

Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.

Vincent E. J. Jassey, Genevieve Chiapusio, Edward A. D. Mitchell, Philippe Binet, Marie-Laure Toussaint, Daniel Gilbert

▶ To cite this version:

Vincent E. J. Jassey, Genevieve Chiapusio, Edward A. D. Mitchell, Philippe Binet, Marie-Laure Toussaint, et al.. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.. Microbial ecology, 2011, 61 (2), pp.374-385. 10.1007/s00248-010-9756-9. hal-00682493v2

HAL Id: hal-00682493 https://hal.science/hal-00682493v2

Submitted on 26 Mar 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fine-scale horizontal and vertical micro-distribution patterns of testate

amoebae along a narrow fen/bog gradient

Vincent E.J. Jassey^{1*}, Geneviève Chiapusio¹, Edward A.D. Mitchell², Philippe Binet¹, Marie-

Laure Toussaint¹, Daniel Gilbert¹

¹ Laboratory of Chrono-Environment UMR-CNRS 6249, University of Franche-Comté, F-

25211 Montbéliard cedex, France

²Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009

Neuchâtel, Switzerland

* Corresponding author: Vincent Jassey

E-mail address: vincent.jassey@univ-fcomte.fr

Phone: +33 381 994 693, Fax: +33 3 81 99 46 61

Date of submission: 2010, 15th June

Running headline: Micro-distribution of testate amoebae in Sphagnum

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The ecology of peatland testate amoebae is well studied along broad gradient from very wet (pool) to dry (hummock) micro-sites where testate amoeba are often found to respond primarily to the depth to water table (DWT). Much less is known on their responses to finerscale gradients and nothing is known of their possible response to phenolic compounds, which play a key role in carbon storage in peatlands. We studied the vertical (0-3 cm; 3-6 cm; 6-9 cm sampling depths) micro-distribution patterns of testate amoebae in the same microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen with an almost flat and homogeneous Sphagnum carpet (fen) and a "young bog" (bog) with more marked micro-topography and mosaic of poor-fen and bog vegetation. We analysed the relationships between the testate amoeba data and three sets of variables (1) "chemical" (pH, Eh potential & conductivity), (2) "physical" (water temperature, altitude i.e. Sphagnum mat microtopography & DWT) and (3) phenolic compounds in/from Sphagnum (water-soluble and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. Testate amoeba Shannon H' diversity, equitability J of communities, and total density peaked in lower parts of *Sphagnum*, but the patterns differed between the fen and bog micro-sites. Redundancy analyses (RDA) revealed that testate amoeba communities differed significantly in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of testate amoebae to weak environmental gradients makes them particularly good integrators of micro-environmental variations and has implications for their use in paleoecology and environmental monitoring. The correlation between testate amoeba communities and the concentration of water-soluble phenolic suggests direct (e.g. physiological) and/or indirect (e.g. through impact on prey organisms) effects on testate amoebae, which requires further research.

26 Introduction

Testate amoebae are abundant and diverse shelled protozoa living in a wide range of habitats ranging from soils, lakes, rivers, wetlands, and moss habitats [4, 13, 62]. Owing to ecological gradients and the preservation of their shells in peat and sediments, these protists are useful proxies in paleoenvironmental and ecological studies of peatland and lakes [6, 11, 43]. In *Sphagnum* bogs, testate amoeba community composition is generally strongly correlated to surface wetness conditions (mostly assessed by the water table depth – hereafter DWT) and water chemistry [3, 39, 48, 59].

While the relationship between testate amoebae and DWT, and a few other variables such as pH are well documented along broad ecological gradient (e.g. wet pools to dry hummocks, fen to bog) [26, 47], much less is known on their finer-scale responses to microenvironmental gradients. Some data suggests that testate amoebae may be highly sensitive even to subtle micro-environmental gradients. For example Mitchell et al. [40] studied the horizontal distribution patterns of testate amoeba communities in a 40x60cm almost flat mono-specific *Sphagnum* lawn and found spatial heterogeneity in the communities that was significantly correlated to altitude (microtopography) (despite a very short – ca. 6cm – elevation gradient). Assessing testate amoeba species-environment correlation along fine-scale environmental gradients is necessary to define the practical limits (i.e. the resolution) of their use as bioindicators in ecological and palaeoecological studies.

Another open question is the range of abiotic and biotic factors to which testate amoebae respond. Although many variables have been studied, DWT almost always emerges as the strongest variable despite the fact that testate amoebae are unlikely to be directly influenced by the position of the water table 10 or 30 cm below the level where they live [41]. Still some important potential factors have not yet been studied including peat and water chemistry beyond simple ions and elements. *Sphagnum* peatlands are indeed generally

characterized by gradients such as nutrients (nutrient-poor ombrotrophic bogs vs. rich fens), hydrology (wet hollow vs. dry hummocks) and acidity [14, 22, 23, 52].

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Recently, phenolic compounds (secondary metabolites) produced by plants have been described to play an important role in the interactions of plants with their environment including microorganisms [24]. For example in humus spruce forests such compounds have been shown to cause the increase of several microbial communities (i.e. cellulose hydrolyser) and in the decrease of others (i.e. bacteria) [56, 57]. While the production of phenolic compounds by vascular plants is well documented, few studies have addressed phenols production by non-vascular cryptogams such as Sphagnum. The role of phenolics produced by vascular plants on the functioning of the bog ecosystem is established [18], as well as the phenolics content gradient between knoll forest-peat bogs and peat bogs [16]. Possible effects of phenolics produced by Sphagnum on microorganisms, including testate amoebae, are still unknown. Sphagnum contains weakly as well as primarily bound phenolics to the cell wall [61]. The unique morphology and anatomy of *Sphagnum*, allows water-soluble phenols to be easily released in the Sphagnum surrounding environment. Thus the patterns of phenol concentrations at the surface of Sphagnum peatlands may contribute to creating micropatterned habitats and a range of ecological niches suitable for the establishment of diverse communities of organisms including testate amoebae [1, 12, 40].

The aims of this study are to explore (1) the species-environment relationships and (2) vertical micro-distribution patterns of testate amoebae along a short ecological gradient from a *Sphagnum*-dominated poor fen (for simplicity hereafter referred to here as "fen") and a vegetation with mixed bog and poor fen plant elements and a more marked micro-topography (hereafter referred to as "bog"). Rather than sampling contrasted microhabitats or moss species, we sampled only within macroscopically homogenous and similar *Sphagnum fallax* carpets across the gradient. We assessed (1) how horizontal and vertical patterns of testate

amoebae community structure varied along the gradient, and (2) the relationships between the testate amoeba communities and DWT, water chemistry and phenolic compound content. We hypothesized (1) that the vertical patterns of community structure would be more marked in the structurally more complex mixed *Sphagnum* "bog" habitat than in the more uniform poor fen, despite the fact that the sampled habitats were macroscopically identical and, (2) that phenolic compounds would explain a similar fraction of the community data structure as other more commonly studied environmental factors (i.e. altitude, DWT, water chemistry).

Methods

Sampling and laboratory analyses

The study site was an undisturbed ombrotrophic *Sphagnum*-dominated mire [2] situated in the Jura Mountains (The Forbonnet peatland, France, 46°49'35''N, 6°10'20''E) at an altitude of 840 m above sea level (Supplementary Fig. 1). Cold winters (on average of -1.4°C) and mild summers (on average of 14.6°C) characterized the climate of the site. The annual mean temperature measured at the site over a one year period from November 5th 2008 to November 30th 2009 was 6.5°C and the annual precipitations were 1200 mm.

Samples of *Sphagnum fallax* were collected from two adjacent areas (ca. 10 m x 12 m) selected in relation to their micro-topography, vegetation and assessment of sources and decay of organic matter [15]. The first sampling area (coded "fen") is a transitional *Sphagnum*-dominated poor fen area, relatively flat and homogeneous, characterized by a moss cover dominated by *Sphagnum fallax* and by the lack of *S. magellanicum*. Vascular plants as *Eriophorum vaginatum, Vaccinum oxycoccus* and *Andromeda polifolia* were recorded in very low abundance. *Scheuchzeria palustris* and *Carex limosa* occurred outside of the studied plots. The second sampling area (coded "bog") is an open bog area with mixed vegetation,

directly adjacent to the fen area. Patterns of hummocks with *S. magellanicum*, *V. oxycoccos*, *E. vaginatum*, *C. rostrata* and *Calluna vulgaris*, and hollows with lawns of *S. fallax* and *A. polifolia* characterized the sampling area. The terms "fen" and "bog" are used here for simplicity and to denote the existence of a trophic gradient inferred from the vegetation. However the "bog" sub-site represents a mosaic of poor-fen (lawns, hollows) and bog (hummock) vegetation.

In each of the two sampling areas, six plots were selected in representative surfaces. Among the 12 sampling plots, the maximal distance between the two most distant plots was ca. 30 m. On June 26th 2008, samples of *S. fallax* were collected in each plot for the study of testate amoeba communities and phenolic compounds around 10 permanent markers in each plot. The goals of this sampling design were (1) to allow for multiple sampling at the site over time (this study representing the T0 of a warming experiment), and (2) to obtain a composite sample from each plot and avoid any bias due to spatial heterogeneity [40]. Moreover in each plots, the Eh potential, the pH, the conductivity (K), the water temperature (W-Temp), the depth to the water table (DWT; measured in a piezometer in the centre of each plot), and the average altitude (microtopography, Alt) of the sampled plot were measured. To assess the effect of microtopography on spatial distribution patterns, the average altitude (in millimeters) of the 10 permanent markers was recorded in each sampling plots using an arbitrary reference [40]. The values of pH and conductivity were standardized to 20°C. The conductivity caused by hydrogen ions was subtracted according to Sjörs [55]. Corrected conductivity (Kcorr) was then used as a proxy for total mineral richness of the water.

Primarily bound (hereafter "bound") and water-soluble phenolic (hereafter "free") compounds were extracted and quantified from lyophilized mosses. The green section (0-6 cm; 0 being defined as the top of the capitulum) was used for these analyses, excluding the lower part where the mosses start to decay. Two methods were used to extract phenolic

compounds from *Sphagnum*. For free phenolics, 0.05g dry weight (DW) of *Sphagnum* was ground in a mortar, mixed with 10 mL distilled water, bubbled with nitrogen and agitated on a reciprocal shaker (15 rpm) for 3 hours and filtered. For bound phenolic compounds, 0.05g DW of *Sphagnum* was ground in a mortar, mixed with 25 mL ethanol / distilled water (80/20 v/v) and warmed under reflux at 120°C for 30 minutes. This extract was filtered and evaporated by using a rotary evaporator. Finally, the dry extract was dissolved in 25 mL of boiling distilled water (adapted from Gallet and Lebreton [19]). The free and bound total phenolic contents were quantified with the Folin-Ciocalteau reagent and were expressed in mg equivalent gallic acid (A_{760}).

For testate amoeba analysis, the *Sphagnum fallax* samples were cut in three levels (sampling depth): 0-3 cm (upper), 3-6 cm (intermediate), and 6-9 cm (lower). The samples were fixed with 20 mL glutaraldehyde (2% final concentration) and stored at 4°C in the dark. Testate amoebae were extracted from mosses using the following extraction method [45]: each sample was shaken for 1 min on a vortex and then pressed to extract microorganisms (first solution). The mosses were then soaked again with 20 mL of glutaraldehyde (2%), shaken a second time on a vortex and pressed to extract *Sphagnum* leachate. The leachate was left to settle for 12h, after which the supernatant was added to *Sphagnum* and the bottom to the first solution. The process was repeated six times, and all fractions were combined to obtain a final composite sample of 40 mL. The remaining fraction was dried at 80°C for 48h and weighted to express testate amoeba density by gram dry weight (DW) of *Sphagnum*. The testate amoebae were identified and counted to a total of 150 at x200 and x400 magnification by inverted microscopy (OLYMPUS IX71) following Uthermöhl's method [60]. Testate amoebae were identified to the species level whenever possible. Only living amoebae (active only, encysted individuals were not included) were counted.

Numerical analyses

Total density, species richness (S), diversity index (the Shannon index H') and equitability index (J) were calculated. Because the distributions of these data were not normal, non-parametric Friedman tests were performed.

In all analyses, species that occurred in less than 2% of maximum density were removed from the data set to reduce the influence of rare taxa on multivariate analyses [32]. We analyzed differences among sampling depths and between the fen and bog zones (nominal variables) for the dominant testate amoeba species using a MANOVA test.

For all multivariate analyses, a Hellinger transformation was applied to stabilize the variance and reduce the influence of the dominant taxa [33]. A Non-metric multidimensional scaling (NMDS) was used to assess patterns of variation in testate amoeba community structure along the different segments of Sphagnum (upper, intermediate and lower segments) and between the fen and bog zones. As this analysis revealed clear differences among sampling depths and between "fen" and "bog" zones (P < 0.001), we further explored the species-environment correlations for the different sampling depths and in the two zones separately as well as conducting global analyses.

Multiple factor analysis (MFA) was used to assess the general structure of the data and to determine the relationships among the three Hellinger-transformed testate amoeba data sets and the three environmental variables data sets (chemical, physical and phenolics) [17]. MFA was performed in two steps. Firstly, a PCA was performed on each subset, which was then normalized by dividing all its elements by the first eigenvalue obtained from its PCA. Secondly, the normalized subsets were assembled to form a unique matrix and a second PCA was performed on this matrix. RV-coefficient (ranging from 0 to 1) was used to measure the similarity between the geometrical representations derived from each groups of variables [51]. RV-coefficients are then tested by permutations [29]. Euclidean distances of global PCA were

used in MFA to perform cluster analysis according to the Ward method, and the resulting dendrogram was projected in the MFA ordination space. This analysis revealed the main differences in the structure of the data described by all biotic and abiotic subsets of variables.

We assessed the relationships among the testate amoeba communities in the upper, intermediate and lower sampling depth and the three sets of environmental variables (1) "chemical" (pH, Eh potential & conductivity), (2) "physical": (water temperature, altitude & DWT) and (3) phenolic compounds (bound and free). The ordination patterns of testate amoeba communities and their causal relationships to environmental data-sets were assessed using redundancy analysis (RDA) [58]. The proportion of variance explained by environmental variables was quantified using variance partitioning. Adjusted R² were used in all RDA to estimate the proportion of explained variance [49]. The analysis was repeated with the sampling area and sampling depth data-sets transformed to presence/absence in order to reveal only testate amoeba communities differences.

All multivariate analyses were performed with the software R [50] using vegan [47] and FactoMineR [28] packages.

Results

Environmental variables

The range of values for the eight measured environmental variables, minimum, maximum and averages for the "fen" and "bog" areas are given in Table 1. The Eh potential and water temperature were significantly higher in the "fen" area while altitude and free phenols were significantly higher in the "bog" area (P < 0.05). Water pH, conductivity, DWT and the concentration of slightly bound phenolic compounds did not differ significantly between the two areas. All environmental variables, except Kcorr, pH, DWT and altitude, were

significantly correlated to free phenolics (Table 2) while no environmental variables were significantly correlated to primarily bound phenolics.

- Testate amoeba density and diversity
- The total density of testate amoebae increased significantly with depth in the "bog" area from 3.2×10^4 ind.g⁻¹ DW in the upper segments to respectively 7.45×10^4 and 10×10^4 ind.g⁻¹ DW in the intermediate and lower segments (P < 0.05). By contrast there was no significant difference with depth in the "fen" area (average density over the three depths: 4.34×10^4 ind.g⁻¹ DW).

A total of 28 testate amoeba taxa were identified in the 36 samples analyzed. In the "bog" area, species richness did not vary among the different *Sphagnum* segments (on average: 15 species), while in the "fen" area species richness significantly increased between the upper segments (on average: 12 species) and the intermediate/lower segments (on average: 15 species) (P < 0.05). In both areas, the highest diversities were measured in the intermediate and lower segments (H'= 3.3), and the lowest diversity in the upper segments ("fen": H'= 1.8; "bog": H'= 2.5). The equitability index also demonstrated a strong dominance of some species in upper segments ("fen": J = 0.5; "bog": J = 0.7), while in the intermediate and lower segments the communities were more balanced (both areas: J = 0.85).

- Vertical micro-distribution
- The NMDS ordination of samples from the two sampling areas showed that testate amoeba communities differed significantly along *Sphagnum* segments in the two sampling areas (Fig.

1; P < 0.001). In the "fen" area the upper segment was clearly different from the intermediate and lower segments, while in the "bog" area this difference was less marked.

In the "fen" area, the most abundant taxa in the upper segments were *Archerella flavum* (on average 2.2×10^4 ind.g⁻¹ DW) and *Hyalosphenia papilio* (on average 1.5×10^4 ind.g⁻¹ DW) (Fig. 2 and supplementary Fig. 2). The intermediate segments were characterized by an increased of the abundance of *Hyalosphenia elegans* (on average of 8.3×10^4 ind.g⁻¹ DW), *Nebela tincta* and *Physochila griseola* (both on average 3.5×10^4 ind.g⁻¹ DW), and a significant decrease in the abundance of *A. flavum* and *H. papilio*. The lower segments were characterized by the highest abundance of *P. griseola* (on average 1.07×10^4 ind.g⁻¹ DW) and *H. elegans* (on average 6.5×10^4 ind.g⁻¹ DW).

In the "bog" area, the most abundant taxa in the upper segments were also *A. flavum* (on average 1.22 x 10⁴ ind.g⁻¹ DW), *N. tincta* (on average 3.8 x 10⁴ ind.g⁻¹ DW), *H. papilio* (on average 3.5 x 10⁴ ind.g⁻¹ DW), and *Assulina muscorum* (on average 8 x 10⁴ ind.g⁻¹ DW) (Fig. 2 and supplementary Fig. 2). The intermediate segments were characterized by significantly higher densities of *H. elegans* (on average 1.18 x 10⁴ ind.g⁻¹ DW), *N. tincta* (on average 1.0 x 10⁴ ind.g⁻¹ DW), *Amphitrema wrightianum* (on average 9.7 x 10⁴ ind.g⁻¹ DW) and *P. griseola* (on average 7.0 x 10⁴ ind.g⁻¹ DW) and lower density of *H. papilio*. In the lower segments, the most abundant taxa were *P. griseola* (on average 2.4 x 10⁴ ind.g⁻¹ DW) and *N. tincta* (on average 9.0 x 10⁴ ind.g⁻¹ DW).

Species-environment correlations

The multiple factor analysis (MFA) of the three environmental matrices and the three testate amoeba data sets confirmed the existence of an overall division between "fen" and "bog" areas (Fig. 3). The composition of testate amoebae community in the upper segments was

significantly linked to the chemical data and to testate amoeba assemblages of the intermediate segments (Table 3). The testate amoeba communities from the intermediate segments were significantly correlated to both chemical and phenolic data. No significant correlation was found between the testate amoeba communities of the lower segment and the environmental data sets. These patterns are further explored in the RDAs.

In the RDA ordinations (Fig. 4a, b, c and d), the two areas were clearly separated in the overall analysis as well as for each of the three sampling depths. The model explained 51.8% (adjusted r²) of the variability in testate amoeba data in the overall analysis and 27.5%, 52.7% and 41.9% (adjusted r²) of the variability in the data for the upper, intermediate and lower sections respectively. In the overall RDA, testate amoeba communities in the "fen" area were related to higher values of Eh, pH and W-temp, while testate amoeba communities in the "bog" area were related to higher values of phenolics, altitude and conductivity (Fig. 4a, b, c and d).

The RDA on individual environmental variables revealed that the proportion of testate amoebae data explained by each explanatory variable and the significance varied strongly among variables, between the two areas, and among the three vertical positions (Table 4). In the separate RDAs on the "fen" and "bog" samples all sampling depths were significant but no physical or chemical variable was found significant. Free phenolics explained a high proportion of variance in the upper and intermediate *Sphagnum* segments.

The partial RDAs showed that chemical, physical and phenolic data sets each significantly explained, independently of the other two data sets, about 7% of the species data variance (P = 0.02-0.08) in the overall RDA. The proportion of variance explained by these data was however much higher in the upper two segments (16.5–34.1%) but on average lower

in the third segment where no significant correlation was found for the lower segment (Table 5).

Discussion

- Testate amoeba density and diversity
- The communities of testate amoeba were dominated by representative of the *Amphitremidae* and *Hyalosphenidae*. This community composition is similar to the hummock fauna described by Heal [26, 27] along a fen-bog gradient. The similarities between these surveys are not surprising, and support previous studies in illustrating the cosmopolitan distribution of many peatland testate amoeba morphospecies from the same habitat type [43, 64]. Density is also similar to that reported in other studies on peatlands [20, 44].

Vertical micro-distribution

Testate amoebae reached their highest Shannon diversity and equitability in the intermediate and lower *Sphagnum* segments. The density of some taxa also differed significantly between the two sampling areas in some segments. The NMDS and RDA revealed contrasting vertical patterns of the testate amoeba communities especially in the fen area. *Archerella flavum*, *Heleopera sphagni* and *Hyalosphenia papilio* together represented between 57% ("bog") and 88% ("fen") of the total community in the upper segments, but much less in the intermediate and lower segments. Thus in agreement with previous studies [25, 34, 35, 39, 54], mixotrophic species largely dominated the community in the upper segments, while heterotrophic species (e.g. *P. griseola* or *Hyalosphenia elegans*) occurred principally in the intermediate and lower segments of *Sphagnum* in both areas.

The vertical micro-distribution of testate amoebae in Sphagnum reflects some gradients such as light, temperature, oxygen, prey organisms [35, 53]. A vertical niche separation among co-generic or otherwise closely related species also appeared in both sampling areas (e.g. the Amphitematidae Archerella and Amphitrema, and the Hyalospheniidae Nebela, Hyalosphenia and Physochila). This would support the idea of a competitive exclusion mechanism between closely related species of testate amoebae [44]. Mixotrophic species preferentially colonize the uppermost segments of *Sphagnum*, where their endosymbionts can photosynthesize [9, 25, 54]. Testate amoebae also need to find the required material to build their test, and this requirement may be another constraint that determines their vertical micro-distribution [35, 53]. For example, Amphitrema wrightianum and Archerella flavum, two closely related mixotrophic taxa, have an ecological niche separation along Sphagnum segments [25]. A. flavum produces a shell composed of selfsecreted proteinaceous material whereas A. wrightianum uses xenosomes (e.g. organic debris, diatom frustules) [46]. This difference in shell construction explains the different vertical distribution pattern between A. flavum (upper segments) and A. wrightianum (intermediate segments) in the two sampling areas [43]. The source of material for test construction and the availability of appropriate food thus appear as major regulators of the abundance and the repartition of these species along *Sphagnum* parts [20, 25, 37]. In addition, these different constraints could also be taken into account to explain some species distribution patterns along micro-environmental gradients [43].

311

312

313

314

315

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Species-environment correlations

Our results agree with earlier studies in identifying the fen/bog gradient as an important factor shaping the structure of testate amoeba communities [5, 27, 28, 34, 37, 38, 63]. Indeed in the "fen" habitat, *A. flavum*, *H. sphagni* and *H. papilio* were found in greatest abundance and

marked the ecological transition in *Sphagnum* upper segments. These species are typically found in habitats with high (> 95%) soil water content [7, 30, 63]. Other species such as *N. tincta* and *A. muscorum* described as xerophilous [12, 13] were more abundant in the "bog" habitat. Nevertheless, DWT did not emerge as strongly correlated to testate amoeba communities. The DWT gradient (ca. 3 cm) may not have been long enough to emerge as a significant relationship. However other factors, including altitude, temperature, Eh, conductivity, and free phenolics did explain a high proportion of the species data and all of these were significantly different or nearly so between the two areas. Thus although DWT almost always emerges as the strongest variable explaining testate amoeba community structure in *Sphagnum* peatlands [3, 7], other variables become more important when the DWT gradient is short.

Direct gradient analysis (RDA) with single explanatory variables revealed the correlations of chemical factors (i.e. Eh and conductivity) with testate amoeba communities in upper and intermediate segments. Water chemistry is known to influence testate amoebae reproduction [25] and to contribute to changes in testate amoeba distribution [30, 42, 48], but generally strongest correlations were reported with pH [41, 43]. Mieczan [39] demonstrated that testate amoeba in the lower section (5-10 cm) were influenced by a combination of chemical and physical factors (DWT and total organic carbon). Chemical factors explained a high proportion of the testate amoeba data in the upper and intermediate segments, and their influence decreased in lower segments. Testate amoebae from the upper segments were most strongly correlated with the physical variables (i.e. altitude and water temperature) while in the lowest segment, of all measured variables only water temperature and altitude were significant. These results illustrate how vertical gradients lead to ecological niche separations in *Sphagnum* peatlands.

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

Sphagnum phenolics quantified in this work were extracted either water (free phenolics) or solvent (bound phenolics) and the two methods yielded different results and patterns: bound phenolics did not differ along the gradient whereas water-soluble phenolics did suggesting that the amount of free phenolics may respond more strongly to micro-environmental conditions (e.g. moisture content of mosses). These results also suggested that different kind of phenolic compounds or phenolic concentrations characterized those extract. The correlation between free phenolics and testate amoeba communities was particularly clear in the upper and intermediate segments that correspond to the depth sampled for total polyphenol analyses (0 - 6 cm). As the upper segment constitutes most of the biomass of Sphagnum mosses owing to the weight of the capitulum (top 1 cm), most of the measured phenols are contained in this segment. This may explain that the correlation between testate amoebae and free phenols was highest in the upper segment and was also high in the intermediate segment. We tentatively interpret the fact that no significant correlation was observed between free or bound phenols and testate amoebae in the lower segment as an indication that either the patterns of phenol concentration at that depth is not correlated with that of the upper 6 cm or that the amoebae are more influenced by other aspects of water chemistry closer to the water table. These results clearly call for a detailed analysis of phenolics and testate amoebae at different depth, which could not be done at our site owing to the limited amount of material that could be harvested in this long-term experiment.

Among competitive interactions, this study outlines potential chemical interaction between *Sphagnum* and testate amoebae. Recently, phenolic compounds released by *Sphagnum* mosses (e.g. *p*-hydroxyl phenolics) have been shown to possess antibacterial activity [36]. Thus it is possible that free phenolic compounds play a role in testate amoeba assemblages due to their selective positive or negative effects. Although results do not allow

to drawing any conclusions on a possible direct (e.g. physiological) and/or indirect (e.g. through impact on prey organisms) effect of phenolics on testate amoeba communities, they raise the issue of the possible role of such compounds. An experimental approach to test such effects is necessary.

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

366

367

368

369

Conclusions

In this study we explored the community patterns and species-environment relationships of testate amoebae living in Sphagnum fallax along a narrow ecological gradient from a poor fen (homogeneous Sphagnum carpet) to a "young bog" (mosaic of poor fen and bog microsites). In agreement with our hypotheses we observed differences between the two sampled habitats and a vertical stratification of communities. These results illustrate how strongly microbial communities respond even to short ecological gradients in Sphagnum-dominated peatlands. The analysis of testate amoebae from three Sphagnum segments allowed us to explore the detailed patterns of species-environment relationships at the time of sampling and showed that slight environmental variations (e.g. altitude and related variables) are significant at the microbial level. This study therefore confirmed that testate amoebae are sensitive to environmental gradients at a very fine scale [40]. The importance of temporal patterns also would deserve more attention. Indeed, the location and size of different microhabitats and related communities in *Sphagnum* peatlands are not stable over time [8] and this is clearly also true for testate amoeba assemblages as attested by the limited existing data on seasonal patterns [62] as well as the changes documented in numerous palaeoecological records [10]. Understanding environmental controls on testate amoebae communities at these finer spatial and temporal scales is key to improving our ability to interpret the high-resolution fossil testate amoeba records in peatlands that is starting to being produced [31]. This will require

both further detailed descriptive studies as well as manipulative experiments using biotic (phenols) and abiotic data and aiming to determine which factors influence testate amoebae and what the mechanisms are.

393

394

Acknowledgments

- 395 This research is a contribution of the ANR PEATWARM project (Effect of moderate
- warming on the functioning of *Sphagnum* peatlands and their function as carbon sink).
- 397 PEATWARM is supported by the French National Agency for Research under the
- 398 "Vulnerability: Environment—Climate" Program (ANR-07-VUL-010). Further funding to
- 399 V. Jassey by the Franche-Comté Region and to E. Mitchell by Swiss National Science
- 400 Foundation (grants no: 205321-109709/1 and 205321-109709/2) is kindly acknowledged. We
- thank Michal Hajek and the two anonymous reviewers for their fruitful comments.

402

403

References

- 404 1. Andrus RE (1986) Some aspects of *Sphagnum* ecology. Some aspects of *Sphagnum* ecology. Can J Bot 64: 416-426
- 406 2. Bailly G (2005) Suivi floristique de la tourbière vivante de Frasne. Internal report from the Regional Natural Reserve of Le Forbonnet peatland.
- 408 3. Bobrov AA, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: 409 Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150: 125-136
- 4. Booth RK (2001) Ecology of testate amoebae (Protozoa) in two lake superior coastal wetlands: Implications for paleoecology and environmental monitoring. Wetlands 21: 564-576
- 5. Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28: 329-348
- 417 6. Booth RK, Notaro M, Jackson ST, Kutzbach JE (2006) Widespread drought episodes 418 in the western Great Lakes region during the past 2000 years: Geographic extent and 419 potential mechanisms. Earth Plan Sc Let 242: 415-427
- 420 7. Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North

- Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15: 277-289
- 8. Breeuwer A, Heijmans M, Gleichman M, Robroek BJM, Berendse F (2009) Response of *Sphagnum* species mixtures to increased temperature and nitrogen availability. Plant Ecol 204: 97-111
- 426 9. Chacharonis P (1956) Observations on the ecology of protozoa associated with 427 *Sphagnum*. J Prot, p 11
- 428 10. Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat Sc Rev 20: 1753-1764
- Charman DJ, Blundell A, Chiverrell RC, Hendon D, Langdon PG (2006) Compilation
 of non-annually resolved Holocene proxy climate records: stacked Holocene peatland
 palaeo-water table reconstructions from northern Britain. Quat Sc Rev 25: 336-350
- 433 12. Charman DJ, Blundell A, Members A (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sc 22: 209-221
- Hall 13. Charman DJ, Warner BG (1992) Relationship between Testate amoebae (Protozoa, Rhizopoda) and microenvironmental parameters on a forested peatland in Northeastern Ontario. Can J Zool 70: 2474-2482
- 439 14. Clymo RS (1973) Growth of *Sphagnum* some effects of environment. J Ecol 61: 849-869
- Delarue F, Laggoun-Défarge F, Disnar JR, Lottier N, Gogo S (2010) Organic matter
 sources and decay assessment in a *Sphagnum*-dominated peatland (Le Forbonnet, Jura Mountains, France): impact of moisture conditions. Biogeochem. (*In press*)
- Djurdjevic L, Dinic A, Mitrovic M, Pavlovic P, Tesevic V (2003) Phenolic acids distribution in a peat of the relict community with Serbian spruce in the Tara Mt. forest reserve (Serbia). Eur J Soil Biol 39: 97-103
- 447 17. Escofier B, Pages J (1994) Multiple factor-analysis (afmult package). Comp Stat Dat 448 Anal 18: 121-140
- 449 18. Freeman C, Ostle N, Kang H (2001) An enzymic 'latch' on a global carbon store A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409: 149-149
- 452 19. Gallet C, Lebreton P (1995) Evolution of phenolic patterns in plants and associated litters and humus of a mounatin forest ecosystem. Soil Biol Biochem 27: 157-165
- 454 20. Gilbert D, Mitchell EAD (2006) Microbial diversity in *Sphagnum* peatlands. In:
 455 Martini IP, Matinez Cortizas A, Chesworth W (eds) Peatlands: basin evolution and
 456 depository of records on global environmental and climatic changes. pp. 287-318
- 457 21. Gilbert D, Mitchell EAD, Amblard C, Bourdier G, Francez AJ (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a *Sphagnum* peatland. Acta Protozoo 42: 99-104
- 460 22. Hajek T, Beckett RP (2008) Effect of water content components on desiccation and recovery in *Sphagnum* mosses. Ann Bot 101: 165-173
- Hajkova P, Hajek M (2004) Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot

- 464 39: 335-351
- Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Tree 15: 238-243
- 467 25. Heal OW (1962) Abundance and microdistribution of testate amoebae (Protozoa: Rhizopoda) in *Sphagnum*. Oikos 13: 35-47
- 469 26. Heal OW (1964) Observations on the seasonal and spatial-distribution of testacea (protozoa, rhizopoda) in *Sphagnum*. J Animal Ecol 33: 395-412
- 471 27. Heal OW (1961) The Distribution of Testate Amoebae (Rhizopoda: Testaecea) in Some Fens and Bogs in Nothern England. Zoo J Lin Soc 44: 369-382
- 473 28. Husson F, Josse J, Lê S, Mazet J (2009) FactoMineR: Factor Analysis and Data 474 Mining with R. R package, version 1.12 http://CRAN.R-475 project.org/package=FactoMineR, City
- 476 29. Josse J, Pages J, Husson F (2008) Testing the significance of the RV coefficient.
 477 Comp Stat Data Anal 53: 82-91
- 478 30. Lamentowicz M, Mitchell EAD (2007) Testate amoebae as ecological and palaeohydrological indicators in peatlands The Polish experience. In: Okruszko, T, 480 Maltby, E, Szatylowicz, J, Swiatek, D, Kotowski, W (eds.) Wetlands: Monitoring, 481 Modelling and Management, pp. 85-90
- Lamentowicz M, Van der Knaap W, Lamentowicz L, Van Leeuwen JFN, Mitchell EAD, Goslar T, Kamenik C (2010) A near-annual palaeohydrological study based on testate amoebae from a sub-alpine mire: surface wetness and the role of climate during the instrumental period. J Quat Sc 25: 190-202
- 486 32. Lavoie I, Dillon PJ, Campeau S (2009) The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecol Ind 9: 213-225
- 489 33. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280
- 491 34. Mazei YA, Tsyganov AN, Bubnova OA (2007) Structure of a community of testate 492 amoebae in a *Sphagnum* dominated bog in upper sura flow (Middle Volga Territory). 493 Biol Bul 34: 382-394
- 494 35. Meisterfeld R (1977) Horizontal and Vertical distribution of Testacea (Rhizopoda-495 Testacea) in *Sphagnum*. Archiv Hydrobiol 79: 319-356
- 496 36. Mellegard H, Stalheim T, Hormazabal V, Granum PE, Hardy SP (2009) Antibacterial activity of sphagnum acid and other phenolic compounds found in *Sphagnum papillosum* against food-borne bacteria. Let Appl Microb 49: 85-90
- 499 37. Mieczan T (2007a) Epiphytic protozoa (testate amoebae and ciliates) associated with 500 Sphagnum in peatbogs: Relationship to chemical parameters. Polish J Ecol 55: 79-90
- 501 38. Mieczan T (2007b) Seasonal patterns of testate amoebae and ciliates in three peatbogs: 502 relationship to bacteria and flagellates (Poleski National Park, Eastern Poland). 503 Ecohyd Hydrobiol 7: 296-305
- 504 39. Mieczan T (2009) Ecology of testate amoebae (Protists) in *Sphagnum* peatlands of eastern Poland: Vertical micro-distribution and species assemblages in relation to environmental parameters. Int J Limn 45: 41-49

- 507 40. Mitchell EAD, Borcard D, Buttler AJ, Grosvernier P, Gilbert D, Gobat JM (2000a) 508 Horizontal distribution patterns of testate amoebae (Protozoa) in a *Sphagnum* 509 magellanicum carpet. Microb Ecol 39: 290-300
- 510 41. Mitchell EAD, Buttler AJ, Warner BG, Gobat JM (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) in *Sphagnum* peatlands in the Jura mountains, Switzerland and France. Ecoscience 6: 565-576
- Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Albinsson C, Greenup AL, Heijmans M, Hoosbeek MR, Saarinen T (2000b) Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five *Sphagnum*-dominated peatlands in Europe. New Phytol 145: 95-106
- 517 43. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiv Conserv 17: 2115-2137
- 520 44. Mitchell EAD, Gilbert D (2004) Vertical micro-distribution and response to nitrogen deposition of testate amoebae in *Sphagnum*. J Euk Microb 51: 480-490
- 522 45. Nguyen-Viet H, Bernard N, Mitchell EAD, Badot PM, Gilbert D (2008) Effect of lead pollution on testate amoebae communities living in *Sphagnum fallax*: An experimental study. Ecotoxi Env Safe 69: 130-138
- 525 46. Ogden CG (1984) Shell structure of some testate amoebas from britain (protozoa, rhizopoda). J Nat Hist 18: 341-361
- 527 47. Oksanen J, Blanchet G, Kindt R, Legendre P, O'Hara RG, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) vegan: Community Ecology Package. R package version 1.17-1. http://CRAN.R-project.org/package=vegan
- 530 48. Opravilova V, Hajek M (2006) The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: A case study from the Western Carpathians. Acta Protozoo 45: 191-204
- Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614-2625
- 535 50. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://CRAN.R-project.org
- 537 51. Robert P, Escoufier Y (1976) Unifying tool for linear multivariate statistical-methods 538 - rv-coefficient. J Royal Stat Soc Series C-Applied Statistics 25: 257-265
- 539 52. Rydin H, Jeglum JK (2006) The Biology of peatlands. In:The Biology of peatlands,
 540 Oxford University Press, pp. 354
- 541 53. Schönborn W (1963) Die Stratigraphie lebender Testaceen im *Sphagnetum* der Hochmoore. Limnologica 1: 315-321
- 543 54. Schönborn W (1965) Untersuchungen über die Zoochlorellen-Symbiose der 544 Hochmorr-Testacean. Limnologica 3: 173-176
- 545 55. Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241-258
- 547 56. Souto XC, Bolano JC, Gonzalez L, Reigosa MJ (2001) Allelopathic effects of tree 548 species on some soil microbial populations and herbaceous plants. Biol Planta 44: 549 269-275

- 550 57. Souto XC, Chiapusio G, Pellissier F (2000) Relationships between phenolics and soil microorganisms in spruce forests: Significance for natural regeneration. J Chem Ecol 26: 2025-2034
- 553 58. Ter Braak C, Simlauer P (1998) Canoco reference manual and user's guide to canoco for windows, software for canoco community ordination (version 4). In: Canoco reference manual and user's guide to canoco for windows, software for canoco community ordination (version 4), pp. 31–145
- 557 59. Tolonen K, Warner BG, Vasander H (1992) Ecology of Testaceans (Protozoa, Rhizopoda) in mires in Southern Finland. 1. Autoecology. Archiv Protist 142: 119-138
- 560 60. Utermölh H (1958) Zur vervollkommnung der quantative phytoplankton-methodik.
 561 Mitteilungen aus Institut Verhein Limnologie 9: 1-38
- Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in *Sphagnum*. Acta Bot Neerl 46: 117-130
- Warner BG (1987) Abundance and diversity of Testate Amoebae (Rhizopoda, Testacea) in *Sphagnum* peatlands in Southwestern Ontario, Canada. Archiv Protist 133: 173-189
- Warner BG, Asada T, Quinn NP (2007) Seasonal influences on the ecology of testate
 Amoebae (Protozoa) in a small *Sphagnum* peatland in Southern Ontario, Canada.
 Microb Ecol 54: 91-100
- 570 64. Yang J, Zhang WJ, Shen YF (2009) Relationships between Testate Amoebae 571 Assemblages (Protozoa) and Geographic Factors in Yunnan Plateau Lakes, China. J 572 Fresh Ecol 24: 437-443

574	Tables
575	
576	Table 1. Environmental variables measured in the "fen" and "bog" sampling areas in Le
577	Forbonnet mire (French Jura) (n = 12, average \pm S.E).
578	
579	Table 2. Non-parametric correlation matrix of measured environmental variables along the
580	"fen"/"bog" transition of Le Forbonnet mire.
581	
582	Table 3. RV-coefficients (below diagonal) and corresponding P-values (above diagonal)
583	among the six groups of variables used in the MFA of the Forbonnet peatland. Significant
584	coefficients appear in bold.
585	
586	Table 4. Summary of RDA on testate amoebae and environmental variables from Le
587	Forbonnet mire (France): fraction of variance explained and significance of individual
588	variables taken alone.
589	
590	Table 5. Summary RDA and variance partitioning on testate amoebae and environmental
591	variables data from Le Forbonnet mire (France).
592	

Figures

Figure 1. (a) The two primary axes of the 3-dimensional NMDS ordination of testate amoebae communities in the "bog" area from Le Forbonnet mire (France) (n = 18, final stress = 4.1). The solution represents 75% of the variability in the data, with axes 1, 2 and 3 representing respectively 43%, 18% and 13%. Samples are coded by sampling area with open symbols. (b) The two primary axes of the 3-dimensional NMDS ordination of testate amoebae communities in the "fen" area (n = 18, final stress = 2.4). The solution represents 84% of the variability in the data, with axes 1, 2 and 3 representing respectively 55%, 19% and 10%. Samples are coded by sampling area with filled symbols.

Figure 2. Distribution maps of total testate amoeba abundance and of dominant testate amoeba taxa in *Sphagnum fallax* from the two sampling areas in Le Forbonnet mire (France). A = upper (0-3cm) B = intermediate (3-6cm) and C = lower (6-9cm) segments. X and Y axes correspond to GPS data converted into Lambert 2 references. Dot sizes are directly proportional to the number of individuals per gram DW in the samples and are comparable among maps.

Figure 3. Multiple factor analysis of the three testate amoeba communities (Hellinger-transformed) and environmental (chemical, physical and phenolics) data sets from the Forbonnet peatland. Projection of the MFA axes 1 and 2 with the result of a hierarchical agglomerative clustering (grey lines), obtained by the Ward method on the Euclidean distance matrix between MFA site scores, showing two main groups of sampling plots (open symbols = "fen", filled symbols = "bog"). Sampling plots are indicated by F ("fen") or B ("bog") followed by a number.

Figure 4. Redundancy analyses biplots (axes 1 and 2) of testate amoeba data from Le Forbonnet mire (France) in upper (a), intermediate (b) and lower (c) *Sphagnum* segments, and the overall data set (d). Sampling areas are coded with open symbol for the "fen" area and with filled symbol for the "bog" area. Samples are indicated as follows: circles = upper segments, squares = intermediate segments, triangles = lower segments. F_phe : free phenolics; B_phe : bound phenolics; W-temp: water temperature; Alt: average altitude (microtopography) of the sampled plot; Kcorr: conductivity.

025	Supplementary Online Material
626	
627	Supplementary Figure 1. Location of the Forbonnet peatland with inset showing the location
628	of the sampling areas.
629	
630	Supplementary Figure 2. Vertical micro-distribution of selected testate amoeba taxa in the
631	two sampling areas (average \pm S.E) (circles: "bog" area; triangles: "fen" area). Asterisks
632	indicate significant differences between the sampling areas ($P < 0.05$). Different letters
633	indicate significant differences among <i>Sphagnum</i> sections ($P < 0.05$).