dρ)

=

∫

EN

(∫
ϕ(y1, . . . , yj)(µ

N
X)

⊗j(dY j)

)
GN (dXN )

=
1

N j

∑

s∈CN
j

∫

EN

ϕ(xs(1), . . . , xs(j))G
N (dXN ).
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The difference is then equals to

〈GNj − ĜNj , ϕ〉 =
((N − j)!

N !
− 1

N j

) ∑

s∈AN
j

∫

EN

ϕ(xs(1), . . . , xs(j))G
N (dX)

− 1

N j

∑

s∈CN
j \AN

j

∫

EN

ϕ(xs(1), . . . , xs(j)), G
N (dXN )

and may be bounded by

∣∣〈GNj − ĜNj , ϕ〉
∣∣ ≤

(
1− N !

N j(N − j)!

)
‖ϕ‖L∞ +

1

N j

∣∣CNj \AN
j

∣∣‖ϕ‖L∞

= 2
(
1− N !

N j(N − j)!

)
‖ϕ‖L∞ .

For N ≥ 2(j − 1), we can bound the right hand side thanks to

1− N !

(N − j)!N j
= 1−

(
1− 1

N

)
· · ·
(
1− j − 1

N

)
= 1− exp

(
j−1∑

i=0

ln

(
1− i

N

))

≤ 1− exp

(
−2

j−1∑

i=0

i

N

)
≤ 2

j−1∑

i=0

i

N
≤ j(j − 1)

N
,

where we have used

∀x ∈ [0, 1/2], ln(1− x) ≥ −2x and ∀x ∈ R, e−x ≥ 1− x.

We eventually get for j ≤ 1 +N/2

‖ GNj − ĜNj ‖TV = sup
‖ϕ‖∞≤1

〈GNj − ĜNj , ϕ〉 ≤ 2
j(j − 1)

N
,

which ends the proof. �

Applying the previous lemmas 2.7 and 2.8, we can bound Ωj by Ω∞ and some rest.
This is the second inequality (2.17) of theorem 2.4.

Proof of inequality (2.17) in Theorem 2.4. We simply write

Ωj(G
N , f) =W1(G

N
j , f

⊗j) ≤ W1(G
N
j , Ĝ

N
j ) +W1(Ĝ

N
j , f

⊗j)

≤ j2

N
+W1(Ĝ

N , δf ) =
j2

N
+Ω∞(GN , f),

thanks to the two previous lemmas 2.7 and 2.8. �

We establish now the key estimate which will lead to the third inequality (2.18) in
Theorem 2.4 where Ω∞ is controled by Ω2. Following [55, Lemma 4.2], the main idea is
to use as an intermediate step the H−s norm on P(E), rather than the Wassertsein W1

distance, because it is a monomial function of order two on P(E), and thus has a nice
algebraic structure. This fact is stated in the following elementary lemma.

Lemma 2.9. For s > d/2, define Φs : R
d → R by

(2.24) ∀ z ∈ Rd, Φs(z) :=

∫

Rd

e−i z·ξ
dξ

〈ξ〉2s .
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The function Φs is radial, bounded, and furthermore if s > d+1
2 , it is Lipschitz. For any

ρ, η ∈ P(E)

(2.25) ‖ρ−η‖2H−s =

∫

R2d

Φs(x−y) (ρ⊗2−ρ⊗η)(dx, dy)+
∫

R2d

Φs(x−y) (η⊗2−η⊗ρ)(dx, dy),

and for any ρ ∈ P(E)

‖ρ‖2H−s =

∫

R2d

Φ(x− y) ρ⊗2(dx, dy),

which means that the norm H−s on P(E) is the monomial function of order two associated
to the function (x, y) 7→ Φs(x− y).

Proof of Lemma 2.9. We obtain that Φs is bounded from the fact that
∫
Rd 〈ξ〉−2s dξ

is finite for s > d/2, and that it is Lipschitz from the fact that
∫
Rd 〈ξ〉1−2s dξ is finite

when s > (d + 1)/2. We now prove (2.25). Using the Fourier transform definition of the
Hilbert norm of H−s(Rd), we have for any ρ, η ∈ H−s(Rd), and then for any ρ, η ∈ P(E) ⊂
P(Rd) ⊂ H−s(Rd),

‖ρ− η‖2H−s =

∫

Rd

(ρ̂(ξ)− η̂(ξ)) (ρ̂(ξ)− η̂(ξ))
dξ

〈ξ〉2s

=

∫

R3d

(ρ(dx) − η(dx) (ρ(dy) − η(dy)) e−i (x−y)ξ
dξ

〈ξ〉2s

=

∫

R2d

Φs(x− y) (ρ⊗2 − ρ⊗ η)(dx, dy) +

∫

R2d

Φs(x− y) (η⊗2 − η ⊗ ρ)(dx, dy).

The last identity follows from (2.25) by choosing η = 0. �

Thanks to that Lemma, we will be able to obtain the following key estimate.

Proposition 2.10. For any s > d+1
2 there exists a constant C = 2‖Φs‖Lip ≤ 2s+1cd

2s−d−1 ∈
(0,∞) (where cd denotes the surface of the unit sphere of Rd) such that for any GN ∈
Psym(E

N ), N ≥ 1, f ∈ P(E), there holds

(2.26) WH−s(ĜN , δf ) ≤ C
[
W1(Ĝ

N
2 , f ⊗ f)

]1
2
.

Proof of Proposition 2.10. Because P(E) ⊂ P(Rd) ⊂ H−s(Rd) for s > d
2 and

Π(ĜN , δf ) = {ĜN ⊗ δf}, we have

[
WH−s(ĜN , δf )

]2
:= inf

π∈Π(ĜN ,δf )
I[π] = I(ĜN ⊗ δf ),

with cost functional

I[π] :=

∫ ∫

P(E)×P(E)
‖ρ− η‖2H−s π(dρ, dη).
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Using Lemma 2.9, we have

I[ĜN ⊗ δf ] =

∫

P(E)

{∫

R2d

Φs(x− y) (ρ⊗2 − ρ⊗ f)(dx, dy)
}
ĜN (dρ)

+

∫

P(E)

{∫

R2d

Φs(x− y) (f⊗2 − f ⊗ ρ)(dx, dy)
}
ĜN (dρ)

=

∫ ∫

E2

Φs(x− y) [ĜN2 (dx, dy)− ĜN1 (dx) f(dy)]

+

∫ ∫

E2

Φs(x− y) [f(dx) f(dy) − f(dx) ĜN1 (dy)].

Now we may bound the cost functional as follows:

I[ĜN ⊗ δf ] ≤ ‖Φs‖Lip
[
W1(Ĝ

N
2 , Ĝ

N
1 ⊗ f) +W1(f ⊗ f, f ⊗ ĜN1 )

]

≤ ‖Φs‖Lip
[
W1(Ĝ

N
2 , f ⊗ f) + 2W1(f ⊗ f, ĜN1 ⊗ f)

]

≤ ‖Φs‖Lip
[
W1(Ĝ

N
2 , f ⊗ f) +W1(f, Ĝ

N
1 )
]

≤ 2‖Φs‖LipW1(Ĝ
N
2 , f ⊗ f),

where we have used successively the Katorovich-Rubinstein duality formula (2.3), the
triangular inequality, the identity (2.22), and the first inequality in (2.20) together with

the fact that (ĜN2 )1 = ĜN1 . �

Putting together Proposition 2.10, Lemma 2.8 above and Lemma 2.3 on comparaison
of distances in P(P(E)), we may prove inequality (2.18) of Theorem 2.4.

Proof of inequality (2.18) in Theorem 2.4. We define s := 1
2γ − d

2k . Notice that

s > d+1
2 ≥ 1 thanks to the conditions satisfied by γ and k. We can thus applied the point

i) of Lemma 2.3, Proposition 2.10 and then Lemma 2.8 in order to get

Ω∞(GN ; f) := W1(Ĝ
N , δf ) ≤ C(d, s)M

d
d+2ks

k WH−s(ĜN , δf )
2k

d+2ks

≤ C(d, s)

2s − d− 1
M

d
d+2ks

k W1(Ĝ
N
2 , f

⊗2)
k

d+2ks

≤ C(d, γ, k)

γ−1 − d/k − d− 1
M

1
k
k

(
W1(G

N
2 , f

⊗2) +
2

N

)γ
,

since γ = k
d+2ks . This is the claimed inequality thanks to the definition of Ω2. It is

important to notice that the constant C(d, γ, k) of the last line depends on d, k and γ via
s. But as explained at the end of lemma 2.1, it can be choosen independent of k and γ if
s = 1

2γ − d
2k remains in a compact subset of R+. �

With stronger moment conditions on the probability measures f and GN , we may
improve the exponent in the right hand side of (2.18) and therefore the rate of convergence
to the chaos. Introducing the exponential moment

(2.27) ∀ F ∈ P(E), Mβ,λ(F ) :=

∫

E
eλ|x|

β
F (dx),

E = Rd, β, λ > 0, we have the following result.
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Corollary 2.11. (i) There exists a constant C = C(d) such that if the support of f and
GN1 are both contained in the ball B(0, R), for a positive R, then

(2.28) Ω∞(GN ; f) ≤ C R

(
Ω2(G

N ; f) +
1

N

) 1
d+1
∣∣∣∣ln
(
Ω2(G

N ; f) +
1

N

)∣∣∣∣ .

(ii) There exists a constant C = C(d, β) such that if the f and GN1 have bounded expo-
nential moment of order Mβ,λ for β, λ > 0, there holds

(2.29) Ω∞(GN ; f) ≤ C

λ
1
β

K2(d+1)

(
Ω2(G

N ; f) +
1

N

) 1
d+1
∣∣∣∣ln
(
Ω2(G

N ; f) +
1

N

)∣∣∣∣
1+ 1

β

where K := max(Mβ,λ(f),Mβ,λ(G
N
1 )).

Proof of Corollary 2.11.
Step 1. The compact support case. Here we simply have Mk(f) ≤ Rk and the same for
the moments of GN1 . Applying (2.18) with the explicit formula for the constant C, we get

for any 0 < γ < 1
d+1 and k > d

γ−1−d−1

Ω∞(GN ; f) ≤ C(d, γ, k)

γ−1 − d k−1 − d− 1
R

(
Ω2(G

N ; f) +
1

N

)γ
.

And we use the remark at the end of the previous proof that allows to replace C(d, γ, k)
by C(d) if s = 1

2γ − d
2k is restricted to some compact subspace of [1,+∞). It will be the

case in the sequel since we shall choose k large and γ close to 1
d+1 . Letting k → +∞ leads

to

Ω∞(GN ; f) ≤ C(d)

γ−1 − d− 1
R

(
Ω2(G

N ; f) +
1

N

)γ
.

Denoting α := 1
γ − d − 1 and a = Ω2(G

N ; f) + 1
N which we assume smaller than 1

2 , the

r.h.s can be rewritten

Ω∞(GN ; f) ≤ C(d)
R

α
a1/(d+1+α).

Some optimization leads to the natural choice α = 2 (d+1)2

| ln a| . It comes

Ω∞(GN ; f) ≤ C(d)R | ln a| a1/(d+1)a1/(d+1+α)−1/(d+1) .

Since 1
d+1 − 1

d+1+α ≤ α
(d+1)2

≤ 1
2 | lna| , we deduce

a1/(d+1+α)−1/(d+1) ≤ a−1/(2| ln a|) = e
1
2

and this concludes the proof of point (i).

Step 2. The case of exponential moment.

Using the elementary inequality xk ≤
(
k
λβe

)k/β
eλ |x|

β
, we get the following bound on the

k moment

Mk(F )
1/k ≤

( k

λβe

)1/β
Mβ,λ(F )

1/k,

and it implies with our notations M
1
k
k ≤

(
k
λβe

)1/β
(2K)1/k. Applying (2.18) with the

explicit formula for the constant C and the notation a of the previous step, we get for any
0 < γ < 1

d+1 and k > d
γ−1−d−1

Ω∞(GN ; f) ≤ C(d)

(λβe)1/β
k1/β

γ−1 − d k−1 − d− 1
K1/k aγ .
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Here we cannot take the limit as k → ∞, but optimizing in k the second fraction of the
r.h.s, we choose k satisfying 1

γ − d− 1 = 2d
k and get the bound

Ω∞(GN ; f) ≤ C(d, β)

λ1/β
4d

(γ−1 − d− 1)1+1/β
K1/k aγ .

Still denoting α = 1
γ − d− 1 = 2d

k , the choice α = 2 (d+1)2

| ln a| leads this time to the bound

Ω∞(GN ; f) ≤ C(d, β)

λ1/β
K(d+1)/ ln 2 | ln a|1+1/β a1/(d+1),

which concludes the proof. �

Remark 2.12. Inequality (2.18) in Theorem 2.4 says in particular that for any k > 0
and 0 < γ < (d + 1 + d/k)−1 there exists a constant C := C(d, γ, k) such that for any
f ∈ P(E), there holds

(2.30) Ω∞(f⊗N ; f) ≤ CMk(f)
1/k

Nγ
.

For such a tensor product probability measures framework, the above rate can be im-
proved in the following way.

Theorem 2.13 ([55, 10]). 1. For a moment weight exponent k > 0 and an exponent

(i) γ = γc := (2 + 1/k)−1 when d = 1,
(ii) γ ∈ (0, γc) with γc := (2 + 2/k)−1 when d = 2,
(iii) γ = γc := (d+ d/k)−1 when d ≥ 3,

there exists a finite constant C := C(d, γ, k) such that (2.30) holds.
2. Moreover, for any moment weight exponents λ, β > 0, there exists a finite constant

C := C(d, λ, β,Mβ,λ(f)) such that
(2.31)

Ω∞(f⊗N ; f) ≤ C
(lnN)1/β

N1/2
, if d = 1, Ω∞(f⊗N ; f) ≤ C

(lnN)1+1/β

N1/d
, if d ≥ 2.

On the one hand, using similar Hilbert norm arguments as those used in the proof of
Proposition 2.10 and inequality (2.18) in Theorem 2.4, the first point in Theorem 2.13 has
been proved in [55, Lemma 4.2(iii)] with however the restriction γ ∈ (0, γc) when d ≥ 1.

The optimal rate O(1/N (2+1/k)−1
) in the critical case γ = γc, d = 1, is not mentioned in

[55, Lemma 4.2(iii)] but follows from a careful but straightforward reading of the proof
of [55, Lemma 4.2(iii)]. The better rate obtained in Theorem 2.13 with respect to (2.30)
is due to the fact that for a tensor product measure one can work in the Hilbert space
H−s with s > d/2 rather than with s > (d + 1)/2 in the general case. The second point
in Theorem 2.13 follows by adapting the proof of Corollary 2.11 to this tensor product
measures framework.

On the other hand, using matching techniques, it has been proved in [26, 10] that
(2.30) also holds true for the critical exponent γc = 1/d in the compact support case
(or exponential moment with β = 1) when d ≥ 3 and γc = (d + d/k)−1 in the case
of finite moment of order k when d ≥ 3. These last results thus slightly improve the
estimates available thanks to our Hilbert norms technique. It is worth mentioning that
the critical exponents are known to be optimal, see for instance [26, 4]. A natural question
is whether the rates in inequality (2.18) and in Corollary 2.11 may be improved using
similar arguments as in [26, 10].
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We come to the proof of the last part of Theorem 2.4, which will be a consequence of
the following proposition

Proposition 2.14. For FN , GN ∈ Psym(E
N ), there holds

(2.32) W1(F
N , GN ) = W1(F̂

N , ĜN ).

Proof of Proposition 2.14. We split the proof into two steps.

Step 1. A reformulation of the problem. Since we are dealing with symmetric probability
measures, it is natural to introduce the equivalence relation ∼ in EN by saying that
X = (x1, ..., xN ), Y = (y1, ..., yN ) ∈ EN are equivalent, we write X ∼ Y , if there exists a
permutation σ ∈ SN such that Y = Xσ := (xσ(1), . . . , xσ(n)).

We also introduce on EN the ”semi”-distance w1

(2.33) w1(X,Y ) := inf
σ∈SN

dEN (X,Yσ) = inf
σ∈SN

1

N

N∑

i=1

dE(xi, yσ(i)),

which only satisfies w1(X,Y ) = 0 iff X ∼ Y . We then introduce the associated MKW

functionnal W †
1 . For F

N , GN ∈ Psym(E
N ),

W †
1 (F

N , GN ) := inf
πN∈Π(FN ,GN )

∫

EN×EN

w1(X,Y )πN (dX, dY ).

It is in fact a distance on the space of symmetric probability measures, but this point will
also be a consequence of our proof. It is a classical result (see for instance [72, Introduction.
Example: the discrete case]) that

(2.34) ∀X,Y ∈ EN , W1(µ
N
X , µ

N
Y ) = w1(X,Y ),

(shortly, it means than we do not need to split the small Dirac masses when we try to
optimize the transport between two empirical measures). We recall the notation pN defined
in section 2.1 for the application that sends a configuration to the associated empirical
measure : pN (X) = µNX .

Remark that its associated push-forward mapping restricted to the symmetric proba-
bility measures

p̃N : Psym(E
N ) → P(PN (E)) ⊂ P(P(E)), GN 7→ ĜN := GN#pN ,

is a bijection. Its inverse can be simply expressed thanks to a dual formulation: for
α ∈ P(PN (E)), its inverse α̃ = p̃−1

N α is the probability measure satisfying

∀ϕ ∈ Cb(E
N ),

∫

EN

ϕ(X) α̃(dX) =

∫

PN (E)
ϕ̃(ρ)α(dρ),

where ϕ̃(ρ) := 1
N !

∑
σ∈SN

ϕ(Xσ), for any given X such that µ = µNX . Similarly, defining

Ps,s(E
N × EN ) the subset of P(EN × EN ) of probability measures which are invariant

under permutations on the first and second blocks of N variables separately, we have that

p̃⊗2
N : Ps,s(E

N × EN ) → P(PN (E) × PN (E)), πN 7→ π̂N := πN# (pN , pN ),

is a bijection.
The identity (2.34) and the bijection p̃N allows us to establish the identity

(2.35) ∀FNGN ∈ P(EN ), W †(FN , GN ) = W1(F̂
N , ĜN ).
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Indeed, denoting Πs,s(F
N , GN ) = Π(FN , GN ) ∩Ps,s(E

N , EN ), we have

W †
1 (F

N , GN ) = inf
πN∈Πs,s(FN ,GN )

∫

EN×EN

w1(X,Y )πN (dX, dY )

= inf
πN∈Πs,s(FN ,GN )

∫

EN×EN

W1(pN (X), pN (Y ))πN (dX, dY )

= inf
πN∈Πs,s(FN ,GN )

∫

PN (E)×PN (E)
W1(ρ, η)π

N
# (pN , pN )(dρ, dη)

= inf
π̂∈Π(F̂N ,ĜN )

∫

P(E)×P(E)
W1(ρ, η) π̂(dρ, dη) = W1(F̂

N , ĜN ),

where we have essentially used the invariance w1(X,Y ) = w1(Xσ , Yτ ) for any σ, τ ∈ SN

and the fact that p̃⊗2
N is a bijection.

Step 2. The equality W †
1 = W1. The interest of the reformulation (2.35) is that we can

now work on one space: EN . Remark that since w1(X,Y ) ≤ dEN (X,Y ), we always have

W †
1 ≤W1, and the equality will hold only if one transference plan for W †

1 is concentrated
on the set

C :=

{
(X,Y ) ∈ EN × EN s.t. w1(X,Y ) = inf

σ∈SN

dEN (X,Yσ) = dEN (X,Y )

}
.

We choose an optimal transference plan π for W †
1 . For simplicity we will assume that π

is symmetric, i.e. unchanged by the applications Pσ : (X,Y ) 7→ (Xσ , Yσ) for any σ ∈ SN .
If not, we replace it by its symmetrization 1

N !

∑
σ π#Pσ which will still be an optimal

transference plan of FN onto GN . Starting from π, we will construct a transference plan
π∗ ∈ Π(FN , GN ) such that

- i) π∗ is concentrated on C.
- ii) IN [π] =

∫
w1(X,Y )π(dX, dY ) =

∫
w1(X,Y )π∗(dX, dY ) = IN [π

∗]
Both properties imply then that

W †
1 (F

N , GN ) =

∫

EN×EN

w1(X,Y )π(dX, dY ) =

∫

EN×EN

w1(X,Y )π∗(dX, dY )

=

∫

EN×EN

dEN (X,Y )π∗(dX, dY ) ≥W1(F
N , GN )

which is the desired inequality.
We define π∗ in the following way. First, we introduce for any X,Y ∈ EN

CX;Y :=
{
Z ∈ EN ; Z ∼ Y and dEN (X,Z) = w1(X,Y )

}
⊂ EN

ρX;Y :=
1

NX;Y

∑

Z∈CX;Y

δ(X,Z) ∈ P(EN × EN ), NX;Y := #CX;Y ∈ N∗.

We note that Z ∈ CX;Y iff Z ∼ Y and (X,Z) ∈ C, so that Supp ρX;Y ⊂ C. It can be
shown that (X,Y ) 7→ NX;Y is a borelian application (it takes finite values and its level

set are closed) and that EN × EN → P(EN × EN ), (X,Y ) 7→ ρX;Y is also borelian if
P(EN × EN ) is endowed with the weak topology of measures. This allows us to define a
transference plan π∗ by

π∗ :=
∫

EN×EN

ρX;Y π(dX, dY ) ∈ P(EN × EN ),
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or in other words, for any ψ ∈ Cb(E
N × EN ), we have

〈π∗, ψ〉 =

∫

E2N

1

NX;Y

∑

Z∈CX;Y

∫

E2N

ψ(X ′, Y ′) δ(X,Z)(dX
′, dY ′)πN (dX, dY )

=

∫

E2N

1

NX;Y

∑

Z∈CX;Y

ψ(X,Z)πN (dX, dY ).

It remains to proof that π∗ satisfy the announced properties. Since ρX;Y is supported in

C for any (X,Y ) ∈ EN ×EN , it is also the case for π∗. It is also not difficult to show that
the transport cost for w1 is preserved. Indeed, we have

∫

E2N

dEN (X ′, Y ′)π∗(dX ′, dY ′) =

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

dEN (X,Z)


 π(dX, dY )

=

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

w1(X,Y )


 π(dX, dY )

=

∫

E2N

w1(X,Y )π(dX, dY ).

The fact that π∗ has first marginal FN is also clear since for any ϕ ∈ Cb(E
N )

∫

E2N

ϕ(X ′)π∗(dX ′, dY ′) =

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

ϕ(X)


 π(dX, dY )

=

∫

E2N

ϕ(X)π(dX, dY ) =

∫

EN

ϕ(X)FN (dX).

For the second marginal, we shall use the following properties of CX;Y and NX;Y

∀τ ∈ SN , Zτ ∈ CXτ ;Yτ ⇔ Z ∈ CX;Y , and thus NXτ ;Yτ = NX;Y .

Thanks to the invariance by symmetry of π and GN , we can write for any ϕ ∈ Cb(E
N )

∫

E2N

ϕ(Y )π∗(dX, dY ) =

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

ϕ(Z)


 π(dX, dY )

=
1

N !

∑

τ∈SN

∫

E2N


 1

NXτ ;Yτ

∑

Z∈CXτ ;Yτ

ϕ(Z)


 π(dX, dY )

=
1

N !

∑

τ∈SN

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

ϕ(Zτ )


 π(dX, dY )

=

∫

E2N


 1

NX;Y

∑

Z∈CX;Y

ϕ̃(Z)


 π(dX, dY )

=

∫

E2N

ϕ̃(Y )π(dX, dY )

=

∫

E2N

ϕ̃(Y )GN (dX) =

∫

E2N

ϕ(Y )GN (dX),
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where we have introduced the symmetrization of ϕ defined by ϕ̃(Z) := 1
N !

∑
σ∈SN

ϕ(Zσ)

and we have used that ϕ̃(Z) = ϕ̃(Y ) for any Z ∈ CX;Y and the fact that GN is symmetric.
This concludes the proof. �

Putting together Proposition 2.14 and (2.30), we obtain the inequality (2.19) of Theo-
rem 2.4.

Proof of inequality (2.19) in 2.4. We have

|ΩN (GN , f)− Ω∞(GN , f)| = |W1(G
N , f⊗N)−W1(Ĝ

N , δf )|
= |W1(Ĝ

N , f̂⊗N)−W1(Ĝ
N , δf )|

≤ W1(f̂⊗N , δf ) = Ω∞(f⊗N ; f)

≤ CMk(f)
1/k

Nγ
,

where we have used the definition of ΩN , Ω∞, the triangular inequality, Proposition 2.14
and (2.30). �

3. Entropy chaos and Fisher information chaos

In this section E ⊂ Rd stands for an open set or the adherence of a open space (so that
the gradient of a function on E is well defined).

3.1. Entropy chaos. The entropy of a probability measure on a compact subset of Rd

with density f dx is well defined by the formula
∫
f ln f . On a (possibly) unbounded set

E, we have to be more careful because the entropy may not be defined for probability
measure decreasing too slowly at infinity. This is a well known issue, but we present here
a rigourous definition for probability measures F ∈ P(Ej) having a finite moment Mk for
some k > 0. It will be usefull in the section 5 where we define the level 3 entropy and
Fisher information on P(P(E)).

We emphasize that in the sequel we shall use the same notation F for a probability
measure and its density F dx with respect to the Lebesgue measure, when the last quantity
exists. For any k > 0 and F ∈ Pk(E

j) ∩ L1, we define the (opposite of the Boltzmann’s)
entropy

Hj(F ) :=

∫

Ej

F logF(3.1)

=

∫

E
h(F/Gjk)G

j
k +

∫

E
F logGjk (=: H

(1)
j (F ))

with Gjk(V ) := cjk exp(−|v1|k − ... − |vj |k) ∈ P(Ej), ck chosen so that Gi is a probability
measure, and h(s) := s log s − s + 1. The RHS term is well defined in R ∪ {+∞} as the
sum of a nonnegative term and a finite real number, and it can be checked that it is equal
to the middle term, which has thus a sense. Next, we extend the entropy functional to
any F ∈ Pk(E

j) by setting

(3.2) Hj(F ) := sup
φj∈Cb(Ej)

{
〈F, φj〉 −H∗(φj)

}
+

∫

E
F logGjk (=: H(2)(F ))

where

H∗(φj) :=
∫

Ej

h∗(φj)G
j
k
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and where h∗(t) := et−1 is the Legendre transform of h. Finally, we define the normalized
entropy functional H by

(3.3) ∀F ∈ Pk(E
j) H(F ) :=

1

j
Hj(F ).

We start recalling without proof a very classical result concerning the entropy.

Lemma 3.1. Let us fix k > 0. The entropy functional Pk(E) → R ∪ {+∞}, ρ 7→ Hj(ρ)
is well defined by the expression (3.2), is convex and is l.s.c. for the following notion of
converging sequences: ρn ⇀ ρ in the weak sense of measures in P(E) and 〈ρn, |v|m〉 is
bounded for some m > k (the same holds of course for H). Moreover, Hj(F ) does not
depend on the choice of k used in the expression (3.2),

H(F ) ≥ log ck −Mk(F ) ∀F ∈ Pk(E),

and H(F ) <∞ iff F ∈ L1 , F log F ∈ L1(E), and then H(F ) = H(1)(F ).

We also recall the definition of the (non-normalized) relative entropy between two prob-
ability measures ρ and η of P(Ej) :

(3.4) Hj(ρ|η) :=
∫

Ej

ln

(
dρ

dη

)
dρ =

∫

Ej

(g ln g + 1− g)dη

with g = dρ
dη if ρ is absolutely continuous with respect to η. If g is not defined, then

Hj(ρ|η) := +∞. The associated normalized quantity is simply H(ρ|η) := 1
jHj(ρ|η). The

relative entropy is defined without moment assumption since the quantity under the last
integral is nonnegative. It can also be defined using a dual formula similar to (3.2). For a
fixed η it has the same properties as the entropy.

We now give two elementary and well known results which are fundamental for the
analysis of the entropy defined on space product.

Lemma 3.2. On Pm(E
j), m > 0, the entropy satisfies the identity

(3.5) ∀ f ∈ Pm(E) H(f⊗j) = H(f).

Proof of Lemma 3.2. If f ∈ Pm(E) is a function such that H(f) < ∞, then we may
use (3.1) as a definition and

H(f⊗j) =
1

j

∫

Ej

f⊗j log f⊗j =
∫

Ej

f⊗j(v1, ..., vj) log f(v1) = H1(f).

In the contrary, H1(f) = ∞ implies Hj(f
⊗j) = ∞. �

Lemma 3.3. (i) For any functions f, g ∈ L1
m(E) ∩P(E), m > 0, there holds

(3.6) H(f) :=

∫

E
f log f ≥

∫

E
f log g, or H(f |g) :=

∫

E
f log(f/g) ≥ 0,

with equality only if f = g a.e..
(ii) More generally, for any nonnegative functions f, g ∈ L1

m(E), m > 0, there holds
∫

E
f log

f

g
≥ F log

F

G
, with F :=

∫

E
f, G :=

∫

E
g.

(iii) A consequence of (i) is that if F ∈ P(Ej) has first marginal f with H(f) < +∞, then

H(F ) ≥ H(f) with equality only if F = f⊗j a.e..
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(iv) The entropy is superadditive: for any F ∈ Pm(E
i+j) ∩Psym(E

i+j), i, j ∈ N∗, m > 0,
the following inequality holds

(3.7) Hi+j(Fi+j) ≥ Hi(Fi) +Hj(Fj), (non-normalized entropy),

where Fℓ as usual stands for the ℓ-th marginal of F .

Proof of Lemma 3.3. (i) To obtain the inequality, write H(f |g) =
∫
h(f/g)f and use

the fact that h(s) = s log s − s+ 1 is a nonnegative function. Next there is equality only
if h(f/g) = 0 a.e. on {f > 0}. Since h vanishes only at s = 1, it means that f = g a.e. on
{f > 0}. Using that

∫
f =

∫
g = 1, we obtain the claimed equality.

(ii) We write ∫

E
f log

f

g
= F

∫

E
f/F log

f/F

g/G
+

∫

E
f log

F

G
,

the first term is nonnegative thanks to (3.6) and the second term is the one which appears
on the RHS of the claimed inequality.

(iii) We use the first inequality (3.6) on Ej with F and f⊗j

H(F ) =
1

j

∫

Ej

F log F ≥ 1

j

∫

Ej

F log f⊗j =
∫

Ej

F (V ) log f(v1) dV = H(f).

Using again the point i), we see that equality can occur only if F = f⊗j a.e..
(iv) Denote hℓ := Hℓ(Fℓ). If hi+j = +∞ there is nothing to prove. Otherwise, we have
hi+j < ∞ which in turn implies F ∈ L1(Ei+j), then Fi ∈ L1(Ei), Fj ∈ L1(Ej), so that
the entropy may be defined thanks to (3.1). In R ∪ {−∞}, we compute

hi+j − hi − hj =

∫

Ei+j

Fi+j log Fi+j

−
∫

Ei+j

Fi+j log Fi(v1, .., vi)−
∫

Ei+j

Fi+j log Fj(vi+1, .., vi+j)

=

∫

Ei+j

Fi+j log Fi+j −
∫

Ei+j

Fi+j logFi ⊗ Fj ≥ 0,

thanks to (3.6). �

Our first result shows that entropy chaos is a stronger notion than Kac’s chaos.

Theorem 3.4 (Entropy and chaos). Consider (GN ) a sequence of Psym(E
N ) such that

〈GN1 , |v|m〉 ≤ a for any N ≥ 1 and for some fixed m,a > 0 and consider f ∈ P(E).

1) If GNj ⇀ Fj weakly in P(Ej) for some given j ≥ 1, then

(3.8) H(Fj) ≤ lim infH(GN ).

In particular, when (GN ) is f -Kac’s chaotic, (3.8) holds for any j ≥ 1 with Fj := f⊗j.

2) On the other way round, if (GN ) is f -entropy chaotic, then (GN ) is f -Kac’s chaotic.

Proof of Theorem 3.4. Step 1. For any N ≥ j we introduce the Euclidean
decomposition N = n j + r, 0 ≤ r ≤ j − 1, exactly as in the proof of Proposition 2.6.
Iterating n times the superadditivity inequality (3.7) we have

HN (F
N ) ≥ nHj(F

N
j ) +H(FNr ),

with the convention H(FNr ) = 0 when r = 0. We get (3.8) by passing to the limit in
that inequality divided by N , using that H is l.s.c. and that H(FNr ) is bounded by below
thanks to Lemma 3.1 and the condition on the moment.
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Step 2. We assume that (GN ) is f -entropy chaotic, that is

GN1 ⇀ f weakly in P(E) and H(GN ) → H(f) <∞.

Let us fix j ≥ 1. The sequence (GNj ) being bounded in Pm(E
j), there exists Fj ∈ P(Ej)

and a subsequence (GN
′
) such that GN

′
j ⇀ Fj weakly in P(Ej). Thanks to step 1, we

have

H(Fj) ≤ lim infH(GN
′

j ) ≤ lim infH(GN
′
) = H(f) = H(f⊗j).

Since the first marginal of Fj is (Fj)1 = limN→+∞GN1 = f , the third point of Lemma 3.3
gives that Fj = f⊗j a.e.. As a conclusion and because we have identified the limit, we
have proved that the all sequence (GNj ) weakly converges to f⊗j. �

3.2. Fisher chaos. We now establish similar results for the Fisher information func-
tional. For an arbitrary probability measure G ∈ P(Ej), we define the normalized Fisher
information by

(3.9) I
(1)
j (G) :=





∫

Ej

|∇G|2
G

=

∫

Ej

|∇ lnG|2G ∈ R ∪ {+∞} if G ∈W 1,1(Ej),

+∞ if G /∈W 1,1(Ej),

For G ∈ P(Ej), we also give an alternative definition

(3.10) I
(2)
j (G) := sup

ψ∈C1
b (E

j)d
〈G,−|ψ|2

4
− divψ〉 ∈ R ∪ {+∞}.

Lemma 3.5. For all j ∈ N, the identity I
(1)
j = I

(2)
j holds on P(Ej), and we simply denoted

by Ij the usual (non-normalized) Fisher information and by I = j−1 Ij the normalized
Fisher information. The functionals Ij and I are proper, convex, l.s.c. (in the sense of
the weak convergence of measures) on P(Ej).

Proof of Lemma 3.5. For the sake of simplicity, we only deal with the case j = 1. We
split the proof into two steps.

Step 1. Assume that f ∈W 1,1. Since for all ψ ∈ C1
b (E)d

|∇ ln f |2 −∇ ln f · ψ +
|ψ|2
4

=

∣∣∣∣∇ ln f − ψ

2

∣∣∣∣
2

≥ 0,

we have

I(1)(f) =

∫

E
|∇ ln f |2f ≥

∫

E

(
∇ ln f · ψ − |ψ|2

4

)
f.

For any sequence (ψn) of smooth functions approximating 2∇ ln f = 2∇f
f , we obtain

that

I(1)(f) = lim
n→∞

∫

E

(
∇ ln f · ψn −

|ψn|2
4

)
f

= sup
ψ∈C1

b (E)d

∫

E

(
∇ ln f · ψ − |ψ|2

4

)
f

= sup
ψ∈C1

b (E)d

∫

E

[
∇f · ψ − f

|ψ|2
4

]
=: I(3)(f).(3.11)
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The remaining equality I(3) = I(2) is just a simple integration by parts. Remark that
maximizing sequences (ψn) must converge (up to some subsequence) pointwise to 2∇ ln f
a.e. on {f 6= 0}. We shall use that point in the sequel.

We also remark that this reformulation I(2) is also exactly the one obtained when using

the general Fenchel-Moreau theorem on the convex function (a, b) → |b|2
a (which is used in

the integral defining I(1)).

Step 2. It remains to check that the equality I(1) = I(2) is also true on P(E)\W 1,1(E).

In other words that if f /∈ W 1,1(E) then I(2)(f) = +∞. In what follows, we prove

the contraposition : I(2)(f) < +∞ implies f ∈ W 1,1(E). Once it will be done, we will

have I(1) = I(2) everywhere, from what follows that I is l.s.c. in the sense of the weak
convergence of measures.

Consider f ∈ P(E) and assume I(2)(f) <∞. We deduce that for any ψ ∈ C1
b (E)d and

any t ∈ R ∫

E
f [−t2 |ψ|

2

4
− t divψ] ≤ I(2)(f),

so that by optimizing in t ∈ R and using that f ∈ P(E), we get

∀ψ ∈ C1
b (E)d

∣∣∣∣
∫

E
f divψ

∣∣∣∣
2

≤ 4 I(2)(f)

∫

E
f
|ψ|2
4

≤ I(2)(f) ‖ψ‖2L∞ .

That inequality implies f ∈ BV (E) and ‖∇f‖TV ≤
√
I(2)(f). Using that f ∈ BV (E) and

making an integration by part in the definition of I(2)(f), we find

I(2)(f) = sup
ψ∈C1

b (E)d

∫

E
[∇f · ψ − f

|ψ|2
4

] = I(3)(f).

Now, for any compact subset K ⊂ E with zero Lebesgue measure, we may find a sequence
ρε ∈ C1

c (E) such that 0 ≤ ρε ≤ 1, ρε = 1 on K and ρε → 0 a.e., so that for any t > 0 and
using that f ∈ BV (E) ⊂ L1(E), we get for all ε > 0

t

∫

K
|∇f | ≤ t

∫

E
|∇f |ρε

≤ sup
ψ∈C1

c (E)d,‖ψ‖∞≤1

∫

E
∇f · ψ tρε

≤ sup
ψ∈C1

c (E)d,‖ψ‖∞≤1

∫

E

[
∇f · tψρε − ft2

|ψ|2ρ2ε
4

]
+
t2

4

∫

E
fρ2ε

≤ I(3)(f) +
t2

4

∫

E
fρ2ε.

Passing to the limit ε → 0 using that f ∈ L1(K) and then t → ∞, we deduce that ∇f
vanishes on K, which precisely means that ∇f is a measurable function. We have proved
f ∈W 1,1(Rd). �

Similarly, we define for two measures ρ and η on Ej their (non-normalized) relative
Fisher information I(ρ|η) by

(3.12) Ij(ρ|η) :=
∫

Ej

|∇g|2
g

dη =

∫

Ej

∣∣∣∣∇ ln
dρ

dη

∣∣∣∣
2

dρ,

where g = dρ
dη if ρ is absolutely continuous with respect to η. If not, Ij(ρ|η) := +∞.

The associated normalized quantity is simply I(ρ|η) := 1
j Ij(ρ|η). For a fixed η, the
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relative Fisher information has roughly the same properties as the Fisher information. In
particular, if η has a derivable density, we have the equality

(3.13) Ij(ρ|η) = sup
ϕ∈C1

b (E
j)dj

∫

Rj

(
−ϕ · ∇η

η
− divϕ− |ϕ|2

4

)
dρ.

Lemma 3.6. For any f ∈ P(E) there holds I(f⊗j) = I(f).

Proof of Lemma 3.6. If I(f) < ∞ then f ∈ W 1,1(E) and also f⊗j ∈ W 1,1(Ej). The
following computation is then meaningful

I(f⊗j) =
1

j

∫

Ej

|∇Ejf⊗j|2
f⊗j

=

∫

Ej

|∇Ef |2
f

⊗ f⊗(j−1) = I(f).

Since Ij(f
⊗j) <∞ implies f⊗j ∈W 1,1(Ej) and then f ∈W 1,1(E), we also have Ij(f

⊗j) =
j I(f) if I(f) = ∞. �

Lemma 3.7. For any F ∈ Psym(E
j) and 1 ≤ ℓ ≤ j, then holds

(i) I(Fℓ) ≤ I(F ).
(ii) The Fisher information is super-additive. It means that

(3.14) Ij(F ) ≥ Iℓ(Fℓ) + Ij−ℓ(Fj−ℓ), (non-normalized Fisher information),

with in the case Iℓ(Fℓ) + Ij−ℓ(Fj−ℓ) < +∞ equality only if F = Fℓ ⊗ Fj−ℓ.
(iii) If I(F1) < +∞, the equality I(F1) = I(F ) holds if and only if F = (F1)

⊗j .

Proof of Lemma 3.7.

Proof of (i). If I(F ) = +∞ the conclusion is clear. Otherwise, thanks to the equivalent

definition I(3) of the Fisher information and the symmetry assumption of F , we have

I(F ) = sup
ψ∈Cb(Ej)dj

1

j

∫

Ej

(
ψ(x1, . . . , xj) · ∇F − F

|ψ(x1, . . . , xj)|2
4

)

= sup
ψ∈Cb(Ej)d

∫

Ej

(
ψ(x1, . . . , xj) · ∇1F − F

|ψ(x1, . . . , xj)|2
4

)

≥ sup
ψ∈Cb(Eℓ)d

∫

Ej

(
ψ(x1, . . . , xℓ) · ∇1F − F

|ψ(x1, . . . , xℓ)|2
4

)

= sup
ψ∈Cb(Eℓ)d

∫

Eℓ

(
ψ · ∇1Fℓ − Fℓ

|ψ|2
4

)
= I(Fℓ).

Proof of the superadditivity property (ii). The first proof of that result seems to be the
one by Carlen in [16, Theorem 3]. We sketch now another proof that uses the third

formulation I(3). We recall that in the definition of I
(3)
j (F ) the supremum is taken over

the ψ = (ψ1, . . . , ψj), with all ψi : E
j → Rd. We now restrict the supremum over the ψ

such that:
- The ℓ first ψi depend only on (x1, . . . , xℓ), with the notation ψℓ = (ψ1, . . . , ψℓ).
- The (j−ℓ) last ψi depend only on (xℓ+1, . . . , xj), with the notation ψj−ℓ = (ψℓ+1, . . . , ψj).
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We then have the inequality

Ij(F ) ≥ sup
ψℓ, ψj−ℓ

∫

Ej

[∇ℓf · ψℓ +∇j−ℓf · ψj−ℓ − f
|ψℓ|2 + |ψj−ℓ|2

4
]

= sup
ψℓ∈C1

b (E
ℓ)ℓd

∫

Eℓ

[∇fℓ · ψℓ − fℓ
|ψℓ|2
4

]

+ sup
ψj−ℓ∈C1

b (E
j−ℓ)(j−ℓ)d

∫

Ej−ℓ

[∇fj−ℓ · ψj−ℓ − fj−ℓ
|ψj−ℓ|2

4
]

= Iℓ(Fl) + Ij−ℓ(Fj−ℓ)

If the inequality is an equality, we use the remark made at the end of Step 1 in the proof

of Lemma 3.5 : Maximizing sequences ψℓn and ψj−ℓn for respectively Iℓ (resp. Ij−ℓ) should
converge pointwise towards 2∇ ln fl (resp. 2∇ ln fj−ℓ) up to some subsequence, a.e. on

{fℓ 6= 0} (resp. {fj−ℓ 6= 0}). If we have equality, we also must have (ψℓn, ψ
j−ℓ
n ) → 2∇ ln f

on {f 6= 0}, a set that is included in {fℓ 6= 0} × {fj−ℓ 6= 0} and thus

∇ ln f = (∇ ln fℓ,∇ ln fj−ℓ) = ∇ ln(fℓ ⊗ fj−ℓ),

which implies the claimed equality since f and fℓ ⊗ fj−ℓ are probability measures.

The case of equality (iii). Using recursively the superadditivity in that particular case, we
get with the notation F1 = f

I(f) = I(F ) ≥ j − 1

j
I(Fj−1) +

1

j
I(f) ≥ j − 2

j
I(Fj−2) +

2

j
I(f) ≥ . . . ≥ I(f).

Therefore, all the inequalities are equalities. We obtain that

F = Fj−1 ⊗ f = Fj−2 ⊗ f ⊗ f = . . . = f⊗j,

by applying recursively the case of equality in (3.14). �

It is classical and essentially a consequence of the Sobolev inequality and the Rellich-
Kondrachov Theorem (together with very standard manipulations on the entropy func-
tional which are similar to the ones presented at the end of the proof of Theorem 4.13)
that for (fn) a sequence of P(E), the conditions

fn ⇀ f weakly in P(E), Mk(fn) bounded, k > 0, and I(fn) ≤ C

imply that H(fn) → H(f). A natural question is whether a similar result holds for a
sequence (FN ) in P(EN ). Before answering affirmatively to that question, we establish a
normalized non-relative HWI inequality for a large class of sets E ⊂ Rd. It is a variant
of the famous HWI inequality of Otto-Villani [61] that will be the cornerstone of the
argument. Let us mention that its good behaviour in any dimension is of particular
importance here and it is due to the good (separate) behaviours of H, W2 and I with
respect to the dimension.

Proposition 3.8. Assume that E ⊂ Rd is a bi-Lipschitz volume preserving deformation
of a convex set of Rd, d ≥ 1: there exists a convex subset E1 ⊂ Rd and a bi-lipschitz
diffeomorphism T : E1 → E which preserves the volume (i.e. its Jacobian is always equal
to 1). Then, the normalized non relative HWI inequality holds in E: there exists a constant
CE ∈ [1,∞) such that

(3.15) ∀FN , GN ∈ P2(E
N ) H(FN ) ≤ H(GN ) +CEW2(F

N , GN )
√
I(FN ).
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More precisely, the above inequality holds with CE := ‖∇T‖∞ ‖∇T−1‖∞ where
‖∇T‖∞ := supv∈E sup|h|2≤1 |∇T (v)h|2.

Before going to the proof, remark that the class of set E which are bi-Lipschitz volume
preserving deformation of convex set is rather large. For instance, it is shown in [31,
Theorem 5.4] that any star-shaped bounded domain with Lipschitz boundary (and some
additional assumptions) is in the previously mentioned class.

Proof of Proposition 3.8. We proceed in three steps.

Step 1. E = Rd. Let us first recall the famous HWI inequality of Otto-Villani. Consider
ρ = e−V (x) dx a probability measure on RD such that D2V ≥ 0. For any probability
measures f0, f1 ∈ P2(R

D), there holds

(3.16) HD(f0|ρ) ≤ HD(f1|ρ) + W̃2(f0, f1)
√
ID(f0|ρ),

where HD and ID stand for the non normalized relative entropy and relative Fisher in-
formation defined in (3.4) and (3.12) respectively, and W̃2 stands for the non normalized

quadratic MKW distance in RD based on the usual Euclidean norm |V | = (
∑D

i=1 |vi|2)1/2
for any V = (v1, ..., vD) ∈ RD. Inequality (3.16) has been proved in [61], see also
[72, 73, 60, 9, 23]. We easily deduce the “non relative” inequality (3.15) from the “relative”
inequality (3.16). In order to do so, we simply apply the HWI inequality (3.16) in RD,

D = dN , with respect to the Gaussian γλ(v) := (2πλ)−D/2e−|v|2/2λ, and we get

HD(F
N |γλ) ≤ HD(G

N |γλ) + W̃2(F
N , GN )

√
ID(FN |γλ).

We write the relative entropy and the relative Fisher information in terms of the non-
relative ones, and we get

HD(F
N |γλ) = HD(F

N )−
∫
FN ln(γλ) = HD(F

N ) +
D

2
log(2πλ) +

M2(F
N )

2λ
,

ID(F
N |γλ) =

∫
FN

∣∣∣∇ lnFN +
v

λ

∣∣∣
2
= ID(f0) +

2

λ

∫
v · ∇f0 +

M2(f0)

λ2

= ID(f0)−
2D

λ
+
M2(f0)

λ2
.

Inserting this in the relative HWI inequality, simplifying the terms involving log(2πλ),
letting λ→ +∞ and dividing the resulting limit by N , we obtain the claimed result.

Step 2. E ⊂ Rd is convex. The proof is the same as in the case E = Rd using that the
HWI inequality (3.16) holds in a convex set. We have no precise reference for that last
result but all the necessary arguments can be find in [73]. More precisely, [73, Chapter 20]
explains that the HWI inequality (3.16) holds when the entropy is displacement convex,
while it is proved in [73, Chapters 16 and 17] that the entropy on a convex set E is
displacement convex, exactly as on Rd.

Step 3. General case. We choose two absolutely continuous probability measures FN

and GN on EN , and defined the corresponding probability measures FN1 and GN1 on EN1
by

FN1 (v1, . . . , vN ) := FN (T (v1), . . . , T (vN )) = FN ◦ T⊗N (V ),

and the same formula for GN1 . It can be checked that ∇vjF
N
1 = t∇T (vj)∇vjF

N ◦T⊗N , so
that |∇vjF

N
1 | ≤ ‖∇T‖∞ |∇vjF

N ◦ T⊗N |. Turning to Fisher information, it comes

I(FN1 ) :=

∫

EN
1

|∇FN1 |2
FN1

dV ≤ ‖∇T‖2∞
∫

EN
1

|∇FN ◦ T⊗N |2
FN ◦ T⊗N dV = ‖∇T‖2∞ I(FN ),
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where we have used the fact that T preserves the volume.
For the MKW distance, remark that |(T−1)⊗N (V )−(T−1)⊗N (V ′)| ≤ ‖∇T−1‖∞ |V −V ′|.

Therefore,

W2(F
N
1 , G

N
1 )2 = inf

π1∈Π(FN
1 ,GN

1 )

∫
|V − V ′|2 π1(dV, dV ′)

= inf
π∈Π(FN ,GN )

∫
|(T−1)⊗N (V )− (T−1)⊗N (V ′)|2 π(dV, dV ′)

≤ ‖∇T−1‖2∞ inf
π∈Π(FN ,GN )

∫
|V − V ′|π(dV, dV ′)

= ‖∇T−1‖2∞W2(F
N , GN )2.

For the entropy, the preservation of volume ensures the equality H(FN1 ) = H(FN ), and
a similar one for GN . Finally, using the HWI inequality in E1 proved in step 2 and the
above properties, we get

H(FN ) = H(FN1 ) ≤ H(GN1 ) +
√
I(FN1 )W2(F

N
1 , G

N
1 )

≤ H(GN ) + ‖∇T‖∞ ‖∇T−1‖∞
√
I(FN )W2(F

N , GN ),

which is exactly the claimed result. �

Let us finally prove now our main result Theorem 1.4 which is a consequence of the
characterization of the Kac’s chaos in Theorem 2.4 together with Proposition 3.8.

Proof of Theorem 1.4. We recall that the implication (iii) ⇒ (iv) has been yet proven
in Theorem 3.4. We split the proof into two steps.

Step 1. (i) ⇒ (ii). Fix a j ∈ N, there exists a subsequence of (GN ), still denoted by
(GN ), and some compatible and symmetric probability measures Fj ∈ P(Ej), such that
GNj → Fj weakly in P(Ej). In particular F1 = f . As a consequence of Lemma 3.5 and

Lemma 3.7 point (i), we have

I(f) ≤ I(Fj) ≤ lim inf I(GNj ) ≤ lim inf I(GN ) = I(f).

Using now the third point of Lemma 3.7 we deduce Fj = f⊗j. The uniqueness of the limit

implies that the whole sequence GN is in fact f -Kac’s chaotic.

Step 2. (ii) ⇒ (iii). We write twice the normalized non relative HWI inequality of
Proposition 3.8, and get

|H(GN )−H(f⊗N )| ≤ CEW2(G
N , f⊗N )

(√
I(GN ) +

√
I(f⊗N )

)
.

Using the previous inequalities together with the inequality of the Lemma 2.2

W2(G
N , f⊗N ) ≤ CE 2

3
2 [Mk(G

N
1 ) +Mk(f)]

1/kW1(G
N , f⊗N)1/2−1/k

we get (1.8) since Mk(f) ≤ supMk(G
N
1 ) and I(f) ≤ sup I(GN ) . �
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4. Probability measures on the “Kac’s spheres”

We generalize the preceding two sections to the important case of probability measures
with support on the “Kac’s spheres”

KSN := {V = (v1, ..., vN ) ∈ RN , v21 + ...+ v2N = N}.
We refer to [19] where similar results are obtained to the (even more important) case of
probability measures with support on the “Boltzmann’s spheres”

BSN := {V = (v1, ..., vN ) ∈ (R3)N , |v1|2 + ...+ |vN |2 = N, v1 + ...+ vN = 0}.

4.1. On uniform probability measures on the Kac’s spheres as N → ∞.

Definition 4.1. For any N ∈ N∗ and r > 0, we denote by σN,r the uniform probability
measure of RN carried by the sphere SN−1

r defined by

SN−1
r := {V ∈ RN ; |V |2 = r2}.

We define σN ∈ P(EN ), E = R, the sequence σN := σN,
√
N of probability measures

uniform on the Kac’s spheres

KSN := SN−1√
N

:= {V ∈ RN ; |V |2 = N}.

We begin with a classical and elementary lemma that we will use several times in the
sequel.

Lemma 4.2. (i) For any 1 ≤ ℓ ≤ N − 1, there holds

σNℓ (V ) =
(
1− |V |2

N

)N−ℓ−2
2

+

|SN−ℓ−1
1 |

N ℓ/2 |SN−1
1 |

,

where we recall that |Sk−1
1 | = 2πk/2/Γ(k/2).

(ii) For any fixed ℓ, the sequence (σNℓ )N≥Nℓ
is bounded in L∞ (with Nℓ = ℓ+4), in Hs

for any s ≥ 0 (with Nℓ = N(ℓ, k) large enough) and the exponential moment M2,1/4(σ
N
1 )

defined in (2.27) is bounded (uniformly in N).
(iii) For any function ϕ ∈ Cb(R

N ), any r > 0 and 1 ≤ ℓ ≤ N − 1, there holds

∫

SN−1
r

ϕ(V, V ′) dσNr (V, V ′) =
∫

Bℓ(r)

|SN−ℓ−1√
r2−V 2

|
|SN−1
r |





∫

SN−ℓ−1√
r2−V 2

ϕ(V, V ′) dσN−ℓ√
r2−V 2

(V ′)



 dV,

where V ∈ Rℓ and V ′ ∈ RN−ℓ. This precisely means that

σN (dV, dV ′) = σNℓ (dV )σN−ℓ√
N−|V |2

(dV ′).

Proof of Lemma 4.2. (i) One possible definition of σN,r is

σN,r :=
1

rN−1 |SN−1
1 |

lim
h→0

1

h

(
1BN (r+h) − 1BN (r+h)

)
, BN (ρ) := {V ∈ RN ; |V | ≤ ρ},

where the surface rN−1 |SN−1
1 | of the Sphere SN−1

r stands for the normalization constant

such that σN,r is a probability measure. For any ϕ ∈ Cb(E
ℓ), 1 ≤ ℓ ≤ N − 1, we compute

〈
1B(ρ), ϕ⊗ 1N−ℓ

〉
=

∫

Rℓ

1|V |2≤ρ2 ϕ(V )

{∫

RN−ℓ

1x2ℓ+1+...+x
2
N≤ρ2−|V |2 dxℓ+1 ... dxN

}
dV

=

∫

Rℓ

ϕ(V )ωN−ℓ (ρ2 − |V |2)
N−ℓ
2

+ dV,
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where ωk = |Bk(1)| is the volume of the unit ball of Rk. We deduce

σNℓ (r) =
1

ZN,r

d

dr

[
ωN−ℓ (r2 − |V |2)

N−ℓ
2

+

]
=
ωN−ℓ (N − ℓ)

rN−1 |SN−1| r (r
2 − |V |2)

N−ℓ−2
2

+ .

We conclude using the relation |Sk−1
1 | = k ωk.

(ii) The estimates on σNℓ are deduced from its explicit expression after some tedious
but easy calculations. We only prove the last one which will be a key argument in the
proof of the accurate rate of chaoticity in Theorem 1.5. For any k ≥ 1 and introducing
n := (N − 4)/2, we easily estimate

∫

R2

|v1|2k σN2 (dv) =
1

2π

N − 2

N

∫

R2

|v1|K
(
1− |v|2

N

)N−4
2

+
dv

≤
∫ √

N

0
rK+1

(
1− r2

N

)N−4
2
dr

= Nk+1

∫ 1

0
sk
(
1− s

)n
ds.

Thanks to k + 1 integrations by parts, we deduce

∫

R2

|v1|2k σN2 (dv) ≤ Nk+1

∫ 1

0
(1− z)k zn dz

= Nk+1 k

n+ 1

∫ 1

0
(1− z)k−1 zn+1 dv

= Nk+1 k

n+ 1
...

2

n+ k − 1

1

n+ k

1

n+ k + 1
,

and then

∫

R2

e|v|
2/4 σN1 (v) dv ≤

∞∑

k=0

1

k! 4k

∫

R2

|v1|2k σN2 (dv)

=

∞∑

k=0

1

4k
(2n+ 4)k+1

(n+ 1) ...(n + k + 1)

≤ 2

∞∑

k=0

1

2k
(n+ 2)

(n+ 1)
≤ 6.
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(iii) We come back to the proof of (i). We set m = ℓ and n = N − ℓ and we write

〈σN,r, ϕ〉 =
1

ZN,r
lim
h→0

1

h

[∫

BN (r+h)
ϕ−

∫

BN (r)
ϕ

]

=
1

ZN,r
lim
h→0

1

h

[∫

|v|≤r+h

∫

|v′|≤
√

(r+h)2−|v|2
ϕ−

∫

|v|≤r

∫

|v′|≤
√

(r+h)2−|v|2
ϕ

]

+
1

ZN,r
lim
h→0

1

h

[∫

|v|≤r

∫

|v′|≤
√

(r+h)2−|v|2
ϕ−

∫

|v|≤r

∫

|v′|≤
√
r2−|v|2

ϕ

]

=
1

ZN,r
lim
h→0

1

h

∫

r≤|v|≤r+h

∫

|v′|≤
√

(r+h)2−|v|2
ϕ

+
1

ZN,r

∫

Bm
r

lim
h→0

1

h

[∫

Bn(
√

(r+h)2−|v|2)
ϕ−

∫

Bn(
√
r2−|v|2)

ϕ

]
.

We invert the integral and the limit on the last line using dominated convergence, since
the integral on v′ are bounded by ‖ϕ‖∞/

√
r2 − |v|2. The first term is bounded (for any

0 < h ≤ r) by

1

ZN,r
lim
h→0

1

h

∫

r≤|v|≤r+h

∫

|v′|≤
√
3 r h

|ϕ| ≤ CN,r ‖ϕ‖L∞ lim
h→0

√
h = 0,

and the second term converges to

∫

Bm(r)

Z
n,
√
r2−|v|2

Zm+n,r





∫

Sn−1√
r2−|v|2

ϕ(v, v′) dσn√
r2−|v|2(v

′)



 dv,

which is exactly the claimed identity. �

Let us recall the following classical result.

Theorem 4.3. The sequence σN is γ-chaotic, where γ still stands for the gaussian dis-

tribution γ(dx) = (2π)−1/2 e−x
2/2 dx on R, and more precisely

(4.1) ‖σNℓ − γ⊗ℓ‖L1 ≤ 2
ℓ+ 3

N − ℓ− 3
pour tout 1 ≤ ℓ ≤ N − 4.

The fact that σN is γ-chaotic is sometime called “Poincaré’s Lemma”. In fact, it should
go back to Mehler [51] in 1866. Anyway, we refer to [25, 17] for a bibliographic discussion
about this important result, and to [25] for a proof of estimate (4.1). We give now a
different quantitative version of the “Poincaré’s Lemma”.

Theorem 4.4. There exists a numerical constant C ∈ (0,∞) such that

(4.2) ΩN (σ
N ; γ) :=W1(σ

N , γ⊗N ) ≤ C√
N
.

Remark 4.5. It is worth observing that it is not clear that one can deduce (4.2) from
(4.1) or that the reverse implication holds. In particular, using (4.1) and Theorem 2.4 we
obtain an estimate on W1(σ

N , γ⊗N ) which is weaker than (4.2).

Proof of Theorem 4.4. There is a simple transport map from γ⊗N onto σN which
is given by the radial projection P : V 7→ V

|V |2 with the notation |V |k = (N−1
∑

i |vi|k)1/k
for any k > 0 for the normalized distance of order k. The fact it is an admissible map
comes from the invariance by rotation of γ⊗N and σN . Is it optimal? It is not obvious
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because P (V ) is not necessary the point of KSN wich is the closest to V ∈ RN , for the | · |1
distance (for which it costs less to displace in the direction of the axis). However, it may
still be optimal for rotationnal symmetry reasons, but it is less obvious. Nevertheless, it
will be sufficient for our estimate. Since,

|P (V )− V |1 =
∣∣∣ 1
|V |2 − 1

∣∣∣ |V |1

we get as all our distances are normalized

W1(γ
⊗N , σN ) ≤

∫

RN

|P (V )− V |1γ⊗N (dV )

=

∫

RN

∣∣∣ 1
|V |2 − 1

∣∣∣ |V |1γ⊗N (dV )

=

(∫ +∞

0

∣∣∣
√
N
R − 1

∣∣∣RNe−R2/2 dR

) |SN−1|
(2π)N/2

(∫

SN−1
1

|V |1 dσN,1
)
.

Using that |V |1 ≤ |V |2 because of the normalization, we may bound the last integral by

∫

SN−1
1

|V |1 dσN ≤
∫

SN−1
1

|V |2 dσN = N−1/2.

Remark that this integral is also equal to 1√
N
M1(σ

N ) which can be explicited thanks to

the formula for σN1 of Lemma 4.2. Using this in the previous inequality and performing

the change of variable R =
√
NR′, we get

W1(γ
⊗N , σN ) ≤ |SN−1|√

N(2π)N/2

∫ +∞

0
|
√
N −R|RN−1e−R

2/2 dR

≤ |SN−1|N N
2

(2π)N/2

∫ +∞

0
|1−R′|(R′)N−1e−NR

′2/2 dR′.

We can simplify the prefactor, using the formula for |SN−1| and Stirling’s formula

|SN−1|N N
2

(2π)N/2
=

N
N
2

Γ(N2 )2
N/2−1

=

√
NeN/2√
π

[1 +O(1/N)].

Turning back to the transportation cost, we get

W1(γ
⊗N , σN ) ≤ e

√
N√
π

[1 +O(1/N)]

∫ +∞

0

(
Re(1−R

2)/2
)N−1

e−R
2/2|1−R| dR.

After studying the function g(r) = re(1−r
2)/2, we remark that it is strictly increasing form

0 to 1, then strictly decreasing from 1 to +∞, that its maximum in 1 is 1, and that
g(1 + ε) = 1− ε2 +O(ε3). We shall also use the less sharp but exact bound

g(1 + ε) ≤ 1− ε2

4
, for ε ∈ [−1

2
,
√
2− 1].
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We can now cut the previous integral in three parts

∫ 1/2

0
+

∫ √
2

1/2
+

∫ +∞
√
2

. We bound the

first part by ∫ 1/2

0
. . . ≤ 1

2
g
(
1
2

)N−1
,

and the third part by
∫ +∞
√
2

. . . ≤ g(
√
2)N−1

∫ +∞
√
2

e−r
2/2r dr = g(

√
2)N−1e−1.

For the last part, we perform the change of variable r = 1 + u/
√
N . It comes

∫ √
2

1/2
. . . =

1

N

∫ (
√
2−1)

√
N

−
√
N/2

g
(
1 + u√

N

)N−1
|u|e−u/

√
N−u2/2N du

≤ 1

N

∫ (
√
2−1)

√
N

−
√
N/2

(
1− u2

4N

)N−1
|u| du

≤ 1

N
(1 +O(N−1))

∫ +∞

−∞
e−

u2

4 |u| du

≤ 4

N
(1 +O(N−1))

Putting all together, we finally get

W1(γ
⊗N , σN ) ≤ C√

N
(1 +O(N−1)) + C

√
NλN ,

with λ = max(g(
√
2), g(1/2)) < 0.86. This implies the claimed inequality. �

Proof of (1.9) in Theorem 1.5. The proof of the last estimate in (1.9) follows from
(4.2) and Lemma 4.2-(ii) together with (2.29). �

4.2. Conditioned tensor products on the Kac’s spheres. We begin with a sharp
version of the local central limit theorem (local CLT) or Berry-Esseen type theorem which
will be the cornerstone argument in this section.

Theorem 4.6. Consider g ∈ P3(R
D) ∩ Lp(RD), p ∈ (1,∞], such that

(4.3)

∫

RD

x g(x) dx = 0,

∫

RD

x⊗ x g(x) dx = Id,

∫

RD

|x|3 g(x) dx =:M3.

We define the iterated and renormalized convolution by

(4.4) gN (x) :=
√
N g(∗N)(

√
N x).

There exists an integer N(p) and a constant CBE = C(p, k,M3(g), ‖g‖Lp ) such that

(4.5) ∀N ≥ N(p) ‖gN − γ‖L∞ ≤ CBE√
N
.

Remark 4.7. Theorem 4.6 is a sharper but less general version of [17, Proposition 26].
The proof follows the proof of [17, Proposition 26] and uses an argument from [17, Propo-
sition 26], see also [45]. The first local CLT have been established in the pioneer works

by A. C. Berry [7] and C.-G. Esseen [29] who proved the convergence in O(1/
√
N) uni-

formly on the distribution fonction in dimension D = 1, see for instance [30, Theorem
5.1, Chapter XVI]. Since that time, many variants of the local CLT have been established
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corresponding to different regularity assumption made on the probability measure g, we
refer the interested reader to the recent works [63], [8], [3] and the references therein.

The proof of Theorem 4.6 use the following technical lemma which proof is postponed
after the proof of the Theorem.

Lemma 4.8. (i) Consider g ∈ P3(R
D) satisfying (4.3). There exists δ ∈ (0, 1) such that

∀ ξ ∈ B(0, δ) |ĝ(ξ)| ≤ e−|ξ|2/4.

(ii) Consider g ∈ P(RD) ∩ Lp(RD), p ∈ (1,∞]. For any δ > 0 there exists κ =
κ(M3(g), ‖g‖Lp , δ) ∈ (0, 1) such that

(4.6) sup
|ξ|≥δ

|ĝ(ξ)| ≤ κ(δ).

Proof of Theorem 4.6. We follow closely the proof of [17, Theorem 27] which is more
general but less precise, and we use a trick that we found in the proof of [34, Theorem 1].
We observe that

ĝN (ξ) = (ĝ(ξ/
√
N))N , γ̂(ξ) = (γ̂(ξ/

√
N))N .

Because g ∈ L1∩Lp, the Hausdorff-Young inequality implies ĝ ∈ Lp
′∩L∞ with p′ ∈ [1,∞),

and then ĝN (ξ) = (ĝ(ξ/
√
N))N ∈ L1 for any N ≥ p′. As a consequence we may write

|gN (x)− γ(x)| = (2π)D
∣∣∣∣
∫

RD

(ĝN (ξ)− γ̂(ξ)) ei ξ·x dξ

∣∣∣∣ ≤ (2π)D
∫

RD

|ĝN − γ̂| dξ.

We split the above integral between low and high frequencies

‖gN − γ‖L∞ ≤
∫

|ξ|≥
√
N δ

|ĝN | dξ +
∫

|ξ|≥
√
N δ

|γ̂| dξ

+

∫

|ξ|<
√
N δ

|ĝN − γ̂| dξ (=: T1 + T2 + T3).

For the first term, we have

T1 ≤
∫

|ξ|≥
√
N δ

∣∣∣∣ĝ
(

ξ√
N

)∣∣∣∣
N

dξ = Nd/2

∫

|η|≥δ
|ĝ (η)|N dη

≤
(
sup
|η|≥δ

|ĝ(η)|
)N−p′

Nd/2

∫

η>δ
|ĝ (η)|p′ dη

≤ κ(δ)N−p′ Nd/2 Cp ‖g‖pLp

with δ ∈ (0, 1) given by point (i) of Lemma 4.8, κ(δ) given by point (ii) of Lemma 4.8 and
N ≥ p′. The second term may be estimated in the same way, and we clearly obtain that
there exists a constant C1 = C1(D, p, ‖g‖Lp ) such that

(4.7) T1 + T2 ≤
C1√
N
.

Concerning the third term, we write

T3 =

∫

|ξ|≤
√
N δ

|ĝN (ξ)− γ̂N (ξ)|
|ξ|3 |ξ|3 dξ,
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with

|ĝN (ξ)− γ̂N (ξ)|
|ξ|3 =

1

N3/2

∣∣∣ĝ(ξ/
√
N)N − γ̂(ξ/

√
N)N

∣∣∣
|ξ/

√
N |3

=
1

N3/2

∣∣∣ĝ(ξ/
√
N)− γ̂(ξ/

√
N)
∣∣∣

|ξ/
√
N |3

×
∣∣∣∣∣
N−1∑

k=0

ĝ(ξ/
√
N)k γ̂(ξ/

√
N)N−k−1

∣∣∣∣∣ .

Estimate (i) of Lemma 4.8 implies
∣∣∣∣∣
N−1∑

k=0

ĝ(ξ/
√
N)k γ̂(ξ/

√
N)N−k−1

∣∣∣∣∣

≤
N−1∑

k=0

e−
|ξ|2
4N

k e−
|ξ|2
2N

(N−k−1) ≤ N e−
|ξ|2
4

N−1
N ≤ N e−

|ξ|2
8 .

We deduce

T3 =
1

N3/2

(
sup
η

|ĝ(η)− γ̂(η)|
|η|3

) ∫

RD

N e−
|ξ|2
8 |ξ|3 dξ

≤ 1

N1/2
(M3(g) +M3(γ))Ck,d.

We conclude by gathering the estimates on each term. �

Proof of Lemma 4.8. Thanks to a Taylor expansion, we have

ĝ(ξ) = 1− ξ2

2
+O(M3(g) |ξ|3)

ω̂(ξ) = 1− ξ2

4
+O(|ξ|3), ω(x) :=

1√
π
e−x

2
,

from which we deduce that there exists δ = δ(M3(g)) ∈ (0, 1) small enough such that

∀ ξ ∈ Bδ |ĝ(ξ)| ≤ 1− 3

8
ξ2 ≤ ω̂(ξ), ω̂(ξ) := e−ξ

2/4.

That is nothing but (i). On the other hand, (ii) is a consequence of [17, Proposition 26,
(iii)]. �

For a given “smooth enough” probability measure f ∈ P(E), E = R, we define

ZN (r) :=

∫

SN−1(r)
f⊗N dσN,r, Z ′

N (r) :=

∫

SN−1(r)

f⊗N

γ⊗N
dσN,r =

ZN (r)

γ⊗N (r)
.

We give a sharp estimate on the asymptotic behavior of Z ′
N as N → ∞.

Theorem 4.9. Consider f ∈ P6(R) ∩ Lp(R), p ∈ (1,∞], satisfying

(4.8)

∫

R

f v dv = 0,

and define

(4.9) E :=

∫

R

f |v|2 dv, Σ :=

(∫

R

(v2 − E)2 f(v) dv

)1/2

.
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Then ZN (r), Z
′
N (r) are well defined for all r > 0 and there holds with the above notations

(4.10) Z ′
N (r)αN (r

2) =

√
2

Σ
αN (N)

(
exp

{
−
(
r2 −N E√

N Σ

)2
}

+
RN (r)√

N

)

where

αN (s) = s
N
2
−1 e−

s
2 and ‖RN‖∞ ≤ C(p, ‖f‖p,M6(f))

As a particular case, there holds

(4.11) Z ′
N := Z ′

N (
√
EN) =

√
2

Σ

(
1 +O

(
N− 1

2

))
.

Proof of Theorem 4.9. We follow the proof of [17, Theorem 14] but using the sharper
estimate proved in Theorem 4.6 (instead of [17, Theorem 27]).

Before going on, let us remark that it is not obvious that ZN (f ; r) is well defined for
all r > 0 under our assumption on f which is not necessarily continuous, since we are
restricting f⊗N to surfaces of RN . But, in fact the product structure of f⊗N makes it
possible. To see this, take f and g two measurable functions equal almost everywhere,
and call N the negligible set on which they differ. Then the tensor products f⊗N and
g⊗N differs only on the negligible set N̄ = ∪i R⊗(i−1) × N × R⊗(N−i). It is not difficult
to see that because of the particular structure of N̄ , the intersection of N̄ ∩ SN−1

r is also
σNr -negligible for all r > 0. Therefore f⊗N and g⊗N are equal σNr -almost everywhere on
SN−1
r , and there is no ambiguity in the definition of ZN (f, r) for all r > 0.

We now define the law g of v2 under f

(4.12) h(u) :=
1

2
√
u
(f(

√
u) + f(−√

u))1u>0,

remarking that h ∈ P3(R) ∩ Lq(R) with q > 1 as it has been shown in the proof of [17,
Theorem 14]. Consider (Vj) a sequence of random variables which is i.i.d. according to f .
On the one hand, the law sN (du) of the random variable

SN :=

N∑

j=1

|Vj|2

can be computed by writing

E(ϕ(SN )) =

∫ ∞

0
ϕ(r2) |SN−1

1 | rN−1
(∫

SN−1
r

f⊗N(V )σN,r(dV )
)
dr

=

∫ ∞

0
ϕ(u) |SN−1

1 |uN−1
2

(∫

SN−1√
u

f⊗N(V )σN,
√
u(dV )

) du

2
√
u
,

which implies

sN (du) =
1

2
|SN−1

1 |uN
2
−1 ZN (

√
u).

On the other hand, we have sN = h(∗N). Gathering these two identities, we get

h(∗N)(r2) =
1

2
|SN−1

1 | rN−2 ZN (r) =
πN/2

Γ(N/2)
rN−2 Z ′

N (r)
e−r

2/2

(2π)N/2

=
αN (r

2)

Γ(N/2)

Z ′
N (r)

2N/2
.(4.13)
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Let us define g(u) := Σh(E +Σu), so that g ∈ P3(R) ∩ Lq(R) and
∫

R

g(y) y dy = 0,

∫

R

g(y) |y|2 dy = 1.

Applying Theorem 4.6 to g and using the identity g(∗N)(u) = Σh(∗N)(N E + Σu), we
obtain

(4.14) sup
r≥0

∣∣∣∣h(∗N)(r2)− 1√
N Σ

γ

(
r2 −N E√

N Σ

)∣∣∣∣ ≤
CBE
N Σ

,

where CBE is the constant given in Theorem 4.6 and associated to g. Gathering the
Stirling formula

(4.15) Γ(N/2) =
√
πN αN (N) 2−

N
2
+1
(
1 +O(N−1/2)

)
,

with (4.13), (4.14), we obtain

∀ r > 0

∣∣∣∣∣
αN (r

2)Z ′
N (r)√

πN αN (N) 2 (1 +O(N−1/2))
− 1√

N Σ
√
2π

exp

((
r2 −N E√

N Σ

)2

/2

)∣∣∣∣∣ ≤
CBE
N Σ

.

Estimate (4.10) readily follows. �

For a given f ∈ P6(R) ∩ Lp(R), p > 1, we define the corresponding sequence of
“conditioned product measures” (according to the Kac’s spheres KSN ), we write FN :=
[f⊗N ]KSN

, by

(4.16) FN :=
1

ZN (f ;
√
N)

f⊗N σN .

We show that (FN ) is well defined for N large enough and is f -chaotic.

Theorem 4.10. Consider f ∈ P6(R) ∩ Lp(R), p > 1, satisfying

(4.17)

∫

R

f v dv = 0 and

∫

R

f v2 dv = 1.

The sequence (FN ) of corresponding conditioned product measure is f -chaotic, more pre-
cisely

Ωℓ(F
N , f) :=W1(F

N
ℓ , f

⊗ℓ) ≤ 1

2
‖FNℓ − f⊗ℓ‖1 ≤

C ℓ2√
N
,

for some constant C = C(f) ∈ (0,∞).

Remark 4.11. The f -Kac’s chaoticity property of the sequence FN = [f⊗N ]KSN
is stated

and proved for smooth densities f in the seminal article by M. Kac [41]. Next, the same
chaoticity property is proved with large generality (on f) in [17]. Theorem 4.10 is a
“quantified” version of [17, Theorems 4 & 9] and [41, paragraph 5].

Proof of Theorem 4.10. As in Theorem 4.9, it is not obvious that FN is well
defined under our assumption on f which is not necessarily continuous, since we are
restricting f⊗N to a surface of RN . But the argument given at the beginning of the proof
of Theorem 4.9 shows in fact that the restriction of f⊗N to KSN is unambiguously defined.
Since, Theorem 4.9 implies that ZN (f,

√
N) is finite and non zero for N large enough, we

deduce that FN is well defined for N large enough.
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Let us fix ℓ ≥ 1 and N ≥ ℓ + 1. Denoting V = (Vℓ, Vℓ,N ), with Vℓ = (vj)1≤j≤ℓ,
Vℓ,N = (vj)ℓ+1≤j≤N , we write thanks to the equality (iii) of Lemma 4.2

FN (dV ) =

(
f

γ

)⊗ℓ
(Vℓ)

1

Z ′
N (

√
N)

(
f

γ

)⊗N−ℓ
(Vℓ,N )σ

N−ℓ,
√
N−|Vℓ|2(dVℓ,N ) σ

N
ℓ (Vℓ) dVℓ,

so that, coming back to the notation V = Vℓ = (vj)1≤j≤ℓ ∈ Rℓ, we have

FNℓ (V ) =




ℓ∏

j=1

f(vj)

γ(vj)


 Z ′

N−ℓ(
√
N − |V |2)

Z ′
N (

√
N)

σNℓ (V ) =




ℓ∏

j=1

f(vj)


 θN,ℓ(V ),

if we define the quantity θN,ℓ by

(4.18) θN,ℓ(V ) := (2π)
ℓ
2 e

|V |2
2
Z ′
N−ℓ(

√
N − |V |2)

Z ′
N (

√
N)

σNℓ (V ).

The key point is now to prove that θN,ℓ goes to 1. Recalling the Stirling formula Γ(k) =√
2π
k

(
k
e

)k
(1 +O(k−1)), we write σNℓ as

σNℓ (V ) =
|SN−ℓ−1

1 |
|SN−1

1 |
(N − |V |2)

N−ℓ−2
2

+

N
N−2

2

=
αN−ℓ(N − |V |2)
N− l

2αN (N)

e−
|V |2
2

(2π)
l
2

1|V |≤
√
N (1 +O(

ℓ2

N
)),

from which we deduce

θN,ℓ(V ) =
Z ′
N−ℓ(

√
N − |V |2)

Z ′
N (

√
N)

αN−ℓ(N − |V |2)
N− l

2αN (N)
1|V |≤

√
N (1 +O(

ℓ2

N
))

=
αN−ℓ(N − ℓ)

N− l
2αN (N)

e
−
(

ℓ−|V |2√
N−ℓΣ

)2

+O((N − ℓ)−1/2)

1 +O(N−1/2)
1|V |≤

√
N (1 +O(

ℓ2

N
))

=


e

−
(

ℓ−|V |2√
N−ℓΣ

)2

+O((N − ℓ)−1/2)




︸ ︷︷ ︸
θ1N,ℓ(V )

(1 +O(
ℓ2

N
))1|V |≤

√
N︸ ︷︷ ︸

θ2N,ℓ

(4.19)

where we have successively used (4.10), (4.11) the definition of αN−ℓ(N − ℓ), and a calcu-
lation yielding

αN−ℓ(N − ℓ)

N− l
2αN (N)

= 1 +O(ℓ2/N).

It implies in particular the two following estimates on θN,ℓ which will also be very useful
in the proof of the next theorems

(4.20) θN,ℓ(v) ≤ C 1|V |≤
√
N , |θN,ℓ(V )− 1| ≤ Cℓ2

N1/2
+ C

|V |4
N1/2

1|V |≥N1/8 .

Once they are proven, the conclusion follows since from the second one

‖FNℓ − f⊗ℓ‖1 = ‖(θN,ℓ − 1) f⊗ℓ‖1

≤ C ℓ2

N
‖f‖1 +

C

N1/2
‖v6f‖1.
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It only remains to prove the estimates (4.20). The first uniform estimate in (4.20)
is clear from 4.19 since ‖θ1N,ℓ‖∞ and θ2N,ℓ are also uniformly bounded. For the second
estimate, we first control

|θ1N,ℓ(V )− 1| = |θ1N,ℓ(V )− 1|1|V |≤N1/8 + |θ1N,ℓ(V )− 1|1|V |≥N1/8

≤ |2
(
ℓ− |V |2√
N − ℓΣ

)2

+O(N−1/2)|1|V |≤N1/8 + C
|V |4
N1/2

1|V |≥N1/8

≤ Cℓ2

N1/2
1|V |≤N1/8 + C

|V |4
N1/2

1|V |≥N1/8 ,

which implies a similar bound for θN,ℓ since

|θN,ℓ(V )− 1| ≤ |θ2N,ℓ(V )| |θ1N,ℓ(V )− 1|+ |θ2N,ℓ(V )− 1|

≤ C |θ1N,ℓ(V )− 1|+ C
ℓ2

N

≤ Cℓ2

N1/2
+ C

|V |4
N1/2

1|V |≥N1/8 .

This concludes the proof. �

Proof of (1.10) in Theorem 1.5. The proof of the two last estimates in (1.10) follows
from Theorem 4.10 together with (2.18) and (2.19). �

4.3. Improved chaos for conditioned tensor products on the Kac’s spheres. In
this section, we aim to prove rate of chaoticity for stronger notions of chaos for the sequence
(FN ) defined in the preceding section. Let us first recall the notion of entropy chaos and
Fisher information chaos in the context of the “Kac’s spheres” as they have been yet
defined in the introduction. For f ∈ P(E) smooth enough, we define the usual relative
entropy and usual relative Fisher information

H(f |γ) :=
∫

E
u log u γ dv, I(f |γ) :=

∫

E

|∇u|2
u

γ dv, u := f/γ,

and similarly for GN ∈ Psym(KSN ), we define the (normalized) relative entropy and
relative Fisher information

H(GN |σN ) := 1

N

∫

KSN

gN log gN dσN , I(GN |σN ) := 1

N

∫

KSN

|∇gN |2
gN

dσN ,

where gN := dGN

dσN
stands for the Radon-Nikodym derivative of GN with respect to σN .

Definition 4.12. We say that a sequence (GN ) of P(KSN ) is
i) f -entropy chaotic if GN1 ⇀ f and

H(GN |σN ) → H(f |γ),
ii) f -Fisher information chaotic if GN1 ⇀ f and

I(GN |σN ) → I(f |γ).
It is worth emphasizing again that our definition is slightly different (weaker) that the

corrseponding definition in [17]. But they are in fact equivalent as we shall see in next
section (Theorem 4.19).
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Theorem 4.13. For any f ∈ P6(R) ∩ Lp(R), p > 1, satisfying the moment assump-
tions (4.17) of Theorem 4.10, the corresponding conditioned product sequence of mea-
sures (FN ) defined by (4.16) is f -entropy chaotic. More precisely, there exists C =
C(p, ‖f‖Lp ,M6(f)) such that

(4.21) |H(FN |σN )−H(f |γ)| ≤ C√
N
.

Proof of Theorem 4.13. With the notation FN := [f⊗N ]KSN
, we write for any N ≥ 1

H(FN |σN ) =
1

N

∫

KSN

(
log

f⊗N

Z ′
N (f) γ

⊗N

)
dFN

=

∫

R

(
log

f

γ

)
FN1 − 1

N
logZ ′

N (f).

Thanks to the bound (4.10) on Z ′
N (f) which implies that (Z ′

N (f)) is bounded, we deduce

H(FN |σN ) =
∫

R

FN1

(
log

f

γ

)
+O(1/N).

Recalling the notation θN := θN,1 defined in (4.18) and the estimates (4.20) it satisfies,
we may then write

H(FN |σN ) = H(f |γ) +
∫

R

(θN − 1) f

(
log

f

γ

)

︸ ︷︷ ︸
=:T

+O(1/N),

with

|T | ≤ C

∫

R

|θN − 1| f (1 + |v|2) dv
︸ ︷︷ ︸

=:T1

+

∫

R

|θN − 1| f | log f | dv
︸ ︷︷ ︸

=:T2

.

In order to deal with T1, we use the second estimate of (4.20) and get

T1 ≤
C

N1/2

∫

Rd

〈v〉2 f dv + C

N1/2

∫

Rd

〈v〉6 f dv =
C

N1/2
.

In order to deal with T2, we make the more sophisticated (but standard) splitting: for any
N,R,M ≥ 1, we write

T2 ≤
∫

BR

|θN − 1| f | log f |+ Cθ

∫

Bc
R

f | log f |

≤ sup
BR

|θN − 1|Cf + Cθ

∫

Bc
R

f(log f)+ 1f≥M + Cθ

∫

Bc
R

f(log f)+ 1M≥f≥1

+Cθ

∫

Bc
R

f(log f)− 1
1≥f≥e−|v|2 + Cθ

∫

Bc
R

f(log f)− 1
e−|v|2≥f≥0

.

For the second term, we write f (log f)+ ≤ f (1+p)/2 ≤ fp/M (p−1)/2 on {f ≥ M}. For the
third term, we write f (log f)+ ≤ f logM ≤ f (logM) |v|6/R6 on {f ≤ M, |v| ≥ R}. For
the fourth term, we write log f ≥ −|v|2 on {f ≥ exp(−|v|2)}, and thus f(log f)− ≤ f |v|2 ≤
f |v|6/R4 on {1 ≥ f ≥ e−|v|2 , |v| ≥ R}. For the last term, we write f (log f)− ≤ 4

√
f on
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{0 ≤ f ≤ 1}, and thus f (log f)− ≤ 4 e−|v|2/2 on {e−|v|2 ≥ f ≥ 0, |v| ≥ R}. We deduce

T2 ≤ Cf sup
BR

|θN − 1|+ Cθ

(
1

M (p−1)/2
+

(logM)+
R6

+
1

R4
+ e−R

)

≤ C(‖f‖p,M6(f))

N1/2
,

with the choice R = N1/8 (which allows to use the second estimate of (4.20)), and then

M (p−1)/2 = R6. �

Before stating a similar result with the Fisher information, we introduce a notation:
the gradient on the Kac’s spheres KSN will be denoted by ∇σ

∇σF (V ) := PV ⊥∇F (V ) =

(
Id− V ⊗ V

|V |2
)
∇F (V ) = ∇F (V )− V · ∇F (V )

N
V,

if F is a smooth function on RN . PV ⊥ stands for the projection on the hyperplan perpen-
dicular to V . We will use many times that

(4.22) ∇
[
F

(
V

|V |

)]
=

1

|V |PV ⊥∇F
(
V

|V |

)
=

1

|V |∇σF

(
V

|V |

)
.

Theorem 4.14. For any f ∈ P6(R), satisfying the moment assumptions (4.17) of The-
orem 4.10, the corresponding conditioned product sequence of measures (FN ) defined by
(4.16) satisfies

sup
N∈N

I(FN |σN ) < +∞

if I(f) < +∞. If moreover ∫

R

f ′(v)2

f(v)
〈v〉2 dv < +∞,

the sequence FN is Fisher information chaotic.

Proof of Theorem 4.14. We only proof the second point. The first point (bound-
edness of the Fisher information) can be deduced from the above proof. It suffices in fact
to use the simple bound |∇σG| ≤ |∇G| instead of equality (4.23).

Remark also that the bound on the Fisher information implies that f is continuous
and uniformly bounded since E = R. Therefore, the Lp (for p > 1) assumption which
is necessary in theorem 4.10 is implied by our bound on the Fisher information. We can
therefore apply the estimates (4.20) on the quantity θN,i for i = 1, 2 defined in (4.18). They
imply in particular that ‖θN,i‖∞ is uniformly bounded and that θN,i converges point-wise
towards 1. We start with the formula

I(FN |σN ) = 1

N

∫

KSN

|∇σ ln

(
f⊗N

γ⊗N

)
|2 FN (dV ).

As ∇σ is the projection on the Kac’s spheres of the usual gradient, we have from (4.22)
for any function G on RN

(4.23) |∇σG(V )|2 = |∇G(V )|2 − 1

N
|V · ∇G(V )|2 .

Using this with G = ln
(
f⊗N

γ⊗N

)
in the Fisher information formula, it comes

I(FN |σN ) = 1

N

∫

KSN

∣∣∣∣∇ ln

(
f⊗N

γ⊗N

)∣∣∣∣
2

FN (dV )− 1

N2

∫

KSN

∣∣∣∣V · ∇ ln

(
f⊗N

γ⊗N

)∣∣∣∣
2

FN (dV ).
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Recalling that FN1 = f θN,1 from (4.18), by symmetry, the first term in the right hand side
is equal to

(4.24)

∫

R

∣∣∣∣∂v ln
f(v)

γ(v)

∣∣∣∣
2

FN1 (dv) = I(f |γ) +
∫

R

∣∣∣∣
∇f(v)
f(v)

+ v

∣∣∣∣
2

(θN,1(v) − 1)f(v) dv.

The last term goes to zero from the hypothesis on f , the uniform bound |θN,1| ≤ C and
the pointwise convergence of θN,1 to 1. To handle the second term in the RHS of (4.24),
we compute

1

N2

∣∣∣∣∣V · ∇ ln

(
f

γ

)⊗N
∣∣∣∣∣

2

=
1

N2

(
N∑

i=1

vi

[
ln
f

γ

]′
(vi)

)2

=
1

N2

N∑

i=1

v2i

([
ln
f

γ

]′
(vi)

)2

+
1

N2

N∑

i 6=j
vivj

[
ln
f

γ

]′
(vi)

[
ln
f

γ

]′
(vj).

After integration, it comes thanks to the symmetry of FN

1

N2

∫

KSN

∣∣∣∣∣V · ∇ ln

(
f

γ

)⊗N
∣∣∣∣∣

2

FN (dV ) =
1

N

∫

R

v2
([

ln
f

γ

]′
(v)

)2

FN1 (dv)

+
N − 1

N

∫

R2

v1v2

[
ln
f

γ

]′
(v1)

[
ln
f

γ

]′
(v2)F

N
2 (dv1, dv2).

Using the uniform bound FN1 (v) = θN,1(v) f(v) ≤ Cf(v), and the hypothesis on f , we

obtain that the first term of the r.h.s. is bounded by C
N . The second term denoted by

R2(N) is equal to

R2(N) =
N − 1

N

∫

R2

v1v2

[
ln
f

γ

]′
(v1)

[
ln
f

γ

]′
(v2) f(v1)f(v2) dv1dv2

+
N − 1

N

∫

R2

v1v2

[
ln
f

γ

]′
(v1)

[
ln
f

γ

]′
(v2)(θN,2(v1, v2)− 1) f(v1)f(v2) dv1dv2

=
N − 1

N

(∫

R

(
vf ′(v) + v2f(v)

)
dv

)2

+R3(N) = R3(N),

after an integration by parts and because of the equality
∫
v2 f(dv) = 1. The term R3(N)

goes to zero by dominated convergence since

∫

R2

v1v2

∣∣∣∣
[
ln
f

γ

]′
(v1)

[
ln
f

γ

]′
(v2)

∣∣∣∣f(v1)f(v2) dv1dv2 =
(∫

R

v

∣∣∣∣
[
ln
f

γ

]′
(v)

∣∣∣∣ f(v) dv
)2

≤ I(f |γ)
∫

R

v2 df.

This concludes the proof. �

4.4. Chaos for arbitrary sequence of probability measures on the Kac’s spheres.
In that last section, we aim to present the relationship between Kac’s chaos, entropy chaos
and Fisher information chaos in the Kac’s spheres framework.

We begin with a result which is the analogous for probability measures on the Kac’s
spheres to the lower semi continuity of the Entropy and Fisher information yet established
on product spaces.
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Theorem 4.15. For any sequence (GN ) of P(KSN ) such that GNj ⇀ Gj weakly in P(Ej),
there holds

H(Gj |γ⊗j) ≤ lim infH(GN |σN ), I(Gj |γ⊗j) ≤ lim inf I(GN |σN ).

For the proof, we shall need the following integration by parts formula on the Kac’
spheres, which proof is postponed to the end the proof of Theorem 4.15 .

Lemma 4.16. Assume that F (resp. Φ) is a function (resp. vector field in RN) on
the Kac’s spheres KSN with integrable gradient. Then the following integration by part
formula holds

(4.25)

∫

KSN

[
∇σF (V ) · Φ(V ) + F (V ) divσ Φ(V )− N − 1

N
F (V )Φ(V ) · V

]
dσN (V ) = 0

where divσ stands for the divergence on the sphere, given by

divσ Φ(V ) :=

N∑

i=1

∇σΦi(V ) · ei = divΦ(V )−
N∑

i=1

V · ∇Φi(V )

|V |2 vi

where the last formula is useful only if Φ is defined on a neighborhood of the sphere.

Proof of Theorem 4.15. We refer to [17, Theorem 17] for a proof of the inequality in-
volving the entropy and we give only the proof of the second inequality, which in fact relies
on the characterization I(3) of the Fisher information. Precisely, the previous Lemma 4.16
can be used to get a reformulation of the Fisher information relative to σN on the sphere

IN (G
N |σN ) :=

∫

KSN

|∇σ lnG
N |2GN (dV ) = sup

Φ∈C1
b (R

N )N

∫

KSN

(
∇ lnGN · Φ− |Φ|2

4

)
GN

= sup
Φ∈C1

b (R
N )N

∫

KSN

(
N − 1

N
Φ(V ) · V − divσ Φ(V )− |Φ(V )|2

4

)
GN (dV ).(4.26)

Next applying the equality (3.13) to the probability measure γ⊗j, we get that for or any
ε > 0, we can choose a ϕ ∈ C1

b (R
j)j such that

1

j
Ij(F

j |γ⊗j)− ε ≤ 1

j

∫

Rj

(
ϕ · Vj − divϕ− |ϕ|2

4

)
F j(dVj).

Remark that the r.h.s. is quite similar to (4.26). With the notation N = nj+r, 0 ≤ r < j
and VN = (Vj,1, . . . , Vj,n, Vr), we define

Φ(VN ) := (ϕ(Vj,1, . . . , ϕ(Vj,n), 0) ∈ C1
b (R

N )N ,

and use it in the equality (4.26). We get

1

N
I(GN |σN ) ≥ 1

N

∫

KSN

(
N − 1

N
Φ(VN ) · VN − divσ Φ(VN )−

|Φ(VN )|2
4

)
GN (dVN )

≥ n

N

∫

Rj

(
N − 1

N
ϕ(Vj) · Vj − divϕ(Vj)−

|ϕ(Vj)|2
4

)
GNj (dVj) +

Rϕ(N)

N
,
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where

Rϕ(N) =
1

N

∫ ( N∑

i=1

[V · ∇Φi(V )]vi

)
GN (dVN ) =

1

N

∫ 


N∑

i,ℓ

∂Φi
∂vℓ

vivℓ


 GN (dVN )

=
n

N

∫ 


j∑

i,ℓ

∂ϕi
∂vℓ

vivℓ


 GNj (dVj) = O(1),

if ∇ϕ decrease sufficiently quickly at infinity. Passing to the limit, we get

lim inf
N→+∞

I(GN |σN ) ≥ 1

j

∫

Rj

(
ϕ · Vj − divϕ− |ϕ|2

4

)
F j(dVj) ≥ I(F j |γ⊗j)− ε

which concludes the proof. �

Proof of Lemma 4.16 As before, we will use the normalized norm |V |2 :=
√

1
N

∑
v2i .

Choosing any smooth function q on (0,+∞) with compact support, we define

w(V ) := q(|V |2)F
(

V

|V |2

)
Φ

(
V

|V |2

)
.

Its divergence is given by

divw =
q′(|V |2)
N

F

(
V

|V |2

)
Φ

(
V

|V |

)
· V

|V |2
+
q(|V |2)
|V |2

∇σF

(
V

|V |2

)
Φ

(
V

|V |

)
· V

|V |2

+
q(|V |2)
|V |2

F

(
V

|V |2

)
divσ Φ

(
V

|V |2

)
.

Integrating this equality, and using polar coordinate, we get

0 =

(∫

KSN

[
∇σF (V ) · Φ(V ) + F (V ) divσ Φ(V )

]
σN (dV )

)(∫ ∞

0
q(r)rN−2 dr

)

+
1

N

(∫

KSN

F (V )Φ(V ) · V σN (dV )

)(∫ ∞

0
q′(r)rN−1 dr

)
.

Since
∫∞
0 q′(r)rN−1 dr = −(N − 1)

∫∞
0 q(r)rN−2 dr, we obtain

∫

KSN

[
∇σF (V ) · Φ(V ) + F (V ) divσ Φ(V )− N − 1

N
F (V ) · Φ(V ) · V

]
dσN (V ) = 0,

which is the claimed result. �

The next theorem will be the key estimate in the proof of the variant of Theorem 1.4
adapted to the Kac’s spheres. It relies on the HWI inequality on the Kac’s spheres, which
allows to quantify the convergence of the relative entropy.

Theorem 4.17. Consider (GN ) a sequence of P(KSN ) which is f -chaotic, f ∈ P(E).
Assume furthermore that

Mk(G
N )

1
k ≤ K for k ≥ 6, and I(GN |σN ) ≤ K.

Then f satisfies Mk(f) < ∞, I(f) < ∞, and (GN ) is f -entropy chaotic. More precisely,
there exists C1 := C1(K) and for any γ2 <

1
8
k−2
k+1 a constant C2(γ2) such that

|H(GN |σN )−H(f |γ)| ≤ C1

(
W1(G

N , f⊗N )γ1 + C2N
−γ2
)
,

with γ1 := 1/2− 1/k.
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The proof uses the following estimate

Theorem 4.18. ([18, Theorem 2], [5, Theorem 2]). For any sequence (GN ) of P(KSN ),
there hold

∀ 1 ≤ k ≤ N, H(GNk |σNk ) ≤ 2H(GN |σN ) and I(GNk |σNk ) ≤ 2 I(GN |σN ).
Proof of Theorem 4.17. Step 1. Thanks to Theorem 4.18, we have

I(GN1 |σN1 ) ≤ 2K.

Using the strong convergence of σN1 to γ stated in 4.2, we pass to the (inferior) limit and
get

I(f |γ) ≤ 2K and then I(f) ≤ 2K.

Introducing the restriction FN = f⊗N/Z(
√
N)σN of f⊗N to KSN defined in (4.16) and

using point i) of Theorem 4.14, we get

sup
N
I(FN |σN ) ≤ C2.

Step 2. Because the Ricci curvature of the metric space KSN is positive (it is K := (N −
1)/N) we may use the HWI inequality in weak CD(K,∞) geodesic space (see [73, Theorem
30.21]) which generalizes the standard HWI inequality (3.16) quoted in Proposition 3.8.

However, we have to be careful, because it is now valid with W̃2 replaced by the MKW
distance constructed with the geodesic distance on the sphere, and not with the distance
induced by the square norm of RN . Fortunately, both distances are equivalent, and if we
add a constant π

2 in the right hand side, we can still write the HWI inequality with our
usual distance W2. We then have

H(FN |σN )−H(GN |σN ) ≤ π

2

√
I(FN |σN )W2(F

N , GN ),

and

H(GN |σN )−H(FN |σN ) ≤ π

2

√
I(GN |σN )W2(F

N , GN ),

so that

|H(FN |σN )−H(GN |σN )| ≤ C2W2(F
N , GN ).

We rewrite it under the form

|H(GN |σN )−H(f |γ)| ≤ C3

[
W2(G

N , f⊗N ) +W2(F
N , f⊗N )

]
+ |H(FN |σN )−H(f |γ)|.

For the first term, we have using inequality of Lemma 2.2

W2(G
N , f⊗N ) ≤ 4KW1(G

N , f⊗N )1/2−1/k.

For the second term, we have for any ε > 0

W2(F
N , f⊗N ) ≤ 4K ΩN (F

N ; f)1/2−1/k

≤ 4K
(
Ω∞(FN ; f) + CεN

− 1
2+ε+2/k

)1/2−1/k

≤ Cε

(
Ω2(F

N ; f)
1

2+ε+1/k + CεN
− 1

2+ε+2/k

)1/2−1/k

≤ CεN
− 1/4−1/2k

2+ε+2/k ,

where we have successively used Lemma 2.2, the inequality (2.18), (2.19) and Theorem 4.10
in the case d = 1 (and then d′ = max(d, 2) = 2). The third and last term is bounded by

C N−1/2 thanks to Theorem 4.13. �
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The lower semi continuity properties of Theorem 4.15 and Theorem 4.17 allow us to
give a variant of Theorem 1.4 in the framework of probability measures with support on
the Kac’s spheres.

Theorem 4.19. Consider (GN ) a sequence of Psym(KSN ) such that M6(G
N
1 ) is bounded

and GN1 ⇀ f weakly in P(R).
In the list of assertions below, each one implies the assertion which follows:

(i) (GN ) is f -Fisher information chaotic, i.e. I(GN |σN ) → I(f |γ), I(f) <∞;
(ii) (GN ) is f -Kac’s chaotic and I(GN |σN ) is bounded;
(iii) (GN ) is f -entropy chaotic, that is H(GN |σN ) → H(f |γ), H(f) <∞;
(iv) (GN ) is f -Kac’s chaotic.

Proof of Theorem 4.19. The proof is very similar to the one of Theorem 1.4. i) ⇔ ii)
and iii) ⇔ iv) relies on the l.s.c. properties of Theorem 4.15. And ii) ⇔ iii) uses
Theorem 4.17. We omit the details. �

We finally conclude this section with the proof of Theorem 1.6.

Proof of Theorem 1.6. We only deal with the case j = 1, but the general case j ≥ 1
can be managed in a very similar way because we already know that GNj ⇀ f⊗j weakly

in P(Ej) thanks to Theorem 4.17 and Theorem 4.19. With the notations of Theorem 1.6,
we have to prove

H(GN1 |f) =
∫

E
log(GN1 /f)G

N
1 → 0 as N → ∞.

First, we observe that since GN is symmetric and has support on the Kac’s spheres,
M2(G

N ) = 1. Moreover,

I(GN1 |σN1 ) =

∫

E
|∇ logGN1 −∇ log σN1 |2GN1

= I(GN1 ) +

∫

E
[2∆ log σN1 + |∇ log σN1 |2]GN1 ,

so that

I(GN1 ) ≤ I(GN1 |σN1 ) +

∫

E
(2∆ log σN1 + |∇ log σN1 |2)−GN1 .

We easily compute

2∆ log σN1 + |∇ log σN1 |2 =

=
N − 3

2

{
2

(2 v)2/N2

(1− v2/N)2
− 2

2/N

(1 − v2/N)
+

(2 v/N)2

(1− v2/N)2

}
1v2≤N

and then

(2∆ log σN1 + |∇ log σN1 |2)− = 2
N − 3

N

(4 v2/N − 1)−
(1− v2/N)2

1v2≤N/4

≤ 2
1

(1− 1/4)2
=

32

9
.

Thanks to the boundedness assumption (1.12) we get that I(GN1 ) ≤ C for some constant
C ∈ (0,∞), and then I(GN1 |γ) ≤ 2[I(GN1 ) +M2(G

N
1 )] ≤ C.
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Next, we introduce the splitting

H(GN1 |f) = H(GN1 |γ)−H(f |γ)︸ ︷︷ ︸
=:T1

+

∫

E
(f −GN1 ) log

f

γ︸ ︷︷ ︸
=:T2

and we show that Ti → 0 for any i = 1, 2. For the first term T1, using twice the HWI
inequality we have

|T1| ≤
(√

I(GN1 |γ) +
√
I(f |γ)

)
W2(G

N
1 , f) → 0

because of the uniform bound on the Fisher information and of the convergence property
W2(G

N
1 , f) → 0. That last convergence is a consequence of [72, Theorem 7.2 (iii) ⇒ (i)],

GN1 ⇀ f weakly when N → ∞ and 〈GN1 , v2〉 = 〈f, v2〉 for any N ≥ 1 when k = 2, and
it is a is a consequence of [72, Theorem 7.2 (ii) ⇒ (i)], GN1 ⇀ f weakly as N → ∞ and
Mk(G

N
1 ) ≤ C for any N ≥ 1 when k > 2.

Before dealing with the last term, we remark that the bound on the Fisher information
of f implies some regularity, precisely that

√
f and then f are 1

2 -Hölder. Therefore ln
f
γ is

continuous and satisfies from the assumption (1.13) the bound
∣∣∣∣ln

f

γ

∣∣∣∣ ≤ ln ‖f‖∞ + α|v|k′ + |β|+ v2

2
≤ C〈v〉max(k′,2).

We then conclude that T2 → 0 by using [72, Theorem 7.2 (iii) ⇒ (iv)] when k = 2 and
[72, Theorem 7.2 (ii) ⇒ (iv)] when k > 2. �

5. On mixtures according to De Finetti, Hewitt and Savage

In this section we develop a quantitative and qualitative approach concerning the se-
quence of probability measures of Psym(E

N ), E ⊂ Rd, in the general framework of con-
vergence to “mixture of probability measures” (here we do not assume chaos property).

Depending on the result, we will need some hypothesis on the set E that we will make
precise in each statement. While in the first and second sections the results hold with
great generality only assuming that

- E is a Borel set of Rd;
we shall assume in the third and fourth sections that

- E = Rd or E is an open set of Rd with smooth boundary in order that the strong
maximum principle and the Hopf lemma hold (that we furthermore assume to be bounded
in the third section);
and we shall also assume in the fourth section that

- the normalized non relative HWI inequality (3.15) holds in E (e.g. it satisfies the
assumptions of Proposition 3.8).

5.1. The De Finetti, Hewitt and Savage theorem and weak convergence in
P(EN ). We begin by recalling the famous De Finetti, Hewitt and Savage theorem [24, 40]
for which we state a quantified version that is maybe new.

Theorem 5.1. Assume E ⊂ Rd is a Borel set. Consider a sequence (πj) of symmetric
and compatible probability measures of P(Ej), that is πj ∈ Psym(E

j) and (πj)|Eℓ = πℓ

for any 1 ≤ ℓ ≤ j, and consider (π̂j) the associated sequence of empirical distribution
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in P(P(E)) defined according to (2.7). For any s > d
2 , the sequence (π̂j) is a Cauchy

sequence for the distance WH−s, and precisely

(5.1)
[
WH−s(π̂N , π̂M )

]2 ≤ 2‖Φs‖∞
(

1

M
+

1

N

)
,

where Φs is the function introduced in Lemma 2.9. In particular, the sequence (π̂j) con-
verges towards some π ∈ P(P(E)) with the speed WH−s(π̂j , π) ≤ C√

j
. The limit π is

characterized by the relations

(5.2) ∀ j ≥ 1, πj = πj :=

∫

P(E)
ρ⊗j π(dρ) in Psym(E

j),

or in other words, with the notations of section 2.1

(5.3) ∀ϕ ∈ Cb(E
j) 〈πj , ϕ〉 =

∫

P(E)
Rϕ(ρ)π(dρ).

Reciprocally, for any mixture of probability measures π ∈ P(P(E)), the sequence (πj) of
probability measures in P(Ej) defined by the second identity in (5.2) is such that the πj
are symmetric and compatible.

Proof of Theorem 5.1. We split the proof into two steps.

Step 1. In order to estimate the distance between π̂N and π̂M we shall use as in the proof
of Proposition 2.10 the fact that ‖·‖2H−s is a polynomial on P(E), but we have to choose a
good transference plan. Fortunately, their is at least one simple choice. The compatibility
and symmetry conditions on (πN ) tell us that πN+M is an admissible transference between
πN and πM . Using the symmetry of πN+M and the isometry between (EN/SN , w1) and
(PN (E),W1) stated in step 1 in the proof of Proposition 2.14, we will interpret it as
a transference plan π̃N+M on PN (E) × PM (E) between π̂N and π̂M . More precisely,
π̃N+M ∈ P(P(E) ×P(E)) is defined as the probability measure satisfying

∀Φ ∈ Cb(P(E) ×P(E)) 〈π̃N+M ,Φ〉 =
∫

EN×EM

Φ(µNX , µ
N
Y )π

N+M (dX, dY ).

With that transference plane we have

[
WH−s(π̂N , π̂M )

]2 ≤
∫

P(E)×P(E)
‖ρ− η‖2H−s π̃

N+M (dρ, dη)

≤
∫

P(E)×P(E)

(∫

R2d

Φs(x− y) [(ρ⊗2 − ρ⊗ η)·

+ (η⊗2 − η ⊗ ρ)](dx, dy)

)
π̃N+M (dρ, dη),
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with the help of (2.25). We can then compute

[
WH−s(π̂N , π̂M )

]2 ≤

≤
∫ (∫

R2d

Φs(x− y) [(µNX)
⊗2 − µNX ⊗ µMY ](dx, dy)

)
πN+M (dX, dY )

+

∫ (∫

R2d

Φs(x− y) [(µMY )⊗2 − µMY ⊗ µNX ](dx, dy)

)
πN+M (dX, dY )

≤
∫ 
 1

N2

N∑

i,j=1

Φs(xi − xj)−
1

NM

M∑

i,j′=1

Φs(xi − yj′)


 πN+M (dX, dY )

+

∫ 
 1

M2

M∑

i′,j′=1

Φs(yi′ − yj′)−
1

NM

M∑

i′,j=1

Φs(xi′ − yj)


 πN+M (dX, dY )

≤ Φs(0)

N
+
N − 1

N

∫
Φs(x− y)π2(dx, dy) −

∫
Φs(x− y)π2(dx, dy)

+
Φs(0)

M
+
M − 1

M

∫
Φs(x− y)π2(dx, dy) −

∫
Φs(x− y)π2(dx, dy),

and we conclude with

[
WH−s(π̂N , π̂M )

]2 ≤
(

1

M
+

1

N

)(
Φs(0)−

∫
Φs(x− y)π2(dx, dy)

)

≤ 2‖Φs‖∞
(

1

M
+

1

N

)
.

The existence of the limit π is due to the completeness of P(P(E)).

Step 2. Now it remains to characterize the limit π. We fix j ∈ N, we denote by πj its
j-th marginal defined thanks to the second identity in (5.2) and by π̂Nj = (π̂N )j the j-th

marginal of the empirical probability measure π̂N as defined in (2.9). We easily compute

‖π̂Nj − πj‖2H−s =

∥∥∥∥∥

∫

P(E)
ρ⊗j π̂N (dρ) −

∫

P(E)
ρ⊗j π(dρ)

∥∥∥∥∥

2

H−s

= inf
Π∈Π(π̂N ,π)

∥∥∥∥∥

∫

P(E)
[ρ⊗j − η⊗j ] Π(dρ, dη)

∥∥∥∥∥

2

H−s

≤ inf
Π∈Π(π̂N ,π)

∫

P(E)
‖ρ⊗j − η⊗j‖2H−s Π(dρ, dη)

=
[
WH−s(π̂N , π)

]2 ≤ C

N
.

Next we fix s > jd
2 , so that using Sobolev embeddings on Rjd, ‖ϕ‖∞ ≤ C‖ϕ‖Hs for

any ϕ ∈ Hs(Rjd), which implies by duality that ‖ρ‖H−s ≤ C‖ρ‖TV for any ρ ∈ P(Rjd).
Using the Grunbaum lemma 2.8 and the compatibility assumption πNj = πj , we get the
inequality

‖πj − π̂Nj ‖H−s = ‖πNj − π̂Nj ‖H−s ≤ C ‖πNj − π̂Nj ‖TV ≤ Cj2

N
.
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Combining the two previous inequalities leads to

‖πj − πj‖H−s ≤ ‖πj − π̂Nj ‖H−s + ‖π̂Nj − πj‖H−s ≤ C√
N

+
Cj2

N
,

which implies the claimed equality in the limit N → +∞. �

Let us now introduce some definitions. For k > 0, we define

Pk(P(E)) := {π ∈ P(P(E)); Mk(π) :=Mk(π1) <∞}
and for k, a > 0, we define

BPk,a(E
N ) := {F ∈ P(EN ); Mk(F1) ≤ a}.

Definition 5.2. For given sequences (FN )N of Psym(E
N ), (πn)n of P(P(E)) and π ∈

P(P(E)), we say that

- (FN ) is bounded in Pk(E
N ) if there exists a > 0 such that Mk(F

N
1 ) ≤ a;

- (πn) is bounded in Pk(P(E)) if there exists a > 0 such that Mk(πn,1) ≤ a;

- (FN ) weakly converges to π in Pk(E
j)∀ j , we write FN ⇀ π weakly in Pk(E

j)∀ j , if
(FN ) is bounded in Pk(E

N ) and FNj ⇀ πj weakly in P(Ej) for any j ≥ 1;

- (πn) weakly converges to π in Pk(P(E)) if (πn) is bounded in Pk(P(E)) and πn ⇀ π
weakly in P(P(E)).

With that (not conventional) definitions, any bounded sequence in Pk(P(E)) is weakly
compact in Pk(P(E)), and for any sequence (FN ) of probability measures of Psym(E

N )

which is bounded in Pk(E
N ), k > 0, there exists a subsequence (FN

′
) and a mixture of

probability measures π ∈ Pk(P(E)) such that FN
′
⇀ π in P(Ej)∀ j.

We now present a result about the equivalence of convergences for sequence ofPsym(E
N ),

N → ∞, without any chaos hypothesis.

Theorem 5.3. Assume E ⊂ Rd is a Borel set.
(1) Consider (FN ) a sequence of Psym(E

N ) and π ∈ P(P(E)). The three following
assertions are equivalent:

(i) FN ⇀ π in P(Ej)∀ j , that is FNj ⇀ πj weakly in P(Ej) for any j ≥ 1;

(ii) F̂N ⇀ π weakly in P(P(E));
(iii) W1(F

N , πN ) → 0.

(2) For any γ ∈ [ 1
2d′ ,

1
d′ ) (recall that d′ = max(d, 2)), and any k > d′

γ−1−d′ ≥ 1, there

exists a constant C = C(γ, d, k) such that the following estimate holds

(5.4) ∀N ≥ 1 |W1(F
N , πN )−W1(F̂

N , π)| ≤ CMk(π1)
1/k

Nγ
.

(3) With the same notations as in the second point, we have for any mixture of probability
measures α, β ∈ P(P(E))

(5.5) W1(α̂j , α) ≤
CMk(α1)

1/k

jγ
,

where α̂j is empirical probability distribution in P(P(E)) associated to the j-th marginal
αj ∈ P(Ej), as well as

(5.6) W1(α, β) −
C(Mk(α1)

1
k +Mk(β1)

1
k )

jγ
≤W1(αj , βj) ≤ W1(α, β).
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Proof of Theorem 5.3. Step 1. Equivalence between (i) and (ii) is classical. Let us
just sketch the proof. For any ϕ ∈ Cb(E

j) we have from the Grunbaum lemma recalled in
Lemma 2.8 that

〈F̂N , Rϕ〉 = 〈FN , ˜ϕ ⊗ 1⊗N−j〉+O(j2/N)

= 〈FNj , ϕ〉 +O(j2/N).

We deduce that the convergence 〈F̂N , Rϕ〉 → 〈π,Rϕ〉 is equivalent to the convergence
〈FNj , ϕ〉 → 〈πj, ϕ〉 since that 〈π,Rϕ〉 = 〈πj , ϕ〉 thanks to Theorem 5.1.

Therefore, i) is equivalent to the convergence 〈F̂N ,Φ〉 → 〈π,Φ〉 for any polynomial

function Φ ∈ Cb(P(E)). But now, the family of probability measures F̂N (and π) belongs
to the compact subset of P(P(E))

K := {α ∈ P(P(E)), s.t. α1 = F1},

and also any converging subsequence F̂N
′
should converge weakly towards a probability

measure π̃ having the same marginals as π. Since by Theorem 5.1 marginals uniquely
characterize a probability measure on P(P(E)), it implies π̃ = π and then weak conver-
gence against polynomial function implies the standard weak convergence of probability
measures ii).

It is classical that the MKW distance is a metrization of the weak convergence of measures.
Even in that ”abstract” case, (ii) is equivalent to W1(F̂

N , π) → 0 (recall that the distance
chosen in order to define W1 is bounded). Thus, for sequences having a bounded moment
Mk(F

N
1 ) for some k > 0, the equivalence between (ii) and (iii) will be a consequence of

(5.4). For sequences for which no moment Mk is bounded, the same conclusion is true.
The correct argument still relies on a version of inequality (5.4), with a slower and less
explicit rate of convergence, which can be obtained from an adaptation of Lemma 2.1.

Step 2. We now prove (5.4). For π̂N we have the following representation:

(5.7) π̂N =
̂

∫
ρ⊗N π(dρ) =

∫
ρ̂⊗N π(dρ).

Thanks to Proposition 2.14, we may compute

|W1(F
N , πN ) − W1(F̂

N , π)| = |W1(F̂
N , π̂N )−W1(F̂

N , π)|

≤ W1(π̂N , π) = W1

(∫

P(E)
ρ̂⊗Nπ(dρ),

∫

P(E)
δρ π(dρ)

)

≤
∫

P(E)
W1

(
ρ̂⊗N , δρ

)
π(dρ) =

∫

P(E)
Ω∞(ρ)π(dρ),

≤ C(d, γ, k)

Nγ

∫

P(E)
Mk(ρ)

1/k π(dρ) ≤ C(d, γ, k)

Nγ
Mk(π1)

1/k,

where we have successively used the triangular inequality for the W1 distance, the relation
(5.7), the convexity property of the W1 distance and the definition of the chaos measure
Ω∞. We also used the bound (2.30) and the Jensen inequality (recall that 1/k ∈ (0, 1]) in
the last line.

Step 3. We now prove the third point. For the first inequality, choose s = 1
2γ − d

2k . Then

by our assumptions, s > max(1, d2) and we can apply Lemma 2.3 on the comparison of



60 M. HAURAY AND S. MISCHLER

distances in P(P(E)) and Theorem 5.1 to get

W1(α̂j , α) ≤ C Mk(α1)
1
k WH−s(α̂j , α)

2k
d+2ks ≤ CMk(α1)

1
k

jγ

For the first part of the second inequality (5.6) we write

W1(α, β) ≤ W1(α, α̂j) +W1(α̂j , β̂j) +W1(β̂j , β),

we use the inequality just proved above and the identity (2.14). The second part of the
second inequality (5.6) is a mere application of Lemma 2.7. �

5.2. Level-3 Boltzmann entropy functional for mixtures. In this section we recover
some well known results on the Boltzmann entropy for mixture of probability measures
as stated in [2] and proved by Robinson and Ruelle in [64]. However our proof differs
from the one of [64], and in particular it does not use the abstract representation result of
Choquet and Meyer [22] but an abstract Lemma 5.6 that we introduce for our purposes.

Let us assume that E ⊂ Rd is a Borel set and let us fix a real number m > 0. Then,
for any π ∈ Pm(P(E)) we define

(5.8) H(π) :=

∫

P (E)
H(ρ)π(dρ),

where H is the Boltzmann’s entropy defined on Pm(E).

Theorem 5.4. (1) The functional H : Pm(P(E)) → R∪ {∞} is proper, affine and l.s.c.
with respect to the weak convergence in Pm(P(E)). Moreover, for any π ∈ Pm(P(E)),
there holds

(5.9) H(π) = sup
j∈N∗

H(πj) = lim
j→∞

H(πj),

where πj is the j-th marginal of π defined in Theorem 5.1 and H is the normalized Boltz-
mann’s entropy defined on Pm(E

j) for any j ≥ 1.

(2) Consider (FN ) a sequence of Psym(E
N ) and π ∈ Pm(P(E)) such that FN ⇀ π

weakly in Pm(E
j)∀j . Then

(5.10) H(π) ≤ lim inf
N→∞

H(FN ).

The proof of Theorem 5.4 uses the two following lemmas.

Lemma 5.5. For any π ∈ Pm(P(E)) we define

H′(π) := sup
j∈N∗

H(πj).

The functional H′ : Pm(P(E)) → R ∪ {∞} is affine, proper, and l.s.c. for the weak
convergence, and

(5.11) H′(π) = lim
j→∞

H(πj).

The proof of Lemma 5.5 is classical. For the sake of completeness we nevertheless
present it.

Proof of Lemma 5.5. Thanks to (3.1), for any j ≥ 1, we have

H(πj) ≥ log cm −
∫

E
|v|m dπ1
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so that H′ is proper on Pm(P(E)). It is also l.s.c. as the supremum of l.s.c. functions,
since Hj is l.s.c. on Pm(E

j) as it has been recalled in Lemma 3.1 and since the inequality
of the right of (5.6) shows that π 7→ πj is also continuous for the weak convergence of
measures.

As a second step, we establish (5.11). For any fixed ℓ ≥ 1 and any j ≥ ℓ we introduce
the Euclidean decomposition j = n ℓ+ r, 0 ≤ r ≤ ℓ− 1, and a direct iterative application
of inequality (3.7) together with (3.1) imply

Hj(πj) ≥ nHℓ(πℓ) +Hr(πr)

≥ nHℓ(πℓ) + (j − 1) [(log cm)− −Mm(π)].

We deduce that for any ℓ ≥ 1

lim inf
j→∞

H(πj) ≥ lim inf
j→∞

n

j
Hℓ(πℓ) = H(πℓ),

from which (5.11) follows.

We conclude by establishing the affine property of H′. Let us consider F,G ∈ Pm(P(E))
and θ ∈ (0, 1), and let us assume that H(Fj) < ∞, H(Gj) < ∞ for any j ≥ 1, the case
when H(Fj) = ∞ or H(Gj) = ∞ being trivial. Using that s 7→ log s is an increasing
function and that s 7→ s log s is a convex function, we have

H(θ Fj + (1− θ)Gj) =
1

j

∫

Ej

(θ Fj + (1 − θ)Gj) log(θ Fj + (1− θ)Gj)

≥ 1

j

∫

Ej

{θ Fj log(θ Fj) + (1− θ)Gj log((1− θ)Gj)}

= θH(Fj) + (1− θ)H(Gj) +
1

j
[θ log θ + (1− θ) log(1− θ)]

≥ H(θ Fj + (1− θ)Gj) +
1

j
[θ log θ + (1− θ) log(1− θ)].

Passing to the limit j → ∞ in the two preceding inequalities and using (5.11), we get

H′(θ F + (1− θ)G) ≥ θH′(F ) + (1− θ)H′(G) ≥ H′(θ F + (1− θ)G),

which is nothing but the announced affine property. �

We establish now in the following abstract lemma the last argument which allows us to
prove the first equality in (5.9) and which will be useful in the next section in order to get
the same property for the similar functionals on Pm(P(E)) built starting from the Fisher
information.

Lemma 5.6. Consider a sequence (Kj) of functionals on Pm(E
j), m ≥ 0, such that

(i) Kj : Pm(E
j) → R ∪ {+∞} is convex, proper and l.s.c. for the weak convergence

of measures on Pm(E
j) for any j ≥ 1. Moreover, either m = 0 and Kj is positive

for each j, or m > 0 and there exists k ∈ (0,m), a constant Ck ∈ R+ such that
the functional

P(Ej) → R ∪ {∞}, G 7→ Kj(G) + j[Ck +Mk(G)]

is nonnegative and is l.s.c with respect to the weak convergence in P(E).

(ii) j−1Kj(f
⊗j) = K1(f) for all f ∈ Pm(E) and j ≥ 1.

(iii) Kj(G) ≥ Kℓ(Gℓ) +Kr(Gr) for any G ∈ P(Ej) and any ℓ, r such that j = ℓ+ r.
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(iv) The functional K′ : Pm(P(E)) → R ∪ {+∞} defined for any π ∈ Pm(P(E)) by
(this a part of the theorem that the sup equals the lim)

K′(π) := sup
j≥1

1

j
Kj(πj) = lim

j→+∞
1

j
Kj(πj),

where πj denotes j-th marginal defined thanks to Theorem 5.1, is affine in the
following sense. For any probability measure π ∈ Pm(P(E)) and any partition
partition of Pm(E) by some sets ωi, 1 ≤ i ≤ M , such that ωi is an open set in
E\(ω1 ∪ . . . ∪ ωi−1) for any 1 ≤ i ≤ M − 1, ωM = Pm(E)

∖
(ω1 ∪ . . . ∪ ωM−1) and

π(ωi) > 0 for any 1 ≤ i ≤M , defining

αi := π(ωi) and γi :=
1

αi
1ωi π ∈ Pm(P(E))

so that
π = α1 γ

1 + ...+ αM γM and α1 + ...+ αM = 1,

there holds
K′(π) = α1 K′(γ1) + . . . + αM K′(γM ).

Then under the above assumptions, for any π ∈ Pm(P(E)), there holds

K′(π) = K(π) :=

∫

P(E)
K1(ρ)π(dρ).

The functional K : Pm(P(E)) → R ∪ {∞} is affine, proper and l.s.c. with respect to the
weak convergence in Pm(P(E)).

Moreover, it satisfies the following Γ-l.s.c. property. For any sequence FN of Psym(E
N )

and π ∈ P(P(E)) such that FN ⇀ π weakly in Pm(E
j)∀j , then

(5.12) K(π) ≤ lim inf
N→∞

K(FN ).

Proof of Lemma 5.6. We split the proof into five steps.

Step 1. A fist inequality K ≥ K′ We skip the proof that the lim equals the sup in point
iv). This is a consequence of the hypothesis iii) - and the bound by below in point i) in
the case m > 0 - and has already been proved in the proof of Lemma 5.5 for the entropy.
We fix π ∈ Pm(P(E)). Thanks to assumptions (i) and (ii), we easily compute

K(π) =

∫

P(E)

1

j
Kj(ρ

⊗j)π(dρ)

≥ 1

j
Kj

(∫

P(E)
ρ⊗j π(dρ)

)
=

1

j
Kj(πj).

Taking the supremum over j in this inequality, we get a first inequality

K(π) ≥ sup
j≥1

1

j
Kj(πj) = K′(π).

Step 2. J is l.s.c. on Pm(E) with respect to the W1-metric.
We consider the case when m > 0, and choose k ∈ (0,m) such that (i) holds. We

explain in the step 3′ below the necessary adaptation to do in the case m = 0.
For any δ > 0, by compactness, we can find a family of finite cardinal N of balls

Bi := B(ρi, δ) = {ρ ∈ Pm(E); W1(ρ, ρi) < δ}, ρi ∈ BPm,1/δ, of radius δ so that

BPm,1/δ ⊂
N⋃

i=1

Bi.
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We associate to that partition and ”almost” partition of unity by

φi(ρ) := 2
[
1− W1(ρ, ρi)

2δ

]
+
, θi(ρ) :=

φi(ρ)∑N
j=1 φj(ρ) + δ

.

Finally, we set for any ρ ∈ Pm(E)

Jδ(ρ) :=
N∑

i=1

θi(ρ)J
δ
i ,

where

Jδi := inf
ρ∈B(ρi,2δ)

J(ρ) and J(ρ) := K1(ρ) + Ck +Mk(ρ).

We claim that by construction the functional Jδ is Lipschitz with respect to theW1 metric
on P(E), and satisfies

(5.13) ∀ ρ ∈ Pm(E),
1BPm,1/δ

(ρ)

1 + δ
inf

ρ′∈B(ρ,4δ)
J(ρ′) ≤ Jδ(ρ) ≤ J(ρ),

where 1 denote the indicator function. To obtain both inequalities, we introduce Iδ(ρ) :=
{1 ≤ i ≤ N , W1(ρ, ρ

δ
i ) ≤ 2δ}, and rewrite

Jδ(ρ) :=
∑

i∈Iδ(ρ)
θi(ρ)J

δ
i .

But for any i such that W1(ρ, ρi) ≤ 2δ we have

inf
ρ′∈B(ρi,4δ)

J(ρ′) ≤ Jδi = inf
ρ′∈B(ρi,2δ)

J(ρ′) ≤ J(ρ).

The upper bound in (5.13) follows form the second inequality (on the right). Since J(ρ) ≥ 0
by hypothesis (i), the first above inequality implies that

Jδ(ρ) ≥
( ∑

i∈Iδ(ρ)
θi(ρ)

)
inf

ρ′∈B(ρi,4δ)
J(ρ′) ≥

∑N
j=1 φj(ρ)∑N

j=1 φj(ρ) + δ
inf

ρ′∈B(ρi,4δ)
J1(ρ

′).

The bound by below in (5.13) then follows because any ρ ∈ BPm,1/δ is at least in one

of the Bi for some i, and then
∑N

j=1 φj(ρ) ≥ φi(ρ) ≥ 1. The inequalities (5.13) and the

hypothesis that J is l.s.c. with respect to the weak convergence on P(E) implies that

(5.14) ∀ρ ∈ Pm(E), lim
δ→0

Jδ(ρ) = J(ρ).

We can now introduce the functionals J δ and J defined for all π ∈ Pm(P(E)) by

J δ(π) :=

∫

Pm(E)
Jδ(ρ)π(dρ)

J (π) :=

∫

Pm(E)
J(ρ)π(dρ) = K(π) + Ck +Mk(π).

Since Jδ is Lipschitz with respect to the W1-metric, the Kantorovich-Rubinstein duality
theorem [72, Theorem 1.14] implies that the functionals J δ is continuous with respect to
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the W1-metric. Moreover, the upper bound in (5.13) implies that J δ(π) ≤ J (π), for any
π ∈ Pm(P(E)). Finally, an application of Fatou’s Lemma together with (5.14) implies

lim inf
δ→0

J δ(π) = lim inf

∫

Pm(E)
Jδ(ρ)π(dρ) ≥

∫

Pm(E)
lim inf Jδ(ρ)π(dρ)

≥
∫

Pm(E)
J(ρ)π(dρ) = J (π).

All in all, we get that

∀π ∈ Pm(P(E)), J (π) = sup
δ>0

J δ(π),

and that implies that J is l.s.c. with respect to the W1-metric since the J δ are continuous
with respect to that metric.

Step 2’. A necessary adaptation in the case m = 0. In that case, things are in some sense
simpler since the functional K is already positive, so that we may try directly to apply
Step 2 with J = K1. However, there is one difficulty : the compact sets BPm,1/δ does not
covers P(E); even if we take their union for δ > 0 and m > 0.

However, we can still do a correct proof if we fix π at the beginning. We then choose a
increasing function g : R+ → R+ such that

(5.15) lim
v→+∞

g(v) = +∞ and Mg(π1) :=

∫

E
g(〈v〉)π1(dv) <∞.

Then we can restrict ourselves to the set Pg := {ρ ∈ P(E), Mg(ρ) < +∞}, since the last
hypothesis on g implies that π

(
Pg(E)

)
= 1. If we now replace in step 2, the sets BPm,1/δ

by the still compact sets
BPg,1/δ :=

{
ρ, Mg(ρ) ≤ δ−1

}
,

and follow the same strategy, we will conclude that K(π) = supδ>0 Kδ(π) were the Kδ will
be continuous with respect to the W1-metric. It implies that K is l.s.c. at π. Since π is
arbitrary, K is globally l.s.c.

Step 3. K is l.s.c. with respect to the weak convergence of measures on Pm(P(E)).
In the case m = 0, that step is useless since in step 2′ we proved that K = J is l.s.c.. So

it remains only to treat the case m > 0. Since J = K+Mk +Ck is l.s.c. with respect to
the W1-metric on Pm(P(E)), the conclusion will follows if we show that Mk is continuous
with respect to the weak convergence on Pm(P(E)), defined in Definition 5.2.

For this, we choose ρ, µ ∈ Pm(E). Since

∀ v, v′ ∈ E
∣∣〈v〉k − 〈v′〉k

∣∣ ≤ k min(1, |v − v′|)
(
〈v〉k + 〈v′〉k

)
,

we obtain if we chose an optimal transference plan π (for the distance dE on E) between
ρ and µ

∣∣Mk(ρ)−Mk(µ)
∣∣ ≤

∫ ∣∣〈v〉k − 〈v′〉k
∣∣ π(dv, dv′)

≤ k

∫
dE(v, v

′)
(
〈v〉k + 〈v′〉k

)
π(dv, dv′)

≤ k

(∫
dE(v, v

′)
m

m−k π(dv, dv′)
)1− k

m

(Mm(ρ) +Mm(µ))
k
m ,

so that
∣∣Mk(ρ)−Mk(µ)

∣∣ ≤ k (Mm(ρ) +Mm(µ))
k
m W1(ρ, µ)

1− k
m ,
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where we have used Hölder inequality and the fact that dE ≤ 1. Choosing now two
α, β ∈ Pm(P(E)) and an optimal transference plan π (for the distance W1 on P(E))
between them, we get

∣∣Mk(α)−Mk(β)
∣∣ =

∣∣∣∣
∫
Mk(ρ)−Mk(ρ

′)π(dρ, dρ′)

∣∣∣∣

≤ k

∫ (
Mm(ρ) +Mm(ρ

′)
) k

m W1(ρ, ρ
′)1−

k
mπ(dρ, dρ′),

and then
∣∣Mk(α)−Mk(β)

∣∣ ≤ k (Mm(α) +Mm(β))
k
m W1(α, β)

1− k
m ,

where we have used Hölder inequality. This concludes the step since weak convergence on
Pm(P(E)) exactly means that W1 goes to zero and the moment of order m are bounded.

Step 4. Proof of the remaining inequality K′ ≥ K. Because Pm(E) endowed with the
MKW distance W1 is a Polish space, for any fixed ε > 0, we can cover it by a countable
union of balls Bn := B(fn, ε) of radius ε. For a given π ∈ Pm(P(E)), we can choose M
such that

ωM := Pm(E)\(B1 ∪ . . . ∪ BM−1) satisfies π(ωM ) ≤ ε

and denote ωi := Bi
∖
(B1 ∪ . . . ∪ Bi−1) for all 1 ≤ i ≤ N − 1. We define then

αi := π(ωi), γi :=
1

αi
π|ωi

, πM :=

M∑

i=1

αi δγi1
, γi1 =

∫

P(E)
ρ γi(dρ).

For any 1 ≤ i ≤M , we have

K′(γi) := sup
j≥1

1

j
Kj(γ

i
j) ≥ K1(γ

i
1).

Using the affine property (iv) of K′, the above inequality and the definitions of πN and
K, we get

K′(π) = α1 K′(γ1) + ...+ αM K′(γM )

K′(π) ≥ α1K1(γ
1
1) + ...+ αM K1(γ

M
1 ) = K(πM ).(5.16)

We observe that because πM1 = π1, we have

〈πM1 , |v|m〉 = 〈π1, |v|m〉 =Mm(π) <∞,

and in particular πM ∈ Pm(P(E)). Moreover, defining TM : P(E) → {γ1, ..., γM} by
TM (ρ) = γi for any ρ ∈ ωi, we have πM = (TM )♯π and then

W1(π, π
M ) ≤

〈
(id⊗ TM)♯π,W1(., .)

〉
≤ 2ε.

We consider now a sequence ε→ 0 and the corresponding sequence (πM ) for which we
then have by construction πM ⇀ π weakly in Pm(P(E)). Inequality (5.16), the above
convergence and the l.s.c. property of K proved in step 2 and 3 imply the second (and
reverse) inequality

K(π) ≤ lim inf
M→∞

K(πM ) ≤ K′(π).

Step 5. The Γ-l.s.c. property of K. We give the proof only in the case m > 0, the case
m = 0 being simpler. We consider (FN ) a sequence of Psym(E

N ) and π ∈ P(P(E)) such
that FN ⇀ π weakly in Pm(E

j)∀j , in particular Mm(F
N
1 ) ≤ a for some a ∈ (0,∞). For

any fixed j ≥ 1, using the l.s.c. property of Kj, introducing the Euclidean decomposition
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N = n j + r, 0 ≤ r ≤ j − 1 and using iteratively the inequality (iii) of the hypothesis as
in the proof of Lemma 5.5 as well as the lower bound on Kr provided by hypothesis (i),
we get

1

j
Kj(πj) ≤ lim inf

N→∞
1

j
Kj(F

N
j )

≤ lim inf
N→∞

1

n j
{KN (F

N )− r Kr(F
N
r )}

≤ lim inf
N→∞

{ 1

n j
KN (F

N ) +
1

n
(Cm + a)}

= lim inf
N→∞

N−1KN (F
N ).

We deduce (5.10) thanks to (5.9). That concludes the proof. �

Proof of Theorem 5.4. The proof is just an application of the two previously proved
lemmas. First, let us observe that Hj , H and H′ fulfill the assumptions of Lemma 5.6
since that (i) is nothing but (3.5), (ii) is a consequence of Lemma 3.1, (iii) is nothing but
(3.7), and a stronger version of (iv) has been established in Lemma 5.5. Then (5.9) and
(5.10) are exactly the conclusion of Lemma 5.6 applied to the entropy. �

5.3. Level-3 Fisher information for mixtures. We state now a similar result for the
Fisher information for mixtures of probability measures.

Let us assume that E = Rd or E is an open connected and bounded set of Rd with
smooth boundary. Then, for any π ∈ P(P(E)) we define

(5.17) I(π) :=
∫

P (E)
I(ρ)π(dρ),

where I is the Fisher information defined on P(E).

Theorem 5.7. (1) The functional I : P(P(E)) → R ∪ {∞} is affine, nonnegative and
l.s.c. for the weak convergence. Moreover, for any π ∈ P(P(E)), there holds

(5.18) I(π) = sup
j∈N∗

I(πj) = lim
j→∞

I(πj),

where I stands for the normalized Fisher information defined in P(Ej) for any j ≥ 1.

(2) Consider (FN ) a sequence of Psym(E
N ) and π ∈ P(P(E)) such that FN ⇀ π weakly

in P(Ej)∀j . Then

(5.19) I(π) ≤ lim inf I(FN ).

As for Theorem 5.4, the proof of Theorem 5.7 relies on the abstract lemma 5.6. The
hypothesis of that lemma are proved to be true in the lemma 5.10 below. Two useful
intermediate results are stated in the next two lemmas.

Lemma 5.8. There exist :
- a family of regularizing operators St : P(E) → P(E) defined for any t > 0,
- a family (Ct) of positive constants
- a family εt of positive constants such that εt → 0 when t → 0
- for any k > 0, a family (ε′kt) of positive constants so that ε′kt → 0 when t→ 0
such that for any ρ ∈ P(E) and any t > 0, denoting ρt := St(ρ) we have

I(ρt) ≤ I(ρ), Mk(ρt) ≤ 2k
(
Mk(ρ) + εkt

)
, ‖∇ ln ρt‖∞ ≤ Ct(5.20)

and W1(ρ, ρt) ≤ εt.
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Proof of Lemma 5.8. We only consider the case E = Rd. The case when E is a
smooth bounded open set can be handled similarly by using for (ρt) the solution of the
heat equation (with Neumann boundary conditions) and the strong maximum principle.
We define

ηt(z) :=
Cd
td
e−<z/t> =

Cd
td
e−

√
1+(|z|/t)2 and ρt := ηt ∗ ρ.

Observing that
|∇ηt(z)|
ηt(z)

=
1

t

|z|
〈z〉 ≤ 1

t
,

we deduce that for any x ∈ Rd, we have

|∇ρt(x)| ≤ 1

t

∫

Rd

ηt(x− y)ρ(y) dy =
1

t
ρt.

The inequality on the moment of order k is a consequence of the inequality

〈x+ y〉k ≤ 2k
(
〈x〉k + 〈y〉k

)
,

which leads to the claimed inequality with εkt =Mk(ηt) = tkMk(η1).
As ρt is also an average of translations of ρ (which has the same Fisher information as

ρ), the convexity of the Fisher information implies that

I(ρt) = I

(∫
ρ(· − z) ηt(dz)

)
≤
∫
I
(
ρ(· − z)

)
ηt(dz) = I(ρ).

We finally observe that for any ρ ∈ P(E) there holds

W1(ρ, ρt) =W1(ρ, ρ ∗ ηt) ≤
∫

Rd

|z| ηt(z) dz = Cd t,

and that proves the last estimate. �

Lemma 5.9. Consider π ∈ P(P(E)) and define the regularized family πt ∈ P(P(E)), for
t > 0, by push-forward by St, πt := St#π or equivalently

〈πt,Φ〉 = 〈π,Φt〉 ∀Φ ∈ Cb(P(E))

where Φt ∈ Cb(P(E)) is defined by Φt(ρ) := Φ(ρt) and ρt is the defined in Lemma 5.8.
Also denote by πtj ∈ P(Ej) the j-th marginal of πt defined thanks to Theorem 5.1. For
any t > 0 and any Xj := (x1, ..., xj) ∈ Ej there holds

(5.21)
∣∣∇1 lnπtj(X

j)
∣∣ ≤ Ct.

Proof of Lemma 5.9. Thanks to Lemma 5.8, we write

∣∣∇1πtj(X
j)
∣∣

πtj(Xj)
=

∣∣∣∣
∫
∇1ρt(x1)ρ

⊗j−1
t (x2, . . . xj)π(dρ)

∣∣∣∣
πtj(Xj)

≤ Ct

∫
ρ⊗jt (Xj)π(dρ)

πtj(Xj)
= Ct,

which is nothing but (5.21). �

Lemma 5.10. For any π ∈ P(P(E)) we define

I ′(π) := sup
j∈N∗

I(πj).
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The functional I ′ : P(P(E)) → R ∪ {∞} is nonnegative, l.s.c. for the weak convergence,
satisfies

(5.22) I ′(π) = lim
j→∞

I(πj)

and is affine in the same sense as formulated in point (iv) of Lemma 5.6.

Proof of Lemma 5.10. The fact that I ′ is nonnegative and l.s.c. is clear and (5.22)
comes from the monotony property I(πj−1) ≤ I(πj), ∀ j ≥ 2 established in Lemma 3.7
(i). It remains only to prove the linearity property of I ′. For the sake of simplicity we
only consider the case when M = 2 and ω1 is a ball. The case when ω1 is a general open
set can be handled in a similar way and the case when M ≥ 3 can be deduced by an
iterative argument. For some given π ∈ P(P(E)) which is not a Dirac mass, f1 ∈ P(E)
and r ∈ (0,∞) so that

θ := π(Br) ∈ (0, 1), Br := B(f1, r) = {ρ,W1(ρ, f1) < r},
we define

F :=
1

θ
1Brπ, G :=

1

1− θ
1Bc

r
π

so that

F,G ∈ P(P(E)) and π = θF + (1− θ)G,

and we have to prove that

(5.23) I ′(π) = θ I ′(F ) + (1− θ)I ′(G).

We split the proof of that claim in four steps.

Step 1. Approximation and estimation of the affinity defect. As explained for π in the
statement of Lemma 5.9, we define Ft and Gt to be the push-forward of the measures F
and G by the regularisation operator St, and then Ftj and Gtj are their projections on
P(Ej)

Ftj :=

∫

P(E)
ρ⊗jFt(dρ) =

∫

P(E)
ρ⊗jt F (dρ), or 〈Ftj , ϕ〉 =

∫

P(E)
Rϕ(ρ)Ft(dρ),

via duality, for any ϕ ∈ Cb(E
j) where Rϕ is the polynomial on P(E) associated to ϕ

thanks to (2.8). The same holds for G. We also remark that these two above operations
(regularisation and projection on Ej) commute if we define the regularisation operators St
on Ej by the convolution with η⊗jt . It is worth emphasizing that we do not need here, in
order to define these objects, that F and G are probability measures, but only that they
are Radon measures on P(E).

For any given j ∈ N, we define

Atj := θ I(Ftj) + (1− θ) I(Gtj)− I(θ Ftj + (1− θ)Gtj),

= θ

∫ |∇Ftj |2
Ftj

+ (1− θ)

∫ |∇Gtj |2
Gtj

−
∫ |(1− θ)∇Gtj + θ∇Ftj|2

(1− θ)Gtj + θFtj
.

After reduction to the same denominator, and some simplification, we end up with

Atj = θ(1− θ)

∫
GtjFtj

(1− θ)Gtj + θFtj

∣∣∣∣∇1 ln
Gtj
Ftj

∣∣∣∣
2

.

≤ 2 θ(1− θ)

∫
GtjFtj

(1− θ)Gtj + θFtj

(∣∣∇1 lnFtj
∣∣2 +

∣∣∇1 lnGtj
∣∣2
)
.
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We can estimate the r.h.s. term thanks to Lemma 5.9 by

Atj ≤ 4θ(1− θ)Ct

∫
GtjFtj

(1− θ)Gtj + θFtj
.

Step 2. Disjunction of the supports. Let us introduce for any s ∈ (0, r) the two measures

on P(E) (which are not necessarily probability measures)

F ′ := 1BsF =
1

θ
1Bsπ, F ′′ := 1Br\Bs

F, so that F ′ + F ′′ = F

and let us observe that

lim
s→r

∫
F ′′(dρ) = lim

s→r

∫
1Br\Bs

(ρ)F (dρ) = 0,

by Lebesgue’s dominated convergence theorem. For any t > 0 and j ≥ 1 there holds
F ′
tj + F ′′

tj = Ftj with F
′′
tj ≥ 0, so that we may write for any ε > 0

Atj ≤ 4θ(1− θ)Ct

∫
GtjF

′
tj

(1− θ)Gtj + θF ′
tj

+ 4θCt

∫
F ′′
tj ,

≤ 4θ(1− θ)Ct

∫
GtjF

′
tj

(1− θ)Gtj + θF ′
tj

+ ε,

taking s close enough to r, and this independently of j and t because
∫

Ej

F ′′
tj =

∫

P(E)
F ′′
t =

∫

P(E)
F.

Step 3. Concentration. We introduce the real numbers u = r+s
2 and δ = r−s

2 , depending
on ε, as well as the set

B̃u := {Xj = (x1, . . . , xj) , W1(µ
j
Xj , f1) < u} ⊂ Ej

which is nothing but the reciprocal image of the ball Bu ⊂ P(E) by the empirical measure
map. Using that

GtjF
′
tj

(1− θ)Gtj + θF ′
tj

≤ 1

θ
Gtj 1B̃u

+
1

1− θ
F ′
tj 1B̃c

u
,

we get

(5.24) Atj ≤ 4Ct

(
(1− θ)

∫

B̃u

Gtj + θ

∫

B̃c
u

F ′
tj

)
+ ε.

If ρ belongs to the support of F ′ and Xj ∈ B̃c
u, we have thanks to the last estimate in

Lemma 5.9

W1(µ
j
Xj , ρt) ≥ W1(µ

j
Xj , f1)−W1(f1, ρ)−W1(ρ, ρt)

≥ u− s− Cd t ≥ δ/2,

for any t ∈ [0, T (ε)], T (ε) > 0. We first assume that π ∈ Pm(P(E)) for some m > 0,
which implies also that F,G ∈ Pm(P(E)). Gathering this information with the Chebychev
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inequality, estimate (2.30) and estimate (5.20), we conclude that
∫

B̃c
u

F ′
tj =

∫

P(E)
〈ρ⊗jt ,1B̃c

u
〉F ′(dρ)

≤ 2

δ

∫

P(E)

(∫

Ej

W1(µ
j
Xj , ρt)ρ

⊗j
t (dXj)

)
F ′(dρ)

≤ C

δjγ

∫

P(E)
Mm(ρt)

1/mF ′(dρ) ≤ C

δjγ

(
Mm(F ) + εtm

)1/m
,(5.25)

with γ := 1/(d+2+d/m). With exactly the same arguments, we prove that for any ε > 0
and any t ∈ [0, T (ε)]

(5.26)

∫

B̃u

Gtj ≤
2C

δjγ
Mm(G)

1/m + ε.

Gathering (5.24) with (5.25) and (5.26), we get that for any ε > 0, t ∈ (0, T (ε)] and
j ≥ 1,

Atj ≤
4CtMm(π)

1/m

δjγ
+ 3ε,

and then for any ε > 0, t ∈ (0, T (ε)]

(5.27) lim sup
j→∞

Atj ≤ 3ε.

Step 3’. Adaptation for π /∈ Pm(P(E)). In the case when π /∈ Pm(P(E)) whatever is
m > 0, we can still prove that (5.27) holds true for any ε and t ∈ (0, T (ε)) where T (ε) is
small enough. Remark that it cannot be the case if E is a smooth bounded open set, so
we have only to deal with the case E = Rd here.

The idea is the same as in the proof of Lemma 5.6. We choose a function g : R+ → R+

satisfying (5.15) together with g(2x) ≤ 2g(x) for all x ≥ 0. We argue by using moment
with respect to g(〈·〉) rather than to 〈·〉m. The property g(2x) ≤ 2g(x) ensures that the
estimate on the moments in Lemma 5.8 is still true with the moment Mg.

Next, for any R > 0, we introduce the mapping from PR : Rd → Rd defined by

PR(x) :=

{
x if |x| ≤ R

R x
|x| else

.

using the concentration estimatge (2.30) for the probability (ρ ◦ P−1
R )⊗N = (PR#ρ)

⊗N , it
is still possible to deduce that

∫

Ej

W1(µ
j
Xj , ρt)ρ

⊗j
t (dXj) ≤ C

δjγ
R+

2Mg(ρt)

g(R)
.

Summing up with respect to π, choosing R large enough and letting j → +∞, we get the
claimed inequality for the limsup (with maybe a 4ε in place of the 3ε).

Step 4. Conclusion. The regularization by convolution (or with the heat flow) implies
that for any α ∈ P(P(E))

I(αt) = sup
j≤1

I(αtj) = sup
j≤1

I(αjt) ≤ sup
j≤1

I(αj) = I(α).

Moreover, the last point in Lemma 5.8, implies that αt ⇀ α with respect to theW1-metric.
Thanks to the previous inequality and the l.s.c. property of I ′, we obtain

(5.28) I ′(α) = lim
t→0

I ′(αt).



CHAOS 71

Turning back to the definition of Atj , the estimate (5.27) and the above properties, we
obtain for any ε > 0, t ∈ (0, T (ε)]

I ′(π) ≥ I ′(πt)

≥ θ I ′(Ft) + (1− θ)I ′(Gt)− 3ε.

First passing to the limit t→ 0 and using (5.28) we get

I ′(π) ≥ θ I ′(F ) + (1− θ)I ′(G)− 3ε,

for any ε > 0, which concludes the proof of (5.23) since the reverse inequality is just a
consequence of the convexity of the functional I ′. �

Proof of Theorem 5.7. We only have to observe that Ij , I and I ′ fulfil the assump-
tions of Lemma 5.6. But the assumption (i) is a consequence of Lemma 3.6, the assump-
tion (ii) is a consequence of Lemma 3.5, the assumption (iii) is proved in Lemma 3.6
and assumption (iv) in Lemma 5.10. Then (5.18) and (5.19) are exactly the conclusion of
Lemma 5.6 adapted to the Fisher information. �

Proposition 5.11. Consider π ∈ P(P(E)) and (πj) the associated family of compatible
and symmetric probability measures in P(Ej) defined as in the De Finetti, Hewitt & Savage
theorem. For any p ∈ [1,+∞], the following equality holds

(5.29) π − Suppess {‖ρ‖p, ρ ∈ P(E)} = sup
j∈N

‖πj‖
1
j
p = lim

j→+∞
‖πj‖

1
j
p .

It is part of the result that the limit exists. In particular, it implies the equivalence

∀j ∈ N, ‖πj‖Lp(Ej) ≤ Cj ⇐⇒ π − Suppess {‖ρ‖p, ρ ∈ P(E)} ≤ C.

Proof of Proposition 5.11. First remark that there is nothing to prove for p = 1 since
we are dealing with probability measures. Now, one inequality is a simple consequence of
the De Finetti, Hewitt & Savage theorem. In fact, using the definition of πj, we get

‖πj‖p =
∥∥∥∥∥

∫

P(E)
ρ⊗j π(dρ)

∥∥∥∥∥
p

≤
∫

P(E)
‖ρ⊗j‖p π(dρ) =

∫

P(E)
‖ρ‖jp π(dρ),

and the last quantity is clearly bounded by M j , M := π − Suppess {‖ρ‖p, ρ ∈ P(E)}.
For the reverse inequality, we denote by q ∈ (1,+∞] the real conjugate to p. Because

Lq(E) = (Lp(E))′, the Hahn-Banach separation theorem infers that for any λ < M there
exists f in the unit ball of Lq(E) so that the set

B := {ρ ∈ P(E) s.t.

∫
f(x)ρ(dx) ≥ λ}

is of π-measure positive : δ :=
∫
B π(dρ) > 0. Now for any j ∈ N

‖πj‖p ≥
∫

Ej

f⊗j dπj =
∫

P(E)

(∫

Ej

f⊗jρ⊗j
)
dπ(ρ) ≥ δλj ,

which implies the reserve inequality M ≤ limj→+∞ ‖πj‖
1
j
p . �
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5.4. Strong version of De Finetti, Hewitt and Savage theorem and strong con-
vergence in P(EN ). We begin that section by an HWI inequality valid on P(P(E)),
which is just a ”summation” of the usual one and will be very useful in the sequel.

Proposition 5.12. Assume E = Rd or more generally that (3.15) holds for N = 1. For
any α, β ∈ P(P2(E)), we have

(5.30) H(α) ≤ H(β) + CE
√

I(α)W2(α, β).

As a consequence, the entropy H is continuous on bounded sets relatively to I. In more
precise words, if (πn) is a bounded sequence of Pm(P(E)), m > 0, such that

πn ⇀ π weakly in P(P(E)) and I(πn) ≤ C,

then H(πn) → H(π).

Proof of proposition 5.12. A first way in order to prove (5.30) is just to pass in
the limit in the HWI inequality (3.15) for αN and βN and use the inequality stated in
lemma 2.7 for the quadratic cost, and the result of the previous section about level 3
entropy and Fisher information 5.9 et 5.18.

Another possibility is to sum up the HWI inequality (3.16) for ρ ∈ P(E). Choosing an
optimal transference plan Π for W2 between α and β, we have

∫

P(E)
H(ρ)Π(dρ, dη) ≤

∫

P(E)
H(η)Π(dρ, dη) +

∫

P(E)

√
I(ρ)W2(ρ, η)Π(dρ, dη),

so that

H(α) ≤ H(β) +

(∫

P(E)
I(ρ)Π(dρ, dη)

) 1
2
(∫

P(E)
W2(ρ, η)

2 Π(dρ, dη)

) 1
2

,

thanks to Cauchy-Schwarz inequality. It leads to the desired inequality.
The second point is obtained by two applications of the previous inequality, leading to

|H(πn)−H(π)| ≤
(√

I(π) +
√

I(πn)
)
W2(πn, π),

and then using the l.s.c. property of the level 3 Fisher information in order to prove that
I(π) <∞. We conclude by remarking that the RHS converges to 0 as n tends to ∞. �

The results of the preceding section and the HWI inequality make possible to compare
different senses of convergence for sequences of P(EN ), N → ∞, without any assumption
of chaos.

Theorem 5.13. Assume E = Rd or E ⊂ Rd is a bounded connected open subset with
smooth boundary and that (3.15) holds. Consider (FN ) a sequence of Psym(E

N ) and
π ∈ P(P(E)) such that FN ⇀ π weakly in Pk(E

j)∀j , k > 2.

(1) In the list of assertions below, each assertion implies the one which follows:
(i) I(FN ) → I(π), I(π) <∞;
(ii) I(FN ) is bounded;
(iii) H(FN ) → H(π), H(π) <∞.

(2) More precisely, the following version of the implication (ii) ⇒ (iii) holds. There exists
a numerical constant C such that for any k > 2 and K > 0, and for any any sequence
(FN ) of Psym(E

N ) satisfying

∀N Mk(F
N
1 ) ≤ Kk, I(FN ) ≤ K2,
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there holds

(5.31) ∀N ≥ 42d |H(FN )−H(π)| ≤ KW2(F
N , πN ) +CKd′ ln(KN)

Nγ
,

with γ := k−2
k(1+2d)+4d−2 and as usual d′ = max(2, d).

(3) In particular, for any sequence (πj) of symmetric and compatible probability measures
of P(Ej) satisfying

Mk(π1) ≤ Kk, ∀ j ≥ 1 I(πj) ≤ K2,

there holds

(5.32) ∀j ≥ 42d, |H(πj)−H(π)| ≤ CKd′ ln(Kj)

jγ

for the same value of γ. In other words, (5.32) gives a rate of convergence for the limit
(5.9).

The fact that the constant C does not depend on k is interesting when the space
E is compact or the measures FN have strong integrability properties, for instance an
exponential moment. It allows to choose large k and get almost the largest exponent γ
possible. Precise versions of the point (iii) are stated (without proofs) in the corollary
below.

Corollary 5.14. (i) In the case where E is compact, we denote K := max(diam(E),
√

I(π)).
Then there holds for all j ≥ 42d

(5.33) |H(πj)−H(π)| ≤ CKd′ ln(Kj)

jγ
with γ =

1

2d+ 1

(ii) If Mβ,λ(π1) :=
∫
E e

λ|x|βπ1(dx) < +∞ for some λ > 0 and I(π) < +∞, there exists
a constant C(d, β, λ,I(π)) such that for j large enough ( ≥ C ′ lnMβ,λ(π1))

(5.34) |H(πj)−H(π)| ≤ C
[ln j]1+d

′/β

jγ
with γ =

1

2d+ 1
.

Proof of Theorem 5.13. We split the proof into four steps.

Step 1. i) implies ii) is clear. For ii) implies iii), we use the HWI inequality (3.15) and
we write

|H(FN )−H(π)| = |H(FN )−H(πN ) +H(πN )−H(π)|
≤ CE

(√
I(FN ) +

√
I(πN )

)
W2(F

N , πN ) + |H(πN )−H(π)|.

We know from (5.9) that H(π) = limH(πN ) and from (5.18) and (5.19) that
I(πN ) ≤ I(π) ≤ lim inf I(FN ) ≤ K, from which we conclude that there exist a sequence
επ(N) → 0 such that

|H(FN )−H(π)| ≤ 2CE KW2(F
N , πN ) + ε(N).

We now aim to estimate ε(N) more explicitly as claimed in point (3). Then (2) will be
a direct consequence of (3) and the above estimate.

From now on, we only consider the case E = Rd since the general case is similar (and
the case when E is compact is even simpler).
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Step 2. From [12, Theorem A.1] we know that for any R, δ > 0 we may cover P(BR)
by N (R, δ/2) balls of radius δ/2 in W1 distance (which is less accurate than the one
considered in the above quoted result) with

N (R, δ) ≤
(C ′

1R

δ

)C′
2(R/δ)

d

,

where the constant C ′
1 and C ′

2 are numerical. Let us fix a ≥ 1 and recall that we de-
fine BPk,a(E) := {ρ ∈ P(E) s.t. Mk(ρ) ≤ a}. Next, for any ρ ∈ BPk,a(E), we define
ρR ∈ P(BR) by ρR = ρ(BR)

−1 ρ1BR
for R large enough (so that it defines a probability

measure), and we observe that for any f ∈ P(E) we have

W1(ρ, f) ≤W1(ρR, f) +W1(ρR, ρ),

and that for any R such that Rk > 2a

W1(ρR, ρ) ≤ ‖ρR − ρ‖TV ≤
∣∣∣1− 1

ρ(BR)

∣∣∣+ ρ(Bc
R)

≤
(
1 +

1

ρ(BR)

)
ρ(Bc

R) ≤ 3
a

Rk
,

since then ρ(BR) ≥ 1− a
Rk ≥ 1

2 .

As a consequence, for any δ ≤ 1 and a ≥ 1, choosing R such that 3 a/Rk = δ/2 in the
two preceding estimates, we may cover BPk,a(E) by Na(δ) = N (R, δ/2) balls of radius δ
in W1 distance, with

1

δ
≤ Na(δ) ≤

(
C1a

1
k δ−1− 1

k

)C2 a
d
k δ−d− d

k

.

The above lower bound on Na(δ) is straightforwardly obtained by considering balls cen-
tered on Dirac masses distributed on a line. In the sequel, we shall often use the shortcut
N = Na(δ). Let us then introduce a covering family ωδi ⊂ BPk,a(E), 1 ≤ i ≤ Na(δ), such
that

sup
ρ,η∈ωδ

i

W1(ρ, η) ≤ 2δ, ωδi ∩ ωδj = ∅ if i 6= j, BPk,a(E) =

Na(δ)⋃

i=1

ωδi ,

as well as the masses and centers of mass

αδi :=

∫

ωδ
i

π, f δi :=
1

αδi

∫

ωδ
i

ρ π(dρ).

We also denote ωδ0 := [BPk,a(E)]c and αδ0 :=
∫
ωδ
0
π, so that

∑N
i=0 α

δ
i = 1. Denoting

Z := {i = 1, ...,Na(δ); α
δ
i ≥ Na(δ)

−2}, we finally define

πδ :=

Na(δ)∑

i=1

βδi δfδi
, with βδi :=

αδi∑
j∈Z α

δ
j

if i ∈ Z and βδi := 0 if i /∈ Z.

Remark that by our moment assumption

αδ0 ≤
∫

(ωδ
0)

c

π(dρ) ≤
∫

P(E)

Mk(ρ)

a
π(dρ) =

Mk(π1)

a
.

Since
∑

i/∈Z,i≥1 α
δ
i ≤ N−1 ≤ δ, we necessarily have Z 6= ∅ if δ + Mk(π1)

a ≤ 1
2 < 1, an

assumption that we will make in the sequel. We fix now the value of a to be so that

δ =
Mk(π1)

a
.
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As we shall see that will lead to the optimal inequality. With that particular choice, the
condition above simply writes δ ≤ 1

4 , and the upper bound on N may be rewritten

(5.35) N (δ) := Na(δ) ≤
(
C1K δ−1− 2

k

)C2Kdδ
−d(1+ 2

k )
.

In that case, we have

(5.36)
∑

j∈Z,j≥0

αδj ≤ 2 δ, 1 ≥
∑

j∈Z
αδj ≥ 1− 2 δ ≥ 1

2
.

Now, by convexity of the Fisher information

I(f δi ) ≤
1

αδi

∫

ωδ
i

I(ρ)π(dρ),

which in turns implies that

I(πδ) =
Na(δ)∑

i=1

βδi I(f
δ
i ) ≤

1∑
j∈Z α

δ
j

∑

i∈Z

∫

ωδ
i

I(ρ)π(dρ) ≤ 2I(π).

Similarly, for the moment of order k :

Mk(π
δ
1) =

Na(δ)∑

i=1

βδiMk(f
δ
i ) ≤

1∑
j∈Z α

δ
j

∑

i∈Z

∫

ωδ
i

Mk(ρ)π(dρ) ≤ 2Mk(π1).

In order to prove (5.32), we introduce the splitting

|H(πj)−H(π)| ≤ |H(πj)−H(πδj )|(5.37)

+|H(πδj )−H(πδ)|+ |H(πδ)−H(π)|,

where we have written πδj := (πδ)j . We now estimate each term separately.

Step 3. On the one hand, defining T δ : P(E) → {f δ0 , ..., f δN }, T δ(ρ) = f δi if ρ ∈ ωδi ,

T δ(ρ) = f δ0 = δ0 if ρ ∈ ωδ0 and βδ0 := 0, we compute

W1(π, π
δ) ≤ W1

(
π,

N∑

i=0

αδi δfδi

)
+W1

( N∑

i=0

αδi δfδi
,

N∑

i=1

βδi δfδi

)

≤
∫

P(E)×P(E)
W1(ρ, η)(Id ⊗ T δ)♯π +

∥∥∥
N∑

i=0

(αδi − βδi ) δfδi

∥∥∥
TV

≤
∫

P(E)
W1(ρ, T

δ(ρ))π(dρ) +

N∑

i=1

|αδi − βδi |+ |αδ0|

≤ δ +
M1(π)

a
+ 6δ ≤ 8δ,

where we have used several times estimation (5.36), in particular in order to get the
inequality

N∑

i=1

|αδi − βδi |+ αδ0 =

(
1− 1∑

i∈Z α
δ
i

)∑

i∈Z
αδi +

∑

i/∈Z
αδi ≤ 3

∑

i/∈Z
αδi .
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Using lemma 2.3 and the bound on Mk(π
δ
1), we obtain a bound on W2(π

δ , π) as follows

(we recall that the constant C that appears is numerical : C = 23/2)

W2(π
δ, π) ≤ CMk(π1)

1/kW1(π
δ, π)1/2−1/k ≤ 4C Kδ1/2−1/k.

Now, we use the HWI inequality on P(E) stated in Proposition 5.12 and we bound the
first term in (5.37) by

|H(πδ)−H(π)| ≤
[√

I(πδ) +
√
I(π)

]
W2(π

δ, π) ≤ 2KW2(π
δ, π),

and the third term in (5.37) very similarly

|H(πδj )−H(πj)| ≤
[√

I(πδj ) +
√
I(πj)

]
W2(π

δ
j , πj)

≤
[√

I(πδ) +
√

I(π)
]
W2(π

δ , π) ≤ 2KW2(π
δ , π),

where we have used the properties (5.18) of the level 3 Fisher information and Lemma 2.7
in order to bound W2 by W2. All together, we have proved

(5.38) |H(πδ)−H(π)|+ |H(πδj )−H(πj)| ≤ CK2 δ1/2−1/k ,

for some numerical constant C ≤ 26.

Step 4. We estimate the second term in (5.37). Using that πδj = βδ1 (f
δ
1 )

⊗j+...+βδN (f δN )⊗j,
we write

H(πδj ) =
1

j

∫

Ej

πδj log π
δ
j

=

N∑

i=1

βδi H(f δi ) +
1

j

∫

Ej

πδj Λ

(
βδ1 (f

δ
1 )

⊗j

πδj
, ...,

βδN (f δN )⊗j

πδj

)
,

with Λ : {U = (ui) ∈ RN
+ ,
∑

i ui = 1} → R defined by

Λ(U) := u1 log

(
βδ1
u1

)
+ ...+ uN log

(
βδN
uN

)
.

Observing that Λ is in fact (the opposite of ) a discrete relative entropy, we have for any
U ∈ RN+ with

∑
i ui = 1

− log(N 2) ≤ log(min βδi ) ≤ Λ(U) ≤ 0,

we deduce

|H(πδj )−H(πδ)| ≤ 2

j
logNa(δ).

Step 5. All in all, observing that thanks to (5.35)

logN (δ) ≤ CKd δ−d(1+
2
k ) [1 + lnK − ln δ] ,

we have

C−1 |H(πj)−H(π)| ≤ K2δ1/2−1/k +
1

j

Kd

δd(1+
2
k )

[
1 + ln(Kδ−1)

]
.

We can now (almost) optimize by choosing δ = j−r, with r−1 := 1
2 − 1

k + d (1 + 2
k ) we

obtain

C−1 |H(πj)−H(π)| ≤ Kmax(2,d) ln(Kj)

jγ
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for the integers j ≥ 41/r so that the the condition δ ≤ 1
4 is fulfilled (in order to ensures

that Z 6= ∅). But it can be checked that for k ∈ [2,+∞), d ≤ 1
r ≤ 2d. So that the previous

condition on j is fulfilled for j ≥ 42d.
�
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[44] Lions, P.-L. Théorie des jeux de champ moyen et applications (mean field games). In Cours du Collège
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