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Abstract 1 

The ecology of peatland testate amoebae is well studied along broad gradient from very wet 2 

(pool) to dry (hummock) micro-sites where testate amoeba are often found to respond 3 

primarily to the depth to water table (DWT). Much less is known on their responses to finer-4 

scale gradients and nothing is known of their possible response to phenolic compounds, 5 

which play a key role in carbon storage in peatlands. We studied the vertical (0-3 cm; 3-6 cm; 6 

6-9 cm sampling depths) micro-distribution patterns of testate amoebae in the same 7 

microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen 8 

with an almost flat and homogeneous Sphagnum carpet (fen) and a ―young bog‖ (bog) with 9 

more marked micro-topography and mosaic of poor-fen and bog vegetation. We analysed the 10 

relationships between the testate amoeba data and three sets of variables (1) ―chemical‖ (pH, 11 

Eh potential & conductivity), (2) ―physical‖ (water temperature, altitude i.e. Sphagnum mat 12 

microtopography & DWT) and (3) phenolic compounds in/from Sphagnum (water-soluble 13 

and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. 14 

Testate amoeba Shannon H‘ diversity, equitability J of communities, and total density peaked 15 

in lower parts of Sphagnum, but the patterns differed between the fen and bog micro-sites. 16 

Redundancy analyses (RDA) revealed that testate amoeba communities differed significantly 17 

in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, 18 

and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of 19 

testate amoebae to weak environmental gradients makes them particularly good integrators of 20 

micro-environmental variations and has implications for their use in paleoecology and 21 

environmental monitoring. The correlation between testate amoeba communities and the 22 

concentration of water-soluble phenolic suggests direct (e.g. physiological) and/or indirect 23 

(e.g. through impact on prey organisms) effects on testate amoebae, which requires further 24 

research. 25 
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 Introduction 26 

Testate amoebae are abundant and diverse shelled protozoa living in a wide range of habitats 27 

ranging from soils, lakes, rivers, wetlands, and moss habitats [4, 13, 62]. Owing to ecological 28 

gradients and the preservation of their shells in peat and sediments, these protists are useful 29 

proxies in paleoenvironmental and ecological studies of peatland and lakes [6, 11, 43]. In 30 

Sphagnum bogs, testate amoeba community composition is generally strongly correlated to 31 

surface wetness conditions (mostly assessed by the water table depth – hereafter DWT) and 32 

water chemistry [3, 39, 48, 59].  33 

While the relationship between testate amoebae and DWT, and a few other variables 34 

such as pH are well documented along broad ecological gradient (e.g. wet pools to dry 35 

hummocks, fen to bog) [26, 47], much less is known on their finer-scale responses to micro-36 

environmental gradients. Some data suggests that testate amoebae may be highly sensitive 37 

even to subtle micro-environmental gradients. For example Mitchell et al. [40] studied the 38 

horizontal distribution patterns of testate amoeba communities in a 40x60cm almost flat 39 

mono-specific Sphagnum lawn and found spatial heterogeneity in the communities that was 40 

significantly correlated to altitude (microtopography) (despite a very short – ca. 6cm – 41 

elevation gradient). Assessing testate amoeba species-environment correlation along fine-42 

scale environmental gradients is necessary to define the practical limits (i.e. the resolution) of 43 

their use as bioindicators in ecological and palaeoecological studies.  44 

Another open question is the range of abiotic and biotic factors to which testate 45 

amoebae respond. Although many variables have been studied, DWT almost always emerges 46 

as the strongest variable despite the fact that testate amoebae are unlikely to be directly 47 

influenced by the position of the water table 10 or 30 cm below the level where they live [41]. 48 

Still some important potential factors have not yet been studied including peat and water 49 

chemistry beyond simple ions and elements. Sphagnum peatlands are indeed generally 50 
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characterized by gradients such as nutrients (nutrient-poor ombrotrophic bogs vs. rich fens), 51 

hydrology (wet hollow vs. dry hummocks) and acidity [14, 22, 23, 52].  52 

Recently, phenolic compounds (secondary metabolites) produced by plants have been 53 

described to play an important role in the interactions of plants with their environment 54 

including microorganisms [24]. For example in humus spruce forests such compounds have 55 

been shown to cause the increase of several microbial communities (i.e. cellulose hydrolyser) 56 

and in the decrease of others (i.e. bacteria) [56, 57]. While the production of phenolic 57 

compounds by vascular plants is well documented, few studies have addressed phenols 58 

production by non-vascular cryptogams such as Sphagnum. The role of phenolics produced 59 

by vascular plants on the functioning of the bog ecosystem is established [18], as well as the 60 

phenolics content gradient between knoll forest-peat bogs and peat bogs [16]. Possible effects 61 

of phenolics produced by Sphagnum on microorganisms, including testate amoebae, are still 62 

unknown. Sphagnum contains weakly as well as primarily bound phenolics to the cell wall 63 

[61]. The unique morphology and anatomy of Sphagnum, allows water-soluble phenols to be 64 

easily released in the Sphagnum surrounding environment. Thus the patterns of phenol 65 

concentrations at the surface of Sphagnum peatlands may contribute to creating micro-66 

patterned habitats and a range of ecological niches suitable for the establishment of diverse 67 

communities of organisms including testate amoebae [1, 12, 40]. 68 

The aims of this study are to explore (1) the species-environment relationships and (2) 69 

vertical micro-distribution patterns of testate amoebae along a short ecological gradient from 70 

a Sphagnum-dominated poor fen (for simplicity hereafter referred to here as ―fen‖) and a 71 

vegetation with mixed bog and poor fen plant elements and a more marked micro-topography 72 

(hereafter referred to as ―bog‖). Rather than sampling contrasted microhabitats or moss 73 

species, we sampled only within macroscopically homogenous and similar Sphagnum fallax 74 

carpets across the gradient. We assessed (1) how horizontal and vertical patterns of testate 75 
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amoebae community structure varied along the gradient, and (2) the relationships between the 76 

testate amoeba communities and DWT, water chemistry and phenolic compound content. We 77 

hypothesized (1) that the vertical patterns of community structure would be more marked in 78 

the structurally more complex mixed Sphagnum ―bog‖ habitat than in the more uniform poor 79 

fen, despite the fact that the sampled habitats were macroscopically identical and, (2) that 80 

phenolic compounds would explain a similar fraction of the community data structure as other 81 

more commonly studied environmental factors (i.e. altitude, DWT, water chemistry). 82 

 83 

Methods 84 

Sampling and laboratory analyses 85 

The study site was an undisturbed ombrotrophic Sphagnum-dominated mire [2] situated in the 86 

Jura Mountains (The Forbonnet peatland, France, 46°49‘35‘‘N, 6°10‘20‘‘E) at an altitude of 87 

840 m above sea level (Supplementary Fig. 1). Cold winters (on average of -1.4°C) and mild 88 

summers (on average of 14.6°C) characterized the climate of the site. The annual mean 89 

temperature measured at the site over a one year period from November 5
th

 2008 to 90 

November 30
th

 2009 was 6.5°C and the annual precipitations were 1200 mm. 91 

Samples of Sphagnum fallax were collected from two adjacent areas (ca. 10 m x 12 m) 92 

selected in relation to their micro-topography, vegetation and assessment of sources and 93 

decay of organic matter [15]. The first sampling area (coded ―fen‖) is a transitional 94 

Sphagnum-dominated poor fen area, relatively flat and homogeneous, characterized by a moss 95 

cover dominated by Sphagnum fallax and by the lack of S. magellanicum. Vascular plants as 96 

Eriophorum vaginatum, Vaccinum oxycoccus and Andromeda polifolia were recorded in very 97 

low abundance. Scheuchzeria palustris and Carex limosa occurred outside of the studied 98 

plots. The second sampling area (coded ―bog‖) is an open bog area with mixed vegetation, 99 
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directly adjacent to the fen area. Patterns of hummocks with S. magellanicum, V. oxycoccos, 100 

E. vaginatum, C. rostrata and Calluna vulgaris, and hollows with lawns of S. fallax and A. 101 

polifolia characterized the sampling area. The terms ―fen‖ and ―bog‖ are used here for 102 

simplicity and to denote the existence of a trophic gradient inferred from the vegetation. 103 

However the ―bog‖ sub-site represents a mosaic of poor-fen (lawns, hollows) and bog 104 

(hummock) vegetation. 105 

In each of the two sampling areas, six plots were selected in representative surfaces. 106 

Among the 12 sampling plots, the maximal distance between the two most distant plots was 107 

ca. 30 m. On June 26
th

 2008, samples of S. fallax were collected in each plot for the study of 108 

testate amoeba communities and phenolic compounds around 10 permanent markers in each 109 

plot. The goals of this sampling design were (1) to allow for multiple sampling at the site over 110 

time (this study representing the T0 of a warming experiment), and (2) to obtain a composite 111 

sample from each plot and avoid any bias due to spatial heterogeneity [40]. Moreover in each 112 

plots, the Eh potential, the pH, the conductivity (K), the water temperature (W-Temp), the 113 

depth to the water table (DWT; measured in a piezometer in the centre of each plot), and the 114 

average altitude (microtopography, Alt) of the sampled plot were measured. To assess the 115 

effect of microtopography on spatial distribution patterns, the average altitude (in millimeters) 116 

of the 10 permanent markers was recorded in each sampling plots using an arbitrary reference 117 

[40]. The values of pH and conductivity were standardized to 20°C. The conductivity caused 118 

by hydrogen ions was subtracted according to Sjörs [55]. Corrected conductivity (Kcorr) was 119 

then used as a proxy for total mineral richness of the water. 120 

Primarily bound (hereafter ―bound‖) and water-soluble phenolic (hereafter ―free‖) 121 

compounds were extracted and quantified from lyophilized mosses. The green section (0-6 122 

cm; 0 being defined as the top of the capitulum) was used for these analyses, excluding the 123 

lower part where the mosses start to decay. Two methods were used to extract phenolic 124 
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compounds from Sphagnum. For free phenolics, 0.05g dry weight (DW) of Sphagnum was 125 

ground in a mortar, mixed with 10 mL distilled water, bubbled with nitrogen and agitated on a 126 

reciprocal shaker (15 rpm) for 3 hours and filtered. For bound phenolic compounds, 0.05g 127 

DW of Sphagnum was ground in a mortar, mixed with 25 mL ethanol / distilled water (80/20 128 

v/v) and warmed under reflux at 120°C for 30 minutes. This extract was filtered and 129 

evaporated by using a rotary evaporator. Finally, the dry extract was dissolved in 25 mL of 130 

boiling distilled water (adapted from Gallet and Lebreton [19]). The free and bound total 131 

phenolic contents were quantified with the Folin-Ciocalteau reagent and were expressed in 132 

mg equivalent gallic acid (A760). 133 

For testate amoeba analysis, the Sphagnum fallax samples were cut in three levels 134 

(sampling depth): 0-3 cm (upper), 3-6 cm (intermediate), and 6-9 cm (lower). The samples 135 

were fixed with 20 mL glutaraldehyde (2% final concentration) and stored at 4°C in the dark. 136 

Testate amoebae were extracted from mosses using the following extraction method [45]: 137 

each sample was shaken for 1 min on a vortex and then pressed to extract microorganisms 138 

(first solution). The mosses were then soaked again with 20 mL of glutaraldehyde (2%), 139 

shaken a second time on a vortex and pressed to extract Sphagnum leachate. The leachate was 140 

left to settle for 12h, after which the supernatant was added to Sphagnum and the bottom to 141 

the first solution. The process was repeated six times, and all fractions were combined to 142 

obtain a final composite sample of 40 mL. The remaining fraction was dried at 80°C for 48h 143 

and weighted to express testate amoeba density by gram dry weight (DW) of Sphagnum. The 144 

testate amoebae were identified and counted to a total of 150 at x200 and x400 magnification 145 

by inverted microscopy (OLYMPUS IX71) following Uthermöhl‘s method [60]. Testate 146 

amoebae were identified to the species level whenever possible. Only living amoebae (active 147 

only, encysted individuals were not included) were counted. 148 

 149 
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Numerical analyses 150 

Total density, species richness (S), diversity index (the Shannon index H‘) and equitability 151 

index (J) were calculated. Because the distributions of these data were not normal, non-152 

parametric Friedman tests were performed. 153 

In all analyses, species that occurred in less than 2% of maximum density were 154 

removed from the data set to reduce the influence of rare taxa on multivariate analyses [32]. 155 

We analyzed differences among sampling depths and between the fen and bog zones (nominal 156 

variables) for the dominant testate amoeba species using a MANOVA test.  157 

For all multivariate analyses, a Hellinger transformation was applied to stabilize the 158 

variance and reduce the influence of the dominant taxa [33]. A Non-metric multidimensional 159 

scaling (NMDS) was used to assess patterns of variation in testate amoeba community 160 

structure along the different segments of Sphagnum (upper, intermediate and lower segments) 161 

and between the fen and bog zones. As this analysis revealed clear differences among 162 

sampling depths and between ―fen‖ and ―bog‖ zones (P < 0.001), we further explored the 163 

species-environment correlations for the different sampling depths and in the two zones 164 

separately as well as conducting global analyses. 165 

Multiple factor analysis (MFA) was used to assess the general structure of the data and 166 

to determine the relationships among the three Hellinger-transformed testate amoeba data sets 167 

and the three environmental variables data sets (chemical, physical and phenolics) [17]. MFA 168 

was performed in two steps. Firstly, a PCA was performed on each subset, which was then 169 

normalized by dividing all its elements by the first eigenvalue obtained from its PCA. 170 

Secondly, the normalized subsets were assembled to form a unique matrix and a second PCA 171 

was performed on this matrix. RV-coefficient (ranging from 0 to 1) was used to measure the 172 

similarity between the geometrical representations derived from each groups of variables [51]. 173 

RV-coefficients are then tested by permutations [29]. Euclidean distances of global PCA were 174 
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used in MFA to perform cluster analysis according to the Ward method, and the resulting 175 

dendrogram was projected in the MFA ordination space. This analysis revealed the main 176 

differences in the structure of the data described by all biotic and abiotic subsets of variables. 177 

We assessed the relationships among the testate amoeba communities in the upper, 178 

intermediate and lower sampling depth and the three sets of environmental variables (1) 179 

―chemical‖ (pH, Eh potential & conductivity), (2) ―physical‖: (water temperature, altitude & 180 

DWT) and (3) phenolic compounds (bound and free). The ordination patterns of testate 181 

amoeba communities and their causal relationships to environmental data-sets were assessed 182 

using redundancy analysis (RDA) [58]. The proportion of variance explained by 183 

environmental variables was quantified using variance partitioning. Adjusted R
2
 were used in 184 

all RDA to estimate the proportion of explained variance [49]. The analysis was repeated with 185 

the sampling area and sampling depth data-sets transformed to presence/absence in order to 186 

reveal only testate amoeba communities differences.  187 

All multivariate analyses were performed with the software R [50] using vegan [47] 188 

and FactoMineR [28] packages. 189 

 190 

Results 191 

Environmental variables 192 

The range of values for the eight measured environmental variables, minimum, maximum and 193 

averages for the ―fen‖ and ―bog‖ areas are given in Table 1. The Eh potential and water 194 

temperature were significantly higher in the ―fen‖ area while altitude and free phenols were 195 

significantly higher in the ―bog‖ area (P < 0.05). Water pH, conductivity, DWT and the 196 

concentration of slightly bound phenolic compounds did not differ significantly between the 197 

two areas. All environmental variables, except Kcorr, pH, DWT and altitude, were 198 
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significantly correlated to free phenolics (Table 2) while no environmental variables were 199 

significantly correlated to primarily bound phenolics. 200 

 201 

Testate amoeba density and diversity 202 

The total density of testate amoebae increased significantly with depth in the ―bog‖ area from 203 

3.2 x 10
4
 ind.g

-1
 DW in the upper segments to respectively 7.45 x 10

4
 and 10 x 10

4
 ind.g

-1
 204 

DW in the intermediate and lower segments (P < 0.05). By contrast there was no significant 205 

difference with depth in the ―fen‖ area (average density over the three depths: 4.34 x 10
4
 206 

ind.g
-1

 DW). 207 

A total of 28 testate amoeba taxa were identified in the 36 samples analyzed. In the 208 

―bog‖ area, species richness did not vary among the different Sphagnum segments (on 209 

average: 15 species), while in the ―fen‖ area species richness significantly increased between 210 

the upper segments (on average: 12 species) and the intermediate/lower segments (on 211 

average: 15 species) (P < 0.05). In both areas, the highest diversities were measured in the 212 

intermediate and lower segments (H‘= 3.3), and the lowest diversity in the upper segments 213 

(―fen‖: H‘= 1.8; ―bog‖: H‘= 2.5). The equitability index also demonstrated a strong 214 

dominance of some species in upper segments (―fen‖: J = 0.5; ―bog‖: J = 0.7), while in the 215 

intermediate and lower segments the communities were more balanced (both areas: J = 0.85). 216 

 217 

Vertical micro-distribution 218 

The NMDS ordination of samples from the two sampling areas showed that testate amoeba 219 

communities differed significantly along Sphagnum segments in the two sampling areas (Fig. 220 
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1; P < 0.001). In the ―fen‖ area the upper segment was clearly different from the intermediate 221 

and lower segments, while in the ―bog‖ area this difference was less marked. 222 

In the ―fen‖ area, the most abundant taxa in the upper segments were Archerella 223 

flavum (on average 2.2 x 10
4
 ind.g

-1
 DW) and Hyalosphenia papilio (on average 1.5 x 10

4
 224 

ind.g
-1

 DW) (Fig. 2 and supplementary Fig. 2). The intermediate segments were characterized 225 

by an increased of the abundance of Hyalosphenia elegans (on average of 8.3 x 10
4
 ind.g

-1
 226 

DW), Nebela tincta and Physochila griseola (both on average 3.5 x 10
4
 ind.g

-1
 DW), and a 227 

significant decrease in the abundance of A. flavum and H. papilio. The lower segments were 228 

characterized by the highest abundance of P. griseola (on average 1.07 x 10
4
 ind.g

-1
 DW) and 229 

H. elegans (on average 6.5 x 10
4
 ind.g

-1
 DW).  230 

In the ―bog‖ area, the most abundant taxa in the upper segments were also A. flavum 231 

(on average 1.22 x 10
4
 ind.g

-1
 DW), N. tincta (on average 3.8 x 10

4
 ind.g

-1
 DW), H. papilio 232 

(on average 3.5 x 10
4
 ind.g

-1
 DW), and Assulina muscorum (on average 8 x 10

4
 ind.g

-1
 DW) 233 

(Fig. 2 and supplementary Fig. 2). The intermediate segments were characterized by 234 

significantly higher densities of H. elegans (on average 1.18 x 10
4
 ind.g

-1
 DW), N. tincta (on 235 

average 1.0 x 10
4
 ind.g

-1
 DW), Amphitrema wrightianum (on average 9.7 x 10

4
 ind.g

-1
 DW) 236 

and P. griseola (on average 7.0 x 10
4
 ind.g

-1
 DW) and lower density of H. papilio. In the 237 

lower segments, the most abundant taxa were P. griseola (on average 2.4 x 10
4
 ind.g

-1
 DW) 238 

and N. tincta (on average 9.0 x 10
4
 ind.g

-1
 DW). 239 

 240 

Species-environment correlations  241 

The multiple factor analysis (MFA) of the three environmental matrices and the three testate 242 

amoeba data sets confirmed the existence of an overall division between ―fen‖ and ―bog‖ 243 

areas (Fig. 3). The composition of testate amoebae community in the upper segments was 244 
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significantly linked to the chemical data and to testate amoeba assemblages of the 245 

intermediate segments (Table 3). The testate amoeba communities from the intermediate 246 

segments were significantly correlated to both chemical and phenolic data. No significant 247 

correlation was found between the testate amoeba communities of the lower segment and the 248 

environmental data sets. These patterns are further explored in the RDAs. 249 

In the RDA ordinations (Fig. 4a, b, c and d), the two areas were clearly separated in 250 

the overall analysis as well as for each of the three sampling depths. The model explained 251 

51.8% (adjusted r
2
) of the variability in testate amoeba data in the overall analysis and 27.5%, 252 

52.7% and 41.9% (adjusted r
2
) of the variability in the data for the upper, intermediate and 253 

lower sections respectively. In the overall RDA, testate amoeba communities in the ―fen‖ area 254 

were related to higher values of Eh, pH and W-temp, while testate amoeba communities in the 255 

―bog‖ area were related to higher values of phenolics, altitude and conductivity (Fig. 4a, b, c 256 

and d). 257 

The RDA on individual environmental variables revealed that the proportion of testate 258 

amoebae data explained by each explanatory variable and the significance varied strongly 259 

among variables, between the two areas, and among the three vertical positions (Table 4). In 260 

the separate RDAs on the ―fen‖ and ―bog‖ samples all sampling depths were significant but 261 

no physical or chemical variable was found significant. Free phenolics explained a high 262 

proportion of variance in the upper and intermediate Sphagnum segments. 263 

The partial RDAs showed that chemical, physical and phenolic data sets each 264 

significantly explained, independently of the other two data sets, about 7% of the species data 265 

variance (P = 0.02-0.08) in the overall RDA. The proportion of variance explained by these 266 

data was however much higher in the upper two segments (16.5–34.1%) but on average lower 267 
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in the third segment where no significant correlation was found for the lower segment (Table 268 

5).  269 

 270 

Discussion 271 

Testate amoeba density and diversity 272 

The communities of testate amoeba were dominated by representative of the Amphitremidae 273 

and Hyalosphenidae. This community composition is similar to the hummock fauna described 274 

by Heal [26, 27] along a fen-bog gradient. The similarities between these surveys are not 275 

surprising, and support previous studies in illustrating the cosmopolitan distribution of many 276 

peatland testate amoeba morphospecies from the same habitat type [43, 64]. Density is also 277 

similar to that reported in other studies on peatlands [20, 44]. 278 

 279 

Vertical micro-distribution 280 

Testate amoebae reached their highest Shannon diversity and equitability in the intermediate 281 

and lower Sphagnum segments. The density of some taxa also differed significantly between 282 

the two sampling areas in some segments. The NMDS and RDA revealed contrasting vertical 283 

patterns of the testate amoeba communities especially in the fen area. Archerella flavum, 284 

Heleopera sphagni and Hyalosphenia papilio together represented between 57% (―bog‖) and 285 

88% (―fen‖) of the total community in the upper segments, but much less in the intermediate 286 

and lower segments. Thus in agreement with previous studies [25, 34, 35, 39, 54], 287 

mixotrophic species largely dominated the community in the upper segments, while 288 

heterotrophic species (e.g. P. griseola or Hyalosphenia elegans) occurred principally in the 289 

intermediate and lower segments of Sphagnum in both areas.  290 
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The vertical micro-distribution of testate amoebae in Sphagnum reflects some 291 

gradients such as light, temperature, oxygen, prey organisms [35, 53]. A vertical niche 292 

separation among co-generic or otherwise closely related species also appeared in both 293 

sampling areas (e.g. the Amphitematidae Archerella and Amphitrema, and the 294 

Hyalospheniidae Nebela, Hyalosphenia and Physochila). This would support the idea of a 295 

competitive exclusion mechanism between closely related species of testate amoebae [44]. 296 

Mixotrophic species preferentially colonize the uppermost segments of Sphagnum, where 297 

their endosymbionts can photosynthesize [9, 25, 54]. Testate amoebae also need to find the 298 

required material to build their test, and this requirement may be another constraint that 299 

determines their vertical micro-distribution [35, 53]. For example, Amphitrema wrightianum 300 

and Archerella flavum, two closely related mixotrophic taxa, have an ecological niche 301 

separation along Sphagnum segments [25]. A. flavum produces a shell composed of self-302 

secreted proteinaceous material whereas A. wrightianum uses xenosomes (e.g. organic debris, 303 

diatom frustules) [46]. This difference in shell construction explains the different vertical 304 

distribution pattern between A. flavum (upper segments) and A. wrightianum (intermediate 305 

segments) in the two sampling areas [43]. The source of material for test construction and the 306 

availability of appropriate food thus appear as major regulators of the abundance and the 307 

repartition of these species along Sphagnum parts [20, 25, 37]. In addition, these different 308 

constraints could also be taken into account to explain some species distribution patterns 309 

along micro-environmental gradients [43]. 310 

 311 

Species-environment correlations 312 

Our results agree with earlier studies in identifying the fen/bog gradient as an important factor 313 

shaping the structure of testate amoeba communities [5, 27, 28, 34, 37, 38, 63]. Indeed in the 314 

―fen‖ habitat, A. flavum, H. sphagni and H. papilio were found in greatest abundance and 315 
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marked the ecological transition in Sphagnum upper segments. These species are typically 316 

found in habitats with high (> 95%) soil water content [7, 30, 63]. Other species such as N. 317 

tincta and A. muscorum described as xerophilous [12, 13] were more abundant in the ―bog‖ 318 

habitat. Nevertheless, DWT did not emerge as strongly correlated to testate amoeba 319 

communities. The DWT gradient (ca. 3 cm) may not have been long enough to emerge as a 320 

significant relationship. However other factors, including altitude, temperature, Eh, 321 

conductivity, and free phenolics did explain a high proportion of the species data and all of 322 

these were significantly different or nearly so between the two areas. Thus although DWT 323 

almost always emerges as the strongest variable explaining testate amoeba community 324 

structure in Sphagnum peatlands [3, 7], other variables become more important when the 325 

DWT gradient is short. 326 

Direct gradient analysis (RDA) with single explanatory variables revealed the 327 

correlations of chemical factors (i.e. Eh and conductivity) with testate amoeba communities in 328 

upper and intermediate segments. Water chemistry is known to influence testate amoebae 329 

reproduction [25] and to contribute to changes in testate amoeba distribution [30, 42, 48], but 330 

generally strongest correlations were reported with pH [41, 43]. Mieczan [39] demonstrated 331 

that testate amoeba in the lower section (5-10 cm) were influenced by a combination of 332 

chemical and physical factors (DWT and total organic carbon). Chemical factors explained a 333 

high proportion of the testate amoeba data in the upper and intermediate segments, and their 334 

influence decreased in lower segments. Testate amoebae from the upper segments were most 335 

strongly correlated with the physical variables (i.e. altitude and water temperature) while in 336 

the lowest segment, of all measured variables only water temperature and altitude were 337 

significant. These results illustrate how vertical gradients lead to ecological niche separations 338 

in Sphagnum peatlands. 339 

 340 
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Influence of phenolic compounds on testate amoeba communities 341 

Sphagnum phenolics quantified in this work were extracted either water (free phenolics) or 342 

solvent (bound phenolics) and the two methods yielded different results and patterns: bound 343 

phenolics did not differ along the gradient whereas water-soluble phenolics did suggesting 344 

that the amount of free phenolics may respond more strongly to micro-environmental 345 

conditions (e.g. moisture content of mosses). These results also suggested that different kind 346 

of phenolic compounds or phenolic concentrations characterized those extract. The 347 

correlation between free phenolics and testate amoeba communities was particularly clear in 348 

the upper and intermediate segments that correspond to the depth sampled for total 349 

polyphenol analyses (0 – 6 cm). As the upper segment constitutes most of the biomass of 350 

Sphagnum mosses owing to the weight of the capitulum (top 1 cm), most of the measured 351 

phenols are contained in this segment. This may explain that the correlation between testate 352 

amoebae and free phenols was highest in the upper segment and was also high in the 353 

intermediate segment. We tentatively interpret the fact that no significant correlation was 354 

observed between free or bound phenols and testate amoebae in the lower segment as an 355 

indication that either the patterns of phenol concentration at that depth is not correlated with 356 

that of the upper 6 cm or that the amoebae are more influenced by other aspects of water 357 

chemistry closer to the water table. These results clearly call for a detailed analysis of 358 

phenolics and testate amoebae at different depth, which could not be done at our site owing to 359 

the limited amount of material that could be harvested in this long-term experiment. 360 

Among competitive interactions, this study outlines potential chemical interaction 361 

between Sphagnum and testate amoebae. Recently, phenolic compounds released by 362 

Sphagnum mosses (e.g. p-hydroxyl phenolics) have been shown to possess antibacterial 363 

activity [36]. Thus it is possible that free phenolic compounds play a role in testate amoeba 364 

assemblages due to their selective positive or negative effects. Although results do not allow 365 
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to drawing any conclusions on a possible direct (e.g. physiological) and/or indirect (e.g. 366 

through impact on prey organisms) effect of phenolics on testate amoeba communities, they 367 

raise the issue of the possible role of such compounds. An experimental approach to test such 368 

effects is necessary. 369 

 370 

Conclusions 371 

In this study we explored the community patterns and species-environment relationships of 372 

testate amoebae living in Sphagnum fallax along a narrow ecological gradient from a poor fen 373 

(homogeneous Sphagnum carpet) to a ―young bog‖ (mosaic of poor fen and bog microsites). 374 

In agreement with our hypotheses we observed differences between the two sampled habitats 375 

and a vertical stratification of communities. These results illustrate how strongly microbial 376 

communities respond even to short ecological gradients in Sphagnum-dominated peatlands. 377 

The analysis of testate amoebae from three Sphagnum segments allowed us to explore the 378 

detailed patterns of species-environment relationships at the time of sampling and showed 379 

that slight environmental variations (e.g. altitude and related variables) are significant at the 380 

microbial level. This study therefore confirmed that testate amoebae are sensitive to 381 

environmental gradients at a very fine scale [40]. The importance of temporal patterns also 382 

would deserve more attention. Indeed, the location and size of different microhabitats and 383 

related communities in Sphagnum peatlands are not stable over time [8] and this is clearly 384 

also true for testate amoeba assemblages as attested by the limited existing data on seasonal 385 

patterns [62] as well as the changes documented in numerous palaeoecological records [10]. 386 

Understanding environmental controls on testate amoebae communities at these finer spatial 387 

and temporal scales is key to improving our ability to interpret the high-resolution fossil 388 

testate amoeba records in peatlands that is starting to being produced [31]. This will require 389 
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both further detailed descriptive studies as well as manipulative experiments using biotic 390 

(phenols) and abiotic data and aiming to determine which factors influence testate amoebae 391 

and what the mechanisms are. 392 
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Tables  574 

 575 

Table 1. Environmental variables measured in the ―fen‖ and ―bog‖ sampling areas in Le 576 

Forbonnet mire (French Jura) (n = 12, average ± S.E). 577 

 578 

Table 2. Non-parametric correlation matrix of measured environmental variables along the 579 

―fen‖/‖bog‖ transition of Le Forbonnet mire. 580 

 581 

Table 3. RV-coefficients (below diagonal) and corresponding P-values (above diagonal) 582 

among the six groups of variables used in the MFA of the Forbonnet peatland. Significant 583 

coefficients appear in bold. 584 

 585 

Table 4. Summary of RDA on testate amoebae and environmental variables from Le 586 

Forbonnet mire (France): fraction of variance explained and significance of individual 587 

variables taken alone. 588 

 589 

Table 5. Summary RDA and variance partitioning on testate amoebae and environmental 590 

variables data from Le Forbonnet mire (France). 591 

592 
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Figures 593 

Figure 1. (a) The two primary axes of the 3-dimensional NMDS ordination of testate amoebae 594 

communities in the ―bog‖ area from Le Forbonnet mire (France) (n = 18, final stress = 4.1). 595 

The solution represents 75% of the variability in the data, with axes 1, 2 and 3 representing 596 

respectively 43%, 18% and 13%. Samples are coded by sampling area with open symbols. (b) 597 

The two primary axes of the 3-dimensional NMDS ordination of testate amoebae 598 

communities in the ―fen‖ area (n = 18, final stress = 2.4). The solution represents 84% of the 599 

variability in the data, with axes 1, 2 and 3 representing respectively 55%, 19% and 10%. 600 

Samples are coded by sampling area with filled symbols. 601 

 602 

Figure 2. Distribution maps of total testate amoeba abundance and of dominant testate 603 

amoeba taxa in Sphagnum fallax from the two sampling areas in Le Forbonnet mire (France). 604 

A = upper (0-3cm) B = intermediate (3-6cm) and C = lower (6-9cm) segments. X and Y axes 605 

correspond to GPS data converted into Lambert 2 references. Dot sizes are directly 606 

proportional to the number of individuals per gram DW in the samples and are comparable 607 

among maps. 608 

 609 

Figure 3. Multiple factor analysis of the three testate amoeba communities (Hellinger-610 

transformed) and environmental (chemical, physical and phenolics) data sets from the 611 

Forbonnet peatland. Projection of the MFA axes 1 and 2 with the result of a hierarchical 612 

agglomerative clustering (grey lines), obtained by the Ward method on the Euclidean distance 613 

matrix between MFA site scores, showing two main groups of sampling plots (open symbols 614 

= ―fen‖, filled symbols = ―bog‖). Sampling plots are indicated by F (―fen‖) or B (―bog‖) 615 

followed by a number. 616 
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Figure 4. Redundancy analyses biplots (axes 1 and 2) of testate amoeba data from Le 617 

Forbonnet mire (France) in upper (a), intermediate (b) and lower (c) Sphagnum segments, and 618 

the overall data set (d). Sampling areas are coded with open symbol for the ―fen‖ area and 619 

with filled symbol for the ―bog‖ area. Samples are indicated as follows: circles = upper 620 

segments, squares = intermediate segments, triangles = lower segments. F_phe : free 621 

phenolics; B_phe : bound phenolics; W-temp: water temperature; Alt: average altitude 622 

(microtopography) of the sampled plot; Kcorr: conductivity. 623 

624 
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Supplementary Online Material 625 

 626 

Supplementary Figure 1. Location of the Forbonnet peatland with inset showing the location 627 

of the sampling areas. 628 

 629 

Supplementary Figure 2. Vertical micro-distribution of selected testate amoeba taxa in the 630 

two sampling areas (average ± S.E) (circles: ―bog‖ area; triangles: ―fen‖ area). Asterisks 631 

indicate significant differences between the sampling areas (P < 0.05). Different letters 632 

indicate significant differences among Sphagnum sections (P < 0.05). 633 


