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This paper is concerned with a complete asymptotic analysis as E → 0 of the stationary Munk equation ∂xψ -E∆ 2 ψ = τ in a domain Ω ⊂ R 2 , supplemented with boundary conditions for ψ and ∂nψ. This equation is a simple model for the circulation of currents in closed basins, the variables x and y being respectively the longitude and the latitude. A crude analysis shows that as E → 0, the weak limit of ψ satisfies the so-called Sverdrup transport equation inside the domain, namely ∂xψ 0 = τ , while boundary layers appear in the vicinity of the boundary.

These boundary layers, which are the main center of interest of the present paper, exhibit several types of peculiar behaviour. First, the size of the boundary layer on the western and eastern boundary, which had already been computed by several authors, becomes formally very large as one approaches northern and southern portions of the boudary, i.e. pieces of the boundary on which the normal is vertical. This phenomenon is known as geostrophic degeneracy. In order to avoid such singular behaviour, previous studies imposed restrictive assumptions on the domain Ω and on the forcing term τ . Here, we prove that a superposition of two boundary layers occurs in the vicinity of such points: the classical western or eastern boundary layers, and some northern or southern boundary layers, whose mathematical derivation is completely new. The size of northern/southern boundary layers is much larger than the one of western boundary layers (E 1/4 vs. E 1/3 ). We explain in detail how the superposition takes place, depending on the geometry of the boundary.

Moreover, when the domain Ω is not connex in the x direction, ψ 0 is not continuous in Ω, and singular layers appear in order to correct its discontinuities. These singular layers are concentrated in the vicinity of horizontal lines, and therefore penetrate the interior of the domain Ω. Hence we exhibit some kind of boundary layer separation. However, we emphasize that we remain able to prove a convergence theorem, so that the singular layers somehow remain stable, in spite of the separation.

Eventually, the effect of boundary layers is non-local in several aspects. On the first hand, for algebraic reasons, the boundary layer equation is radically different on the west and east parts of the boundary. As a consequence, the Sverdrup equation is endowed with a Dirichlet condition on the East boundary, and no condition on the West boundary. Therefore western and eastern boundary layers have in fact an influence on the whole domain Ω, and not only near the boundary. On the second hand, the northern and southern boundary layer profiles obey a propagation equation, where the space variable x plays the role of time, and are therefore not local.

Introduction

The present paper is mainly concerned with mathematical methods investigating singular behaviours on the boundary of a bounded domain Ω, when the size of the boundary layer depends strongly on its localization, and more precisely when it becomes degenerate on some part of the boundary.

Such a situation has been depicted in many former works, but never really dealt with insofar as additional assumptions were often made to guarantee that boundary terms vanish in the vicinity of the singularity. This is the case for instance of our study [START_REF] Dalibard | Mathematical study of the β-plane model for rotating fluids in a thin layer[END_REF] of the β-plane model for rotating fluids in a thin layer where we suppose that the wind forcing vanishes at the equator. The same type of assumption was used in the paper [START_REF] Rousset | Asymptotic behavior of geophysical fluids in highly rotating balls[END_REF] of F. Rousset which investigates the behaviour of Ekman-Hartmann boundary layers on the sphere. This holds also true for the work of Desjardins and Grenier [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF] on Munk and Stommel layers where it is assumed that the Ekman pumping (which is directly related to the wind forcing) is zero in the vicinity of the Northern and Southern coasts. The difficulty was pointed out by D. Gérard-Varet and T. Paul in [START_REF] Gérard-Varet | Remarks on boundary layer expansions[END_REF].

We intend here to get rid of this non physical assumption on the forcing, and to obtain a mathematical description of the singular boundary layers. More generally, we would like to understand how to capture the effects of the geometry in such problems of singular perturbations on domains with possibly characteristic boundaries.

Munk boundary layers

The equation we will consider, the so-called Munk equation, can be written as follows when the domain Ω is simply connected:

(1.1)

∂ x ψ -E∆ 2 ψ = τ in Ω, ψ |∂Ω = 0, (n • ∇ψ) |∂Ω = 0.
This model comes from large-scale oceanography and is expected to provide a good approximation of the stream function ψ of oceanic currents, assuming that

• the motion of the (incompressible) fluid is purely two-dimensional Ω ⊂ R 2 (shallow-water approximation), • the wind forcing is integrated as a source term τ ∈ W 4,∞ ( Ω) (Ekman pumping), • the Coriolis parameter depends linearly on latitude (β-plane approximation), • nonlinear effects are negligible, • the Ekman pumping at the bottom is negligible.
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We refer to Chapter 5 for a derivation of the equation together with a discussion of the physical approximations involved. When Ω is not simply connected, the boundary conditions are slightly different. We refer to paragraph 1.2.3 for more details.

1.1.1. State of the art. Desjardins and Grenier studied in [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF] a timedependent and nonlinear version of (1.1). Their result implies in particular the following statement for the linear Munk equation:

Theorem 1.
Let Ω be a smooth domain, defined by (1.2) Ω := (x, y) ∈ R 2 , x W (y) < x < x E (y), y min < y < y max ,

where x E , x W ∈ C 2 (y min , y max ).

Assume that the wind forcing τ ∈ H s (Ω) vanishes identically in the vicinity of the North and of the South (A0) ∃λ > 0, τ (x, y) ≡ 0 if y ≤ y min + λ or y ≥ y max -λ .

Denote by u E = ∇ ⊥ ψ E any solution to the vorticity formulation of the 2D Stokes-Coriolis system

(1.3) E∂ t ∆ψ + ∂ x ψ -E∆ 2 ψ = τ, ψ |∂Ω = 0, (n • ∇ψ) |∂Ω = 0.
Then, for all N ∈ N, if s is sufficiently large, there exists

u N app = N i=0 E i/3 (u int i + u BL i )
such that u E -u N app L ∞ ((0,T ),L 2 (Ω)) ≤ CE (N -1)/6 . The main order term u int 0 = ∇ ⊥ ψ 0 is the weak limit of u E in L 2 as E → 0 and satisfies the Sverdrup relation (1.4) ∂ x ψ 0 = τ, ψ 0 |Γ E = 0, where Γ E is the East boundary

Γ E = {(x, y) ∈ ∂Ω, x = x E (y)} .
The boundary layers u BL i are located in a band of width E 1/3 in the vicinity of the East and West components of ∂Ω.

The approximate solution u app is computed starting from asymptotic expansions in terms of the parameter E.

• At main order in the interior of the domain, we get the Sverdrup relation

∂ x ψ 0 = τ .
We can then prescribe only one boundary condition, either on the Eastern coast or on the Western coast. • Since u int 0 does not vanish on the boundary, we then introduce boundary layer corrections, which are given by the balance between ∂ x ψ BL and E∆ 2 ψ BL . Because the space of admissible (localized) boundary corrections is of dimension 2 on the Western boundary, and of dimension 1 on the Eastern boundary, we can recover all the boundary conditions except ψ 0 |Γ E = 0, which is chosen as the boundary condition for the Sverdrup equation.

The proof relies then on a standard energy method. The assumption on τ guarantees that ψ 0 is smooth, and that the coefficients arising in the definition of the boundary layer terms are uniformly bounded, and small enough to be absorbed in the viscosity term. Desjardins and Grenier actually study a nonlinear version of (1.3), for which a smallness condition on τ is required to deal with the nonlinear convection term.

Boundary layer degeneracies.

Our main goal in this paper is to get rid of the assumption (A0) on the forcing τ , and to treat more general domains Ω (e.g. domains with islands, or which are not convex in the x direction). This problem related to singular boundary layers has already been studied (at the formal level) by De Ruijter [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF] for some simplified geometries involving typically rectangles.

The main difficulty to get rid of assumption (A0) is that the incompatibility between the formal limit equation and the boundary conditions

ψ |∂Ω = 0, (n • ∇ψ) |∂Ω = 0
is not of the same nature depending on the part of the boundary to be considered: at the North and at the South, the transport term is tangential to the boundary and therefore is not expected to be singular even in boundary layers.

Introducing boundary layer terms to restore the boundary conditions, we will find typically ∂ x ψ E,W -E∂ 4

x ψ E,W = 0 , on the lateral boundaries, and ∂ x ψ N,S -E∂ 4 y ψ N,S = 0 , on the horizontal boundaries. This implies in particular that western and eastern boundary layers should be of size E 1/3 while northern and southern boundary layers should be much larger, of size E 1/4 . Of course there are superposition zones, which have to be described rather precisely if we want to get an accurate approximation, and prove a rigorous convergence result. This is actually the first step towards the understanding of more complex geometries. Additional difficulties will be discussed in the next section.

1.1.3. Stability of the stationary Munk equation. Another important difference with [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF] comes from the fact that (1.1) is a stationary equation, so that classical energy methods ( [START_REF] Grenier | Oscillatory perturbations of the Navier-Stokes equations[END_REF][START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF]) are irrelevant.

Denote by ψ app the solution to the following approximate equation The stability estimates used in this paper rely on the use of weighted spaces as suggested by Bresch and Colin [START_REF] Bresch | Some remarks on the derivation of the Sverdrup relation[END_REF]. From the identities -Ω (∂ x δψ)e x δψ = 1 2 Ω (δψ) Assume that δτ can be decomposed into

δτ = δτ 1 + δτ 2 ,
with δτ 1 ∈ L 2 (Ω), δτ 2 ∈ H -2 (Ω). Then, using the Poincaré inequality,

Ω δτ δψe x ≤ C( δτ 1 L 2 δψ L 2 + δτ 2 H -2 ∆δψ L 2 ),
while

Ω e x ∆δψ ∂ x δψ ≤ C ∆δψ L 2 ∂ x δψ L 2 ≤ C ∆δψ 3/2 L 2 δψ 1/2 L 2 .
It comes finally, assuming that E

)

δψ 2 L 2 + E ∆δψ 2 L 2 ≤ C δτ 1 2 L 2 + δτ 2 2 H -2 E .
We then define some relevant notion of approximate solution.

Definition 1.1.1. A function ψ app ∈ H 2 (Ω) is an approximate solution to (1.1) if it satisfies the approximate equation (1.5) for some δτ ∈ H -2 (Ω) such that δτ = δτ 1 + δτ 2 with

(1.8) lim E→0 δτ 1 2 L 2 + E -1 δτ 2 2 H -2 ψ app 2 L 2 + E ∆ψ app 2 L 2 = 0 .
Plugging (1.8) in (1.7) we obtain

ψ -ψ app 2 L 2 + E ∆(ψ -ψ app ) 2 L 2 = o( ψ app 2 L 2 + E ∆ψ app 2 L 2 ) meaning that ψ app ∼ ψ.
By such a method, we exhibit the dominating phenomena in terms of their contribution to the energy balance. In particular, for the oceanic motion, we expect to justify the crucial role of boundary currents as they account for a macroscopic part of the energy.

In view of the energy estimate (1.7) and of the expected sizes of boundary layers (see (1.21) and (1.22) below), the idea is to prove that ψ app satisfies equation (1.5) with an error term δτ = δτ 1 + δτ 2 such that (1.9)

δτ 1 L 2 (Ω) = o(E 1/8 ), δτ 2 H -2 (Ω) = o(E 5/8 ).
Notice that the energy estimate (1.7) allows us to capture both types of boundary layers and the interior term, as we will explain in Theorem 2.

Definition 1.1.2. In the rest of the paper, we say that δτ = δτ 1 + δτ 2 is an admissible error term if it satisfies (1.9).

Our main result, Theorem 2, is the construction of an explicit approximate solution with an admissible error term in the sense of Definition 1.1.2.

Geometrical preliminaries

The goal of this section is to state the precise assumptions regarding the domain, under which we are able to derive a nice approximation for the Munk problem.

As we will see in the course of the proof, error estimates depend strongly on the geometry of the domain, and especially on the flatness of the boundary near horizontal parts.

We will therefore consider • the generic case, when the slope of the tangent vector vanishes polynomially; • a special case of flat boundary, for which the exponential decay is prescribed; • the case of a corner between the East/West boundary and the horizontal part (as considered by De Ruijter in [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF]). The specific assumptions in the case of corners will be considered separately in subsection 1.2.4, in an attempt to keep the presentation as simple as possible. Therefore the regularity and geometry assumptions detailed in subsections 1.2.1, 1.2.2, and 1.2.3 apply to the first two cases above.

1.2.1. Regularity and flatness assumptions. First of all we assume, without loss of generality, that Ω is bounded and connected 1 . We further require that (H1) the boundary is a compact C 4 manifold, described by a finite number of charts.

In particular, the perimeter L is finite, and the boundary of Ω can be parametrized by the arc-length s. If ∂Ω is connected, we will often write ∂Ω = {(x(s), y(s)) / 0 ≤ s ≤ L}; if ∂Ω has several connected components, such a representation holds on every connected component of ∂Ω. We further choose the orientation of the arclength in such a way that the local frame (t, n) with n the exterior normal is direct.

Furthermore, by the local inversion theorem, there exists δ > 0 such that any point (x, y) ∈ Ω at a distance z smaller than δ from ∂Ω has a unique projection on the boundary. In other words, on such a tube, the arc-length s and the distance to the boundary z form a nice system of coordinates.

We thus introduce some truncation function χ 0 ∈ C ∞ c ([0, +∞), [0, 1]) such that (1.10) Suppχ 0 ⊂ [0, δ) and χ 0 ≡ 1 on [0, δ/2] .

As mentioned in the previous heuristic study, we expect the boundary layers to be singular on the horizontal parts of the boundary. In order to understand the connection between both types of boundary layers and to get a nice approximation of the solution to the Munk problem, we therefore need precise information on the profile of the boundary near horizontal parts.

We assume that the horizontal part Γ N ∪ Γ S of the boundary consists in a finite number of intervals (possibly reduced to points where the tangent to the boundary 1 If Ω is not connected, since (1.1) is a local equation, we can perform our study on every connected component, and we therefore obtain a result on the whole domain Ω. We also introduce the following notation (see figure 1.1): let s 1 < s 2 < • • • < s k such that cos(θ(s i )) = 0 1 ≤ i ≤ k and for all i ∈ {1, • • • , k}, either cos(θ(s)) is identically zero or cos(θ(s)) does not vanish between s i and s i+1 . Throughout the article, we use the conventions s k+1 = s 1 , s 0 = s k . We further define some partition of unity (ρ i ) 1≤i≤k (1.11)

ρ i ∈ C ∞ c (∂Ω, [0, 1]), k i=1 ρ i (s) = 1, Supp ρ i ⊂]s i-1 , s i+1 [.
We denote by Γ E , Γ W the East and West boundaries of the domain:

Γ E := {s ∈ ∂Ω, cos θ(s) > 0}, Γ W := {s ∈ ∂Ω, cos θ(s) < 0}.

Eventually, let (1.12)

I + := {i ∈ {1, • • • , k}, s i ∈ ∂Γ E }.
The profile assumption states then as follows: for any s i , for σ = ± such that cos θ(s) = 0 on [s i , s iσ1 ], (i) either there exists n ≥ 1 and C = 0 (depending on i and σ) such that as s → s i , s ∈ (s i , s iσ1 ), (H2(i))

cos θ(s) ∼ C n! (s -s i ) n ,
and θ (l) (s) ∼ C (n -l)! (s -s i ) n-l for 1 ≤ l ≤ inf(3, n);

(ii) or there exists C = 0 and α > 0 (also depending on i and σ) such that as s → s i , s ∈ (s i , s iσ1 ), (H2(ii)) cos θ(s) ∼ Ce -α/|s-si| , and θ (s) ∼ Cα (s -s i ) 2 e -α/|s-si| .

The first situation corresponds to the generic case when the cancellation is of finite order. The second one is an example of infinite order cancellation: in that case, which is important since it is the archetype of C ∞ boundary with flat parts, we prescribe the exponential decay because there is no general formula for error estimates. Notice that we do not require the behaviour of θ to be the same on both sides of s i , provided the function θ belongs to C 3 (∂Ω), so that (x(s), y(s)) ∈ C 4 (∂Ω).

This profile assumption will essentially guarantee that, up to a small truncation, we will be able to lift boundary conditions either by East/West boundary layers, or by North/South boundary layers at any point of the boundary. This is therefore the main point to get rid of assumption (A0). the x direction, we will see that the asymptotic picture is much more complex, especially because the solution ψ 0 to the Sverdrup equation (1.4) is discontinuous as soon as ΓE has more than two connected components (notice that if cos θ has an isolated point of cancellation in the interior of ΓE , so that Γ E has two connected components but ΓE is connected, then there is no discontinuity in ψ 0 .)

Singularity lines. In the case when the domain Ω is not convex in

We therefore introduce the lines Σ ij , across which the main order term will be discontinuous, which will give rise to boundary layer singularities: we set

ΓE := M j=1 Γ j ,
where Γ 1 , • • • , Γ M are the closed connected components of ΓE . For j ∈ {1, • • • , M }, we set A j := {(x, y) ∈ Ω, ∃x ∈ R, (x , y) ∈ Γ j and (tx + (1 -t)x , y) ∈ Ω ∀t ∈]0, 1[} .

We have clearly

Ω = M j=1 A j .
We also define (see Figure 1.2, and also Figures 3.2 and 3.3 in [20]) (1.13) Σ ij := Āi ∩ Āj for i = j, Σ := i,j

Σ ij .
It can be easily checked that every set Σ ij is either empty or a horizontal line with ordinate y ij such that there exist x i , x j ∈ R with (x i , y ij ) ∈ Γ i , (x j , y ij ) ∈ Γ j , and either (x i , y ij ) ∈ ∂Γ i or (x j , y ij ) ∈ ∂Γ j . Eventually, we parametrize every set Γ j by a graph x j E , namely Γ j = {(x j E (y), y), y j min ≤ y ≤ y j max }. We will therefore need to build singular correctors which are not localized in the vicinity of the boundary. This construction is rather technical, and for the sake of simplicity, we will use two additional assumptions, which are quite general:

y=y 0 t 1 t 2
The set {s, y(s)=y 0 and cos θ(s)=0}={t 1 }U{t 2 } is not connected. is a connected set (see Figure 1.3). (H4) Let s j ∈ {s 1 , • • • , s k } be a boundary point such that

• s j ∈ ∂Γ E ∩ ∂Γ W ;
• and Ω is not convex in x in a neighbourhood of (x(s j ), y(s j )). Then cos θ(s) = O(|s -s j | 4 ) for s → s j .

Assumption (H4) will be discussed in Remark 3.4.7.

Domains with islands.

When the domain Ω is not simply connected, the boundary conditions on ∂Ω are slightly different. This case has been studied in particular in [START_REF] Bresch | A corrector for the Sverdrup solution for a domain with islands[END_REF], where the authors investigate the weak limit of the Munk equation in a domain with islands.

Let Ω 1 , • • • Ω K be C 4 simply connected domains of R 2 , such that • Ω i Ω 1 for i ≥ 2; • Ω i ∩ Ω j = ∅ for 2 ≤ i < j ≤ K; • Ω := Ω 1 \ ∪ i≥2 Ω i satisfies (H1)-(H4). Let C i = ∂Ω i for i ≥ 1.
Notice that of course, the presence of islands gives rise to discontinuity lines Σ as described in the preceding paragraph.

Then the Munk equation can be written as

(1.14) ∂ x ψ -E∆ 2 ψ = τ in Ω, ∂ n ψ = 0 on ∂Ω, ψ |C1 = 0, ψ |Ci = c i for i ≥ 2.
The constants c i are different from zero in general: indeed, the condition u•n |∂Ω = 0, where u = ∇ ⊥ ψ is the current velocity, becomes ψ = constant on every connected component of ∂Ω. However, the constants are not required to be all equal. In fact, the values of c 2 , • • • , c K are dictated by compatibility conditions, namely

(1.15) ∀j ≥ 2, E Cj ∂ n ∆ψ - Cj T ⊥ • n = 0,
where τ = curl T . We explain in Appendix A where condition (1.15) comes from. The constants c 2 , • • • , c K are then uniquely determined, as shows the following

Lemma 1.2.1. • Following [2], define ψ 1 , • • • ψ K by (1.16) ∂ x ψ 1 -E∆ 2 ψ 1 = τ, ψ 1|∂Ω = 0, ∂ n ψ 1|∂Ω = 0,
and for i ≥ 2,

(1.17)

∂ x ψ i -E∆ 2 ψ i = 0, ∂ n ψ i|∂Ω = 0, ψ i|Cj = δ ij ∀j ∈ {1, • • • , K}.
Then ψ satisfies equation (1.14) for some constants c 1 , • • • c K if and only if

(1.18) ψ = ψ 1 + i≥2 c i ψ i .
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• Define the matrix M E and the vector D E by

M E := E Ci ∂ n ∆ψ j 2≤i,j≤K
,

D E := -E Cj ∂ n ∆ψ 1 + Cj T ⊥ • n 2≤j≤K .
Then the following facts hold: 

• M E is invertible; • ψ is a solution of (1.
E c = D E .
The proof of Lemma 1.2.1 is postponed to Appendix A.

• The formula (1.18) shows that it is sufficient to understand the asymptotic behaviour of the functions ψ i . Indeed, the coefficients c i (which depend on E) are obtained as the solutions of a linear system involving the functions ψ i . It is proved in [START_REF] Bresch | A corrector for the Sverdrup solution for a domain with islands[END_REF] that for any domain V ⊂ Ω such that V ∩ Σ = ∅, where Σ is defined by (1.13)

ψ 1 ψ 0 in L 2 (Ω), ψ 1 → ψ 0 in L 2 (V ),
where ψ 0 is the solution of the Sverdrup equation (1.4), and

ψ i 1 Bi in L 2 (Ω), ψ i → 1 Bi in L 2 (V ),
where B i is defined by

B i := (x, y) ∈ Ω, ∃x > x, (x , y) ∈ C i ∩ ΓE and (tx + (1 -t)x , y) ∈ Ω ∀t ∈ (0, 1)} .
This result is in fact sufficient to compute the asymptotic limit of the coefficients c i , which converge towards some constants ci . We refer to section 2.5 for more details. We will go one step further in the present paper, since we are able to compute an asymptotic development for the functions ψ i , and therefore give a rate of convergence for the coefficients c i and the function ψ.

Periodic domains and domains with corners.

The case when the connection between the horizontal part of the boundary and the East or West part is a corner, which is typically the case of rectangles considered by De Ruijter, is actually easier to deal with, because there is no superposition zone for the boundary layers.

This corresponds to have a parametrization of the boundary by a function which is piecewise C 4 , with some jumps for the angle θ(s)

cos θ(s) ≡ 0 on Γ N ∪ Γ S , inf Γ E ∪Γ W | cos θ| > 0 .
We need only to suppose that angles in West corners are obtuse.

Our arguments also allow us to investigate domains of the type Ω = T × (y -, y + ), where T = R/Z. The interest for such domains stems from the analysis of circumpolar currents: indeed, realistic ocean basins consist of a part of a spherical surface, and for some latitudes y ∈]y - c , y + c [ there may be no continent. The latter 

(1.19) Ω = Ω circ ∪ Σ + c ∪ Σ - c ∪ Ω + c ∪ Ω - c
, where (see Figure 1.5) We will prove the existence of approximate solutions in the form (1.20)

ψ app = ψ int + ψ E,W + ψ N,S + ψ Σ
where • ψ int is a regularization of ψ 0 (or of ψ 0 + K i=2 ci 1 Bi when the domain Ω has islands), and ψ 0 is the solution to the Sverdrup equation (1.4). Let us emphasize that this regularization includes boundary layer correctors located in horizontal bands of width E 1/4 in the vicinity of every singular line Σ ij . Furthermore,

ψ int -ψ 0 L 2 = o( ψ int L 2 ); • ψ E,W
groups together eastern and western boundary terms, which decay on a distance of order E 1/3 ; • ψ N,S is the contribution of southern and northern boundary layers terms, which decay on a distance of order E 1/4 ; • and ψ Σ is an additional boundary layer term, located in horizontal bands of width E 1/4 in the vicinity of every singular line Σ ij .

Notice that ψ int , ψ E,W , ψ N,S and ψ Σ do not have the same sizes in L 2 and H 2 : typically, if the boundary condition to be lifted is of order 1, the size in L 2 of a boundary layer type term is λ -1/2 , where λ -1 is the size of the boundary layer, while its size in H 2 is λ 3/2 . As a consequence, we roughly expect that

(1.21) ψ int L 2 ∼1 ψ N,S L 2 ∼ ψ Σ L 2 ∼E 1/8 ψ E,W L 2 ∼E 1/6 , while (1.22) ψ Σ H 2 ∼ ψ N,S H 2 ∼ ψ int H 2 ∼E -3/8 ψ E,W H 2 ∼E -1/2
, Our result is the following;

Theorem 2. Assume that the domain Ω ⊂ R 2 satisfies assumptions (H1)-(H4). Consider a non trivial forcing τ = curl T ∈ W 4,∞ (Ω), and let ψ be the solution of the Munk equation (1.1) (or (1.14)- (1.15) when Ω has islands).

Then there exists a function ψ app of the form

ψ app = ψ int + ψ E,W + ψ N,S + ψ Σ
satisfying the approximate equation (1.5) with an admissible remainder in the sense of (1.9). More specifically, ψ app is a good approximation of ψ, in the following sense: let V ⊂ Ω be a non-empty open set. Then, for a generic forcing term τ , the following properties hold:

• Approximation of the interior term: if V Ω is such that V ∩ Σ = ∅, then ψ -ψ 0 L 2 (V ) = o( ψ 0 L 2 (V ) ); • Approximation of the Σ boundary layers: if V Ω is such that V ∩Σ ij = ∅ for some i = j ∈ {1, • • • , M }, then ψ -(ψ int + ψ Σ ) L 2 (V ) = o( ψ Σ L 2 (V ) ), ψ -(ψ int + ψ Σ ) H 2 (V ) = o( ψ int + ψ Σ H 2 (V ) ).
• Approximation of the North and South boundary layers

: if V ∩ ΓN,S = ∅ and V ∩ Γ E,W = ∅, V ∩ Σ = ∅, then ψ -(ψ 0 + ψ N,S ) L 2 (V ) = o( ψ N,S L 2 (V ) ), ψ -ψ N,S H 2 (V ) = o( ψ N,S H 2 (V ) ).
• Approximation of the West boundary layer: if

V ∩Γ W = ∅ and V ∩Γ N,S = ∅, V ∩ Σ = ∅, V ∩ Γ E = ∅, ψ -ψ W H 2 (V ) = o( ψ W H 2 (V ) ).
In the above Theorem, the term "generic forcing" is necessarily unprecise at this stage. It merely ensures that the terms constructed in the approximate solution are not identically zero. We will give a more precise assumption in the next chapter (see Definition 2.4.1). The interior of Γ N,S , namely ΓN,S , is to be understood through the induced topology on ∂Ω. If the forcing is generic, some rough estimates on the sizes of the different terms are given in the table page 105.

Remark 1.3.1. Note that the present result does not say anything about the validity of East boundary correctors. Indeed, their amplitude is typically O(E 1/3 ) on the zones where cos θ is bounded away from zero, and therefore they are too small to be captured by the energy estimate. We will comment more on this point 1. INTRODUCTION in section 3.2 (see Remark 3.2.3). Note however that in non-degenerate settings, a solution can be built at any order (see [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF]), and therefore the energy estimates may capture the east corrector in this case. Moreover, the east boundary layer equation is somewhat indirectly justified by the fact that the interior term vanishes on the east boundary.

The construction of an approximate solution relies on a local asymptotic expansion of the form ψ ψ 0 + ψ BL (s, λ(s)z), where ψ 0 is the interior term, which solves the Sverdrup equation (1.4), s is the arc-length, z is the distance to the boundary, and λ(s)

1 is the inverse of the boundary layer size. The boundary layer term ψ BL (s, Z) is also assumed to vanish as Z → ∞. Plugging this expansion into equation (1.1), we find an equation for ψ BL , in which both ψ BL and λ are unknown. The idea is then to choose λ in a clever way, depending on the zone of the boundary under consideration, and then to solve the corresponding equation on ψ BL . As a consequence, different equations for the boundary layer are obtained on different zones of the boundary, and a matching between these zones must be performed: this is the difficult part of the mathematical analysis, which is absent from [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF]. Eventually, once the approximate solution is defined, we check that the corresponding error terms are all admissible in the sense of Definition 1.1.2.

Remark 1.3.2 (About the geometric assumptions). The geometric assumptions are mostly used in the zones of transition between the different types of boundary layers. Note that they may not all be necessary, but we found no systematic way of dealing with all possible cases simultaneously.

• (H1) can be weakened since we are able to deal with corners (corners involving only East or West boundaries are handled by a simple truncation while corners with horizontal boundaries will be discussed in chapter 3); • One of the main features of our construction lies in the precise description of the connection between boundary layers. In particular, we prove that the sizes and profiles of the North/South and East/West boundary layers are unrelated; the transition between both types of boundary layers occurs through their amplitude only. Notice that this result is rather unexpected: indeed, most works on boundary layers (see for instance [START_REF] Gérard-Varet | Remarks on boundary layer expansions[END_REF]) assume that an asymptotic expansion of the form

ψ ∼ ψ int + ψ BL (s, λ(s)z)
holds, where the size of the boundary layer, λ -1 , is defined on the whole boundary and is continuous. Here, we exhibit a different type of asymptotic expansion, which shows that a superposition of two types of boundary layers occurs on the transition zone. Also, on this transition zone, the ratio between the sizes of the two boundary layers is very large, so that the asymptotic expansion above cannot hold.

• The analysis we present in this paper can be extended without difficulty to very general anisotropic degenerate elliptic equations, in particular to the convectiondiffusion equation

∂ x ψ -E∆ψ = τ
which has been studied for special domains by Eckhaus and de Jager in [START_REF] Eckhaus | Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type[END_REF], followed by Grasman in [START_REF] Grasman | On the birth of boundary layers[END_REF], and more recently by Jung and Temam [START_REF] Jung | Convection-diffusion equations in a circle : the compatible case[END_REF]. Note that in the case of the convection-diffusion equation, the maximum principle (which does not hold anymore in our case) can be used to prove convergence in L ∞ . In the paper [START_REF] Eckhaus | Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type[END_REF], the authors exhibit parabolic boundary layers on the North and South boundaries, but only treat the case when the domain Ω is a rectangle, which turns out to be easier, as explained in the next chapter.

Note that the tools we develop in the present paper allow to consider more general geometries, for which -there is a continuous transition between lateral and horizontal boundaries, -there are singular interfaces Σ ij , and even islands.

1.3.2. Periodic and rectangle cases. Our arguments also allow to consider the cases when the domain Ω is a rectangle (x -, x + ) × (y -, y + ) or an x-periodic domain T × (y -, y + ), which are in fact much less involved than the case of smooth domains.

In the case of a rectangle, the approximate solution is given by (1.23) ψ app = ψ 0 t + ψ E,W + ψ N,S , exactly as in the case of a smooth domain. It turns out that the interaction between east/west boundary layers and north/south boundary layers in the corners is rather simple.

In the periodic case, the definition of approximate solution has to be changed a little bit because the circumpolar current ψ circ (see definition below) is generically very large in all norms, so that comparing the size of the error with ψ circ does not give any precise information on the asymptotic expansion of the solution ψ. Moreover, the weight exp(x) (or, more generally, any increasing function of x whose derivatives are bounded from below) cannot be used in the energy estimates, since only periodic weights are allowed. Therefore the energy estimate (1.7) for equation (1.6) becomes (1.24) E ∆δψ L 2 (T×(y-,y+)) ≤ δτ H -2 (T×(y-,y+)) .

We therefore replace Definition 1.1.1 by the following:

Definition 1.3.4. A function ψ app ∈ H 2 (T × (y -, y + )
) is an approximate solution to (1.1) if it satisfies the approximate equation (1.5) 

for some δτ ∈ H -2 (T × 1. INTRODUCTION (y -, y + )) with (1.25) lim E→0 δτ H -2 E ∆(ψ app -ψ circ ) L 2 = 0 .
In this case, the approximate solution is defined by (1.26)

ψ app = ψ circ + ψ 0 per + ψ BL N,S
where

• ψ circ = ψ circ (y)
is the circumpolar current, due to the average forcing by the wind, namely

-E∂ 4 y ψ circ = τ (y), y ∈ (y -, y + ), ψ circ |y=y± = 0, ∂ y ψ circ |y=y ± c = 0,
where f := T f for any periodic function f . • ψ 0 per is the classical Sverdrup current in Ω circ , defined by

∂ x ψ 0 per (x, y) = τ (x, y) -τ (y), x ∈ T, y ∈ (y -, y + ),
with ψ 0 per (y) = 0. • ψ BL N,S are periodic North and South boundary layers, whose definition differ slightly from usual North and South boundary layers.

We then have the following results: Proposition 1.3.5.

(1) Assume that Ω = (x -, x + ) × (y -, y + ) and that τ ∈ W 4,∞ (Ω). Then ψ app defined by (1.23) satisfies (1.5) with an admissible remainder in the sense of (1.9), and is therefore an approximate solution in the sense of Definition 1.1.1.

(2) Assume that Ω = T × (y -, y + ) and that τ ∈ H s (Ω) for s sufficiently large.

Then ψ app defined by (1.26) satisfies (1.5) with a remainder δτ satisfying

δτ H -2 = O(E),
so that for generic forcing τ ,

ψ -(ψ circ + ψ BL N,S ) H 2 = o( ψ BL N,S H 2 ).
In particular, ψ app is an approximate solution in the sense of Definition 1.3.4.

Remark 1.3.6. Notice that because of the lack of an L 2 estimate, the Sverdrup part of the solution in the periodic case is not captured by the energy estimate. However, if τ is sufficiently smooth, the construction can be iterated and an approximate solution can be built at any order, so that the existence of every term in the expansion can be justified. Indeed, there is no degeneracy in the problem, and therefore no singularity. The construction of North and South boundary layers only costs a finite, quantifiable number of derivatives on τ . 1.3.3. Outline of the paper. Since the proof of Theorem 2 is very technical, we have chosen to separate as much as possible the construction of ψ app and the proof of convergence. Therefore the organization of the paper is the following.

In Chapter 2, we expose the main lines of the construction of the boundary layer type terms, namely ψ E,W , ψ N,S and ψ Σ , without going into the technicalities. An important point is that, while the East and West boundary layers ψ E,W are defined by some local operator, ψ N,S and ψ Σ are obtained as the solutions of some parabolic equations, which accounts for the terminology of parabolic boundary layers used by De Ruijter in his book [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF]: "when the southern boundary of the continent A coincides with a characteristic the first approximation in the free shear layer is not only dependent on the matching conditions but also on the initial condition at the rim of the parabolic boundary layer. In this way the information about the processes along the southern coast of A is reflected in the interior of the basin. "

In Chapter 3, we give all the necessary details for the construction insisting on the connection between the different types of boundary layers, and we estimate the sizes of the four terms defining ψ app . Even though this part can seem essentially technical, there are two important features of the construction to be noted. The first one is that the connection between boundary layers has to be understood as a superposition: amplitudes are matched, but not profiles. The second ingredient is that the order for the construction of the different correctors is prescribed and this has something to do with the disymmetry between East and West: the construction is essentially Westwards, as are the transport by the Sverdrup equation and the diffusion in the parabolic layers. We also explain how rectangular or periodic domains can be handled.

Eventually, in Chapter 4, we prove the estimate on the error term (1.9), which entails that ψ app is an approximate solution. Moreover, as a very large number of notations are introduced throughout the paper, an index of notations is available after the Appendix. We also included a table summarizing the sizes of the different parameters and terms.

CHAPTER 2

Multiscale analysis

Searching as usual an approximate solution to the Munk equation (1.1)

∂ x ψ -E∆ 2 ψ = τ in the form ψ app = ψ 0 + ψ BL if Ω is simply connected (no islands),
and

ψ app = ψ 0 + K i=2 ci 1 Bi + ψ BL if Ω has islands,
with ψ 0 satisfying the Sverdrup relation

∂ x ψ 0 = τ in Ω, ψ 0
|Γ E = 0, we see that both ψ 0 and ψ BL present singularities near the North and South boundaries of the domain, i.e. as cos θ vanishes, as well as on the interfaces Σ ij .

• First, the main term of the approximate solution, ψ 0 , is singular near all smooth "North-East" and "South-East corners". More precisely, combining the integral definition of ψ 0 together with equivalents for the coordinates of boundary points given in Appendix B, we see that the y derivatives of ψ 0 explode near such corners. • Moreover, as we explained in paragraph 1.1.1, the size of the boundary layer becomes much larger as cos θ → 0, going from E 1/3 to E 1/4 . This also creates strong singularities in the boundary layer terms, which are completely independent from the singularity described above. In fact, there is a small zone in which both boundary layers coexist and are related to one another through their amplitude. • Finally, for complex domains, i.e. for domains where the closure of the East boundary ΓE is not connected, the solution of the interior problem ψ 0 has discontinuities across the horizontal lines Σ ij . These discontinuities gives rise to a "boundary layer singularity", which is apparented to the North and South boundary terms, the size of which is therefore E 1/4 . Because of these three types of singularities, the construction of the solution is quite technical. We therefore start with a brief description of all kinds of boundary type terms (see Figure 2.1).

Local coordinates and the boundary layer equation

As usual in linear singular perturbation problems, we build boundary layer correctors as solutions to the homogeneous linear equation 

ψ ≡ ψ BL (s, λz) with ∂ z ψ BL = λ∂ Z ψ BL ∂ s ψ BL ψ BL → 0 as Z → ∞,
and lifting boundary conditions

ψ BL (s, 0) = -ψ int (s, 0), ∂ Z ψ BL (s, 0) = -∂ n ψ int (s, 0).
Note that the parameter λ 1 is expected to measure the inverse size of the boundary layer, it can therefore depend on s.

It is then natural to rewrite the homogeneous Munk equation in terms of the local coordinates (z, s). We have by definition of θ, s and z,

(2.2)      ∂x ∂z ∂x ∂s ∂y ∂z ∂y ∂s      = -cos θ (1 + zθ ) sin θ -sin θ -(1 + zθ ) cos θ so that      ∂z ∂x ∂z ∂y ∂s ∂x ∂s ∂y      = -cos θ -sin θ (1 + zθ ) -1 sin θ -(1 + zθ ) -1 cos θ .
We therefore deduce that the jacobian of the change of variables (x, y) → (z, s) is equal to (1 + zθ ) -1 . Furthermore,

∂ x ψ BL = -cos θλ∂ Z ψ BL + sin θ 1 + λ -1 Zθ ∂ s ψ BL + λ λ Z∂ Z ψ BL .
On most part of the boundary the second term is negligible compared to the first one. Nevertheless we see immediately that on horizontal parts the first term is zero, so that we have to keep the second one. Since λ 1, we approximate the jacobian term (1 + λ -1 Zθ ) -1 by 1.

Similar computations allow to express the bilaplacian in terms of the local coordinates (which involves more or less twenty terms). However in the boundary layers, we expect that the leading order term is the fourth derivative with respect to z

∆ 2 ψ BL = λ 4 ∂ 4 Z ψ BL + O(λ 3
). We will thus consider only this term and check a posteriori in Chapter 4 that the contribution of other terms is indeed negligible. Note that, as we want to estimate the H -2 norm of the remainder, we will only need to express the laplacian (rather than the bilaplacian) in local coordinates.

We will therefore define boundary layer correctors as (approximate) solutions to the equation

(2.3) -λ cos θ∂ Z ψ BL + sin θ ∂ s ψ BL + λ λ Z∂ Z ψ BL -Eλ 4 ∂ 4 Z ψ BL = 0.
This equation remaining still complicated, we will actually consider two regimes depending on the precise localization on the boundary. For each one of these regimes, we will neglect one of the first two terms in (2.3) (i.e. part of the ∂ x derivative), so that the size of λ as well as the profile of ψ BL will be different. Of course we will need to check a posteriori that the term which has been neglected can be dealt with as a remainder in the energy estimate.

East and West boundary layers

In this section, we construct the boundary layers on the lateral sides of the domain. We retrieve rigorously the result announced in the introduction, namely the intensification of Western boundary currents and the dissymetry between the East and West coasts.

The scaled equation.

Along the East and West coasts of the domain, on intervals on which cos θ remains bounded away from zero, it can be expected that the main terms in the boundary layer equation (2.3) are λ cos θ∂ Z f (s, λz) and Eλ 4 ∂ 4 Z f (s, λz). Hence we take λ such that (2.4)

λ E,W = | cos θ| E 1/3
, and f such that

(2.5) ∂ 4 Z f = -sign(cos(θ))∂ Z f.
We recall that Z is the rescaled boundary layer variable (Z = λz), so that Z ∈ (0, ∞).

We look for solutions of the above equation which decay as Z → ∞. Consequently, the dimension of the vector space of solutions of the simplified boundary layer equation (2.5) depends on the sign of cos(θ):

• If cos θ > 0 (East coast), decaying solutions of equation (2.5) are of the form f (s, Z) = A(s) exp(-Z)

• If cos θ < 0 (West coast), decaying solutions of equation (2.5) are of the form

f (s, Z) = A + (s) exp(-e iπ/3 Z) + A -(s) exp(-e -iπ/3 Z).
Notice that we retrieve the dissymetry between the East and West coasts: indeed, only one boundary condition can be lifted on the East boundary, whereas two boundary conditions (namely, the traces of ψ 0 and ∂ n ψ 0 ) can be lifted on the West boundary. As a consequence, ψ 0 must vanish at first order on the East coast, so that the role of ψ BL on Γ E is merely to correct the trace of ∂ n ψ 0 . Note that, in order that the trace and the normal derivative of ψ 0 + ψ BL are exactly zero on Γ E , we will actually need an additional corrector, which is built in the next chapter.

In first approximation, the boundary layer terms on the East and West coasts, denoted respectively by ψ E and ψ W , are thus defined by

ψ E (s, Z) = A(s) exp(-Z), ψ W (s, Z) = ± A ± (s) exp(-e ±iπ/3 Z),
where the coefficients A, A + , A -ensure that the trace and the normal derivative of ψ 0 (s, z) + ψ BL (s, λ E,W z) vanish at main order on the East and West coasts. This leads to

A(s) = λ -1 E ∂ n ψ 0 |∂Ω (s), (2.6) A + (s) A -(s) = 1 1 λ W e iπ/3 λ W e -iπ/3 -1 -ψ 0 |∂Ω (s) ∂ n ψ 0 |∂Ω (s) = 1 √ 3 e iπ/6 -iλ -1 W e -iπ/6 iλ -1 W -ψ 0 |∂Ω (s) ∂ n ψ 0 |∂Ω (s) (2.7) 
Let us emphasize that the precise value of A on East boundaries is in fact irrelevant in energy estimates, since equation (2.6) implies that A = O(E 1/3 ) on zones where cos θ does not vanish. Therefore the East boundary layer itself is not captured by energy estimates. But its incidence on the interior term, through the fact that ψ 0 |Γ E = 0, is clearly seen in the L2 estimate.

Domain of validity.

Simplifying (2.3) into (2.5), we have neglected the terms λ λ -1 Z∂ Z f and ∂ s f . As f is an exponential profile, the term corresponding to λ λ 

s + i := sup s ∈ s i , s i + s i+1 2 , E 1/3 |θ | | cos θ| -7/3 ≥ 1 , s - i+1 = inf s ∈ s i + s i+1 2 , s i+1 , E 1/3 |θ | | cos θ| -7/3 ≥ 1 .
Notice that s + i , s - i+1 depend on E and are well-defined as long as θ ∈ C 1 ([0, L]). By definition,

E 1/3 |θ | | cos θ| -7/3 < 1 ∀s ∈ (s + i , s - i+1
), and it is easily proved that cos(θ(s ± i )) vanish as E → 0, so that lim

E→0 s + i = s i , lim E→0 s - i+1 = s i+1 .
Remark 2.2.1. Notice that (2.8) is not satisfied in the vicinity of s + i , s - i+1 . Moreover, the derivatives of ψ 0 |∂Ω and ∂ n ψ 0 |∂Ω with respect to s may become very large as s approaches s i and s i+1 . Chapter 4 is devoted to the estimation of the corresponding error terms and to the proof of their admissibility.

North and South boundary layers

In this section, we construct the boundary layer terms near the intervals where cos θ vanishes. Notice that these intervals may in fact be reduced to single points. On the horizontal parts of the boundary, we get a parabolic equation of order 4 with constant coefficients, as obtained by De Ruijter in [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF]. However to account for the part of the boundary which is "almost horizontal" we will need to consider a more complicated equation with variable coefficients.

2.3.1. The scaled equation. We consider in this section an interval (s i , s i+1 ) on which cos θ is identically zero and sin θ ≡ -1 (South boundary), so that equation (2.3) becomes (2.9)

∂ s f + λ λ Z∂ Z f + Eλ 4 ∂ 4 Z f = 0.
As in section 2.2, we have to choose λ and f so that the above equation is satisfied. The simplest choice is to take

(2.10) λ N,S := E -1/4
so that λ = 0, and the boundary layer equation becomes a diffusion-like equation, with the arc-length s playing the role of the time variable. Note that such degenerate parabolic boundary layers have been exhibited in [START_REF] Eckhaus | Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type[END_REF] for instance. This raises several questions:

• What is the direction of propagation of "time" in (2.9)? In other words, what is the initial data for (2.9)? • Is equation (2.9) well-posed?

• What is the domain of definition (in s) of the South boundary layer term?

• How are the South, East and West boundary layers connected? We will prove in this section that equations of the type Let us also recall that the domain of validity of the West and East boundary layer terms does not reach the zone where cos θ = 0 (see (2.8)). As a consequence, the South boundary layer term must be defined for s ∈ (σ - i , s i ) and s ∈ (s i+1 , σ + i+1 ) where the arc-lengths σ - i , σ + i+1 will be defined later on and should satisfy (see Figure 2.2)

∂ s f + ∂ 4 Z f = 0, s ∈ (0, T ), Z > 0, f |s=0 = f in f |Z=0 = f 0 , ∂ Z f |Z=0 = f 1 , with f in ∈ L 2 (0, ∞), f 0 , f 1 ∈ W 1,∞ (0, T ),
σ - i < s - i , σ + i+1 > σ + i+1
. This requires to slightly modify the boundary layer equation. From now on, we define the South boundary layer term ψ S as the solution of (2.11)

∂ s ψ S -E -1/4 cos θ sin θ ∂ Z ψ S - 1 sin θ ∂ 4 Z ψ S = 0, s > σ - i , Z > 0, ψ S|s=σ - i = 0, ψ S|Z=0 = Ψ 0 , ∂ Z ψ S|Z=0 = Ψ 1 ,
with Ψ 0 , Ψ 1 to be defined later on (see (2.14)). Notice that we choose λ N,S = E -1/4 even in the zones where cos θ = 0, i.e. outside the interval (s i , s i+1 ).

Study of the boundary layer equation (2.11):

In this paragraph, we give a well-posedness result for equation (2.12)

∂ s f + γ(s)∂ Z f + µ(s)∂ 4 Z f = 0, s ∈ (0, T ), Z > 0, f |s=0 = f in , f |Z=0 = f 0 , ∂ Z f |Z=0 = f 1 .
We first note that, up to lifting the boundary conditions, we are brought back to the study of the same parabolic equation with homogeneous boundary conditions and with a source term: indeed f is a solution of (2.12) if and only if

g(s, Z) := f (s, Z) -f 0 (s)(Z + 1) exp(-Z) -f 1 (s)Z exp(-Z) is a solution of ∂ s g + γ(s)∂ Z g + µ(s)∂ 4 Z g = S(s, Z), s ∈ (0, T ), Z > 0, g |s=0 = g in , g |Z=0 = 0, ∂ Z g |Z=0 = 0,
where

g in := f in -f 0 (0)(Z + 1) exp(-Z) -f 1 (0)Z exp(-Z) and S(s, Z) := -f 0 (s)(Z + 1) exp(-Z) -f 1 (s)Z exp(-Z) +γ(s)f 0 (s)Z exp(-Z) -γ(s)f 1 (s)(1 -Z) exp(-Z) -µ(s)f 0 (s)(Z -3) exp(-Z) -µ(s)f 1 (s)(Z -4) exp(-Z).
Our precise result is then the following:

Lemma 2.3.1. Let T > 0, and let µ ∈ L ∞ (0, T ), γ ∈ L ∞ (0, T ), f 0 , f 1 ∈ C 1 ([0, T ]), g in ∈ L 2 (0, ∞), and S ∈ L 1 ((0, T ), L 2 (R + )).
Assume that there exists µ 0 > 0 such that µ(s) ≥ µ 0 for a.e. s ∈ (0, T ).

Then the equation (2.13)

∂ s g + γ(s)∂ Z g + µ(s)∂ 4 Z g = S(s, Z), s ∈ (0, T ), Z > 0, g |s=0 = g in , g |Z=0 = 0, ∂ Z g |Z=0 = 0, has a unique solution g ∈ C([0, T ], L 2 (R + ))∩L 2 ((0, T ), H 2 (R + )
) which satisfies the energy estimate

1 2 g(s) 2 L 2 (R + ) + s 0 µ(s ) ∂ 2 Z g(s ) 2 L 2 (R + ) ds ≤ g in 2 L 2 (R + ) + s 0 S(s ) L 2 (R + ) ds 2 .
Proof. Let

V := {v ∈ H 2 (0, ∞), v |Z=0 = 0, ∂ Z v |Z=0 = 0}.
For u, v ∈ V , s ∈ (0, T ), define the quadratic form

a(s, u, v) = ∞ 0 γ(s)∂ Z u(Z) v(Z) dZ + µ(s) ∞ 0 ∂ 2 Z u(Z) ∂ 2 Z v(Z) dZ.
Then for all u, v ∈ V , the map

s → a(s, u, v)
is measurable, and for almost every s ∈ (0, T )

|a(s, u, v)| ≤ γ L ∞ (0,T ) + µ L ∞ (0,T ) u H 2 (R+) v H 2 (R+) a(s, u, u) ≥ µ 0 ∂ 2 Z u 2 L 2 (R+) ≥ µ 0 ( u 2 H 2 (R+) -∂ Z u 2 L 2 (R+) -u 2 L 2 (R+) ). Notice that if u ∈ V , ∂ Z u 2 L 2 = ∞ 0 (∂ Z u) 2 = - ∞ 0 u∂ 2 Z u ≤ u 2 L 2 2 + ∂ 2 Z u 2 L 2 2 .
We infer eventually that

a(s, u, u) ≥ µ 0 2 u 2 H 2 (R+) - 3µ 0 2 u 2 L 2 (R+) .
Using Theorem 10.9 by J.L. Lions in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], we infer that there exists a unique so-

lution g ∈ L 2 ((0, T ), V ) ∩ C([0, T ], L 2 (R + )) of equation (2.13) such that ∂ s g ∈ L 2 ((0, T ), H -2 (R + )).
Multiplying equation (2.13) by g and integrating on R + , we infer 1 2

d ds ∞ 0 |g(s)| 2 + µ(s) ∞ 0 |∂ 2 Z g(s)| 2 = ∞ 0 S(s, Z)g(s, Z) dZ. Therefore d ds 1 2 g(s) 2 L 2 + s 0 µ(s ) ∂ 2 Z g(s ) 2 L 2 ds ≤ S(s) L 2 g(s) L 2 ≤ √ 2 S(s) L 2 1 2 g(s) 2 L 2 + s 0 µ(s ) ∂ 2 Z g(s ) 2 L 2 ds 1/2 .
Integrating with respect to s leads then to the desired inequality.

We deduce easily that (2.11) has a unique solution on any interval of the form (σ - i , σ + i+1 ) such that sin θ does not vanish on [σ - i , σ + i+1 ], and that it satisfies

ψ S (s) L 2 (R+) ≤ C(|Ψ 0 (s)| + |Ψ 1 (s)| + |Ψ 0 (σ - i )| + |Ψ 1 (σ - i )|) +C s σ - i (|Ψ 0 (s )| + |Ψ 1 (s )|) ds +C s σ - i (µ(s ) + |γ(s )|)(|Ψ 0 (s )| + |Ψ 1 (s )|) ds , with µ(s) = -1/ sin θ(s), γ(s) = -E -1/4 cos θ(s)/ sin θ(s).
2.3.3. Boundary conditions for s ∈ (s i , s i+1 ). In order to satisfy the boundary conditions

ψ |∂Ω = 0, ∂ n ψ |∂Ω = 0,
the South boundary layer term constructed above must be such that for s ∈

(s i , s i+1 ), ψ S (s, Z = 0) = -ψ 0 |∂Ω (s), E -1/4 ∂ Z ψ S (s, Z = 0) = -∂ n ψ 0 |∂Ω (s). In equation (2.11), we therefore take, for s ∈ (s i , s i+1 ), Ψ 0 (s) := -ψ 0 |∂Ω (s), (2.14) Ψ 1 (s) := E 1/4 ∂ y ψ 0 |∂Ω (

s). (2.15)

There remains to define Ψ 0 and Ψ

1 for s ∈ (σ - i , s i ] ∪ [s i+1 , σ + i+1 ).

Connection with East and West boundary layers.

• In the most simple cases, the North or South boundaries are connected on the one hand to the East boundary, and on the other hand to the West boundary. This corresponds to the situation when -the North boundary y = y i is a local maximum of the ordinate; -the South boundary y = y i is a local minimum of the ordinate.

Without loss of generality, we assume that the corresponding piece of ∂Ω is a "South" boundary, meaning that cos θ < 0 in a neighbourhood on the right of s i+1 , cos θ > 0 in a neighbourhood on the right of s i , and

sin θ = -1 for s ∈ [s i , s i+1 ].
The connection with the East boundary is fairly simple: we will introduce some truncation χ E of τ close to the East corner (parametrized by s i ). Therefore the solution to the transport equation ∂ x ψ 0 t = τ χ E is identically zero in a vicinity of (x i , y i ), as well as the East boundary layer (which lifts the trace of ∂ n ψ 0 t ), so that we merely require ψ S|s=σ - i = 0. Concerning the connection with the West boundary layer, the situation is not as straightforward. In order to satisfy the boundary conditions

ψ |∂Ω = 0, ∂ n ψ |∂Ω = 0,
the West and South boundary layer terms must be such that

ψ W (s, Z = 0) + ψ S (s, Z = 0) = -ψ 0 t|∂Ω (s), λ W ∂ Z ψ W (s, Z = 0) + λ S ∂ Z ψ S (s, Z = 0) = -∂ n ψ 0 t|∂Ω (s) in a vicinity of s = s i+1 . As a consequence, we take ψ W (s, Z = 0) = -ϕ i+1 (s)ψ 0 t|∂Ω (s), ∂ Z ψ W (s, Z = 0) = -λ -1 W ϕ i+1 (s)∂ n ψ 0 t|∂Ω (s), and ψ S (s, Z = 0) = -(1 -ϕ i+1 (s))ψ 0 t|∂Ω (s), ∂ Z ψ S (s, Z = 0) = -λ -1 S (1 -ϕ i+1 (s))∂ n ψ 0 t|∂Ω (s)
, where ϕ i+1 is a truncation function which we will define precisely in the next chapter. We emphasize that with this definition, the South and West boundary layers are related via their amplitude only: in particular, the sizes of the boundary layers are not related.

• The case when the boundary has non smooth corners between the horizontal part and the meridional boundaries (see paragraph 1.2.4)

cos θ(s) ≡ 0 on Γ N ∪ Γ S , inf Γ E ∪Γ W | cos θ| > 0,
typically the case of rectangles studied by De Ruijter [START_REF] De Ruijter | On the Asymptotic Analysis of Large-Scale Ocean Circulation[END_REF], could seem more singular at first sight but is actually easier to deal with. Near East corners, there is no need to introduce the truncation χ E since the solution to the Sverdrup equation is smooth. Now, on the West boundary, if we lift the function ψ 0 + ψ E + ψ N,S , we obtain local boundary terms which vanish identically when s → s i . Hence there is no error due to the trace of West boundary terms on the horizontal part of the boundary. Notice that:

• If the angle between a horizontal and a western boundary is exactly π/2, our construction works without any adaptation; • If the angle is obtuse, the North/South boundary layer needs to be extended beyond the corner, in the spirit of the connection between the discontinuity boundary layers and western boundary layers (see Remark 3.4.2). • If the angle is acute, the correct rescaled boundary layer variable on the western boundary is (x -x W (y))/E 1/3 instead of zE -1/3 , so as not to pollute the trace on the North/South boundary. Notice that this is the boundary layer variable used by Desjardins and Grenier in [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF]. We leave the technical details to the reader, and treat in complete detail the case of rectangles in the present article.

• In more complex cases, the line y = y i intersects the interior of Ω, and we get a singularity which is not only localized in the vicinity of ∂Ω. Techniques of boundary layers allow however to understand the qualitative behaviour of the solution in the vicinity of the line of singularity. This heuristic approach is presented in the next paragraph.

Discontinuity zones

Discontinuity zones occur when the East boundary ΓE is not connected. At leading order, we expect the solution to (1.1) to be approximated by the solution ψ 0 t to the transport equation with suitable truncations χ E near East corners

∂ x ψ 0 t = τ χ E , ψ 0 t|Γ E = 0.
If the domain Ω has islands, we add to ψ 0 t the quantity K j=2 cj 1 Bj . We will give more details on this case in the next section. Note that, because of the truncation χ E , the main order approximation ψ 0 t now depends (weakly) on E. Therefore on every set A i , ψ 0 t takes the form

ψ 0 t (x, y) = - x i E (y) x τ χ E (x , y) dx .
Unlike the main order term in Theorem 1, ψ 0 t does not belong to H 2 (Ω) in general. It is indeed obvious that ψ 0 t and ∂ y ψ 0 t may be discontinuous across every (nonempty) line Σ ij . More precisely, the jump of ψ 0 t across a given line Σ ij takes the following form (up to an inversion of the indexes i and j)

[ψ 0 t ] Σij = - xj xi (τ χ E )(x , y ij ) dx .
The existence of such discontinuities in the main interior term is a serious impediment to energy methods. Indeed, inequality (1.7), for instance, requires the approximate solution to be at least in H 2 (Ω). In fact, we will prove that this discontinuity gives rise to a "boundary layer singularity": the corresponding corrector is a boundary layer term located in the vicinity of Σ ij . Since the normal vector to Σ ij is parallel to e y , this boundary layer term is apparented to the North and South boundary terms constructed in Section 2.3, and therefore the size of the boundary layer is E 1/4 . We now define what we have called in Theorem 2 a "generic forcing τ ":

Definition 2.4.1. We say that the forcing τ is generic if all the following conditions are satisfied:

• For all i = j such that Σ ij = ∅, there exists c Σ > 0 such that for all E sufficiently small, ψ 0 t + K l=2 cl 1 B l Σij ≥ c Σ ;
• If ΓN,S = ∅ (for the induced topology on ∂Ω), then for any V ⊂ Γ N,S , there exists c V > 0 such that for all E sufficiently small, ψ 0 t|∂Ω L 2 (V ) ≥ c V ; • For any nonempty V ⊂ Γ W , there exists c V > 0 such that for all E sufficiently small,

ψ 0 t + K l=2 cl 1 B l |∂Ω L 2 (V ) ≥ c V .
• From now on, for the sake of simplicity, we restrict the presentation to the case when M = 2, i.e. ΓE has two connected components, and ψ 0 t has exactly one line of discontinuity. Of course, our construction can be immediately generalized to the case when there are more than two connected components, and therefore several lines of discontinuity: we merely add up the local correctors constructed in the vicinity of every Σ ij . In particular, when Ω has islands, there are always at least two discontinuity lines. We will sketch the necessary adaptations in the next paragraph and leave the details to the reader.

Thus we henceforth assume that Ω has the following form (see Figure 2.3):

Ω = Ω + ∪ Ω -∪ Σ,
where

• Ω ± are non empty, open and convex in x;

•

Ω + = {(x, y) ∈ Ω, y > y 1 or x ≥ x 1 }; • Ω -= {(x, y) ∈ Ω, y < y 1 and x < x 1 }; • Σ = {(x, y 1 ) ∈ Ω, x < x 1 } Ω - Σ Ω + Σ Ω + Ω - Ω - Figure 2.3.
Two possible configurations for the domain Ω and (x 1 , y 1 ) = (x(s 1 ), y(s 1 )) for some s 1 such that cos θ(s 1 ) = 0. Without any loss of generality, we further assume that sin θ(s 1 ) = -1. This type of domain can correspond to two different configurations (see Figure 2.3).

We will use the following notations

χ -= 1 x<x1 1 y<y1 , χ + = 1 -χ -
which somehow stand for 1 Ω ± : their role is to avoid any artificial singularity on ∂Ω.

We also set Γ ± E = ∂Ω ± ∩ Γ E . We parametrize each set Γ ± E by a graph (x ± E (y), y). As explained above, the function ψ 0 t and its y derivative are discontinuous across Σ. More precisely, for x < x 1 ,

[ψ 0 t ] |Σ (x, y 1 ) = ψ 0 t (x, y + 1 ) -ψ 0 t (x, y - 1 ) = - x + E (y1) x (τ χ E )(x , y 1 ) dx + x - E (y1) x (τ χ E )(x , y 1 ) dx = - x + E (y1)
x - E (y1)

(τ χ E )(x , y 1 ) dx .
Notice in particular that the jump is constant along Σ. In a similar way, since

(τ χ E )(x - E (y), y) vanishes in a neighbourhood on the left of y 1 , [∂ y ψ 0 t ] |Σ (x, y 1 ) = -(x + E ) (y 1 )(τ χ E )(x + E (y 1 ), y 1 ) - x + E (y1) x - E (y1) ∂ y (τ χ E )(x , y 1 ) dx .
We now construct the boundary layer type correctors ψ lift , ψ Σ . The role of ψ lift is to counterbalance the jump of ψ 0 t , and of its normal derivative ∂ y ψ 0 t , across Σ:

[ψ lift ] Σ = -[ψ 0 y ] Σ , [∂ y ψ lift ] Σ = -[∂ y ψ 0 t ] Σ .
When we lift these boundary conditions, we introduce a source term in the equation. This source term is then handled by a boundary layer type term ψ Σ , which has no discontinuity across Σ:

ψ Σ ∈ H 2 (Ω).
At first sight, if we consider the whole singular corrector ψ lift +ψ Σ , this problem could seem underdetermined. Indeed there are two jump conditions to be satisfied, and possibly two boundary layers (on Ω + and on Ω -), each of which is the solution 

δ y Y -(x) s 1 s 0 σ - Σ Ω + Ω - Figure 2.4.
[∂ 2 y ψ lift ] Σ = [∂ 3 y ψ lift ] Σ = 0 .
Because of this constraint, the energy of the boundary layer discontinuity is distributed on both sides of Σ. The boundary term ψ lift + ψ Σ is unequivocally defined, since roughly speaking, there are four jump conditions and four entries for the boundary layer terms.

Lifting the discontinuity.

Let us start by introducing some notation. Consider the closed set {s ∈ ∂Ω, y(s) = y 1 }. We denote by I 1 its connected component containing s 1 . Then I 1 is a closed interval (possibly reduced to a single point). Without loss of generality, we assume that s 1 = sup I 1 , which means (recall that sin θ(s 1 ) = -1) that s 1 is the West end of I 1 . Hence we have either I 1 = {s 1 }, or I 1 = [s 0 , s 1 ] with s 0 < s 1 . As in equation (2.11), we introduce a point σ in which will be the initial point for ψ lift and ψ Σ , and which we will define more precisely in the next chapter (see (3.36) and Figure 2.4).

In order to keep the construction as simple as possible, we use that the cancellation of cos θ near inf I 1 is strong (assumption (H4) in section 1.2), which implies in particular that the boundary of Ω + near the junction point of arc-length inf I 1 has C 4 regularity.

The role of ψ lift is to lift both the jumps of ψ 0 t and ∂ y ψ 0 t across Σ, and the traces of ψ 0 t and ∂ n ψ 0 t on the portion of ∂Ω between σ in and s 1 , so that ψ 0 t + ψ lift belongs to H 2 (Ω).

We have indeed the following Proposition 2.4.2. Let ψ be a function on Ω such that

ψ |Ω + ∈ H 2 (Ω + ), ψ |Ω -∈ H 2 (Ω -), and [ψ] Σ = [∂ n ψ] Σ = 0 .
Then ψ belongs to H 2 (Ω).

Proof. The squared L 2 norm being additive, the only point to be checked is that

(2.16) ∆ψ = ∆(ψχ + ) + ∆(ψχ -)
in the sense of distributions, which is obtained by a simple duality argument.

For any φ ∈ C ∞ c (Ω), because of the jump conditions on ∂ y ψ and ψ, we have

φ, ∆ψ D,D = Ω ∆φ(ψχ + + ψχ -) = - Σ ∂ y φψ |Σ + - Ω + ∇φ • ∇(ψχ + ) + Σ ∂ y φψ |Σ -- Ω - ∇φ • ∇(ψχ -) = Ω + φ∆(ψχ + ) + Σ φ∂ y ψ |Σ + + Ω - φ∆(ψχ -) - Σ φ∂ y ψ |Σ - = Ω φ(∆(ψχ + ) + ∆(ψχ -))
from which we deduce that ∆ψ ∈ L 2 (Ω), and ∆ψ = ∆(ψχ + ) + ∆(ψχ -).

We therefore seek ψ lift in the form (2.17)

ψ lift (x, y) = χ + χ y -y 1 E 1/4 [a(x) + b(x)(y -y 1 )] ,
where the truncation

χ ∈ C ∞ 0 (R) is such that (2.18) Supp χ ⊂ [-1, 1], χ(y) = 1 for |y| ≤ 1/2,
and satisfying the conditions

(i) ψ lift |∂Ω + ∩∂Ω = -(1 -ϕ)ψ 0 t|∂Ω , for s ∈ (σ in , s 1 ), ∂ n ψ lift |∂Ω + ∩∂Ω = -(1 -ϕ)∂ n ψ 0 t|∂Ω for s ∈ (σ in , s 1 ), (ii) ψ lift |Σ = -[ψ 0 t ] Σ , ∂ y ψ lift |Σ = -[∂ y ψ 0 t ] Σ .
As in section 2.3, ϕ is a partition function in s, whose role is to ensure a smooth transition between the East/West boundary layer on [σ in , inf I 1 ] and the discontinuity boundary layer.

A straightforward computation then provides the following formulas for the coefficients a and b

(2.19) b(x) =(1 -ϕ(s)) -sin θ(s)∂ n ψ 0 t|∂Ω (s) + cos θ(s)∂ s ψ 0 t|∂Ω (s) -cos θ(s)ϕ ψ 0 t|∂Ω (s), a(x) = -(1 -ϕ(s))ψ 0 t|∂Ω (s) -b(x(s))(y(s) -y 1 ), for x 1 < x = x(s) < x(σ in ), and by (2.20) a(x) = -[ψ 0 t ] Σ , b(x) = -[∂ y ψ 0 t ] Σ for x ≤ x 1 . For x ≥ x(σ in ), we merely take a(x) = b(x) = 0.
Of course, however, ψ lift is not a solution of (1.1), even in the approximate sense. More precisely, we have the following proposition : Proposition 2.4.3. With the previous definition and notations,

(∂ x -E∆ 2 )(ψ 0 t + ψ lift ) = τ + δτ lift x, y -y 1 E 1/4 + r 1 lift + r 2 lift ,
where

r 1 lift L 2 (Ω) = o(E 1/8 ), r 2 lift H -2 (Ω) = o(E 5/8
), and

δτ lift (x, Y ) = χ + (x, y 1 + E 1/4 Y )χ (Y ) a (x) + E 1/4 b (x)Y -χ + (x, y 1 + E 1/4 Y )χ (4) (Y ) a(x) + E 1/4 b(x)Y -4χ + (x, y 1 + E 1/4 Y )E 1/4 χ (3) (Y )b(x).
Definition 2.4.4. In the rest of the paper, we set

(2.21)
ψ int := ψ 0 t + ψ lift ; which is consistent with the statement of Theorem 2, in which ψ int was described as an H 2 regularization of ψ 0 . Sketch of proof. By Proposition 2.4.2, ψ 0 t + ψ lift belongs to H 2 (Ω) and, using (2.16),

∂ x (ψ 0 t + ψ lift ) = τ χ E + χ + χ y -y 1 E 1/4 (a (x) + b (x)(y -y 1 )), ∆(ψ 0 t + ψ lift ) = χ + (∆(ψ 0 t + ψ lift )) + χ -(∆ψ 0 t ).
Moreover, as we have the following trace identities on ∂Ω + (∆ψ lift ) |Σ = 0, (∂ y ∆ψ lift ) |Σ = 0, using again (2.16), we get

E∆(χ + ∆ψ lift ) = Eχ + χ y -y 1 E 1/4 (a (4) (x) + b (4) (x)(y -y 1 )) +4E 3/4 χ + χ y -y 1 E 1/4 b (x) +2E 1/2 χ + χ y -y 1 E 1/4 (a (x) + b (x)(y -y 1 )) (2.22) +χ + χ (4) y -y 1 E 1/4 [a(x) + b(x)(y -y 1 )] +4E 1/4 χ + χ (3) x, y -y 1 E 1/4 b(x).
We thus define

r 1 lift = 4E 3/4 χ + χ y -y 1 E 1/4 b (x) + 2E 1/2 χ + χ y -y 1 E 1/4 (a (x) + b (x)(y -y 1 )) r 2 lift = τ (χ E -1) + Eχ + χ y -y 1 E 1/4 (a (4) (x) + b (4) (x)(y -y 1 )) -E∆ 2 (χ + ψ 0 t ) -E∆ 2 (χ -ψ 0 t ). so that (∂ x -E∆ 2 )(ψ 0 t + ψ lift ) = τ + δτ lift x, y -y 1 E 1/4 + r 1 lift + r 2 lift ,
• The remainder terms will be dealt with in the last chapter, using some technical estimates on a, b and their derivatives (see Lemmas 

∂ x ψ Σ -∂ 4 Y ψ Σ = -δτ lift , x < x(σ in ), Y > Y -(x) ψ Σ |x=x(σin) = 0, ψ Σ |Y =Y-(x) = ∂ n ψ Σ |Y =Y-(x) = 0
, where the function Y -parametrizes the lower boundary of the interior singular layer (see Figure 2.4)

• which has typical size δ y , where δ y is a parameter such that δ y E 1/4 , • which is of course included in Ω. Note that we use here cartesian coordinates x and Y = (y -y 1 )/E 1/4 , since the discontinuity line Σ is essentially horizontal (which is not the case for North and South boundary layers which are extended on macroscopic parts of the adjacent East and West boundaries). The precise definitions of Y -and σ in will be given in the next chapter (see page 62).

The case of islands

When Ω is not simply connected, the solution of (1.14)-(1.15) is given by (see Lemma 1.2.1)

ψ = ψ 1 + K i=2 c i ψ i ,
where ψ i is the solution of a Munk-like equation, and the constants c i satisfy a linear system whose coefficients depend on the ψ i .

Therefore, as explained in the introduction (paragraph 1.2.3) the main issue is to compute the asymptotic behaviour of every function ψ i . Following the steps described in the preceding sections (and which will be developed in the next chapter), we are able to construct a function ψ app i for every 1 ≤ i ≤ K. Of course, there are a few minor changes, due to the non homogeneous boundary condition, but we leave those to the reader, as they do not bear any additional difficulty.

Let us admit for the time being that Theorem 2 holds for the functions ψ i , namely that we are able to construct ψ app i such that (2.24)

ψ i -ψ app i L 2 = o(E 1/8 ), ψ i -ψ app i H 2 = o(E -3/8 ).
Hence, in order to prove Theorem 2 for the function ψ, it suffices to define

ψ app = ψ app 1 + K i=2 c app i ψ app i
where the constants c app i are such that (2.25)

|c i -c app i | = o(E 1/8 ), c app i = O(1).
According to (1.21), (1.22), we have

ψ app i L 2 = O(1), ψ app i H 2 = O(E -1/2
), so that (2.24) and (2.25) imply

ψ -ψ app L 2 = o(E 1/8 ), ψ -ψ app H 2 = o(E -3/8
).

We now turn to the proof of (2.25), which relies on the following Lemma:

Lemma 2.5.1. For all i ∈ {2, • • • , K}, let g i ∈ C ∞ ( Ω) such that g i ≡ 1 in a neighbourhood of C i , and Supp g i ∩ C j = ∅ for i = j.
Let us define the matrix

M app := - Ω ψ app j ∂ x g i 2≤i,j≤K
and the vector

D app := Ω (τ g j + ψ app 1 ∂ x g j ) + Cj T ⊥ • n 2≤j≤K .
Then the following facts hold (recall that M E , D E are defined in Lemma 1.2.1):

• |M E -M app | = o(E 1/8 ), |D E -D app | = o(E 1/8 ); • M E , M app are invertible matrices, with (M E ) -1 = O(1), (M app ) -1 = O(1); • D app = O(1).
Before addressing the proof of the lemma, let us explain why (2.25) follows: by definition,

M E    c 2 . . . c K    = M E c = D E , so that M E (c -c app ) = (M app -M E )c app + D E -D app ,
where c app is defined by

M app c app = D app .
Using the last two items of Lemma 2.5.1, we infer that c app = O(1). Therefore

M E (c -c app ) = o(E 1/8 ). Since (M E ) -1 = O(1), (2.25) holds.
Proof of Lemma 2.5.1. • The first step is to use the equation satisfied by every ψ i in order to express the coefficients of M E , D E as integrals on Ω. More precisely, we have, since ∇g i = 0 on a neighbourhood of ∂Ω,

E Ci ∂ n ∆ψ j = E ∂Ω g i ∂ n ∆ψ j = E Ω g i ∆ 2 ψ j + E Ω ∇∆ψ j • ∇g i = Ω g i ∂ x ψ j -E Ω ψ j ∆ 2 g i = - Ω ψ j ∂ x g i + δ ij Ci e x • n -E Ω ψ j ∆ 2 g i .
Since C i is a closed curve, we obtain eventually

E Ci ∂ n ∆ψ j = - Ω ψ j ∂ x g i -E Ω ψ j ∆ 2 g i .
In a similar way,

-E Cj ∂ n ∆ψ 1 = Ω (τ g j + ψ 1 ∂ x g j ) + E Ω ψ 1 ∆ 2 g i .
The energy estimate (1.7) shows that ψ j L 2 = O(1) for 1 ≤ j ≤ K, so that (2.26)

M E = - Ω ψ j ∂ x g i 2≤i,j≤K + O(E), D E = Ω (τ g j + ψ 1 ∂ x g j ) + Cj T ⊥ • n 2≤j≤K + O(E).
Replacing every function ψ j by ψ app j and using the error estimate (2.24), we obtain the first point of the lemma.

• To prove the second point of the Lemma, we will use identity (A.2) in Appendix A, from which we will deduce the following coercivity inequality: there exists a constant C > 0, independent of E, such that

(2.27) ∀a = (a 2 , • • • , a K ) ∈ R K-1 , i,j M E ij a i a j ≤ -C|a| 2 .
Of course this entails easily that (M E ) -1 is bounded. Using the first item of the Lemma, we infer that M app satisfies the same type of coercivity property, and therefore (M app ) -1 is bounded as well.

Let us now prove (2.27). Let a ∈ R K-1 be a fixed vector. Let V ⊂ Ω be an open set such that V is a neighbourhood of Γ W , namely

• ∂V ∩ ∂Ω ⊂ Γ W (notice that this implies that V does not intersect Γ N,S , nor Γ E ); • V ∩ Σ = ∅ (V does not meet the discontinuity boundary layer) ; • V ∩ B i = ∅, and ∂V ∩ Bi ∩ Γ W = ∅ for all 2 ≤ i ≤ K (V intersects the West boundary of every set B i ).
Then we may write, with

ψ app a = a i ψ app i , E Ω |∆ψ a | 2 = E Ω |∆ψ app a | 2 + o(E 1/8 |a| 2 ) ≥ E V |∆ψ app a | 2 + o(E 1/8 |a| 2 ) ≥ E K i=2 V ∩Bi |∆ψ app a | 2 + o(E 1/8 |a| 2 ).
Notice that E Ω |∆ψ a | 2 = O(1) (thanks to energy estimates), while ψ app a is proportional to a i on V ∩ B i . These are the two main ingredients for the proof of the coercivity inequality. More precisely, on every set V ∩ B i , by definition 1 ,

ψ app a = a i 1 + χ 0 (z) ± e ±iπ/6 √ 3 exp(-λ W e ±iπ/3 z) .
Consequently, at the main order,

E V ∩Bi |∆ψ app a | 2 Ea 2 i V ∩Bi λ 4 W χ 0 (z) ± e ±5iπ/6 √ 3 exp(-λ W e ±iπ/3 z) 2 ds dz ≥ CEa 2 i V ∩ Bi∩ΓW λ 3 W (s) ds ≥ Ca 2 i .
Gathering all the terms, we obtain (2.27).

• The fact that D app = O(1) is obvious and follows from (1.7), which yields

ψ 1 L 2 = O(1).
For the sake of completeness, we also give the system satisfied by c = lim E→0 c = lim E→0 c app :

Corollary 1. Let c be the solution of M c = D,
where

M := - ∂Bj ∩Ci e x • n 2≤i,j≤K , D := Ω (τ g j + ψ 0 ∂ x g j ) + Cj T ⊥ • n 2≤j≤K . Then c = lim E→0 c i .
Proof. We pass to the limit in the formulas (2.26). It is proved in [START_REF] Bresch | A corrector for the Sverdrup solution for a domain with islands[END_REF], and it can be easily deduced from our construction, that

ψ j 1 Bj in L 2 (Ω) for 2 ≤ j ≤ K,
1 Notice that on B i , the main order of ψ app i is 1 B i , whose normal derivative on ∂Ω is zero (away from the end point of Σ). As a consequence, several corrector terms, whose construction is necessary in the general case, are identically zero here.

and therefore

-

Ω ψ j ∂ x g i → - Bj ∂ x g i = - ∂Bj ∩Ci e x • n.
Hence the identities (2.26) imply easily that

M E → M , D E → D.
Passing to the limit in inequality (2.27), we infer that M is also coercive, and therefore invertible. Thus c is well-defined. The corollary follows.

North and South periodic boundary layers

When the domain Ω is Ω := T × (y -, y + ), boundary layers occur in the vicinity of y -, y + . Because of the periodicity, they can be easily computed by using Fourier series in the x variable. Therefore this kind of construction is covered by article [START_REF] Gérard-Varet | Remarks on boundary layer expansions[END_REF]; we include the computations here for the sake of completeness.

By definition of the Sverdrup term in (1.26), the boundary conditions to be lifted on the north and south boundary have zero average. Let us focus for instance on the south boundary; setting Z = (y -y -)/E 1/4 , the equation satisfied by the boundary layer term is

∂ x ψ BL S -∂ 4 Z ψ BL S = 0 in T × R + , ψ BL S|Z=0 = f 0 , ∂ x ψ BL S|Z=0 = f 1 , with f 0 = f 1 = 0. Looking for ψ BL S in the form ψ BL S (x, Z) = k∈2πZ\{0} ψk (Z) exp(ikx),
we infer that ψk is given by

ψk (Z) = ± A ± k exp(-|k| 1/4 λ ± k Z), where λ + k = e iπ/8 , λ - k = e -3iπ/8 if k > 0, λ + k = e 3iπ/8 , λ - k = e -iπ/8 if k < 0, and A + k + A - k = f0 (k), λ + k A + k + λ - k A - k = -|k| -1/4 f1 (k). Hence |A ± k | ≤ C(| f0 (k)| + |k| -1/4 | f1 (k)|). It follows easily that (2.28) ψ BL S L 2 (T,H 2 (R+)) ≤ C   k =0 |k| 3/4 (| f0 (k)| + |k| -1/4 | f1 (k)|) 2   1/2 , ∂ l x ψ BL S L 2 (T,H 2 (R+)) ≤ C   k =0 |k| 2l+3/4 (| f0 (k)| + |k| -1/4 | f1 (k)|) 2   1/2 . CHAPTER 3

Construction of the approximate solution

The approximate solutions to the Munk equation (1.1) are obtained by gathering together the different elementary pieces described in the previous chapter, namely

• the interior term which is essentially the solution to the transport equation (1.4), regularized in the vicinity of "East corners" and of the interface Σ; • East and West boundary layer terms, which lift locally the boundary conditions but become singular in the vicinity of the points s i ; • North and South boundary layer terms, which lift the boundary conditions on the horizontal parts of the boundary but in a non local way; • singular layer terms, which make up for the source terms introduced by the regularization of the discontinuity at Σ.

We have now to understand the interplay between those different elementary pieces. Of course, the equation (1.1) being linear, the errors induced by all these terms are simply added, so that the control on the remainders in the approximate equation will be rather simple to obtain. The point to be stressed is that we need each elementary term to be smooth enough (namely H 2 ), with suitable controls on the corresponding derivatives.

More precisely, we will consider here only one basic problem among (1.16)(1.17), say the case (1.16) with homogeneous boundary conditions ψ |Ω = ∂ n ψ |Ω = 0 and forcing τ . We will further assume, without loss of generality, that we have the simple geometry described in the previous chapter

Ω = Ω + ∪ Ω -∪ Σ,

where

• Ω ± are non empty, open and convex in x;

• Ω + = {(x, y) ∈ Ω, y > y 1 or x ≥ x 1 }; • Ω -= {(x, y) ∈ Ω, y < y 1 and x < x 1 }; • Σ = {(x, y 1 ) ∈ Ω, x < x 1 }
and (x 1 , y 1 ) = (x(s 1 ), y(s 1 )) for some s 1 such that cos θ(s 1 ) = 0 and sin θ(s 1 ) = -1. We emphasize that the only simplification here regards notations, and that more complex domains satisfying assumptions (H1) -(H4) are handled exactly in the same way.

Periodic and rectangle cases will be dealt with separately in Section 3.6.

We will actually focus on the following technical difficulties

• the precise regularization process for the interior term in Ω ± (section 3.1);

• the fact that the East boundary layer does not lift simultaneously both boundary conditions (correcting the normal derivative introduces indeed an error on the trace). This implies that one has to introduce an additional corrector defined on a macroscopic domain in the vicinity of the East boundary but far from corners (x i , y i ) where it would be singular (section 3.2); • the connection with North/South boundary layers (even if the corresponding horizontal part of the domain is reduced to one point (x i , y i )): we indeed expect these boundary layers to lift the boundary conditions both on the horizontal parts and on the East/West boundaries close to the corners (x i , y i ) (section 3.3). Note that, since these North/South boundary layers are defined by a non local equation, we need to check that they do not carry any more energy beyond some point, so that they can be truncated and considered as local contributions; • the truncation of the surface layer near its West end, in order that its trace on the West boundary is not too singular (see 3.4); • the precise definition of the West boundary layers, which have to lift the traces of all previous contributions (see 3.5);

We will also derive estimates on the terms constructed at every step. Note that, for boundary layers, the construction must be performed in a precise order, starting with East boundaries, then defining North/South (and surface) boundary layers, and finally lifting the West boundary conditions. This dissymmetry between East and West boundaries is similar to what happens at the macroscopic level for the interior term.

The interior term

As in the previous chapter, we define

(3.1) ψ 0 (x, y) = - x E (y) x τ (x , y) dx ,
where x E (y) is the abscissa (or longitude) of the projection of (x, y) on Γ E alongside e x . We have seen that ψ 0 does not belong to H 2 (Ω) in general: indeed,

• The function x E has singularities near the points y i = y(s i ), i ∈ I + ;

• Since x E takes different values on Ω + and Ω -, the function ψ 0 t and its y derivative are discontinuous across Σ.

Therefore, ψ 0 cannot be used as such in the definition of the approximate solution ψ app of (1.1).

Let us first consider separately the domains Ω ± . We remove the singularities by truncating the function τ near the end points of Γ E (with abscissa s i , i ∈ I + ).

The size of the truncation depends on the rate of cancellation of cos θ near s i . Since the rate of cancellation may be different on the left and on the right of s i , we seek for truncation functions with different behaviours on the left and on the right of every cancellation point. More precisely, let where (x i , y i ) are the coordinates of the point of ∂Ω with arc length s i . Each function χ i takes the following form:

(3.2) χ E (x, y) := i∈I+ χ i (x -x i , y -y i )
χ i (x, y) :=    χ x δ i x,+ , y δy if x > 0, χ x δ i x,- , y δy if x ≤ 0.
• The function χ is defined by

1 -χ(x, y) := (1 -χ1 (x))(1 -χ2 (y)) (x, y) ∈ R 2 , with χ1 , χ2 ∈ C ∞ (R), and χ1 (x) = 1 if |x| ≥ 1 + 1 | ln δ y | , χ1 (x) = 0 if |x| ≤ 1, χ2 (y) = 1 if |y| ≥ 1, χ2 (y) = 0 if |y| ≤ 1/2 which does not depend on E.
It can be easily checked that all the x derivatives of χ vanish for x = 0, so that χ belongs to

C ∞ 0 (R 2 ). Furthermore, it satisfies obviously 0 ≤ χ ≤ 1, χ(x, y) = 0 if |y| ≤ 1 2 and |x| ≤ 1, χ(x, y) = 1 if |y| ≥ 1 or |x| ≥ 1 + 1 | ln δ y | .
• Let us now give the definition of the truncation rates. We take

(3.3) δ y := E 1/4 | ln E| 1/5 (ln | ln E|) -β ,
for some arbitrary exponent β > 0. Note that a rate of this type is mandatory in the case of an exponential cancellation (assumption (H2ii)). In the case of an algebraic cancellation (assumption (H2i)), there is more flexibility, but the above choice still works. The definition of δ x is a little more involved. We define δ x so that if we start from the point (x E (y i ), y i ) (i.e. from the end point of Γ E ) and perform a shift of size δ x in the x direction, -sin θ(s i )δ y in the y direction, the end point still belongs to Γ E . This leads to the following definitions:

• If x E (y) is defined on both sides of y i , i.e. if s i belongs to the interior of ΓE , then we set

(3.4) δ i x,+ := |x E (y i -sin θ(s i ).δ y ) -x i |, δ i x,-:= |x E (y i + sin θ(s i ).δ y ) -x i | .
• If x E (y) is defined only on one side of y i , say for y > y i , then we take

(3.5) δ i x,+ = δ i x,-= |x E (y i + δ y ) -x i |. In particular, if (x E (y), y) ∈ Supp χ E , then either inf i∈I+ |y -y i | δ y ≥ 1 2 or inf i∈I+ sup ± (x E (y) -x i ) ± δ i x,± ≥ 1. 
According to (3.4)-(3.5), the above condition becomes either inf

i∈I+ |y -y i | δ y ≥ 1 2 or inf i∈I+ sup ± (x E (y) -x i ) ± |x E (y i ∓ sin θ(s i )δ y ) -x i )| ≥ 1.
Since x E is locally a monotonous function (near y = y i ), this amounts to

inf i∈I+ |y -y i | ≥ δ y /2.
We infer that

(3.6) (x E (y), y) ∈ Supp χ E ⇒ ∀i ∈ I + , |y -y i | ≥ δ y 2 .
We then set

(3.7) ψ 0 t (x, y) := - x E (y) x χ E (x , y)τ (x , y) dx
With this definition, ψ 0 t ∈ H 2 (Ω ± ), but ψ 0 t / ∈ H 2 (Ω): indeed ψ 0 t and ∂ y ψ 0 t are still discontinuous across Σ. The term ψ lift constructed in paragraph 3.4.1 of the present chapter will lift this discontinuity.

Moreover, by definition of ψ 0 t , we have

∂ x ψ 0 t -E∆ 2 ψ 0 t = τ + δτ on Ω + ∪ Ω - with (3.8) δτ = τ (χ E -1) -E∆ 2 ψ 0 t .
Proposition 3.1.1. Assume that Ω satisfies assumptions (H1), (H2). Let β > 0 be arbitrary, and let δ y , δ x as in (3.3), (3.4)- (3.5). Then

τ (χ E -1) H -2 (Ω) = o(E 5/8 ), ∆ψ 0 t L 2 (Ω ± ) = o(E -3/8 ).
This proposition will be proved in Chapter 4.

Remark 3.1.2. Notice that the rate of cancellation in y, namely δ y , is the same for every function χ i . It is far from obvious a priori that such a choice can lead to a suitable truncation. However, in order not to further burden the notations, we have chosen to anticipate on this result, which follows from the proof of Lemma 3.1.1 below.

The x derivative of the function χ is unbounded (it is of order | ln δ y | in L ∞ ). This choice is mandatory in the case of an exponential cancellation of cos θ around s i (assumption (H2ii)). If the cancellation around s i is algebraic (assumption (H2i)), the function χ can be any smooth function vanishing near zero and such that 1 -χ has compact support.

We conclude this paragraph by giving some estimates on the trace of ψ 0 t and ∂ n ψ 0 t . These estimates will be useful when we construct the boundary layer terms lifting these boundary conditions. For the sake of readability, we introduce the following majorizing functions 

M(y) =
ψ 0 t (x, y) = - x E (y) x (τ χ E )(x , y) dx .
• Trace estimates on ∂Ω: There exists a constant C, depending only on Ω and τ , such that for all s ∈ ∂Ω,

ψ 0 t|∂Ω L ∞ (∂Ω) ≤ C, |∂ n ψ 0 t|∂Ω (s)| ≤ CM(y) Moreover, for all s ∈ ∂Ω such that (x(s), y(s)) / ∈ Σ, |∂ s ψ 0 t|∂Ω (s)| + δ y |∂ s ∂ n ψ 0 t|∂Ω (s)| ≤ C| cos θ(s)|M(y(s)) and |∂ 2 s ψ 0 t|∂Ω (s)| + δ y |∂ 2 s ∂ n ψ 0 t|∂Ω (s)| ≤ C 1 δ y + | cos θ| 2 δ 2 y | ln δ y | , |∂ 3 s ψ 0 t|∂Ω (s)| + δ y |∂ 3 s ∂ n ψ 0 t|∂Ω (s)| ≤ C δ y 1 + | cos θ| δ y + | cos θ| 3 δ 2 y .
Eventually, on the East coast, we have the following more precise estimates:

|∂ 2 s ∂ n ψ 0 t|Γ E (s)| ≤ C |θ (s)| δ y | cos θ(s)| i∈I+ 1 |y(s)-yi|≥δy/2 , |∂ 3 s ∂ n ψ 0 t|Γ E (s)| ≤ C |θ (s)| 2 δ y | cos θ(s)| 2 i∈I+ 1 |y(s)-yi|≥δy/2 . • Jump estimate on Σ: The jumps [ψ 0 t ] Σ , [∂ y ψ 0 t ] Σ are constant along Σ.
Moreover, there exists a constant C such that

[ψ 0 t ] Σ ≤ C, [∂ y ψ 0 t ] Σ ≤ C δ y | ln δ y | .
Proof. The L ∞ bound on ψ 0 t|∂Ω is obvious: we merely observe that

ψ 0 t|∂Ω L ∞ (∂Ω) ≤ τ L ∞ (Ω) sup (x,y),(x ,y)∈Ω |x -x |.
As for the bound on ∂ n ψ 0 t , we have ∂ n = cos θ∂ x + sin θ∂ y , so that

∂ n ψ 0 t|∂Ω (s) = -sin θ(s)x E (y(s))(τ χ E )(x E (y(s)), y(s)) (3.9) -sin θ(s) x E (y(s)) x(s) ∂ y (τ χ E )(x, y(s)) dx (3.10) + cos θ(s)(τ χ E )(x(s), y(s)). (3.11)
The formulas in Appendix B together with (3.6) imply that for all i ∈ I + , in the vicinity of y i

(3.12) |x E (y)| ≤ C |y -y i || ln |y -y i || 2 so that (x E (y), y) ∈ Supp χ E ⇒ |x E (y)| ≤ CM(y) ≤ C δ y | ln δ y | 2 .
Recalling eventually that for all c > 1, for E sufficiently small,

∂ y χ E ∞ = O(δ -1 y ), Supp ∂ y χ E ⊂ i∈I+ x i -cδ i x,-, x i + cδ i x,+ × [y i -δ y , y i + δ y ] , with δ i x,± = O(| ln δ y | -1
), this leads to the estimate on ∂ n ψ 0 t|∂Ω . We have indeed (3.13) x E (y(s))

x(s) ∂ y (τ χ E )(x, y(s)) dx ≤C i∈I+ ∂ y χ E ∞ 1 |y-yi|≤δy x E (y(s))
x(s)

1 |x-xi|≤cδx dx + i∈I+ x E (y(s)) x(s) χ E |∂ y τ |(x, y(s))dx ≤ C 1 + δ x δ y 1 |y-yi|≤δy .
The estimate on ∂ s ψ 0 t is obtained by differentiating the identity

ψ 0 t|∂Ω (s) = - x E (y(s))
x(s)

(τ χ E )(x, y(s)) dx with respect to s. Using (2.2) and therefore the relation

d ds (x(s), y(s)) = (sin θ(s), -cos θ(s)),
we infer that

∂ s ψ 0 t|∂Ω (s) = cos θ(s)x E (y(s))(τ χ E )(x E (y(s)), y(s)) + sin θ(s)(τ χ E )(x(s), y(s))
-cos θ(s)

x E (y(s))

x(s)

∂ y (τ χ E )(x, y(s)) dx.
The estimates (3.12) and (3.13) above yield the desired inequality.

The other trace estimates are derived in a similar fashion. Notice that is is hard to derive a sharp global estimate, since the angle θ(s) for s ∈ Γ W is in general different from the angle θ(s ), where s ∈ Γ E is such that y(s) = y(s ). Therefore, there is no simplification for terms of the type cos 2 (θ(s))x E (y(s)) when s ∈ Γ W . On the East coast, however, we can use the formulas in Appendix B, from which we deduce that

cos 2 (θ(s))x E (y(s)) = θ (s) cos θ(s) ∀s ∈ Γ E .
Notice also that ψ 0 t vanishes on Γ E by definition, that ∂ n ψ 0 t|Γ E is supported in {|y(s) -y i | ≥ δ y /2}, and that all terms of the type

x E (y(s)) x(s) ∂ k y (τ χ E )(x, y(s)) dx are zero for s ∈ Γ E . The upper-bounds for ∂ 2 s ∂ n ψ 0 t|Γ E , ∂ 3 s ∂ n ψ 0 t|Γ E follow.
As for the jump estimates, we recall that with the notations of Chapter 2, Section 2.4,

[ψ 0 t ] Σ = - x + E (y1) x1 (τ χ E )(x, y 1 ) dx,
and therefore the jump of ψ 0 t is of order one. Notice that the assumptions of Chapter 2, Section 2.4 imply that x 1 = x - E (y 1 ). The jump of the y derivative is given by

[∂ y ψ 0 t ] Σ = -x + E (y 1 )(τ χ E )(x + E (y 1 ), y 1 ), +x - E (y 1 )(τ χ E )(x - E (y 1 ), y 1 ) - x + E (y1) x1 ∂ y (τ χ E )(x, y 1 ) dx.
The points (x ± E (y 1 ), y 1 ) do not depend on E. Therefore, either (x ± E (y 1 ), y 1 ) is an East corner (1 ∈ I + ), and then (τ χ E )(x ± E (y 1 ), y 1 ) = 0 for all E > 0, or (x ± E (y 1 ), y 1 ) is not a corner, and then x ± E (y 1 ) is bounded by a constant independent of E. Hence the first two terms of the right-hand side above are bounded as E → 0. Using inequality (3.13), we infer that

x + E (y1) x1 ∂ y (τ χ E )(x, y 1 ) dx ≤ C δ y | ln δ y | .
At this stage, we have built on each subdomain Ω ± an interior term ψ 0 t

• which vanishes on Γ E ,

• which belongs to H 2 (Ω ± ) (typically with derivatives of order O(δ -1 y ) in the vicinity of East corners),

• and which approximately satisfies the transport equation ∂ x ψ 0 t = τ . Nevertheless ψ 0 t does not fit the boundary conditions, and therefore boundary layer correctors must be defined. Following the direction of propagation of the equation at main order, we start with the East boundary layers.

Lifting the East boundary conditions

In this section, we focus on an interval (s i , s i+1 ) ⊂ Γ E . We recall that the domain

[s + i , s - i+1 ] ⊂ [s i , s i+1
] of validity of the East boundary layer is given by

s + i := sup s ∈ s i , s i + s i+1 2 , E 1/3 |θ | | cos θ| -7/3 ≥ 1 , s - i+1 = inf s ∈ s i + s i+1 2 , s i+1 , E 1/3 |θ | | cos θ| -7/3 ≥ 1 .
Easy computations based on the explicit rate of cancellation of cos θ near s i provide then the following Lemma, which shows in particular that, because of the truncation, the trace of ∂ n ψ 0 t is zero outside the domain of validity of the East boundary layer.

Lemma 3.2.1. Under assumption (H2i),

s + i -s i ∼ C i E 1 4n+3 .
Under assumption (H2ii),

s + i -s i = - 4α ln E 1 -6 ln | ln E| ln E + O 1 ln E .
In particular,

|y(s + i ) -y i | δ y and (3.14) λ E (s + i ) ≥ CE -1/4 .
Proof. Lemma 3.2.1 is obtained by straightforward computations :

• If (H2i) is satisfied, then for s > s i

E 1/3 |θ (s)| | cos θ(s)| -7/3 ∼ C E 1/3 |s -s i | -4n+3 3
so that there exists a positive constant C i such that (3.15)

s + i -s i ∼ C i E 1 4n+3
.

• If (H2ii) is satisfied, then for s > s i

E 1/3 |θ (s)| | cos θ(s)| -7/3 ∼ C E 1/3 exp 4α 3(s-si) (s -s i ) 2 so that -2 ln(s + i -s i ) + 4α 3(s + i -s i ) = -ln C - ln E 3 + o(1).
Computing an asymptotic development of s + i -s i leads to

(3.16) s + i -s i = - 4α ln E 1 -6 ln | ln E| ln E + O 1 ln E .
Using the formulas in Appendix B, we infer in particular that in case (H2i),

y(s + i ) -y i ∼ CE n+1 4n+3 ,
and (n + 1)/(4n + 3) > 1/4, so that |y(s + i ) -y i | δ y . In a similar way, if (H2ii) is satisfied,

|y(s + i ) -y i | ∼ C| ln E| -2 exp α ln E 4α 1 + 6 ln | ln E| ln E + O(| ln E| -1 ) ∼ C| ln E| -2 exp ln E 4 + 3 2 ln | ln E| + O(1) ∼ C| ln E| -1/2 E 1/4 δ y .
Therefore, in all cases, we have |y(s + i ) -y i | δ y , so that the extremities of the domain of validity of the East boundary layer are in the truncation zone.

Traces of the East boundary layers.

By definition of ψ 0 t , we have

(ψ 0 t ) |Γ E = 0.
We thus define the East boundary layer to lift the trace of ∂ n ψ 0 t , i.e.

ψ E (s, Z) = -λ -1 E (s)∂ n ψ 0 t|Γ E (s) exp(-Z)
where 

λ E (s) = cos θ E 1/3
(3.17) |ψ E|Z=0 (s)| ≤ C E 1/3 | cos θ(s)| 1/3 M * (y(s)).
Moreover, its derivatives with respect to s satisfy

|∂ s ψ E|Z=0 (s)| ≤ CE 1/3 δ -1 y | cos θ| 2/3 M * (y(s)), |∂ 2 s ψ E|Z=0 (s)| ≤ CE 1/3 δ -1 y |θ (s)| | cos θ(s)| 1/3 M * (y(s)), |∂ 3 s ψ E|Z=0 (s)| ≤ CE 1/3 δ -1 y |θ (s)| 2 | cos θ(s)| 4/3 M * (y(s)).
These estimates are a straightforward consequence of Lemma 3.1.3 and of the formula defining ψ E .

Hence the remaining trace on Γ E is non-zero, and must be corrected. Note in particular that the bounds above are too singular in the vicinity of s i , i ∈ I + in order that we can lift the remaining trace by a simple macroscopic corrector. We lift the trace in two different ways depending on the value of s:

• If s is far from any point s i , i ∈ I + , we lift the trace thanks to a macroscopic corrector ψ corr Σ , which we construct in the next paragraph; • If s is in a neighbourhood of size one of any s i , we lift the trace of ψ E thanks to the North and South boundary layer terms; we will explain the latter construction in the next section.

Remark 3.2.3. Since the East corrector is not captured by energy estimates, as explained in Remark 1.3.1, it would be tempting to construct a boundary layer corrector which is not a solution of the East boundary layer equation, but which lifts the trace of the normal derivative of ψ 0 t without perturbing the zero order trace on the boundary, namely a corrector of the type A(s)z exp(-z/E p ), for some p > 0 and for an adequate choice of A(s). However, because of the strong singularities of ∂ n ψ 0 t|∂Ω (s) near s i and s i+1 , it can be proved that no choice of the parameter p leads to admissible error terms. In other words, close to the singularity zones, the corrector should be an approximate solution of the equation. This justifies the need for an elaborate construction, even though the corresponding terms are negligible in the final energy. This is in fact classical in multi-scale problems: quite often, it is necessary to construct high order correctors, whose sole purpose is to ensure that the remainder terms are admissible, but which are not seen by the total energy.

Definition of the East corrector.

The idea is therefore to split each East boundary component [s i , s i+1 ] in three subdomains (independent of E)

• one which is far from the singularities

[σ + i , σ - i+1 ] ⊂]s i , s i+1
[ so that we have uniformly small bounds on the trace of ψ BL E on [σ + i , σ - i-1 ]; • two which are (macroscopic) neighbourhoods of the singularities and such that

(3.18) ∀s ∈ [s i , σ + i ] ∪ [σ - i+1 , s i+1 ], | sin θ(s)| ≥ 1 2 ,
so that we can extend the North or South boundary layers on these parts of the boundary.

We therefore define suitable truncation functions in s, namely

ϕ + i , ϕ - i+1 ∈ C ∞ (R, [0, 1]) (3.19) ϕ + i (s) = 1 if s ≥ σ + i , ϕ + i (s) = 0 if s ≤ 1 2 (s i + σ + i ), ϕ - i+1 (s) = 1 if s ≤ σ - i+1 , ϕ - i+1 (s) = 0 if s ≥ 1 2 (s i+1 + σ - i+1 ).
The East corrector is then expected to lift ϕ + i ϕ - i+1 ψ E|Z=0 , which is the part of the trace which is known to be small. More precisely, we set, for s ∈ [s i-1 , s i ],

(3.20) 

ψ corr E (s, z) = -ψ E|Z=0 (s)ϕ + i (s)ϕ - i-1 (s)χ 0 (z
ψ corr E H m (Ω) = O(E 1/3
) ∀m ≤ 3. Moreover, ψ corr E|∂Ω\Γ E = 0, and ∂ n ψ corr E|∂Ω = 0 by definition of χ 0 . Notice also that (ψ

0 t + ψ E (s, λ E z) + ψ corr E ) |[σ + i ,σ - i-1 ] = 0, ∂ n (ψ 0 t + ψ E (s, λ E z) + ψ corr E ) |Γ E = 0
. Therefore, at this point, we have restored both boundary conditions on the subdomain

[σ + i , σ - i-1 ] of [s i , s i+1 ],
but not the condition on the trace in the neighborhoods of the singularities. This is handled by the North and South boundary layers, which we now address.

In the next section, we set

(3.22) ψ := ψ 0 t + χ 0 (ψ corr E + ψ E (s, λ E (s)z)),
where χ 0 is the macroscopic truncation defined in (1.10), so that on the boundary ψ|∂Ω\Γ

E = ψ 0 t|∂Ω\Γ E , ∂ n ψ|∂Ω\Γ E = ∂ n ψ 0 t|∂Ω\Γ E , ψ|(si,si+1) = (1 -ϕ + i ϕ - i+1 )ψ E|Z=0 (s), ∂ n ψ|Γ E = 0,
where (s i , s i+1 ) is a connected component of Γ E .

North and South boundary layers

In order to lift the boundary conditions both on the horizontal parts and on the East/West boundaries close to the points (x i , y i ) for 1 ≤ i ≤ k, we then define North and South boundary layers. Without loss of generality, we focus on the case of South boundaries (the case of North boundaries can be deduced by a simple symmetry).

Denote by s i and s i-1 the curvilinear abscissa of the endpoints of the horizontal part to be considered, with s i = s i-1 if it is just an isolated point of the boundary with horizontal tangent.

There are several point to be discussed in the present section:

• In the first paragraph, we give a precise definition of the interval on which energy is injected in the South boundary layer (i.e. we define the support of the functions Ψ 0 and Ψ 1 appearing in (2.11));

• The second paragraph is devoted to the derivation of regularity and moment estimates on ψ S ; • Eventually, we explain how we truncate ψ S beyond the support of Ψ 0 and Ψ 1 .

Definition of the initial boundary value problem.

We first define the extremal points of the interval on which some energy is injected in the boundary layer :

• If cos θ(s) > 0 for s > s i (East boundary), we need to lift the East boundary condition on a macroscopic neighborhood of s i , namely [s i , σ + i ] where σ + i is defined by (3.18). Similarly, if cos θ(s) > 0 for s < s i-1 , we define σ - i-1 by (3.18). Truncation functions ϕ + i , ϕ - i-1 are then defined by (3.19). • If cos θ(s) < 0 for s > s i (West boundary), we only need to lift the West boundary condition on a small neighbourhood of s i , precisely when the West boundary layer becomes too singular (Recall that the trace of ψ 0 t is not zero in general in the vicinity of s i on West boundaries). We therefore denote by σ + i the arc-length beyond which no energy is injected in the boundary layer (see Figure 3.2), and we expect that σ + i > s + i > s i , and

|σ + i -s i | 1.
Note that, in order that the transition between the two types of boundary layers is not too singular, we have to choose |σ + i -s + i | as large as possible. But in order that the transport coefficient b in (2.11) remains bounded in L 1 , we need that cos θ(s) is small for s ≤ σ + i . We thus choose σ + i satisfying the condition (3.23)

σ + i si | cos θ(s)| ds = E 1/4 .

We further define ϕ

+ i ∈ C ∞ (R, [0, 1]) such that (3.24) ϕ + i (s) = 0 if s ≤ s + i and Supp(1 -ϕ + i ) ⊂ (-∞, σ + i [. Similarly, if cos θ(s) < 0 for s < s i-1 , we define σ - i-1 by si-1 σ - i-1 | cos θ(s)| ds = E 1/4 , and 
ϕ - i-1 ∈ C ∞ (R, [0, 1]) such that Supp(1 -ϕ - i-1 ) ⊂]σ - i-1 , ∞) and ϕ - i-1 (s) = 0 if s ≥ s - i-1 . We will take ϕ + i (s) = Φ s + i + s -s + i σ + i -s + i where Φ ∈ C ∞ (R) is such that Φ(s) = 0 for s ≤ 0, Φ(s) = 1 for s ≥ 1 2 , 0 ≤ Φ ≤ 1
and all the derivatives of Φ are bounded. Remark 3.3.1. There are two cases of South boundary layer terms which will not be considered in this section, since they both give rise to interface boundary layer terms: • when cos θ(s) < 0 for s < s i-1 (West boundary on the right) and cos θ(s) > 0 for s > s i (East boundary on the left); • when cos θ(s) > 0 for s < s i-1 and for s > s i (East boundary on both sides), with s i-1 < s i ;

We will indeed consider the corresponding South boundary together with the singular interface Σ in the next section.

As in Lemma 3.2.1, we can compute asymptotic developments for σ + i and σ - i-1 .

Lemma 3.3.2. The transition functions ϕ ± i have controlled variations: • If cos θ > 0 for s ∈ (s i , s i+1 ) (East coast), then there exists a constant c > 0 such that

|s i -σ + i | ≥ C, and therefore ∂ k s ϕ + i ∞ = O(1) ∀k. • If cos θ < 0 for s ∈ (s i , s i+1 ) (West coast), then σ + i -s i ∼ C i E 1 4n+4
if (H2i) is satisfied in a neighbourhood on the right of s i , and

σ + i -s i = - 4α ln E 1 - 8 ln | ln E| ln E + O | ln E| -1
if (H2ii) is satisfied in a neighbourhood on the right of s i .

In this case,

∂ k s ϕ + i ∞ ≤ CE -k/7 , ∂ k s ϕ + i 1 ≤ CE -(k-1)+/7 .
Proof. The proof follows from the definition of σ + i and ϕ + i on East and West coasts.

On the West coast, if cos θ vanishes algebraically near s i , then

s + i -s i ∼ E 1 4n+3 and σ + i -s i ∼ E 1 4n+4
.

On the other hand, if cos θ vanishes exponentially near s i , then

s + i -s i ∼ σ + i -s i ∼ -4α/ ln E and σ + i -s + i = O(ln(| ln E|)/(ln E) 2 ) |s + i -s i |. Therefore we always have|s + i -s i | |σ + i -σ i |. Furthermore, by construction, we have (3.25) ∂ k s ϕ ± i ∞ = O(|s ± i -σ ± i | -k + |s ± i -s i | -k ) if (s i , s i±1 ) ⊂ Γ W , ∂ k s ϕ ± i ∞ = O(|s ± i -σ ± i | -k ) if (s i , s i±1 ) ⊂ Γ E . so that ∂ k s ϕ + i ∞ = O(E -k/(4n+3) ) (resp. ∂ k s ϕ + i ∞ = O | ln E| 2 ln | ln E| ) k .
To derive L 1 estimates, we merely multiply the L ∞ estimate by the size of Supp ∂ k s ϕ + i .

Let us then define the initial boundary value problem on s

≥ σ - i-1 , Z ≥ 0. Denote (3.26) γ i-1,i = (1 -ϕ + i )(1 -ϕ - i-1
) . The South boundary layer is therefore described by

(3.27) ∂ s ψ S + γ(s)∂ Z ψ S + µ(s)∂ 4 Z ψ S = 0, s ≥ σ - i-1 , Z > 0, ψ S|Z=0 = Ψ 0 , ∂ Z ψ S|Z=0 = Ψ 1
where γ(s) = -E -1/4 cos θ(s)/ sin θ(s), µ(s) = -1/ sin θ(s), with boundary condition

(3.28) Ψ 0 (s) := -γ i-1,i ψ|∂Ω (s), Ψ 1 (s) := -E 1/4 γ i-1,i ∂ n ψ|∂Ω (s),
and zero initial data prescribed at s = σ - i-1 . We recall that ψ is defined by (3.22). Note that, when the two types of boundary layers meet (that is on the support of (γ i-1,i ) ), the width of the North/South boundary layer is much larger than the one of the East/West boundary layer. Indeed, the width of the North/South boundary layer is always E 1/4 , while that of the East/West boundary layer is at most, using Lemma 3.2.1 and hypothesis (H2),

λ -1 E,W (s + i ) = E cos θ(s + i ) 1/3 ≤ C E n+1 4n+3
in case (H2i), E 1/4 | ln E| -3/2 in case (H2ii).

Therefore, it seems more accurate to talk about a superposition of the boundary layers, rather than a connection.

Estimates for ψ N,S .

Lemma 3.3.3 (Trace estimates). The functions Ψ 0 , Ψ 1 defined by (3.28) for s ∈ (σ - i-1 , s i+1 ) are such that

∂ k s Ψ 0 L ∞ + ∂ k s Ψ 1 L ∞ ≤ CE -k/7 for k ∈ {0, • • • , 3}, ∂ s Ψ 0 L 1 + ∂ s Ψ 1 L 1 ≤ C, ∂ 2 s Ψ 0 L 1 + ∂ 2 s Ψ 1 L 1 ≤ Cδ -1 y , ∂ 3 s Ψ 0 L 1 + ∂ 3 s Ψ 1 L 1 ≤ Cδ -1 y E -1/7 .
Moreover,

γΨ 0 L 1 + γΨ 1 L 1 = O(1), ∂ s (γΨ 0 ) L 1 + ∂ s (γΨ 1 ) L 1 = o(E -1/6 ), ∂ 2 s (γΨ 0 ) L 1 + ∂ 2 s (γΨ 1 ) L 1 = O(E -2/7 ).
Proof. We recall that ψ = ψ 0 t +χ 0 (ψ corr E +ψ E (s, λ E (s)z)). Notice that thanks to assumption (H3), ψ 0 t is continuous (and even C 2 ) on the interval (σ - i-1 , σ + i ). The estimates are slightly different depending on whether (s i-2 , s i-1 ) and (s i , s i+1 ) are portions of Γ E or Γ W . We focus for instance on the portion (σ - i-1 , s i-1 ), keeping in mind that the portion (s i , σ + i ) is analogous. Connection with West boundaries.

If (σ - i-1 , s i-1 ) ⊂ Γ W , then by definition (3.23) of σ - i-1 , (3.29) ∀s ∈ (σ - i-1 , s i-1 ), |y(s) -y i | ≤ E 1/4 δ y .
Moreover, ψ = ψ 0 t on (σ - i-1 , s i ) in this case. Therefore Lemma 3.3.3 is a consequence of the trace estimates on ψ 0 t stated in Lemma 3.1.3. First, the L ∞ bounds together with the definition of ϕ - i-1 imply that Ψ 0 L ∞ = O(1). Moreover, for s ∈ (σ - i-1 , s i ), using Lemma 3.1.3 and inequality (3.29), we have

|∂ s ψ 0 t|∂Ω (s)| ≤ C 1 + | cos θ(s)| δ y | ln δ y | ,
so that, using the definition (3.18) of σ ± i together with the definition (3.3) of δ y ,

∂ s ψ 0 t|∂Ω L 1 (σ - i-1 ,si) ≤ C 1 + E -1/4 | ln E| -6/5 (ln | ln E|) β σ + i σ - i-1 | cos θ(s)| ds ≤ C(1 + | ln E| -6/5 (ln | ln E|) β ).
We infer that

Ψ 0 L 1 (σ - i-1 ,si) ≤ ψ 0 t|∂Ω ∞ ∂ s γ i-1,i L 1 (σ - i-1 ,si) + ∂ s ψ 0 t|∂Ω L 1 (σ - i-1 ,si) ≤ C.
In a similar fashion, Lemma 3.3.2 and assumption (H2) yield

Ψ 1 L ∞ (σ - i-1 ,si) ≤ E 1/4 ∂ n ψ 0 t|∂Ω L ∞ (σ - i-1 ,si) ≤ CE 1/4 1 + 1 δ y | ln δ y | ≤ C,
and eventually

Ψ 1 L 1 ≤ E 1/4 ∂ s γ i-1,i L 1 (σ - i-1 ,si) ∂ n ψ 0 t|∂Ω L ∞ (σ - i-1 ,si) +CE 1/4 ∂ s ∂ n ψ 0 t|∂Ω L 1 (σ - i-1 ,si) ≤ C 1 + E 1/4 si σ - i-1 1 δ y + | cos θ| δ 2 y | ln δ y | ≤ C 1 + E 1/4 δ y + E 1/2 δ 2 y | ln δ y | ≤ C.
The higher order estimates are obtained in a similar way. We use the estimates of Lemma 3.3.2, which lead to

∂ k s γ i-1,i ∞ = O(E -k/7 ), ∂ k s γ i-1,i 1 = O(E -(k-1)+/7 ); In a similar fashion, cos k θ L ∞ (σ - i-1 ,si) = O(E k/8 ), cos k θ L 1 (σ - i-1 ,si) = O(E (k+1)/8 ). Lemma 3.1.3 implies that for s ∈ (σ - i-1 , s i ) |Ψ 0 (s)| + |Ψ 1 (s)| ≤ C δ -1 y 1 + cos 2 θ(s) δ y + E -1/7 1 + | cos θ(s)| δ y +C |∂ 2 s ϕ + i | + |∂ 2 s ϕ - i-1 | , |∂ 3 s Ψ 0 (s)| + |∂ 3 s Ψ 1 (s)| ≤ Cδ -1 y 1 + | cos θ| δ y + | cos θ| 3 δ 2 y +CE -1/7 δ -1 y 1 + cos 2 θ(s) δ y +CE -2/7 1 + | cos θ(s)| δ y + C |∂ 3 s ϕ + i | + |∂ 3 s ϕ - i-1 | ,
from which we easily infer the estimates of the Lemma. The estimates on γΨ 0 and γΨ 1 are a consequence of the following estimates on γ: γ ≡ 0 on (s i-1 , s i ),

γ L 1 (σ - i-1 ,si-1) = 1 by definition of σ - i-1 on West coasts, and γ L ∞ (σ - i-1 ,si-1) , ∂ s γ L 1 (σ - i-1 ,si-1) = O(E -1/8 ), ∂ 2 s γ L 1 (σ - i-1 ,si-1) = O(E -1/6 ). Indeed ∂ k s γ L 1 (σ - i-1 ,si-1) ≤ C(1 + E -1/4 ∂ k s θ L 1 (σ - i-1 ,si-1)
). Using assumption (H2) together with the definition of σ - i-1 , we infer the desired result; notice that the most singular case corresponds to n = 1 in (H2i) for the estimates on γ and ∂ s γ, and to n = 2 for the estimate on ∂ 2 s γ.

Connection with East boundaries

If (σ - i-1 , s i-1 ) ⊂ Γ E , the estimates are different in several regards:

• The function γ i-1,i has bounded derivatives;

• Because of the truncation χ E , the traces of ψ 0 t and ∂ n ψ 0 t are identically zero on the vicinity of s i-1 ;

• The trace of ψ 0 t is zero on (σ - i-1 , s i-1 ).

• The normal derivative of ψ = ψ 0 t + ψ E + ψ corr E is identically zero on (σ - i-1 , s i-1
) by definition of ψ E , so that Ψ 1 = 0 on (σ - i-1 , s i-1 ); Therefore it suffices to prove that γ i-1,i ψ E|Z=0 satisfies the desired estimates on the interval (σ - i-1 , s i-1 ). Notice that the estimates on (s i-1 , s i ) can be treated with the same arguments as in the first case.

We use the estimates of Lemma 3.2.2 and assumption (H2), together with the formulas of Appendix B, in order to compute y(s), cos θ and θ in terms of s. We infer that on (σ - i-1 , s i-1 ), Ψ 0 satisfies the following bounds:

• If (H2i) is satisfied in a neighbourhood on the left of s i-1 , then for k = 1, 2, 3, s ∈ (σ - i-1 , s i-1 ), |Ψ 0 | ≤ CE 1/3 |s -s i-1 | -4n+3 3 | ln(s i-1 -s)| -1 1 Cδ 1/(n+1) y ≤|s-si-1|≤1/2 + 1 , |∂ k s Ψ 0 | ≤ E 1/3 δ -1 y |s -s i-1 | -n 3 -k | ln(s i-1 -s)| -1 1 Cδ 1/(n+1) y ≤|s-si-1|≤1/2 + 1 .
We infer in particular that

Ψ 0 L ∞ (σ - i-1 ,si-1) ≤ CE 1/3 δ -4n+3 3(n+1) y | ln δ y | -1 .
Since 4n+3 3(n+1) < 4/3 for all n ≥ 1, we infer that

Ψ 0 L ∞ (σ - i-1 ,si-1) ≤ CE 1/3 δ -4/3 y | ln E| -1 ≤ C| ln E| -1 .
As for the other estimates, we have, for k = 1, 2, 3,

∂ k s Ψ 0 L ∞ (σ - i-1 ,si-1) ≤ CE 1/3 δ -1 y δ -n+3k 3(n+1) y | ln E| -1 , ∂ k s Ψ 0 L 1 (σ - i-1 ,si-1) ≤ CE 1/3 δ -1 y δ - n+3(k-1) 3(n+1) y | ln E| -1 .
It can be checked that the most singular estimates on the L ∞ norm, and on the L 1 norm as soon as k ≥ 2, correspond to n = 1. We then obtain the following (non optimal) upper bounds

∂ s Ψ 0 L 1 (σ - i-1 ,si-1) ≤ C| ln E| -1 , ∂ s Ψ 0 L ∞ (σ - i-1 ,si-1) , ∂ 2 s Ψ 0 L 1 (σ - i-1 ,si-1) ≤ CE -1/12 | ln E| -1 , ∂ 2 s Ψ 0 L ∞ (σ - i-1 ,si-1) , ∂ 3 s Ψ 0 L 1 (σ - i-1 ,si-1) ≤ CE -5/24 | ln E| -1 , ∂ 3 s Ψ 0 L ∞ (σ - i-1 ,si-1) ≤ CE -1/3 | ln E| -1 . • If (H2ii) is satisfied in a neighbourhood of the left of s i-1 , then for s ∈ (σ - i-1 , s i-1 ) and k = 1, 2, 3, |Ψ 0 (s)| ≤ CE 1/3 |s -s i-1 | -1 exp 4α 3|s -s i-1 | 1 |y(s)-yi-1|≥δy/2 , |∂ k s Ψ 0 (s)| ≤ CE 1/3 δ -1 y |s -s i-1 | -1-2k exp α 3|s -s i-1 | 1 |y(s)-yi-1|≥δy/2 .
Moreover, in case (H2ii), we recall that

y(s) -y i-1 ∼ C(s -s i-1 ) 2 exp - α |s -s i-1 | , so that for k = 0, 1, 2 ∂ k s Ψ 0 L ∞ (σ - i-1 ,si-1) , ∂ k+1 s Ψ 0 L 1 (σ - i-1 ,si-1) ≤ CE 1/3 δ -4/3 y | ln E| 2k-5 3 ≤ C| ln E| 2k-5 3
and similarly

∂ 3 s Ψ 0 L ∞ (σ - i-1 ,si-1)
≤ C| ln E| 13/3 . Therefore we retrieve the desired on the norm of Ψ 0 . Concerning the estimates on γΨ 0 , we use the following inequalities on (σ

- i-1 , s i-1 ) |γΨ 0 (s)| ≤ CE 1/12 | cos θ| 2/3 M(y(s)), |∂ s (γΨ 0 (s))| ≤ CE 1/12 δ -1 y | cos θ| 5/3 + |θ (s)|| cos θ| -1/3 M(y(s)) |∂ 2 s (γΨ 0 (s))| ≤ CE 1/12 δ -1 y | cos θ| 2/3 |θ (s)| + |θ (s)| | cos θ| -1/3 M(y(s)).
Once again, we distinguish between (H2i) and (H2ii), and we obtain in the worst situation

γΨ 0 L 1 ≤ C| ln E| -1 , ∂ s (γΨ 0 ) L 1 ≤ CE 1/12 δ -1 y ≤ CE -1/6 | ln E| -1/5 | ln | ln E|| β , ∂ 2 s (γΨ 0 ) L 1 ≤ CE 1/12 δ -7/6 y ≤ CE -5/24 .
By Lemma 2.3.1, we then have the well-posedness of equation (3.27), as well as suitable a priori estimates for the solution ψ S (3.30)

ψ S (s) L 2 (R+) ≤ C(|Ψ 0 (s)| + |Ψ 1 (s)|) + C s σ - i-1 (|Ψ 0 (s )| + |Ψ 1 (s )|) ds + C s σ - i-1 (µ(s ) + |γ(s )|)(|Ψ 0 (s )| + |Ψ 1 (s )|) ds .
In order to show that the South boundary layer is stable, we will need additional estimates on the boundary layer terms, namely regularity and moment estimates. Lemma 3.3.4 (Regularity and moment estimates). Let ψ S be the solution to (3.27) with boundary conditions (3.28), defined on

I S := {s ≥ σ - i-1 / ∀s ∈ [σ - i-1 , s], | sin θ(s)| ≥ 1 4 }. Then (3.31) (1 + Z k )ψ S (s, Z) L ∞ (I S ,L 2 Z ) + (1 + Z k )∂ 2 Z ψ S L 2 (I S ×R+) = O(1), (1 + Z k )∂ s ψ S L ∞ (I S ,L 2 Z ) + (1 + Z k )∂ 2 Z ∂ s ψ S L 2 (I S ×R+) = O(δ -1 y ), (1 + Z k )∂ 2 s ψ S L ∞ (I S ,L 2 Z ) + (1 + Z k )∂ 2 Z ∂ 2 s ψ S L 2 (I S ×R+) = O(E -1/2 | ln E| -1
).

Remark 3.3.5. The condition | sin θ| ≥ 1/4 in the definition of I S is somewhat arbitrary: we just want to prevent sin θ from touching zero, but obviously any fixed positive number will do.

Proof. Such a priori estimates are obtained by combining precised energy estimates for the parabolic equation (3.38), together with high order estimates on the traces.

• Define as in the previous chapter

S(s, Z) := -Ψ 0 (s)(Z + 1) exp(-Z) -Ψ 1 (s)Z exp(-Z) + γ(s)Ψ 0 (s)Z exp(-Z) -γ(s)Ψ 1 (s)(1 -Z) exp(-Z) -µ(s)Ψ 0 (s)(Z -3) exp(-Z) -µ(s)Ψ 1 (s)(Z -4) exp(-Z).
From the trace estimates in Lemma 3.3.3, we deduce that, for all k ≥ 0,

Z k S L 1 ≤ C, Z k ∂ s S L 1 ≤ Cδ -1 y , Z k ∂ 2 s S L 1 ≤ Cδ -1 y E -1/7 .
Notice also that by definition (3.19), (3.24) of ϕ ± i , we have Supp(1 -

ϕ - i-1 ) ⊂ ]σ - i-1 , ∞[, so that Ψ 0 and Ψ 1 are identically zero on a neighbourhood of σ - i-1 . Therefore ∂ k s ψ S|s=σ - i-1 = 0.
• In order to derive estimates on ∂ k s ψ S for k ≥ 1, we lift the boundary conditions to get (3.32)

∂ s g + γ(s)∂ Z g + µ(s)∂ 4 Z g = S(s, Z), s ∈ (0, T ), Z > 0, g |s=0 = 0, g |Z=0 = 0, ∂ Z g |Z=0 = 0,
then differentiate the equation and proceed by induction on k. We start with

∂ s (∂ k s g) + ∂ k s (γ(s)∂ Z g) + ∂ k s (µ(s)∂ 4 Z g) = ∂ k s S .
Integrating against ∂ k s g, we get

1 2 ∂ k s g(s) 2 L 2 Z + s σ - i-1 µ(s ) ∂ 2 Z ∂ k s g(s ) 2 L 2 Z ds ≤ s σ - i-1 ∂ k s S(s ) L 2 Z ∂ k s g(s ) L 2 Z ds + k-1 j=0 C j k s σ - i-1 |∂ k-j s γ(s )| ∂ Z ∂ j s g(s ) L 2 Z ∂ k s g(s ) L 2 Z ds + k-1 j=0 C j k s σ - i-1 ∂ 2 Z ∂ k s g(s ) L 2 Z |∂ k-j s µ(s )| ∂ 2 Z ∂ j s g(s ) L 2 Z ds ,
and therefore, since µ is bounded from below,

∂ k s g 2 L ∞ ((σ - i-1 ,s),L 2 
Z ) + ∂ k s ∂ 2 Z g 2 L 2 ((σ - i-1 ,s),L 2 Z ) ≤ C ∂ k s S L 1 ((σ - i-1 ,s),L 2 
Z ) ∂ k s g L ∞ ((σ - i-1 ,s),L 2 Z ) +C k-1 j=0 ∂ k-j s γ L 4/3 (σ - i-1 ,s) ∂ j s g 1/2 L ∞ s (L 2 Z ) ∂ j s ∂ 2 Z g 1/2 L 2 s (L 2 Z ) ∂ k s g L ∞ s (L 2 Z ) +C k-1 j=0 ∂ k-j s µ L ∞ (σ - i-1 ,s) ∂ j s ∂ 2 Z g L 2 s (L 2 Z ) ∂ k s ∂ 2 Z g L 2 s (L 2 
Z ) . Eventually, using the Cauchy-Schwarz inequality, we obtain for k ≤ 2

∂ k s g 2 L ∞ ((σ - i-1 ,s),L 2 
Z ) + ∂ k s ∂ 2 Z g 2 L 2 ((σ - i-1 ,s),L 2 Z ) (3.33) ≤ C ∂ k s S 2 L 1 ((σ - i-1 ,s),L 2 Z ) +C k-1 j=0 ∂ k-j s γ 2 L 4/3 (σ - i-1 ,s) ∂ j s g L ∞ ((σ - i-1 ,s),L 2 
Z ) ∂ j s ∂ 2 Z g L 2 ((σ - i-1 ,s)×R+) +C k-1 j=0 ∂ k-j s µ 2 L ∞ (σ - i-1 ,s) ∂ j s ∂ 2 Z g 2 L 2 ((σ - i-1 ,s)×R+) .
Next recall that µ is bounded, and that all its derivatives are of order O(1)

µ ≥ µ 0 > 0, ∂ j s µ ∞ ≤ C.
In order to bound the term involving γ, we have to distinguish between the cases when (s i-2 , s i-1 ) ⊂ Γ E or Γ W :

• If (s i-2 , s i-1 ) ⊂ Γ W , then γ = E -1/4 cos θµ satisfies ∂ s γ L 4/3 (σ - i-1 ,σ + i ) = O(E -1 4 + 3 4 1 8 ) = O(E -5/32 ), ∂ 2 s γ L 4/3 (σ - i-1 ,σ + i ) = O(E -1 4 + 3 4 1 12 ) = O(E -3/16 ).
Notice that in this case, we also have (s i , s i+1 ) ⊂ Γ W since we have excluded for the moment the case leading to a discontinuity line Σ.

Inequality (3.33) therefore yields, for k = 0,

g L ∞ s (L 2 Z ) + ∂ 2 Z g L 2 s,Z ≤ C S L 1 s (L 2 Z ) ≤ C, then, for k = 1, ∂ s g L ∞ s (L 2 Z ) + ∂ 2 Z ∂ s g L 2 s,Z ≤ Cδ -1 y , and, for k = 2, ∂ 2 s g L ∞ s (L 2 Z ) + ∂ 2 Z ∂ 2 s g L 2 s,Z ≤ Cδ -1 y E -3/16 = o(E -7/16
).

• If (s i-2 , s i-1 ) ⊂ Γ E , then for s ∈ (σ - i-1 , s i-1 ) ∂ j s γ L 4/3 (σ - i-1 ,s) = O(E -1/4
) for all j and for all s > σ - i-1 . In this case, we refer to the proof of Lemma 3.3.3 and we state that

S L 1 ((σ - i-1 ,si-1),L 2 Z ) = O(| ln E| -1 ), ∂ s S L 1 ((σ - i-1 ,si-1),L 2 Z ) = o(E -1/6 ), ∂ 2 s S L 1 ((σ - i-1 ,si-1),L 2 Z ) = o(E -5/24 ).
Inequality (3.33) therefore yields, for k = 0,

g L ∞ ((σ - i-1 ,si-1),L 2 
Z ) + ∂ 2 Z g L 2 ((σ - i-1 ,si-1),L 2 
Z ) ≤ C| ln E| -1 , then, for k = 1, ∂ s g L ∞ ((σ - i-1 ,si-1),L 2 
Z ) + ∂ 2 Z ∂ s g L 2 ((σ - i-1 ,si-1),L 2 
Z ) ≤ CE -1/4 | ln E| -1 ,
and, for k = 2,

∂ 2 s g L ∞ ((σ - i-1 ,si-1),L 2 
Z ) + ∂ 2 Z ∂ 2 s g L 2 ((σ - i-1 ,si-1),L 2 
Z ) ≤ CE -1/2 | ln E| -1 .
There remains to derive bounds for s > s i-1 . There are essentially two cases:

either (s i , s i+1 ) ⊂ Γ W , and in this case the estimates on (s i-1 , σ + i ) are similar to the ones of the case (s i-2 , s i-1 ) ⊂ Γ W . The only change lies in the initial data: we merely replace

∂ k s g |s=σ - i-1 = 0 by ∂ k s g |s=si-1 L 2 Z = O(E -k/4 | ln E| -1 ) for k = 0, 1, 2.
We infer that

g L ∞ s (L 2 Z ) + g L 2 s,Z = O(1), ∂ s g L ∞ s (L 2 Z ) + ∂ s g L 2 s,Z = O(δ -1 y ), ∂ 2 s g L ∞ s (L 2 Z ) + ∂ 2 s g L 2 s,Z = O(E -1/2 | ln E| -1
).

or (s i , s i+1 ) ⊂ Γ E . Notice that in this case, s i = s i-1 (i.e. there is no flat horizontal boundary), otherwise the corresponding piece of flat boundary would be the beginning of a Σ layer, which will be treated in the next section. Whence we can treat the interval (s i , σ + i ) exactly as (σ - i-1 , s i-1 ), and we obtain

g L ∞ s (L 2 Z ) + g L 2 s,Z = O(| ln E| -1 ), ∂ k s g L ∞ s (L 2 Z ) + ∂ k s g L 2 s,Z = O(E -k/4 | ln E| -1 ) for k = 1, 2.
• We get moment estimates in a similar fashion

∂ s (Z k g) + Z k (γ(s)∂ Z g) + Z k (µ(s)∂ 4 Z g) = Z k S .
Integrating against Z k g, we get

1 2 Z k g(s) 2 L 2 Z + s σ - i-1 µ(s ) Z k ∂ 2 Z g(s ) 2 L 2 Z ds ≤ s σ - i-1 Z k S(s ) L 2 Z Z k g(s ) L 2 Z ds + 2k s σ - i-1 |γ(s )| Z k g(s ) L 2 Z Z k-1 g(s ) L 2 Z ds + 2k s σ - i-1 |µ(s )| Z k ∂ 2 Z g(s ) L 2 Z Z k-1 ∂ Z g(s ) L 2 Z ds + k(k -1) s σ - i-1 |µ(s )| Z k ∂ 2 Z g(s ) L 2 Z Z k-2 g(s ) L 2 Z ds ,
A simple recursion then leads to the expected uniform bound for the moments of ψ S and ∂ 2 Z ψ S . • Combining both arguments we obtain the moment estimates for higher order derivatives.

Extinction and truncation.

We emphasize that ψ S|s=σ + i is not small in general: there is still some energy in the South boundary layer, even though the boundary conditions are absorbed by the West boundary layer only for s ≥ σ + i . We deal with this somewhat unexpected phenomenon by propagating the boundary layer term ψ S beyond σ + i . We prove that when cos θ becomes bounded away from zero, ψ S vanishes. As before, there are two cases, depending on whether (s i , s i+1 ) is a part of Γ W or Γ E :

• First case: (s i , s i+1 ) ⊂ Γ E : looking closely at the proof of Lemma 3.3.4, we see that in this case,

(3.34) ψ S L ∞ ((si,s),L 2 Z ) = O(| ln E| -1
) for all fixed s > σ + i (independent of E) such that | sin θ| ≥ 1/2 on (s i , s). Therefore ψ S is small on the West boundary layer, on intervals of size one.

• Second case: (s i , s i+1 ) ⊂ Γ W : we use the following result:

Lemma 3.3.6 (Extinction of the South boundary layer). Let ψ S be the solution to (3.27) with boundary conditions (3.28), defined for s ≥ s i as long as sin θ(s) < 0. Then

s si E -1/4 | cos θ(s )| ψ S (s ) 2 L 2 ds ≤ C.
Before proving Lemma 3.3.6, we now explain how we truncate the South boundary layer on (s i , s i+1 ). We introduce a function γi-1,i ∈ C ∞ (∂Ω) by

(3.35) Supp γi-1,i ⊂ {s ∈]s i-2 , s i+1 [ / sin θ(s) < 0}, γi-1,i ≡ 1 on a neighbourhood of Supp(1 -ϕ + i ) ∩ Supp(1 -ϕ - i-1
). Notice than we can always assume that γi-1,i has bounded derivatives.

The South boundary layer on (s i-2 , s i+1 ) is then defined by γi-1,i (s)ψ S (s, zE -1/4 ).

Using either Lemma 3.3.6 or estimation (3.34), we infer that ψ S L 2 s,Z = O(| ln E| -1 ) on the support of γ i-1,i . We will prove in the next chapter that this is enough to ensure that the error terms generated by γi-1,i are admissible in the sense of Definition 1.1.2.

Proof of Lemma 3.3.6. By Lemma 3.3.4, for every s ∈ (s i , s i+1 ) such that sin θ(s) < 0,

(1 + Z)ψ S L 2 Z = O(1), and

s σ - i-1 (|Ψ 0 (s)| + |Ψ 1 (s)| + (µ(s) + |γ(s)|)(|Ψ 0 (s)| + |Ψ 1 (s)|)) ds = O(1).
Moreover, for s ≥ σ + i , Ψ 0 (s) = Ψ 1 (s) = 0. Integrating (3.27) against Zψ S , we infer that there exists a constant C > 0, which does not depend on E, such that for all s ≥ s i such that sin θ(s) < 0

∞ 0 Zψ 2 S (s) dZ + s si E -1/4 |(tan θ(s )) -1 ψ S (s ) 2 L 2 ds ≤ C.
which gives the desired estimate.

The interface layer

Let us now focus on the interface Σ = ∂Ω + ∩ ∂Ω -. We recall that, by construction, ψ 0 t is discontinuous across Σ so that • we need to lift this discontinuity to get a smooth (H 2 ) approximate solution, • we then have to define a corrector (in the form of a singular layer term)

to remove the energy created by the lifting term.

3.4.1. The lifting term ψ lift . We first construct the term ψ lift which lifts the discontinuity across Σ. The construction has already been explained in Chapter 2. Since σ ± i is now defined precisely by (3.23) for West boundaries and (3.18) for East boundaries, we can define σ in in the following way (3.36) σ in :=

   σ - 1 if I 1 = {s 1 }, σ - 0 if I 1 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ W , s 0 if I 1 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ E . Notice that if I 1 = {s 1 }, then we always have (σ - 1 , s 1 ) ⊂ Γ W (

an isolated point of cancellation of cos θ on the East boundary does not create a discontinuity line).

The reason why we choose to take s 0 instead of σ - 0 as an initial point in the last line is essentially technical: we have chosen to write the equation on the discontinuity type boundary layer in cartesian coordinates, rather than curvilinear ones (see equation (2.23)). This is legitimate as long as cos θ 1, so that the normal vector coincides almost with -e y , while the tangent vector coincides with -e x . However, by definition of σ ± i on East boundaries, cos θ takes "large" values on (σ - 0 , s 0 ), and therefore the present construction cannot be used. We by-pass this problem by considering separately the East boundary for s < s 0 and the discontinuity boundary layer (which will be justified in Remark 3.4.4).

We thus define a truncation ϕ by

ϕ :=    ϕ - 1 if I 1 = {s 1 }, ϕ - 0 if I 1 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ W , 0 if I 1 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ E .
Notice that in the last case, ψ 0 t vanishes identically in a neighbourhood of (x 0 , y 0 ), and thus there is no need for a truncation in s.

We then define as in (2.17)

ψ lift (x, y) = χ + χ y -y 1 E 1/4 [a(x) + b(x)(y -y 1 )] ,
where χ is a truncation function as in (2.18) and a and b are defined by (2. [START_REF] Rousset | Asymptotic behavior of geophysical fluids in highly rotating balls[END_REF]) and (2.20). Eventually, in order to simplify the present analysis, we truncate the function τ in the vicinity of inf I 1 and sup I 1 , even in the case when these points do not belong to I + . Note that this does not change anything to the estimates of Lemma 3.1.1.

3.4.2.

The interior singular layer ψ Σ . The lifting term ψ lift has introduced a remainder δτ lift in the approximate Munk equation (see Lemma 2.4.3), which we have to treat as a source term. As suggested in the previous chapter, we therefore define ψ Σ as the solution of equation (2.23)

∂ x ψ Σ -∂ 4 Y ψ Σ = -δτ lift , x < x(σ in ), Y > Y -(x) ψ Σ |x=x(σin) = 0, ψ Σ Y =Y-(x) = ∂ n ψ Σ Y =Y-(x) = 0.
The function Y -is any C 4 function satisfying the following conditions:

Y -(x) = y(x) -y 1 E 1/4 for x ∈ (x(ς + 1 ), x(σ -)), Y -(x) ≡ Ȳ-> δ y E -1/4 for x < x(t + 1 ), ∀k ≤ 4, ∀p ≥ 1, ∃C > 0, Y -W k,p (x,x(σ -)) ≤ C Y -W k,p (x(ς + 1 ),x(σ -)) , where (3.37) ς + 1 = inf{s > s 1 , |y(s) -y(s 1 )| = δ y }, t + 1 = inf{s > s 1 , |y(s) -y(s 1 )| = 2δ y }, y(x)
is the ordinate of the point of ∂Ω with abscissa x in the vicinity of (x 1 , y 1 ) and of (x(s 0 ), y(s 0 )), and x is an arbitrary fixed point such that the vertical line x = x does not intersect Ω.

Then the solution ψ Σ of equation ( 2.23) can be expressed as

ψ Σ (x, Y ) = φ Σ (x, Y -Y -(x)),
where φ Σ is the solution of the backward equation

(3.38)    ∂ x φ Σ -Y -(x)∂ Z φ Σ -∂ 4 Z φ Σ = = -δτ lift (x, Y -(x) + Z), x < x(σ in ), Z > 0, φ Σ |x=x(σin) = 0, φ Σ |Z=0 = ∂ Z φ Σ |Z=0 = 0.
which is precisely an equation of the type (2.13). In the equation above, we still denote the rescaled boundary layer coordinate by Z, in order to be consistent with (2.13). However, in the present context, Z is just a scaled cartesian coordinate. 

Σ (x, Y ) = φ Σ (x, Y - Y -(x)).
Denote by

(x W 1 , y 1 ) = (x(s W 1 ), y(s W 1 
)) the projection of (x 1 , y 1 ) on the West boundary.

Then, for all

x < x W 1 , ψ Σ L ∞ ((x,x(σin)),L 2 (Y-,∞)) = O(1), ∂ x ψ Σ L 4 ((x,x(σin)),L 2 (Y-,∞)) = O(E -1/19 ), ∂ 2 x ψ Σ L 2 ((x,x(σin)),L 2 (Y-,∞)) = O(E -2/19
). Furthermore, for all integers k, l with k + l ≤ 3,

∂ k x ∂ l Z ψ Σ L ∞ (x,x(t + 1 )) ≤ CE -1+2l+8k 8×19 ,
where t + 1 is defined by (3.37).

Remark 3.4.2. The function ψ Σ is defined beyond the West end of {(x, y) ∈ Ω) / y = Ȳ-}: indeed, for some values of s in a neighbourhood of s W 1 , x(s) may be smaller than x W 1 (notice that this is the case as soon as sin θ(s W 1 ) = 0, i.e. as soon as the tangent to ∂Ω at s = s W 1 is not vertical). Thus the trace ψ Σ |Γ W involves values of ψ Σ at points x < x W 1 .

Proof. Such a priori estimates are obtained by combining precised energy estimates for the parabolic equation (3.38), together with a refined description of the geometry Y -, and high order estimates on the source terms.

• Estimates on φ Σ .

Denoting by S(x, Z) = -δτ lift (x, Y -(x) + Z) the right-hand side of (3.38), we recall that

S(x, Z) = -1 -1 x<x1,Z+Y-(x)<0 χ(Z + Y -(x)) a (x) + E 1/4 b (x)(Z + Y -(x)) + 1 -1 x<x1,Z+Y-(x)<0 χ (4) (Z + Y -(x)) a(x) + E 1/4 b(x)(Z + Y -(x)) + 4 1 -1 x<x1,Z+Y-(x)<0 χ (3) (Z + Y -(x))E 1/4 b(x).
Notice that the indicator function does not create any singularity on the domain of integration x ∈ (x, x(σ in )) × (0, ∞): indeed, χ (3) and χ (4) are identically zero in a neighbourhood of zero, so that

1 Y <0 χ (k) (Y ) is in fact a C ∞ function for k = 3, 4.
Moreover, for x < x 1 , a and b are constant, so that

1 x<x1 1 Z+Y-(x)<0 χ(Z + Y -(x)) a (x) + E 1/4 b (x)(Z + Y -(x)) ≡ 0. Eventually, for x = x 1 , Y -= 0, so that 1 Z>0 1 Z+Y-(x1)<0 = 0.
It is easily checked that

S(x, •) L 2 (R+) ≤ C(|a| + |a | + E 1/4 |b| + E 1/4 |b |),
so that, using Lemma C.1 in Appendix C,

S L 1 ((x,x(σin)),L 2 (R+)) ≤ C.
According to Lemma 2.3.1, we then have

φ Σ L ∞ (x,x(σin)),L 2 (R+)) + ∂ 2 Z φ Σ L 2 ((x,x(σin))×R+) = O(1).
In order to derive estimates on ∂ k x φ Σ for k ≥ 1, we differentiate equation (3.38) and we proceed by induction on k. Notice that because of the various truncations and of the choice of σ in , φ Σ is identically zero in a neighbourhood of x = x(σ in ), so that the initial data is always zero, together with the boundary conditions. Moreover, as explained before, the indicator function in the right-hand side does not raise any singularity. Using the same kind of estimates as in Lemma 3.3.4, we infer that

∂ k x φ Σ L ∞ x (L 2 Z ) + ∂ 2 Z ∂ k x φ Σ L 2 x,Z (3.39) ≤ C ∂ k x S L 1 ((x,x(σin),L 2 (R+)) +C k-1 l=0 Y (k-l) - L 4/3 (x,x(σin)) ∂ l x φ Σ L ∞ x (L 2 Z ) + ∂ 2 Z ∂ l x φ Σ L 2 x,Z . • Estimates on ∂ k x S.
As in the proof of Lemma 3.3.2, the most singular estimates for Y (k) -are obtained when cos θ vanishes algebraically near s = s 1 , with the lowest possible exponent n. Moreover, by assumption (H4), the exponent n above satisfies n ≥ 4. Hence we have (3.40)

Y (k) - ∞ ≤ C| ln E| 1/5 E -k/20 , Y (k) - L 4/3 ≤ C| ln E| 1/5 E ( 3 4 -k) 1 20 .
We now use the estimates of Lemma C.1 in Appendix C together with (3.40). Denoting

A k := a (k) L 1 (xmin,xmax) + E 1/4 b (k) L 1 (xmin,xmax) = O(E 1-k 19 ).
for all k ∈ {1, • • • , 4}, we have

∂ x S L 1 L 2 ≤ C (A 1 + A 2 ) + Y -∞ (A 0 + A 1 ) , ∂ 2 x S L 1 L 2 ≤ C(A 2 + A 3 ) + Y -∞ (A 1 + A 2 ) +C( Y -∞ + Y - 2 
∞ )(A 0 + A 1 ), ∂ 3 x S L 1 L 2 ≤ C(A 3 + A 4 ) + Y -∞ (A 2 + A 3 ) +C( Y -∞ + Y - 2 
∞ )(A 1 + A 2 ) +C( Y (3) - ∞ + Y -∞ Y -∞ + Y - 3 ∞ )(A 0 + A 1 ), so that (3.41) ∂ k x S L 1 x (L 2 Z ) ≤ CE -k/19 .
• W k,∞ estimates on ψ Σ :

• Gathering (3.39), (3.40) and (3.41), we prove easily by induction that for

k ∈ {0, • • • 3}, ∂ k x φ Σ L ∞ ((x,x(σ - 0 ),L 2 (R+)) + ∂ 2 Z ∂ k x φ Σ L 2 ((x,x(σ - 0 ),L 2 (R+)) = O(E -k/19
). The first estimates on ψ Σ follow from the identities

∂ x ψ Σ (x, Y ) = ∂ x φ Σ (x, Y -Y -) -Y -∂ Z φ Σ (x, Y -Y -), ∂ 2 x ψ Σ (x, Y ) = ∂ 2 x φ Σ (x, Y -Y -) -2Y -∂ x ∂ Z φ Σ (x, Y -Y -) -Y -∂ Z φ Σ (x, Y -Y -) -Y - 2 ∂ 2 Z φ Σ (x, Y -Y -).
Then, notice that for x < x(t + 1 ), Y -≡ Ȳ-, so that

ψ Σ W k,∞ ((x,x(t + 1 ))×( Ȳ-,∞)) = φ Σ W k,∞ ((x,x(t + 1 ))×(0,∞)) .
We then use Sobolev inequalities in order to bound the L ∞ norms. More precisely, we use repeatedly the following Lemma : Lemma 3.4.3. There exists a constant C > 0 such that for any f ∈ H

4 (R + ) satisfying f |Z=0 = ∂ Z f |Z=0 = 0, we have f ∈ W 3,∞ (R + ) and for k = 0, 1, 2, 3, ∂ k Z f L ∞ (R+) ≤ C f 7-2k 8 L 2 (R+) ∂ 4 Z f 1+2k 8 L 2 (R+) . Lemma 3.4.3 is proved in Appendix D. Notice that for x < x(t + 1 ), φ Σ satisfies ∂ x φ Σ -∂ 4 Z φ Σ =(1 Z+ Ȳ -<0 -1)χ (4) (Z + Ȳ -)(ā + E 1/4 b(Z + Ȳ -)) + 4 1 -1 x<x1,Z+Y-(x)<0 χ (3) (Z + Y -(x))E 1/4 b(x), so that for k ≥ 2, ∂ k x φ Σ = ∂ 4 Z ∂ k-1 x φ Σ , x < x(t + 1 ), Z > Ȳ -. Lemma 3.4.3 and equation (3.38) imply that for k ≥ 1, ∂ k x φ Σ L ∞ ((x,x(t + 1 ))×(0,∞)) ≤ ∂ k x φ Σ 7/8 L ∞ x (L 2 Z ) ∂ 4 Z ∂ k x φ Σ 1/8 L ∞ x (L 2 Z ) ≤ ∂ k x φ Σ 7/8 L ∞ x (L 2 Z ) ∂ k+1 x φ Σ 1/8 L ∞ x (L 2 Z ) ≤ CE -7k 8×19 E -k+1 8×19 ≤ CE -k 19 -1 8×19 , while ∂ l Z φ Σ L ∞ ((x,x(t + 1 ))×(0,∞)) ≤ C φ Σ (7-2l)/8 L ∞ x (L 2 Z ) ∂ 4 Z φ Σ (1+2l)/8 L ∞ x (L 2 Z ) ≤ C ∂ x φ Σ L ∞ x (L 2 Z ) + S L ∞ x (L 2 Z ) (1+2l)/8
≤ CE -1+2l 8×19 . Similar estimates can be derived for terms of the type ∂ k

x ∂ l Z φ Σ , with k + l ≤ 3. This concludes the proof of Lemma 3.4.1.

Remark 3.4.4. • Because of the function Y -and the coefficients a and b, the profile ψ Σ depends on E in general, which is not entirely satisfactory for an approximate solution. However, the estimates of Lemma 3.4.1 show that ψ Σ is uniformly bounded in L ∞ (L 2 ) ∩ L 2 (H 2 ).

Let x ∈ (x, x 1 ) arbitrary. Then x(t + 1 ) > x for E small enough, so that Y -(x) = Ȳfor x ∈ (x, x). Extending ψ Σ by zero below Ȳ-, we infer that ψ Σ is uniformly bounded in L 2 ((x, x), H 2 (R)). Up to the extraction of a sub-sequence, ψ Σ converges towards a function ψΣ weakly in L 2 ((x, x), H 2 (R)). Passing to the limit in the equation satisfied by ψ Σ , we obtain

∂ x ψΣ -∂ 4 Y ψΣ = S(Y ), in D ((x, x) × R),
where

S(Y ) = -āχ (4) (Y ), with ā = - x + E (y1)
x - E (y1) τ (x, y 1 ) dx.

• Notice that with this construction, there remains a non zero trace on the East part of the boundary (s 1 , s 2 ), and also on (s k-1 , s 0 ) if (s k-1 , s 0 ) ⊂ Γ E (since σ in = s 0 according to (3.36), and therefore the trace of ψ E on (σ - 0 , s 0 ) is not lifted by ψ lift ). These traces correspond to ψ E|Z=0 (1

-ϕ + 1 ϕ - 2 ) and ψ E|Z=0 (1 -ϕ - 0 ϕ + k-1
). The right way to proceed is to lift first ψ E|Z=0 (1 -ϕ - 0 ϕ + k-1 ) thanks to a South type boundary layer ψ S , exactly as explained in the previous section, then to construct the ψ lift and ψ Σ corresponding to ψ int + ψ S , and finally to construct another South boundary layer to lift ψ E|Z=0 (1 -ϕ + 1 ϕ - 2 ). The principle as usual is to restore boundary conditions starting from the East. This will introduce minor corrections in the approximate solution, and will not change the a priori estimates on the different terms, nor the connection with the West boundary.

Connection with the West boundary.

The question is then to describe the West junction, that is the connection with the West boundary layer. The traces of the discontinuity terms ψ lift + ψ Σ χ y-y1 δy on the West boundary create yet another singularity in the West boundary layer term: indeed, the coefficient A(s) in (2.7) now lifts the traces of ψ int + ψ Σ , and thus changes abruptly near the point s W 1 ∈ Γ W . We recall that ψ int = ψ 0 t + ψ lift . At this stage we encounter another difficulty: the function ∂ s A can be written as

∂ s A ± (s) = ± E cos θ 1/3 cos θ(s) sin θ(s)∂ 2 y ψ int (x(s), y(s))
+differentiable terms.

The function

∂ 2 y (ψ 0 t + ψ lift ) is discontinuous across Σ: more precisely, [∂ 2 y (ψ 0 t + ψ lift )] Σ = [∂ 2 y ψ 0 t ] Σ ,
and the jump of ∂ 2 y ψ 0 t across Σ is constant along Σ and of order δ -2 y . As a consequence, A is not continuous, which is problematic, because the error estimates for the West boundary layer involve L p norms of A , as we will see in the next chapter (see the proof of Lemma 4.2.6).

In order to avoid the apparition of a Dirac mass in A , we add yet another corrector term which has the following form (3.42) 

ψ corr Σ = -[∂ 2 y ψ 0 t ] Σ 1 y>y1 (y -y 1 ) 2 χ y -y 1 E 1/4 χ x -x(s W 1 ) | log E| -1/5 .

It is obvious that ψ corr

ψ corr Σ W k,∞ = O(δ -2 y E -k-2 4 ) = o(E -k/4 ).
Moreover,

∂ x ψ corr Σ L 2 (Ω) = o(E 1/8 ), E∆ 2 ψ corr Σ H -2 (Ω) = o(E 5/8 ).
Proof. The estimates are fairly straightforward, noticing that for l ∈ {0, 1, 2}, k ∈ N,

(y -y 1 ) l χ (k) y -y 1 E 1/4 L ∞ = O(E l/4 ).
Since [∂ 2 y ψ 0 t ] Σ does not depend on x nor y, we have

∂ k x ψ corr Σ = -[∂ 2 y ψ 0 t ] Σ 1 y>y1 (y -y 1 ) 2 χ y -y 1 E 1/4 | ln E| k/5 χ (k) x -x(s W 1 ) | log E| -1/5 , so that ∂ k x ψ corr Σ ∞ = O(δ -2 y E 1/2 | ln E| k/5 ) = O(| ln E| k-2 5 | ln | ln E| | 2β ).
Let us now estimate ∂ y ψ corr Σ ; the rest of the estimates are left to the reader. We have

∂ y ψ corr Σ (x, y) = -[∂ 2 y ψ 0 t ] Σ χ x -x(s W 1 ) | log E| -1/5 1 y>y1 (y -y 1 ) × 2χ y -y 1 E 1/4 + E -1/4 (y -y 1 )χ y -y 1 E 1/4 , so that ∂ y ψ corr Σ ∞ ≤ C [∂ 2 y ψ 0 t ] Σ E 1/4 ≤ Cδ -2 y E 1/4 . More generally, for k = 0, 1, 2 ∂ k y ψ corr Σ ∞ = O(δ -2 y E 2-k 4 ) = O(E -k/4 | ln E| -2/5 | ln | ln E| | 2β ).
The W k,∞ estimates follow easily. Moreover, since the support of

ψ corr Σ is included in the rectangle [x W 1 -2| ln E| -1/5 , x W 1 + 2| ln E| -1/5 ] × [y 1 -2E 1/4 , y 1 + 2E 1/4 ], we infer that ∂ x ψ corr Σ L 2 (Ω) = O(| ln E| -1/5 | ln | ln E| | 2β | ln E| -1/10 E 1/8 ) = o(E 1/8 ), ∆ψ corr Σ L 2 (Ω) = O(E -1/2 | ln E| -2/5 | ln | ln E| | 2β | ln E| -1/10 E 1/8 ) = o(E -3/8 ).
In the rest of the paper, we set

ψΣ := ψ lift + ψ Σ χ y -y 1 δ y + ψ corr Σ .
With this definition, ψ 0 t + ψΣ ∈ H 2 (Ω). Moreover, we have

∂ x (ψ 0 t + ψΣ ) -E∆ 2 (ψ 0 t + ψΣ ) = τ + δτ + r 1 lift + r 2 lift
+ δτ σ on Ω where δτ has been estimated in Proposition 3.1.1, r 1 lift + r 2 lift is controlled by Proposition 2.4.3 and

(3.43) δτ Σ = ∂ x ψ corr Σ -E∆ 2 ψ corr + E(∂ 4 y -∆ 2 )ψ Σ ,
Proposition 3.4.6. Assume that Ω satisfies assumptions (H1)-(H4). Then δτ Σ is an admissible remainder in the sense of Definition 1.1.2. This proposition will be proved in Chapter 4. Note further that, by assumption on Σ, the trace of ψΣ + ψ 0 t + ψN,S on the boundary Γ W vanishes in the vicinity the points s i ∈ Γ W . Remark 3.4.7. If one looks carefully at the construction above, there are several reasons why the assumption (H4) is necessary: some of them are technical, and others are probably more fundamental. We first notice that if I 1 = [s 0 , s 1 ] with s 0 < s 1 , assumption (H4) is always satisfied, as ∂Ω is C 4 near s 0 . Therefore we focus on the case I 1 = {s 1 }.

• First, assumption (H4) is required so that the coefficients a and b have derivatives of order four; if cos θ vanishes only at order n near s 1 , with n ≤ 3 in (H2i), then such a regularity is not achieved in general. Therefore, if (H4) is not satisfied, an additional regularization of a and b must be performed.

• Moreover, the estimates on ψ Σ are more singular if the cancellation of cos θ near s = s 1 has a lower order. This could have two different consequences: on the one hand, it could be possible that the estimates on ψ Σ and its derivatives in the interior of Ω are not sufficient to prove that the error terms are admissible. This, however, is unlikely: indeed, the estimates are exactly the same as the ones for North and South boundary layer terms, for which we are able to prove that the error terms are admissible even when cos θ vanishes at the lowest possible order. On the other hand, if cos θ vanishes at a low order near s = s 1 , the estimations on ψ Σ W k,∞ become much more singular, and therefore the trace of ψ Σ and its derivatives on the West boundary are much larger. In this regard, assumption (H4) does not seem to be merely technical: it is possible that the discontinuity boundary layer may destabilize the West boundary layer if ψ Σ becomes very large. This could in fact be achieved with a low order of cancellation of cos θ near s 1 . However, such considerations go beyond the scope of this paper.

Lifting the West boundary conditions

We recall that the boundary layer term on West boundaries takes the form ψ W (s, Z) = A(s) t f (Z), where A(s) is defined by

(3.44) A(s) = 1 √ 3 e iπ/6 -iλ -1 W e -iπ/6 iλ -1 W -(ψ 0 t + ψΣ ) |∂Ω (s) ∂ n (ψ 0 t + ψΣ ) |∂Ω (s) for s ∈ Γ W and f (Z) =
exp -e iπ/3 Z exp -e -iπ/3 Z .

Lemma 3.5.1. Define the amplitude of the West boundary layer by (3.44). Let (s i , s i+1 ) be a portion of Γ W .

Then there exists a constant c 0 such that the following estimates hold:

• Far from the West end of Σ, i.e. for |s -s W 1 | ≥ c 0 δ y , and for all s ∈ Supp(ϕ

+ i ϕ - i-1 ), |A(s)| ≤ C, |A (s)| ≤ C (1 + | cos θ|M(y(s))) (3.45) |A (s)| ≤ C 1 δ y + (cos θ) 2 δ 2 y | ln δ y | . (3.46) • If |s -s W 1 | ≤ c 0 δ y , (3.47) |∂ k s A(s)| ≤ CE -k 4 -1+2k 8×19 for k ∈ {0, 1, 2}.
Proof. Consider a component [s i-1 , s i ] of the West boundary. There are two zones on which the s derivatives of A become singular:

• near s i-1 and s i , or, more generally, near points of ∂Ω such that |y(s)y j | = 0 (y j = y 1 ); on such zones, the derivatives of the function ψ 0 t become unbounded, while ψΣ is identically zero.

• near s W 1 , the end point of Σ; we recall that the trace of ψ 0 t is discontinuous at this point, and that this discontinuity is lifted by the term ψ lift . Additionally, the s derivative of ∂ n ψ 0 t is also discontinuous, and this discontinuity is corrected by the term ψ corr Σ introduced in equation (3.42). Notice however that on this zone, cos θ is bounded away from zero.

Away from these zones, A and its derivatives are bounded, and cos θ is bounded away from zero. Whence we now focus on the two pathological zones. Since the proof of the estimation on each zone is rather different, we separate the two.

• Estimate near points such that |y(s) -y j | 1 (y j = y 1 ): In the vicinity of such points, thanks to assumption (H3), ψ 0 t is C ∞ (with derivatives which are not uniformly bounded). We also use the following bound:

sup s∈Supp(ϕ - i ϕ + i-1 ) |λ -1 W (s)| ≤ C E n+1 4n+3 in case (H2i), E 1/4 | ln E| -1/2 in case (H2ii), so that sup s∈Supp(ϕ - i ϕ + i-1 ) |λ -1 W (s)| E 1/4 δ y .
In the rest of the proof, we write λ for λ W . Using Lemma 3.1.3, we infer that for all s ∈ Supp(ϕ

- i ϕ + i-1 ), (3.48 
) |A(s)| ≤ C 1 + |λ(s)| -1 M(y(s)) ≤ C .
The estimates of the s derivatives are a little more involved. Using (3.44), we have

|A (s)| ≤ C |∂ s ψ 0 t|∂Ω (s)| + |λ| -1 | |∂ s ∂ n ψ 0 t|∂Ω (s)| + λ λ 2 |∂ n ψ 0 t|∂Ω (s)| .
Notice that on the support of

ϕ - i ϕ + i-1 , λ λ 2 ≤ E 1/3 |θ | | cos θ| 4/3 ≤ | cos θ| thanks to the validity condition (2.8). Lemma 3.1.3 then implies, for s ∈ Supp(ϕ - i ϕ + i-1 ), |A (s)| ≤ C   1 + | cos θ| δ y | ln δ y | j∈I+ 1 |y(s)-yj |≤δy + | cos θ|M(y(s))   .
In a similar fashion,

|A (s)| ≤ C |(∂ 2 s ψ 0 t ) |∂Ω (s)| + λ λ 2 |(∂ s ∂ n ψ 0 t ) |∂Ω (s)| +C |λ| -1 | |(∂ 2 s ∂ n ψ 0 t ) |∂Ω (s)| + λ λ 2 |(∂ n ψ 0 t ) |∂Ω (s)| .
We have

λ λ 2 ≤ C E 1/3 | cos θ| 7/3 (|θ | 2 + |θ | | cos θ|).
Since cos θ vanishes always at a higher order than θ , we infer that on Supp(ϕ - i ϕ + i-1 ),

λ λ 2 ≤ C E 1/3 |θ | 2 | cos θ| 7/3 ≤ C.
Finally, we obtain, for s ∈ Supp(ϕ - i ϕ + i-1 ),

|A (s)| ≤ C 1 δ y + (cos θ) 2 δ 2 y | ln δ y | .
• Estimates near the end point of Σ: As explained above, since the interior term is now ψ 0 t + ψΣ , the coefficient A(s) changes abruptly near s W 1 , on an interval whose length is of order δ y . Moreover, since (H3) is satisfied, we have cos θ(s W 1 ) = 0, so that ϕ - i ϕ + i-1 and its derivatives are O(1) in a neighbourhood V of s W 1 independent of E. As before, we use (3.44) and we obtain

A L ∞ (V ) ≤ C( ψ 0 t + ψΣ L ∞ + E 1/3 ψ 0 t + ψΣ W 1,∞ ), A L ∞ (V ) ≤ C( ψ 0 t + ψΣ W 1,∞ + E 1/3 ψ 0 t + ψΣ W 2,∞
). The W k,∞ norms of the right-hand side are to be understood in a neighbourhood of size O(1) in Ω of (x(s W 1 ), y(s W 1 )). We now recall that thanks to the addition of the corrector term ψ corr Σ , the amplitude A is differentiable at s = s W 1 , and

A L ∞ (V ) ≤ C( ψ 0 t + ψΣ W 2,∞ + E 1/3 ψ 0 t + ψΣ W 3,∞
). We now estimate ψ 0 t + ψΣ W k,∞ using Lemmas 3.1.3, 3.4.1, 3.4.5, together with the explicit definition of ψ lift . We infer that

ψ 0 t + ψΣ W k,∞ = O(E -k 4 -1+2k 8×19 ) for k ∈ {0, • • • , 3},
which leads to the desired estimates.

3.6. Approximate solution in the periodic and rectangle case 3.6.1. In the periodic case. , the solution has already been completely defined (see (1.26) and section 2.6). We therefore only give here a few estimates on that solution.

We recall that

ψ app = ψ circ + ψ 0 per + ψ BL N,S
where ψ 0 per and ψ BL N,S are defined as before and ψ circ = ψ circ (y) is the circumpolar current, due to the average forcing by the wind, namely

-E∂ 4 y ψ circ = τ (y), y ∈ (y -, y + ), ψ circ |y=y± = 0, ∂ y ψ circ |y=y ± c = 0.
Provided τ is sufficiently smooth (i.e. belongs to H s for s large enough), we have

(3.49) ψ circ H s ≤ CE -1 τ H (s-4) + , ψ 0 H s ≤ C τ H s ,
and consequently by (2.28) (3.50)

∂ k x ∂ l Z ψ BL N,S L 2 (T×R+) ≤ C( ψ 0 y=y± H k+ l 4 - 1 
8 (T) + E 1/4 ∂ y ψ 0 y=y± H k+ l 4 - 3 8 (T) 
)

≤ C( τ

H k+ l 4 + 3 8 + E 1/4 τ H k+ l 4 + 9 
8 ).

3.6.2. In the rectangle case. , i.e. when Ω = (x -, x + ) × (y -, y + ), the construction explained in the preceding sections for a smooth domain Ω ⊂ R 2 still works:

• Since cos θ does not vanish at the north and south ends of the east boundary, there is no need for a truncation. We therefore simply define

∂ x ψ 0 = τ in Ω, ψ 0 |x=x+ = 0.
• We also construct an East boundary layer corrector and a macroscopic corrector (see section 3.2) on the whole East boundary; again, this is possible because there is no singularity in ψ 0 . We denote by ψE (x, y) the sum of these two terms. • We then construct north and south boundary layers ψ BL N,S , lifting the traces of (ψ 0 + ψE ) |y=y± , ∂ y (ψ 0 + ψE ) |y=y± , with zero initial condition at x = x + . When τ is sufficiently smooth, Ψ 0 = -(ψ 0 + ψE ) |y=y± and Ψ 1 = -E 1/4 ∂ y (ψ 0 + ψE ) |y=y± are smooth functions of x with large derivatives of order 2 or higher (because of the east boundary layer), which satisfy better estimates than in the case of a regular domain. Typically

Ψ j L ∞ + ∂ x Ψ j L ∞ ≤ C, ∂ 2 x Ψ j = O(1) L ∞ + O(E -1/3 1 |x-x+|≤CE 1/3
). Furthermore, as ψ BL N,S is a smooth function of x and Z, ∂ x ψ BL N,S|x=x+ = ∂ 4 Z ψ BL N,S|x=x+ = 0. As a consequence, the trace of ψ BL N,S on the east boundary and the trace of its normal derivative (i.e. its x derivative) is identically zero: the North and South boundary layer correctors do not pollute the East boundary.

• The next and last step is the construction of the western boundary layer. The latter lifts the trace of ψ 0 t + ψ BL N,S and its normal derivative on

x = x -. Let A + (y) A -(y) = 1 √ 3 e iπ/6 -iE 1/3 e -iπ/6 iE 1/3 f 0 (y) f 1 (y) ,
where

f 0 (y) = -ψ 0 t|x=x-(y) + ψ BL N x -, y + -y E 1/4 χ 0 (y) + ψ BL S x -, y -y - E 1/4 χ 0 (y) , f 1 (y) = ∂ x ψ 0 t|x=x-(y) + ∂ x x -, y + -y E 1/4 χ 0 (y) + ∂ x ψ BL S x -, y -y - E 1/4 χ 0 (y).
as the macroscopic truncation χ 0 can be chosen as a function of y only. Notice that by definition of ψ BL N,S A + (y) and A -(y) both vanish at y -and y + . Therefore the amplitude of the western boundary layer is zero at y = y ± : its trace vanishes on the northern and southern boundaries. Thus there is no need for additional south and north boundary layers.

Using the energy estimates of Lemma 3.3.4, we obtain

∂ k x ψ BL N,S L ∞ x (L 2 Z ) + ∂ k x ∂ 2 Z ψ BL N,S L 2 x (L 2 
Z ) ≤ CE -(k-1)+/3 from which we infer, using Lemma 3.4.3, for k ≥ 0 and l ∈ {0, 1, 2, 3},

∂ k x ∂ l Z ψ BL N,S L ∞ x,Z ≤ C ∂ k x ψ BL N,S 7-2l 8 L ∞ x (L 2 Z ) ∂ k x ∂ 4 Z ψ BL N,S 1+2l 8 L ∞ x (L 2 Z ) + CE -(k-1)+/3 ≤ C ∂ k x ψ BL N,S 7-2l 8 L ∞ x (L 2 Z ) ∂ k+1 x ψ BL N,S 1+2l 8 L ∞ x (L 2 Z ) + CE -(k-1)+/3 ≤ CE -(7-2l)(k-1) + 24 - (1+2l)k 24 
.

This implies that for l ∈ {0, 1, 2}

(3.51) ∂ l y A ± L ∞ (y-,y+) ≤ CE -l/4 .
The construction of the approximate solution in all the cases considered in the introduction is now complete. There remains to check that the function which we built is indeed an approximate solution in the sense of Definitions 1.1.1 and 1.3.4. In other words, we still need to prove that the remainder terms created by the various approximations are admissible. This is the goal of the next chapter.

CHAPTER 4

Proof of convergence

The approximate solution ψ app we have built in the previous chapter (i) satisfies exactly the boundary conditions

ψ app |∂Ω = (∂ n ψ app ) |∂Ω = 0
by definition of the boundary layer terms;

(ii) has H 2 regularity, but with non uniform bounds on the derivatives (see for instance the definition of the interior term near East corners and surface discontinuities); (iii) but does not satisfy the Munk equation, only the approximate version

∂ x ψ app -E∆ 2 ψ app = τ + δτ,
where δτ comes from both the interior and boundary terms.

The goal of this final chapter is to estimate the different contributions to this error term δτ , and to check that it is admissible in the sense of Definition 1.1.2 (or satisfies (1.25) in the periodic case). At this stage, there are no more conceptual difficulties: all the proofs are based on technical computations. Exactly as in the previous chapters, we focus mainly on the case when Ω is a smooth domain in R 2 , and we have gathered in a paragraph at the end of the chapter the estimates corresponding to the periodic and rectangular cases.

Remainders stemming from the interior term

ψ int = ψ 0 t + ψ lift
Going back to the construction of the interior term, we see that its contribution δτ int to the remainder is made of two kinds of terms.

• Because of the truncation, the solution ψ 0 t to the transport equation satisfies the Munk equation with source terms τ (1 -χ E ) and -E∆ 2 ψ 0 t , which are admissible remainders according to Proposition 3.1.1.

• The lifting term which restores the H 2 regularity near discontinuity surfaces also introduces correctors. Part of them, namely δτ lift , are considered as source terms for the singular surface boundary layers. The other ones will be proved to be admissible remainders as stated in Proposition 2.4.3. 

τ (χ E -1) H -2 (Ω) = o(E 5/8 ), ∆ψ 0 t L 2 (Ω ± ) = o(E -3/8
).

• We start by localizing the problem around (x i , y i ) thanks to a partition of unity:

for i ∈ I + , let f i ∈ C ∞ 0 (R 2 ) such that i∈I+ f i = 1 on Ω,

and

• for all i ∈ I + , f i ≡ 1 in a neighbourhood of (x i , y i ),

• for all i = j, d((x i , y i ), Supp f j ) > 0.

Then, according to the definition of χ E , for E small enough,

τ χ E = i∈I+ f i τ χ E = i∈I+ f i τ χ i (x -x i , y -y i ) .
Thus, defining ψ 0 i by

∂ x ψ 0 i = f i τ χ i (x -x i , y -y i ) , ψ 0 i|Γ E = 0, we have ψ 0 t = ψ 0 i
, and it suffices to prove that under the assumptions of Proposition 3.1.1,

f i τ [χ i (x -x i , y -y i ) -1] H -2 (Ω) = o(E 5/8 ), E∆ 2 ψ 0 i H -2 (Ω ± ) = E ∆ψ 0 i L 2 (Ω ± ) = o(E 5/8
). In order not to burden the notation, we drop the indices i and we shift the origin of the arc-length parametrization so that s i = 0. We also shift the origin of the axes so that (x i , y i ) = (0, 0), and we rename respectively τ and χ E the functions f i τ and χ i (x -x i , y -y i ) (which have the same regularity as the original functions).

Note that, by definition of χ E , we have the obvious estimates (4.1)

∂ s1 x ∂ s2 y χ E L ∞ ≤ C max ± | ln δ y | δ ± x s1 1 δ y s2 , ∂ s1 x ∂ s2 y (1 -χ E ) L 2 ≤ C max ± | ln δ y | δ ± x s1 1 δ y s2 (δ ± x δ y ) 1/2 .
• We now give an upper-bound for the source term τ (1 -χ E ) in terms of δ ± x , δ y . Without loss of generality, we can assume that s = 0 is a North boundary point of Γ E . Define, for (x, y) ∈ Ω,

φ E (x, y) = y -∞ dy y -∞ dz(χ E -1)(z). so that ∂ 2 y φ E = χ E -1, φ E (x, y) = 0 for (x, y) ∈ Ω, d((x, y), ∂Ω) δ x , δ y .
Since the support of 1 -χ E is included in the rectangle 

[-δ - x (1 + | ln δ y | -1 ), δ + x (1 + | ln δ y | -1 )] × [-δ y , δ y ], Ω s=0
φ E (x, y) = 0 if x ≥ δ + x (1 + | ln δ y | -1 ) or x ≤ -δ - x (1 + | ln δ y | -1
), and φ E (x, y) = 0 if y < -δ y .

Notice also that |φ E (x, y)| ≤ C(δ 2 y + |y|δ y ) ∀(x, y) ∈ Ω. Therefore, parametrizing locally ∂Ω by a graph (x, y N (x)), we obtain

φ E 2 L 2 (Ω) ≤ C -δ -
x (1+| ln δy| -1 )≤x≤δ + x (1+| ln δy| -1 )

y N (x)
-δy (δ 4 y + δ 2 y y 2 ) dy dx.

In order to bound the right-hand side of the above inequality, we have to distinguish between two cases, depending on whether cos θ has a local extremum at s = 0.

• No local extremum at s = 0: either cos θ changes sign across s = 0, or cos θ is identically zero in a neighbourhood on the left or on the right of s = 0. Notice that in this case, x E (y) is only defined on a neighbourhood of the left of y = 0, and thus we have δ - x = δ + x =: δ x . Moreover the function y N (x) remains non-positive for |x| ≤ δ x (1 + | ln δ y | -1 ). In this case, we simply obtain

φ E 2 L 2 (Ω) ≤ Cδ 5 y δ x .
• Local extremum at s = 0 (see Figure 4.1) : we have

φ E 2 L 2 (Ω) ≤ Cδ 5 y δ + x + C 0 -δ - x (1+| ln δy| -1 ) (δ 4 y |y N (x)| + δ 2 y |y N (x)| 3 ) dx.
We now estimate the right-hand side using the formulas in Appendix B:

y N (x) ∼ Cx n+1 in case (i), y N (x) ∼ Cx 2 exp - α |x| in case (ii).
As a consequence,

0 -δ - x (1+| ln δy| -1 ) |y N (x)| dx ≤ C (δ - x ) n+2 in case (i), (δ - x ) 4 exp - α δ - x (1+| ln δy| -1 ) in case (ii) and 0 -δ - x (1+| ln δy| -1 ) |y N (x)| 3 dx ≤ C (δ - x ) 3n+4 in case (i), (δ - x ) 8 exp - 3α δ - x (1+| ln δy| -1 ) in case (ii)
We infer that in all cases,

φ E 2 L 2 (Ω) ≤ Cδ 5 y (δ + x + δ - x ).
An integration by part shows that

τ (χ E -1) H -2 (Ω) ≤ φ E τ L 2 (Ω) + 2 φ E ∂ y τ L 2 (Ω) + φ E ∂ 2 y τ L 2 (Ω)
Then, by definition of δ ± x and δ y , we get

(4.2) τ (χ E -1) H -2 (Ω) ≤ C τ W 2,∞ E 5/8 | ln E| 1/2 (ln | ln E|) -5β/2 δ 1/2 x = o(E 5/8 ),
since in the worse case

δ x = max(δ + x , δ - x ) ∼ α | ln δ y | ∼ 4α | ln E| .
Note that the choice of δ y is dictated by this estimate (which fixes both the power of E and the power of | ln E|).

• It remains then to estimate the viscous term E∆ 2 ψ 0 t in H -2 (Ω ± ), that is to estimate E∆ψ 0 t in L 2 (Ω ± ). We indeed recall that, by Proposition 2.4.2,

∆ψ int = χ + ∆ψ int + χ -∆ψ int .
We then start from the identity

∆ψ 0 t = ∂ x (τ χ E ) -∂ 2 y x E (y) x τ χ E = χ E ∂ x τ + τ ∂ x χ E - x E (y) x (χ E ∂ 2 y τ + 2∂ y τ ∂ y χ E + τ ∂ 2 y χ E ) (4.3) -2x E (y)(χ E ∂ y τ + τ ∂ y χ E ) |x=x E (y) -x E (y)(τ χ E )(x E (y), y) (4.4) -|x E (y)| 2 (χ E ∂ x τ + τ ∂ x χ E ) |x=x E (y) . (4.5)
Using (4.1), we can easily check that

(4.3) L 2 ≤ max ± 1 + δ 1/2 y (δ ± x ) -1/2 | ln δ y | + δ ± x δ -3/2 y .
Note that we use here in a crucial way the fact that there is no discontinuity line in the domains Ω ± : the singularity is localized in a rectangle of width δ x . As for (4.4), (4.5), we use (3.6) together with the formulas of Appendix B:

• Case (i): we deduce that 4.1.2. Error terms due to the lifting term ψ lift . We give the rest of the proof of Proposition 2.4.3. Since we have already checked that all the terms are well-defined, there only remains to estimate the size of the remainders coming from ψ lift . More precisely, we prove that (4.6)

r 1 lift L 2 (Ω) = o(E 1/8 ), r 2 lift H -2 (Ω) = o(E 5/8
), where

r 1 lift = 4E 3/4 χ + χ y -y 1 E 1/4 b (x) + 2E 1/2 χ + χ y -y 1 E 1/4 (a (x) + b (x)(y -y 1 )) r 2 lift = τ (χ E -1) + Eχ + χ y -y 1 E 1/4 (a (4) (x) + b (4) (x)(y -y 1 ))
-E∆(χ + ∆ψ 0 t + χ -∆ψ 0 t ). We rely on Lemma C.1 in Appendix C, which yields

2E 1/2 χ y -y 1 E 1/4 (a + b (y -y 1 )) + 4E 3/4 χ y -y 1 E 1/4 b L 2 (Ω) = O(E 5/8 ( a L 2 + E 1/4 b L 2 )) = o(E 1/8 ).
As for r 2 lift , we have already proved (see Proposition 3.1.1) that τ (χ E -1) = o(E 5/8 ) in H -2 (Ω) and that E∆ψ 0 t L 2 (Ω ± ) = o(E 5/8 ). And we have clearly

Eχ + χ y -y 1 E 1/4 (a (4) (x) + b (4) (x)(y -y 1 )) = ∂ 2 x Eχ + χ y -y 1 E 1/4 (a (x) + b (x)(y -y 1 )) , so that r 2 lift H -2 (Ω) = o(E 5/8 ) + O E 9/8 ( a L 2 + E 1/4 b L 2 ) = o(E 5/8 ).
Gathering all the terms, we obtain (4.6).

Remainders coming from the boundary terms

Following the construction of the approximate solution, we now turn to the remainders coming from boundary layer terms. This step is more technical since boundary terms are defined through rescaled curvilinear coordinates, so that estimating the bilaplacian requires tedious computations.

Actually most of the terms will be estimated in H -2 norm, so that we will need to compute only one iteration of the laplacian. 4.2.1. Laplacian in curvilinear coordinates. In order to get the boundary layer equation (2.3), we have kept only the leading order term of the bilaplacian, i.e. the fourth derivative with respect to the scaled normal variable Z. Rewriting this boundary layer equation as a Munk equation with remainder terms, we have to estimate the lower order terms of the bilaplacian, which can be done thanks to the following Proposition 4.2.1. Denote as previously by (z, s) the local coordinates on a tubular neighbourhood of the boundary. Let f ≡ F (s, λ(s)z) be a smooth function with Supp f ⊂ Supp χ 0 .

Then, we have the following error estimate

|∆f -∂ zz f | ≤ C |∂ ss F | + (λ /λ) 2 |∂ ZZ F | + |λ /λ| |Z∂ sZ F | + C θ λ |Z∂ s F | + λ θ λ 2 |Z 2 ∂ Z F | + λ λ |Z∂ Z F | + |λθ ||∂ Z F | .
In particular,

• if λ does not depend on s

(4.7) |∆f -∂ zz f | ≤ C |∂ ss F | + θ λ |Z∂ s F | + |λθ ||∂ Z F | ;
• if F is an exponential profile with respect to Z, namely if F (s, Z) = A(s) exp(-µZ), with µ ∈ C a constant of order one with positive real part,

|∆f -∂ zz f | ≤ C |∂ ss A| + θ λ + λ λ |∂ s A| e -cZ (4.8) +C λ θ λ 2 + λ λ + |λθ | + λ λ 2 |A|e -cZ
where c = (µ)/2.

Proof. We start from the expression of the Laplacian in curvilinear coordinates

∆ = 1 1 + zθ ∂ z ((1 + zθ )∂ z ) + ∂ s 1 1 + zθ ∂ s .
Given the specific form of the profile f ≡ F (s, λ(s)z), we thus have (4.9)

∆f = λ 2 ∂ ZZ F + λθ 1 + zθ ∂ Z F - zθ (1 + zθ ) 3 (∂ s F + λ z∂ Z F ) + 1 (1 + zθ ) 2 ∂ ss F + 2λ z∂ sZ F + λ z∂ Z F + (λ z) 2 ∂ ZZ F .
Then, using the fact that on the support of χ 0 the jacobian of the change of variables is uniformly bounded from above and from below

0 < 1 C ≤ 1 + zθ ≤ C,
we immediately get the first, general, estimate.

For North, South and discontinuity layers, we always choose

λ = E -1/4
so that λ = λ = 0. The remainder consists then only on three terms.

For East and West boundary layers, f is a combination of exponential profiles. Therefore, multiplying by Z or differentiating with respect to Z does not change the size of the error term.

In order to get the expected estimates on the remainders, we first note that

∆ 2 = (λ 2 ∂ ZZ ) 2 + ∆(∆ -λ 2 ∂ ZZ ) + (∆ -λ 2 ∂ ZZ )(λ 2 ∂ ZZ ) = (λ 2 ∂ ZZ ) 2 + (∆ + λ 2 ∂ ZZ )(∆ -λ 2 ∂ ZZ ) + [∆ -λ 2 ∂ ZZ , λ 2 ∂ ZZ ]
• The first term of the right-hand side has been considered in the equation for the boundary layers, so it does not introduce any remainder. • For the second term, we expect that it can be estimated in H -2 using the previous proposition together with the controls on the boundary layer profiles and their derivatives up to second order. • The difficulty comes then from the third term, which is a commutator between two second-order differential operators. Roughly speaking, it should be a third-order differential operator, so that we could estimate the corresponding remainder in L 2 in terms of the third-order derivative of the boundary layer profiles. However we will not proceed exactly in that way, first of all because the commutator [∆ -λ 2 ∂ 2 ZZ , λ 2 ∂ 2 ZZ ] involves too many terms so that the computations would be very tedious, and overall because some terms are not small in L 2 and need to be estimated in H -2 . The proof will actually be adapted to the case to be considered: recall indeed that for North, South and discontinuity layers, λ does not depend on s, whereas for East and West boundary layers, F is an exponential profile with respect to Z.

A useful tool in the case when λ does not depend on s is the following commutator estimate : Lemma 4.2.2. Let ρ ∈ H 2 (Ω), with support in {d(x, ∂Ω) ≤ δ}, and let f ∈ L 2 (∂Ω × R + ). We set λ := E -1/4 . Then

ρ(s, z)(λ 2 ∂ 2 Z )f (s, λz) H -2 (Ω) ≤ C|λ| -1/2 f L 2 (∂Ω×R+) 2 k=0 ∂ k z ρ L ∞ (Ω) , ρ(s, z)∆(f (s, λz)) H -2 (Ω) ≤ C|λ| -1/2 f L 2 (∂Ω×R+) ρ W 2,∞ (Ω) .
Proof. • Let us first recall that

λ∂ Z : f (s, λZ) ∈ H s (R + ) → λ∂ Z f (s, λZ) ∈ H s-1 (R + )
is a bounded operator (uniformly with respect to E) for all s.

Let ϕ ∈ H 2 (Ω) be an arbitrary test function such that ϕ |∂Ω = ∂ n ϕ |∂Ω = 0. Then, using the Cauchy-Schwarz inequality,

Ω ρ(s, z)(λ 2 ∂ 2 Z )f (s, λz)ϕ(s, z)(1 + zθ ) ds dz = Ω f (s, λz)∂ 2 z (ρ(s, z)ϕ(s, z)(1 + zθ )) ds dz ≤ C|λ| -1/2 f L 2 (∂Ω×R+) 2 k=0 ∂ k z (ρϕ) L 2 (Ω) ≤ C|λ| -1/2 f L 2 (∂Ω×R+) ϕ H 2 (Ω) 2 k=0 ∂ k z ρ L ∞ (Ω) .
By definition of H -2 (Ω),

ρ(s, z)(λ 2 ∂ 2 Z )f (s, λz) H -2 (Ω) = sup ϕ∈H 2 0 (Ω), ϕ H 2 (Ω) ≤1 Ω ρ(s, z)(λ 2 ∂ 2 Z )f (s, λz)ϕ(s, z)(1 + zθ ) ds dz,
from which we deduce the first commutator estimate.

• Concerning the second inequality, we merely develop the commutator [∆, ρ]. We have

ρ(s, z)∆f (s, λz) -∆(ρ(s, z)f (s, λz)) = -2∇ρ∇(f (s, λz)) -∆ρf (s, λz) = -2 div(f (s, λz)∇ρ) + ∆ρf (s, λz).

The estimate follows.

When the profile is exponential, we will rather use the following Lemma : Proof. We begin with the L 2 estimate. We recall that the jacobian of the change of variables (x, y) → (s, z) is equal to (1 + zθ ), and is thus bounded (from above and below) in L ∞ . As a consequence, φ(s)χ 0 (z) exp(-λz)

2 L 2 (Ω) = ∂Ω δ 0 φ(s) 2 χ 0 (z) 2 exp(-2 (λ)z)(1 + zθ ) ds dz ≤ C I φ 2 ∞ 0 exp(-2 (λ)z) dsdz ≤ C I φ 2 ( λ) -1 .
As for the H -2 estimate, we have

φ(s)χ 0 (z) exp(-λz) = ∂ 2 ∂z 2 φ(s)χ 0 (z)(λ(s)) -2 exp(-λz) +2φ(s)χ 0 (z)(λ) -1 exp(-λz)
-φ(s)χ 0 (z) exp(-λz).

The last two terms are supported in {δ/2 ≤ z ≤ δ}, hence they are exponentially small in L 2 . More precisely, they are bounded in L ∞ (Ω) by

C φ ∞ exp(-δ inf I (λ)/4).
As for the first term, if ζ ∈ H 2 0 (Ω) is an arbitrary test function, then

Ω ∂ 2 ∂z 2 φ(s)χ 0 (z)(λ(s)) -2 exp(-λz) ζ(s, z)(1 + zθ )ds dz = ∂Ω δ 0 ∂ 2 ∂z 2 φ(s)χ 0 (z)(λ(s)) -2 exp(-λz) ζ(s, z)(1 + zθ )ds dz = ∂Ω δ 0 φ(s)χ 0 (z)(λ) -2 exp(-λz) ∂ 2 ∂z 2 (ζ(s, z)(1 + zθ )) ds dz ≤ C ζ H 2 (Ω) ∂Ω δ 0 φ(s) 2 |λ| -4 exp(-2 (λ)z)ds dz 1/2 ≤ C ζ H 2 (Ω) ∂Ω φ 2 ( λ) -5 1/2
.

By definition of the H -2 norm, we infer the estimate of Lemma 4.2.3.

Error terms associated with North and South layers.

In order to simplify the presentation, we focus on a South boundary layer, as we did in the preceding chapter. Of course, the case of North boundary layers is strictly identical. We denote by s i-1 , s i the end points of the South boundary under consideration, and we introduce a macroscopic truncation function γi-1,i (with bounded derivatives) as in (3.35). Lemma 4.2.4. Let ψ S be the solution to (3.27).

Then ∂ x -E∆ 2 γi-1,i (s)ψ S (s, E -1/4 z)χ 0 (z) = r 1 i + r 2 i , with r 1 i L 2 (Ω) = o(E 1/8 ), r 2 i H -2 (Ω) = o(E 5/8 ).
Proof of Lemma 4.2.4. Since ψ S satisfies (3.27), there are several kinds of terms in ∂ x -E∆ 2 ψ S (s, E -1/4 z)γ i-1,i (s)χ 0 (z) :

• All terms in which at least one derivative of χ 0 or γi-1,i occurs are small: indeed, we have one derivative with respect to z less acting on ψ S , so that we gain a power E 1/4 . By Lemma 4.2.2, we indeed have

E∂ 4 z (ψ S χ 0 ) -Eχ 0 ∂ 4 z ψ S = E 3 j=0 C j 4 λ j ∂ j Z ψ S (s, λz)∂ 4-j z χ 0 = O(E 5/8 ψ S L 2 s H 2 Z ) in L 2 (Ω) (4.10) +O(E 7/8 ∂ Z ψ S L 2 s,Z
) in H -2 (Ω). In the same way,

ψ S (s, E -1/4 z)∂ x (χ 0 (z)γ i-1,i (s)) = ψ S (s, E -1/4 z) sin θ(s) 1 + zθ ∂ s γi-1,i (s)χ 0 (z) + cos θ(s)γ i-1,i (s)∂ z χ 0 (z) .
Using the estimates of paragraph 3.3.3, we infer that

ψ S (s, E -1/4 z) cos θ(s)γ i-1,i (s)∂ z χ 0 (z) L 2 (Ω) = O(E 1/8 | ln E| -1 ).
Moreover, on the support of

∂ s γi-1,i , either ψ S is zero or ψ S L ∞ s (L 2 Z ) = O(| ln E| -1
). We deduce that

ψ S (s, E -1/4 z) sin θ(s)∂ s γi-1,i (s)χ 0 (z) L 2 (Ω) = O(E 1/8 | ln E| -1 ), so that eventually (4.11) ψ S (s, E -1/4 z)∂ x (χ 0 (z)γ i-1,i (s)) L 2 (Ω) = O(E 1/8 | ln E| -1
).

• The terms stemming from the ∂ x derivative applied to ψ S can be split into a remainder term coming from the jacobian zθ sin θ 1 + zθ χ 0 (z)γ i-1,i (s)∂ s ψ S (s, E -1/4 z), and χ 0 (z)γ i-1,i (s) E -1/4 cos θ∂ Z ψ S (s, E -1/4 z) + sin θ∂ s ψ S (s, E -1/4 z) , which will simplify with the term Eλ 4 χ 0 (z)γ i-1,i (s)(∂ 4 Z )ψ S (s, E -1/4 z) coming from the bilaplacian.

From the moment estimate in (3.31), we deduce that (4.12) zθ sin θ 1 + zθ γi-1,i (s)χ 0 (z)∂ s ψ S (s, E -1/4 z)

L 2 = O(E 1/8 E 1/4 δ -1 y ) = o(E 1/8
).

• The most technical part is the control of the remainder terms coming from the bilaplacian. For the sake of simplicity, instead of commuting the whole laplacian with λ 2 ∂ 2 Z , we will first get rid of the corrections coming from the jacobian, then commute the remaining part of the laplacian. More precisely, we start from (4.9) with a constant λ

∆ 2 -(λ 2 ∂ 2 Z ) 2 = ∆(∆ -λ 2 ∂ 2 Z ) + (∆ -λ 2 ∂ 2 Z )λ 2 ∂ 2 Z = ∆(∆ -λ 2 ∂ ZZ ) + λθ 1 + zθ ∂ Z - zθ (1 + zθ ) 3 ∂ s + 1 (1 + zθ ) 2 ∂ ss λ 2 ∂ ZZ = ∆(∆ -λ 2 ∂ ZZ ) + λ 2 ∂ ZZ λθ ∂ Z -zθ ∂ s + ∂ ss + 2λθ ∂ Zs - λz(θ ) 2 1 + zθ ∂ Z - zθ ((1 + zθ ) 3 -1)) (1 + zθ ) 3 ∂ s + (1 + zθ ) 2 -1 (1 + zθ ) 2 ∂ ss λ 2 ∂ ZZ .
We have, using the regularity and moment estimates (3.31) 

E(∆ -λ 2 ∂ ZZ )ψ S = E λθ 1 + zθ ∂ Z ψ S -E λ -1 Zθ (1 + zθ ) 3 ∂ s ψ S + E (1 + zθ ) 2 ∂ ss ψ S = O(EE -1/4 E 1/8 ) L 2 + O(EE 1/4 δ -1 y E 1/8 ) L 2 + O(EE -1/2 | ln E| -1 E 1/8
(z)γ i-1,i (s)E∆(∆ -λ 2 ∂ ZZ )ψ S (s, λz) H -2 (Ω) = o(E 5/8 ).
In the same way, we have

Eλθ ∂ Z ψ S -Ezθ ∂ s ψ S + E∂ ss ψ S = O(EE -1/4 E 1/8 ) L 2 + O(EE 1/4 δ -1 y E 1/8 ) L 2 + O(EE -1/2 | ln E| -1 E 1/8
) L 2 so that, using some integration by parts together with the first estimate of Lemma 4.2.2,

(4.14) Eχ 0 (z)γ i-1,i (s)λ 2 ∂ ZZ (λθ ∂ Z -zθ ∂ s + ∂ ss )ψ S = o(E 5/8 ) H -2 .
For the corrections coming from the jacobian, we use the first estimate of the commutator lemma 4.2.2:

χ0γi-1,i λz(θ ) 2 1 + zθ ∂Z - zθ ((1 + zθ ) 3 -1)) (1 + zθ ) 3 ∂s + (1 + zθ ) 2 -1 (1 + zθ ) 2 ∂ss λ 2 ∂ZZ ψS H -2 = O(E 1/8 ) Z∂Z ψS L 2 s,Z (θ ) 2 1 + zθ χ0γi-1,i W 2,∞ (Ω) + O(E 1/8 E 1/2 ) Z 2 ∂sψS L 2 s,Z θ ((1 + zθ ) 3 -1) z(1 + zθ ) 3 χ0γi-1,i W 2,∞ (Ω) + O(E 1/8 E 1/4 ) Z∂ 2 s ψS L 2 s,Z θ ((1 + zθ ) 2 -1) z(1 + zθ ) 2 χ0γi-1,i W 2,∞ (Ω)
which implies that

(4.15) Eχ0γi-1,i λz(θ ) 2 1 + zθ ∂Z - zθ ((1 + zθ ) 3 -1)) (1 + zθ ) 3 ∂s + (1 + zθ ) 2 -1 (1 + zθ ) 2 ∂ss λ 2 ∂ZZ ψS H -2 = o(E 5/8 ) .
The only remaining term is

(4.16) 2Eλθ χ 0 (z)γ i-1,i (s)∂ Zs ψ S = O(EE -1/4 δ -1 y E 1/8 ) L 2 .
Combining estimates (4. 

E,W (s, Z) = (ϕ + i ϕ - i+1 )(s)A(s) t f (Z), where • A(s) = -λ -1 E (s)∂ n ψ 0 t|Γ E (s) and f (Z) = exp(-Z) on
∈ Supp ϕ i , λ λ 3 1, λ λ 2 1, (λ ) 2 λ 3 1, and 
Eλ λ 1/2 ≤ C|θ | E cos θ 1/2 .
We can then prove that the error terms associated with East and West boundary layers are admissible. Proposition 4.2.6. Let A, f be defined by the expressions above and (3.44).

Then ∂ x -E∆ 2 ψ E,W (s, λ E,W z)χ 0 (z) = r 1 E,W + r 2 E,W , with r 1 E,W L 2 (Ω) = o(E 1/8 ), r 2 E,W H -2 (Ω) = o(E 5/8 ).
Proof. Throughout the proof, we write λ instead of λ E,W , and we set ϕ i = ϕ + i ϕ - i+1 . Since f is an exponential profile, we will use the second part of Proposition 4.2.1 to estimate the remainder terms in the bilaplacian. In a first step, we bound the error terms r 1 E,W and r 2 E,W by expressions involving E, θ and A, and in a second step, we prove that these bounds yield the desired estimates. First step: estimates in terms of the amplitude A We claim that for all i such that (s

i , s i+1 ) ⊂ Γ W ∩ Γ E , (∂ x -E∆ 2 )(ϕ i (s)A(s)f (λz)) = r 1 i + r 2 i , where 
r 1 i L 2 (Ω) ≤ CE 5/6 (ϕ i A) L 2 (∂Ω) +CE 1/2 | ln E| 1/2 (ϕ i A) L ∞ (∂Ω) (4.17) +CE 1/6 A L ∞ (∂Ω) + CE -K exp(-C/E 1/4 ), and 
r 2 i H -2 (Ω) ≤ CE (∂ 2 s (ϕ i A)) 2 E cos(θ(s)) 1/3 ds 1/2 +C (∂ s (ϕ i A)) 2 E cos(θ(s)) 5/3 ds 1/2 (4.18) +C Supp ϕi A(s) 2 (θ ) 2 E 5/3 | cos θ| -11/3 ds 1/2 +C A ∞ E 5/6 + CE -K exp(-C/E 1/4 ).
We recall the expression of ∂ x in curvilinear coordinates:

∂ ∂x = -cos θ ∂ ∂z + sin θ 1 + zθ ∂ ∂s We now estimate [∂ x -E∆ 2 ] (ϕ i (s)A(s) exp(-λ(s)z)χ 0 (z)) .
• We start by commuting the differential operator ∂ x -E∆ 2 with the multiplication by χ 0 . Since χ 0 (z) ≡ 1 for z in a neighbourhood of zero, all terms in which at least one derivative of χ 0 appears are exponentially small: indeed, for all k ≥ 1, and for µ ∈ {1, e ±iπ/3 },

∂ k z χ 0 (z) exp (-µλ(s)z) ≤ C k exp(-CE -1/4 ) ∀(s, z) ∈ Supp ϕ i × Supp χ 0 . We also have (see Lemmas 3.1.3, 3.4.1, 3.4.5) ∂ k s , ∂ k z (ϕ i (s)A(s) exp(-µλ(s)z)) ≤ CE -K exp(-cλ(s)z)), for some positive constants c, C, K. Hence we infer that [∂ x -E∆ 2 ] (ϕ i (s)A(s) exp(-λ(s)z)χ 0 (z)) = χ 0 (z)[∂ x -E∆ 2 ] (ϕ i (s)A(s) exp(-λ(s)z)) +O(E -K exp(-CE -1/4 )) in L 2 (Ω).
• The terms stemming from χ 0 ∂ x (ϕ i (s)A(s) exp(-λ(s)z)) can be split into λ cos θϕ i (s)A(s)(∂ Z f )(λz)χ 0 , which will simplify with the term Eλ 4 ϕ i (s)A(s)(∂ 

C Supp ϕi θ 2 E | cos θ| |∂ s (Aϕ i )| 2 + θ 2 cos 2 θ |A(s)| 2 ds ≤ CE| ln E| ∂ s (ϕ i A) 2 L ∞ (∂Ω) + CE 5/7 A 2 L ∞ (∂Ω)
. Indeed, by definition of ϕ i , Supp ϕ i ⊂ (s + i , s - i+1 ), and using assumption (H2), it can be easily proved that for all i such that (s i , s i+1 ) is a western or eastern boundary, (4.20)

s - i+1 s + i θ 2 | cos θ| -1 = O(| ln E|), s - i+1 s + i θ 4 | cos θ| -3 = O(E -2/7 ).
Then, using Lemma 4.2.3, we infer that

sin θχ 0 (z)∂ s (ϕ i A)f (λz) 2 H -2 (Ω) ≤ C ∂Ω (∂ s (ϕ i A)) 2 E cos(θ(s)) 5/3 ds + O(E -K exp(-CE -1/4 )) and sin θχ 0 (z)A(s)ϕ i (s)zλ f (λz) 2 H -2 (Ω) ≤ C Supp ϕi A(s) 2 θ 2 E 5/3 | cos θ| -11/3 ds + O(E -K exp(-CE -1/4 )).
• We now develop the bilaplacian of (ϕ i A)(s)f (λz), using Proposition 4.2.1. We bound all the derivatives of θ by a positive constant. Moreover, by Lemma 4.2.5 and Proposition 4.2.1,

(∆ -λ 2 ∂ ZZ )(ϕ i A)(s)f (λz) ≤ C |(Aϕ i ) | + λ λ |(Aϕ i ) | + |λAϕ i | exp(-c|λ|z).
We now evaluate the right-hand side of the above inequality in L 2 (Ω) (after multiplication by χ 0 ). By Lemma 4.2.3, we have

(λAϕ i )(s) exp(-c|λ|z)χ 0 (z) L 2 (Ω) ≤ C Aϕ i λ 1/2 L ∞ ≤ C A ∞ E -1/6 . Therefore ∆ ((Aϕ i )(s)f (λz)) = (Aϕ i )(s)λ 2 f (λz) + O A L ∞ E -1/6 + (Aϕ i ) λ λ -3/2 L 2 + (Aϕ i ) λ -1/2 L 2 L 2
Commuting once again χ 0 and ∆, we infer that

Eχ 0 (z)∆ 2 ((Aϕ i )(s)f (λz)) = Eχ 0 (z)∆ (Aϕ i )(s)λ 2 f (λz) + O(exp(-CE 1/4 )) L 2 + O( A ∞ E 5/6 + E (Aϕ i ) λ λ -3/2 L 2 + E (Aϕ i ) λ -1/2 L 2 ) H -2 Lemma 4.2.5 then implies E (Aϕ i ) λ λ -3/2 L 2 = o   ∂Ω (∂ s (ϕ i A)) 2 E cos(θ(s)) 5/3 ds 1/2   .
It remains then to deal with the first term Eχ 0 (z)∆ (Aϕ i )(s)λ 2 f (λz) . We develop the laplacian one more time. Since f is an exponential, we can use the computations above and simply replace A by Aλ 2 . Then, by Lemma 4.2.5,

Eχ 0 (z)∆ (Aϕ i )(s)λ 2 f (λz) = Eχ 0 (z)(Aϕ i )(s)λ 4 f (4) (λz) + Eχ 0 (z) (1 + zθ ) 2 (Aϕ i ) λ 2 f (λz) +EO( Aϕ i λ 5/2 L 2 + (Aϕ i ) λ λ 1/2 L 2 ) in L 2 ( 
Ω). We estimate the second term of the right-hand side in H -2 (Ω). This is the only time where we really need to commute the jacobian terms with the z derivatives, as explained at the end of paragraph 4.2.1. Using Lemma 4.2.3, we have

χ 0 (z) (1 + zθ ) 2 (Aϕ i ) λ 2 f (λz) = ∂ 2 ∂z 2 χ 0 (z) (1 + zθ ) 2 (Aϕ i ) f (λz) +4 χ 0 (z)θ (1 + zθ ) 3 λf (λz)(Aϕ i ) -6 χ 0 (z)θ 2 (1 + zθ ) 4 f (λz)(Aϕ i ) +O (Aϕ i ) λ 1/2 L 2 exp(-C/E 1/4 ) L 2 (Ω) = O (Aϕ i ) λ -1/2 L 2 H -2 (Ω) + O (Aϕ i ) λ 1/2 L 2 L 2 (Ω)
.

Inequality (4.20) leads then to

(Aϕ i ) λ λ 1/2 L 2 ≤ C (Aϕ i ) ∞ E 1/2 | ln E| 1/2
. Gathering all the terms, we obtain (4.17), (4.18).

Second step: quantitative bounds for r 1 i , r 2 i : We now use the definition of A together with Lemma 3.1.3 and Lemma 3.5.1 in order to estimate the right-hand sides of (4.17), (4.18). Notice that the estimates on West coasts are always more singular than the ones on East coasts: indeed, ϕ i has bounded derivatives on East coasts, and unbounded on West coasts. Moreover, the estimates of Lemma 3.1.3 show that A is always larger on West coasts, together with its derivatives. Therefore, we focus on a West part of the boundary in the following, i.e. we assume that (s i , s i+1 ) ⊂ Γ W . Following Lemma 3.5.1, we treat separately the estimates in the vicinity of s W 1 and in the vicinity of points s such that cos θ = 0 or y(s) = y j for some j ∈ I + . In the rest of the domain, the estimates on r 1 i and r 2 i are easily proved. • Estimate near points such that |y(s) -y j | 1 (y j = y 1 ): Let us first recall (see Lemma 3.3.2) 

∂ k s ϕ i ∞ ≤ CE -k/7 k ∈ {0, 1, 2}. Therefore r 1 i L 2 ≤ C E 1/6 A ∞ + E 1/2 | ln E| 1/2 A ∞ + E 5/6 A 2 + E -K exp(-C/E 1/4
A ∞ = O(1), A ∞ = (δ -1 y | ln δ y | -1 ), A ∞ = O(δ -2 y | ln δ y | -1 ), so that r 1 i L 2 = o(E 1/8
). We now address the bound of r 2 i . Using once again (4.21), we have

E ∂Ω (∂ 2 s (ϕ i A)) 2 E cos(θ(s)) 1/3 ds 1/2 ≤ CE 7/6 ( ϕ i ∞ + ϕ i ∞ A ∞ + A ∞ ) 1 Supp ϕi | cos θ| -1/3 1/2 ≤ CE 2/3 | ln E| -1 1 Supp ϕi | cos θ| -1/3 1/2
.

Using the formulas in Appendix B together with the definition of s + i , s - i+1 , it can be proved (treating cases (i) and (ii) in assumption (H2) separately) that (4.22)

Supp ϕi | cos θ(s)| -γ ds = O(E -γ/4 | ln E| -(2+3γ/2) ). We infer that E ∂Ω (∂ 2 s (ϕ i A)) 2 E cos(θ(s)) 1/3 ds 1/2 = o(E 5/8 ).
In a similar way, we have

Supp ϕi (θ ) 2 | cos θ| -11/3 = O E -5/12 | ln E| -1/2 , so that Supp ϕi A(s) 2 (θ ) 2 E 5/3 | cos θ| -11/3 ds 1/2 = O(E 5 6 -5 24 | ln E| -1/4 ) = o(E 5/8 ).
We now tackle the term (4.23)

∂Ω A 2 (s)(∂ s ϕ i (s)) 2 E cos(θ(s)) 5/3 ds.
By definition, the support of ∂ s ϕ i is located in neighbourhoods of s i and s i+1 , so that we can use assumption (H2). We distinguish between the cases (i) and (ii). By definition of ϕ + i ,

Supp ∂ s ϕ + i ⊂ s + i , s + i + |s i -s + i | 2 .
In a neighbourhood of s = s i , in case (i), we have

|∂ s ϕ + i (s)| ≤ CE -1 4n+3 1 C0E 1 4n+3 ≤s-si≤2C0E 1 4n+3 
, so that (4.23) is bounded by

CE 5 3 - 1 2(4n+3) + 1 4n+3 (1-5n 3 ) = O E 10n+11 8n+6
= o(E 5/4 ).

In case (ii), using Lemmas 3.2.1 and 3.3.2, we infer that

|s ± i -σ ± i | ∼ C ln | ln E| (ln E) 2 , while σ ± i s ± i | cos θ| -5/3 ≤ CE -5/12 | ln E| -9/2 .
We deduce that the contribution of (4.23) is bounded by

|s ± i -σ ± i | -2 E 5/3 σ ± i s ± i | cos θ| -5/3 = O(E 5/4 | ln E| -1/2 (ln | ln E|) -2 ) = o(E 5/4
).

There only remains to check that integrals. Since dy(s)/ds = -cos θ(s), the jacobian is not singular, and we have

| cos θ| 1/3 (M(y(s))) 2 ≤ C δy/2≤|y|≤1 |y| -2 (ln |y|) -2 ≤ Cδ -1 y | ln δ y | -2 .
In both cases, we infer that

E 5/3 Supp ϕi (A (s)) 2 | cos θ| -5/3 ds = o(E 5/4 ).
This concludes the estimates in the neighbourhood of a point s ∈ ∂Ω such that cos θ vanishes or y(s) = y j for some j ∈ I + .

• Estimates near the end point of Σ: Using once again Lemma 3.5.1, we infer that the contribution of this zone to

r 1 i L 2 is bounded by C(E 1 6 -1 8×19 + E 1/2 | ln E| 1/2 E -1 4 -3 8×19 + E 5 6 -1 2 -5 8×19 ) = o(E 1/8 ), while its contribution to r 2 i H -2 is bounded by C(E 5 6 -1 8×19 + E 5 6 -1 4 -3 8×19 δ 1/2 y + E 7 6 -1 2 -5 8×19 δ 1/2 y ) = o(E 5/8
). This concludes the proof.

Error terms associated with discontinuity layers.

Since we have already proved that the error terms associated with ψ corr Σ are admissible in the sense of Definition 1.1.2, in order to establish Proposition 3.4.6, there only remains to prove that

(∂ x -E∆ 2 ) ψ Σ x, y -y 1 E 1/4 χ y -y 1 δ y = δτ lift x, y -y 1 E 1/4 + r 1 Σ + r 2 Σ , where r 1 Σ L 2 (Ω) = o(E 1/8 ), r 2 Σ H -2 (Ω) = o(E 5/8
). Note that the computations here are much simpler since all the formulas are given in cartesian coordinates.

By definition of ψ Σ , we have

(∂ x -E∆ 2 ) ψ Σ x, y -y 1 E 1/4 χ y -y 1 δ y -δτ lift x, y -y 1 E 1/4 = (χ -1) y -y 1 δ y δτ lift x, y -y 1 E 1/4 (4.24) -E(2∂ 2 y + ∂ 2 x )∂ 2 x ψ Σ x, y -y 1 E 1/4 χ y -y 1 δ y (4.25) -E 3 j=0 C j 4 E -j/4 δ j-4 y ∂ j Y ψ Σ x, y -y 1 E 1/4 χ (4-j) y -y 1 δ y . (4.26)
The term (4.24) is supported in 

{|y -y 1 | ≤ E 1/4 } ∩ {|y -y 1 | ≥ δ y }. Since δ y E 1/4

Remainders in the periodic and rectangular cases

• We begin with the rectangular case, which is closer to the case of a smooth domain in R 2 . The remainder term coming from the interior is -E∆ 2 ψ 0 , which is O(E) in L 2 if τ is smooth (say, τ ∈ H 4 ), and is therefore admissible. The north and south boundary layers give rise to the same type of error terms as in the case of a smooth domains; hence these error terms are admissible as well. Eventually, the error terms coming from the western boundary layer are

(E∂ 4 y + 2E∂ 2 y ∂ 2 x ) ± A ± (y) exp -e ±iπ/3 x -x - E 1/3 χ 0 (x) , which are bounded in H -2 by E ∂ 2 y ± A ± (y) exp -e ±iπ/3 x -x - E 1/3 χ 0 (x) L 2
.

Using estimates (3.51), we infer that the above quantity is bounded by

CE 7/6 ± ∂ 2 y A ± L 2 (y-,y+) ≤ CE 7/6 E -1/2 = o(E 5/8 ),
hence the remainder term is admissible.

• In the periodic case, there are very few remainder terms. Concerning the interior part, we have

(∂ x -E∆ 2 )(ψ 0 + ψ circ ) = τ -E∆ 2 ψ 0 ,

and

E∆ 2 ψ 0 H -2 (T×(y-,y+)) ≤ CE τ H 2 (T×(y-,y+)) . As for the boundary layer terms, we have

(∂ x -E∆ 2 )(ψ BL N (x, (y + -y)/E 1/4 )χ 0 (y)) = -E(∂ 4 x + 2∂ 2 x ∂ 2 y )(ψ BL N (x, (y + -y)/E 1/4
)χ 0 (y)) + exponentially small terms in L 2 and using (3.49), the first term in the right-hand side is bounded in

H -2 by CE ∂ 2 x ψ BL N (x, (y + -y)/E 1/4 )χ 0 (y) L 2 (Ω) ≤ CE 7/8 ( ψ 0 y=y± H 2-1 8 (T) + E 1/4 ∂ y ψ 0 y=y± H 2-3 8 (T) ) ≤ CE 7/8 ( τ H 2+ 3 8 + E 1/4 τ H 2+ 9 
8 ). Hence for τ ∈ H 25/8 , the remainder terms are all O(E) in H -2 , which completes the proof of Corollary 1.3.5.

CHAPTER 5

Discussion: Physical relevance of the model Of course it is not completely clear whether our simplified model is really relevant from the physical point of view. Let us therefore explain briefly the derivation of this model (following Desjardins and Grenier [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF]), and track the different simplifications that should be compared with experimental data. For further discussions regarding the physical relevance of such models, we refer to [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF], [START_REF] Pedlosky | Ocean Circulation Theory[END_REF] or [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF].

• As usual in large-scale oceanography, we start with the 3D incompressible Navier-Stokes equations in a rotating frame: the velocity field u is assumed to be divergence-free ∇ • u = 0 , and to satisfy the dynamical equation

∂ t u + (u • ∇)u + 2ω ∧ u = ∇p ρ + g + 1 ρ Fu
expressing the fact that the fluid evolves under the combined effects of the Coriolis force, the pressure, the gravity and some turbulent dissipation mechanism. The precise formulation of this last contribution (involving a turbulent viscosity)

1 ρ Fu = µ h ∆ h u + µ 3 ∂ 33 u
even commonly used by physicists, has no real justification, which is a first limitation of our study. These equations are set in a bounded domain

D = {x ∈ Ω × R / h B (x h ) ≤ x 3 ≤ 0}
and supplemented by boundary conditions. On the bottom (which is described by the topography h B ) and on the lateral boundaries, we assume that the fluid-solid interaction can be catched through a no slip condition (Dirichlet condition) :

u |x3=h B = 0, u |∂Ω h = 0 .
For the sake of simplicity, the free surface is replaced by a prescribed spherical boundary corresponding to the depth x 3 = 0 (rigid lid approximation), and the effect of the wind is modeled by some non homogeneous Navier condition u n|x3=0 = 0, µ h (∇u + (∇u) T ) t|x3=0 = T .

This drastic but standard simplification is investigated for instance in [START_REF] Levermore | Global well-posedness for models of shallow water in a basin with a varying bottom[END_REF][START_REF] Duchêne | On the rigid-lid approximation for two shallow layers of immiscible fluids with small density contrast[END_REF], but has no rigorous justification, which is the second weakness of the model.

• Far from the poles and the equator, i.e. around a latitude ϑ 0 ∈ (0, π/2), these equations can be rewritten in scaled cartesian-like coordinates. This involves many non dimensional parameters characterizing the physical properties of the flow, especially where β = r * cos ϑ 0 sin ϑ 0 .

• A formal asymptotic analysis (based for instance on asymptotic expansions) shows that the limiting flow is purely two-dimensional: we indeed obtain at leading order (5.1) u 3 = 0, ∂ 3 u h = 0, ∇ h • u h = 0 , or equivalently u = ∇ ⊥ h ψ for some scalar stream function ψ depending only on the horizontal variables. Since these conditions are not compatible with the bottom and surface boundary conditions, one has to introduce boundary layer corrections, referred to as Ekman layers, which contribute to the global energy balance via Ekman pumping.

The dynamical equation is then obtained at next order (more or less as a solvability condition): since u h is divergence-free, it is indeed completely determined by its vorticity:

(5.2)

∇ ⊥ • (∂ t u + u • ∇ h u -βyu ⊥ ) = ∇ ⊥ • (E h ∆ h u -βT + η B u ⊥ -ru)
where -ru is the Ekman pumping associated to the energy dissipation by friction on the bottom, η B u ⊥ accounts for the effects of the topography, and -βT is the source term resulting from the wind forcing. When the domain Ω is not simply connected, (5.2) must be supplemented with further compatibility conditions (see paragraph 1.2.3).

Note that this formal derivation can be justified by classical energy methods [START_REF] Desjardins | On the Homogeneous Model of Wind-Driven Ocean Circulation[END_REF], at least for well-prepared initial data (i.e. for initial data satisfying the constraint equations (5.1)). Starting from the limiting system (5.1)(5.2), one can indeed build a smooth approximate solution, then control its L 2 distance to the solution u of the Navier-Stokes equations using some strong-weak stability principle. Note that one even obtains a rate of convergence.

• The apparition of Munk boundary layers and the intensification of oceanic currents on western coasts we would like to describe with such a model are physical phenomena which are typically linear and which result from the fact that the no-slip Dirichlet condition on the coasts of the basin becomes a non admissible boundary condition if the viscous dissipation is not a leading order term in the equation (5.2).

More precisely, we expect to exhibit such a behaviour when the remaining rotating term β∇ ⊥ • (yu ⊥ ) = βu y (due to the inhomogeneities of the local rotation vector) is large compared to E h ∆∇ ⊥ • u. In particular, we expect that boundary layers

• should not depend on the topographical effects and Ekman pumping (if β is large enough) • decouple from the convection (at least if boundary layers are stable in the sense that their kinetic energy remain small) • are quasi-stationary, meaning that the equation governing boundary layers does not involve time.

We emphasize that our study remains entirely valid if in equation (1.1), β is not a parameter, but a smooth function which remains bounded away from zero. The identity (A.2) follows.

Appendix B: Equivalents for the coordinates of boundary points near horizontal parts

In the vicinity of a point s 0 ∈ ∂Γ E such that cos(θ(s 0 )) = 0, the East part of the boundary can be described as the graph of some function y → x E (y). Assumption (H2) provides then asymptotic expansions of the function x E and its derivatives.

Let (x(s), y(s)) be the coordinates of the point with arc-length s on ∂Ω. By definition, if cos(θ(s)) > 0,

x(s) = x E (y(s)). Moreover, (B.1) d ds

x(s) y(s) = sin(θ(s)) -cos(θ(s))

and setting the origin of the axes so that (x(s 0 ), y(s 0 )) = (0, 0), we get (B.2)

x E (y(s)) = -tan(θ(s)),

x E (y(s)) = θ (s) cos 3 (θ(s))

.

Similar formulas hold for x x E (y) ∼ C|y| In case (H2ii), using the same kind of calculations as above, we infer that as y vanishes (B.4)

x E (y) ∼ C ln |y| , x (k) 
E (y) ∼ C k y k (ln |y|) 2 for k ∈ {1, 2, 3, 4}.

We have used the following fact: We recall that (see (2.17 Proof. We recall that a and b were defined in paragraph 3.4.1. Since a and b are constant for x < x 1 and for x > x(σ in ), it suffices to prove the estimates on (x 1 , x(σ in )). On this interval, a and b are defined through formulas of the type a(x(s)) = a(s), b(x(s)) = b(s).

Differentiating these inequalities with respect to s, we obtain x (s)a (x(s)) = a (s), and thus, using the formula (B.1), a (x(s)) = a (s) sin θ(s) .

Iterating this process and using the fact that sin θ remains bounded away from zero in the interval under consideration, we infer that for all k ∈ {0, • • • 4}, t|∂Ω (s). The computations are lengthy but do not raise any difficulty. It can be easily checked that the most singular estimates correspond to the case when cos θ vanishes algebraically near s = inf I 1 (assumption (H2i)), with the lowest possible exponent n. Indeed, if cos θ vanishes exponentially near s = inf I 1 , then for all k ≥ 0

∂ k s ϕ L ∞ = O(| ln E| 2k ),
while in case (i)

∂ k s ϕ L ∞ = O(E -k 4n+3 ).
Similar formulas hold for ∂ k s ψ 0 t|∂Ω , ∂ k s ∂ n ψ 0 t|∂Ω . Therefore in the rest of the proof, we only treat the case (H2i) with n = 4 (Remember that because of assumption (H4), cos θ vanishes at least like (s-inf I 1 ) 4 ) near inf I 1 ). We explain with some detail the estimates of b and b , and we leave the rest of the derivatives to the reader. Gathering all the terms, we obtain, for k ≥ 1,

a (k) L 1 = O(E 1-k 19 
). The estimates of a and b in L 2 go along the same lines. The estimates on f and f are derived in a classical fashion: for instance, write

f (Z) 2 = -2 ∞ Z f (Z )∂ Z f (Z ) dZ , so that f 2 ∞ ≤ 2 f 2 ∂ Z f 2 .
Integrating by parts and using the fact that f |Z=0 = ∂ Z f |Z=0 = 0, we infer that

∂ Z f 2 2 = - R+ f ∂ 2 Z f
and similarly (D.1)

∂ 2 Z f 2 2 = R+ f ∂ 4 Z f.
Using several times the Cauchy-Schwarz inequality leads to

f ∞ ≤ √ 2 f 7/8 2 ∂ 4 Z f 1/8
2 . The estimate on ∂ Z f goes along the same lines. The estimate on ∂ 2 Z f is a little more tricky: we write

∂ 2 Z f 2 ∞ ≤ 2 ∂ 2 Z f 2 ∂ 3 Z f 2 ≤ 2 f 1/2 2 ∂ 3 Z f 2 ∂ 4 Z f 1/2 2 . (D.2)
On the other hand, an integration by parts yields

∂ 3 Z f 2 2 = - R+ ∂ 2 Z f ∂ 4 Z f -∂ 2 Z f |Z=0 ∂ 3 Z f |Z=0 and ∂ 3 Z f 2 |Z=0 = -2 R+ ∂ 3 Z f ∂ 4 Z f.
Therefore, using (D.1)

∂ 3 Z f 2 2 ≤ f 1/2 2 ∂ 4 Z f 3/2 2 + √ 2 ∂ 2 Z f ∞ ∂ 4 Z f 1/2 2 ∂ 3 Z f 1/2
2 . We deduce that

∂ 3 Z f 2 2 ≤ C f 1/2 2 ∂ 4 Z f 3/2 2 + C ∂ 2 Z f 4/3 ∞ ∂ 4 Z f 2/3
2 . Inserting the above inequality into (D.2) and using Young's inequality leads eventually to

∂ 2 Z f 2 ∞ ≤ C f 3/4 2 ∂ 4 Z f 5/4
2 , so that 

∂ 3 Z f 2 ≤ C f

(1. 5 )

 5 ∂ x ψ app -E∆ 2 ψ app = τ + δτ on Ω,ψ app|∂Ω = 0, (n • ∇ψ app ) |∂Ω = 0.In particular, denoting δψ = ψ -ψ app , we have(1.6) ∂ x δψ -E∆ 2 δψ = δτ on Ω, δψ |∂Ω = 0, (n • ∇δψ) |∂Ω = 0.
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 33 Figure 3.3. The interior singular layer

Σ∈ H 2

 2 (Ω). Moreover, ψ corr Σ satisfies the following estimates: Lemma 3.4.5. For all k ∈ {0, 1, 2}, we have

4. 1 . 1 .

 11 Error terms due to the truncation χ E . Let us first prove Proposition 3.1.1, i.e. the following estimates :

Figure 4 . 1 .

 41 Figure 4.1. cos θ has a local minimum at s = 0

.|

  Hence the choice δ y = E 1/4 | ln(E)| 1/5 (ln | ln(E)|) -β , with β > 0 arbitrary, ensures that δτ is an admissible remainder. Notice that any choice of the type δ y = E γ , with γ ∈ 5(n+1) 4(5n+6) , 3(n+1) 4(3n+1) , also works in this case. • Case (ii): similarly, we have (4.4) ln |δ y || -2

2 ≤ 2 y|

 22 Cδ -3/ln |δ y || -3 . Thus, with the choice δ y = E 1/4 | ln(E)| 1/5 (ln | ln(E)|) -β , we infer that δτ is an admissible remainder. This completes the proof of Proposition 3.1.1.

Lemma 4 . 2 . 3 . 2 +

 4232 Let I ⊂ Γ E ∪ Γ W be a closed interval, and let λ ∈ L ∞ (I, C) such that inf I (λ) > 0. Let φ ∈ L ∞ (Ω) such that Supp φ ⊂ I. Then φ(s)χ 0 (z) exp(-λz) L 2 (Ω) ≤ C I φ(s) 2 ( λ(s)) -1 ds 1/2 and φ(s)χ 0 (z) exp(-λz) H -2 (Ω) ≤ C I φ(s) 2 ( λ(s)) -5 ds 1/C φ ∞ exp(-C inf I λ).
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  the Rossby number which measures the size of the Coriolis force = U 2ω sin ϑ 0 L where U and L are the typical velocity of the fluid and (horizontal) length of observation; -the aspect ratio and the curvature parameter which characterize the geometry of the domain, defined respectively by typical height of the ocean and R 0 the radius of the Earth; -the horizontal and vertical Ekman numbers which account for the viscous effectsE 3 = µ 3 2ω sin ϑ 0 h2 , E h = µ h 2ω sin ϑ 0 L 2 .The Munk equation is obtained in the fast rotating limit with thin layer approximation, that is when → 0, with the following choice of scalingρ, r -1 * = O( ), E 3 = O( ) h B = -h(1 + η B ),and sin ϑ = sin ϑ 0 (1 + βy) .

Ω∂ x ψ a ψ a = 1 Ω

 1 around any closed contour C in Ω vanishes:C Φ • t = 0,where t is the tangent vector to the curve C. If curl Φ = 0, this condition becomes Ci Φ • t = 0 for all i ≥ 2. Hence we obtain ∃q ∈ H 1 (Ω), Φ = ∇q ⇐⇒ curl Φ = 0 and Ci Φ • t = 0 for all i ≥ 2.Therefore (A.1) is equivalent toβu 2 -E∆ curl u = curl T in Ω, divu = 0, u |∂Ω = 0, E Ci ∆u • t + Ci T • t = 0 ∀i ≥ 2.This amounts to (1.14)-(1.15) with u = ∇ ⊥ ψ (notice that, as above, the existence of ψ is ensured by the divergence free condition on u and by the Dirichlet boundary conditions).• Proof of Lemma 1.2.1: the existence and uniqueness of the functions ψ i ∈ H 2 (Ω) follow for instance from the Lax-Milgram Lemma. Identity (1.18) is a consequence of the linearity of the equation (1.14) and of uniqueness, and the equality M E c = D E follows from the compatibility condition (1.15) and the decomposition(1.18).Concerning the invertibility of M E , we prove in fact that for all (a 2 ,• • • , a K ) ∈ R K-1 (A.2) i,j a i a j E Cj ∂ n ∆ψ i = -E Ω |∆ψ a | 2 ≤ 0, where ψ a = K i=2 a i ψ i . We have ∂ x ψ a -E∆ 2 ψ a = 0, ∂ n ψ a|∂Ω = 0, ψ a|C1 = 0, ψ a|Ci = a i , i ≥ 2.Therefore, since C i is a closed contour,|∆ψ a | 2 + E i,ja i a j Ci ∂ n ∆ψ j .

  In case (H2i), we havey(s) ∼ C(s -s 0 ) n+1 ∼ Cx(s) n+1 ,

s 0 as s → s 0 .

 0 Appendix C: Estimates on the coefficients a and b.

1 .a

 1 ),(2.19),(2.20))ψ lift (x, y) = χ + χ y -y 1 E 1/4 [a(x) + b(x)(y -y 1 )] ,where a and b are defined byb(x) = (1 -ϕ(s)) -sin θ(s)∂ n ψ 0 t|∂Ω (s) + cos θ(s)∂ s ψ 0 t|∂Ω (s) -cos θ(s)ϕ ψ 0 t|∂Ω (s), a(x) = -(1 -ϕ(s))ψ 0 t|∂Ω (s) -b(x(s))(y(s) -y 1 ), for x 1 < x = x(s) < x(σ in ), and bya(x) = -[ψ 0 t ] Σ , b(x) = -[∂ y ψ 0 t ] Σ for x ≤ xFor x ≥ x(σ in ), we merely take a(x) = b(x) = 0.Lemma C.1. Let x min := inf{x ∈ R, ∃y ∈ R, (x, y) ∈ Ω},x max := sup{x ∈ R, ∃y ∈ R, (x, y) ∈ Ω} Then for all k ∈ {1, • • • , 4}, A k := a (k) L 1 (xmin,xmax) + E 1/4 b (k) L 1 (xmin,xmax) = O(E L ∞ (xmin,xmax) + E 1/4 b L ∞ (xmin,xmax) = O(1), a L 2 (xmin,xmax) + E 1/4 b L 2 (xmin,xmax) = o(E -1/2 ).

a

  (k) (x(s)) ≤ C k l=0 |a (l) (s)|,and eventually, for all p ∈ [1, ∞],a (k) L p (x1,x(σin) ≤ C k l=0 a (l) L p (σin,s1) .Of course the same type of inequality holds for b as well. Therefore we now compute the derivatives of a and b with respect to s up to order 4. Sincea(s) = -(1 -ϕ(s))ψ 0 t|∂Ω (s)b(s)(y(s) -y 1 ). we start with the derivatives of b. Recall that b(s) = (1 -ϕ(s)) -sin θ(s)∂ n ψ 0 t|∂Ω (s) + cos θ(s)∂ s ψ 0 t|∂Ω (s) -cos θ(s)ϕ (s)ψ 0

1 4 + 1 -k 19 | 19 |

 111919 First, we recall that by definition of σ in (see(3.36)),|y(s) -y 1 | ≤ E 1/4δ y for all s ∈ (σ in , s 1 ). Therefore, using the estimates of Lemma 3.1.3, we have|b(s)| ≤ C 1 δ y | ln δ y | + E -1/19 cos θ(s) ,so thatE 1/4 b ∞ = O(| ln E| -1 ) = o(1).Differentiating b with respect to s, we obtain, for s ∈ (σ in , s 1 ),b (s) = (1 -ϕ) -θ cos θ∂ n ψ 0 t|∂Ω -sin θ∂ s ∂ n ψ 0 t|∂Ω -θ sin θ∂ s ψ 0 t|∂Ω + cos θ∂ 2 s ψ 0 t|∂Ω +ϕ sin θ∂ n ψ 0 t|∂Ω -2 cos θ∂ s ψ 0 t|∂Ω + θ sin θψ 0 t|∂Ω -ϕ cos θψ 0 t|∂Ω , so that |b (s)| ≤ C(1 -ϕ) 1 + | cos θ| δ 2 y | ln δ y | +C|ϕ | 1 δ y | ln δ y | + C|ϕ | | cos θ|.Eventually, we retrieveb L 1 = O(E -1/4 | ln E| -1 ).The same kind of estimate yields, for k = 2, 3, 4,b (k) L 1 = O(E -ln E| -1 ). Now, since a (k) = k l=0 C l k ϕ (l) ∂ k-l s ψ 0 t|∂Ωb (l) d k-l (y(s) -y 1 ) ds k-l , we infer, for k ≥ 1, ln E| -1 d k-l (y(s) -y 1 ) ds k-l L ∞ (σin,s1).It can be checked that for l ∈ {1, • • • , 4},∂ l s ψ 0 t|∂Ω L 1 (s N -,s+) ≤ C| ln E| -1 E

  Appendix D: Proof of Lemma 3.4.3

  14) satisfying the compatibility condition (1.15) if and only if ψ is given by (1.18) with M

  The zone on which energy is injected in the north and south boundary layers, see (3.23) • (H3) allows to avoid the connection between some Σ layer and a horizontal boundary. It is not completely clear whether or not we would be able to handle such a singular transition; • (H4) is a technical assumption (comparable to (H2)) to get good estimates on the Σ layer, and in particular, on the impact of the Σ layer on the west boundary. It is discussed in detail in Remark 3.4.7.

	Remark 1.3.3 (Comparison with previous results).

• (H2) is used to have explicit estimates for the transition zone between East/West boundary layers and North/South boundary layers. In particular, the rate of cancellation of cos θ determines:

-The size of the truncation of the forcing τ in singular zones, see (

3.4), (3.5)

; -The domain of validity of the east and west boundary layers, see (2.8), (3.15), (3.16); -

  are well-posed, and we will give some energy estimates on the solutions of such equations. In the present context, this means that on South boundary layers, equation (2.9) is a forward equation (in s), while on North boundary layers it becomes a backward equation. This is consistent with the definition of the interior term ψ 0 : in all cases, the boundary condition in s is prescribed on the East end of the interval.

	σ +	i+1						σ i	-
		s + i+1	s	i+1	s	i	s i	-	Initial condition for the South boundary layer
	Figure 2.2. The arc-lengths σ -i , s -i , s i , s i+1 , s + i+1 , σ + i+1 on a South boundary

  3.1.1 and C.1 and paragraph 4.1.2). • The source term δτ lift is not an admissible error term in the sense of Definition 1.1.2. Therefore it has to be corrected by yet another boundary layer type term. 2.4.2. The interior singular layer. The lifting term ψ lift has introduced a remainder δτ lift which we now treat as a source term. By analogy with North and South boundary layers, we therefore define ψ Σ as the solution of the following equation (2.23)

.

  But then ψ 0 t + ψ BL E (s, λ E z) no longer satisfies the zero trace condition on Γ E . More precisely, since ∂ n ψ 0 t|Γ E vanishes for |y(s) -y i | ≤ δ y /2, we have the following trace estimate: Lemma 3.2.2. The trace of ψ E satisfies the following bound

  ) L 2 .

	We now use the second commutator estimates stated in Lemma 4.2.2 to get
	(4.13)	χ 0

  10)-(4.16) shows that the remainders coming from the South and North boundary layers are admissible in the sense of Definition 1.1.2. 4.2.3. Error terms associated with East and West boundary layers. We recall that the boundary layer term on the East or West boundary [s i , s i+1 ] takes the form ψ

  East coasts,• A is the matrix defined by (3.44) and , we can check that the eigenvalues λ E,W satisfy the following estimates on the domain of validity of the East and West boundary layers: Lemma 4.2.5. Under the compatibility condition (2.8), for s

	f (Z) =	exp -e iπ/3 Z exp -e -iπ/3 Z
	on West coasts,	
	• ϕ ± i are defined by (3.19) on the East coast, and by (3.23)-(3.24) on the
	West coast (see also Lemma 3.3.2).
	Combining the definitions of s ± i , σ ± i and the equivalents given in Lemma 3.2.1
	and Appendix B	

  ) .

	Inequalities (3.48), (3.45), (3.46) yield respectively
	(4.21)

  , (4.24) is zero for E small enough. Moreover, using Lemma 3.4.1, we infer that (4.25) is O(EE -2/19 E 1/8 ) in H -2 (Ω). Eventually, using the same type of commutations as in the proof of Lemma 4.2.4, we prove that (4.26) is o(E 1/8 ) L 2 + o(E 5/8 ) H -2 .

  The last estimate on ∂ 3 Z f ∞ follows easily. Notations A i , B i subdomains of Ω where the solution to the Sverdrup equation is continuous, p. 8, 10 Γ E , Γ W East and West parts of the boundary, p. 6 Γ N , Γ S North and South parts of the boundary, p. 6 γ i,i-1 truncation of the boundary conditions to be lifted by the North/South boundary layers, p. 52 γi,i-1 ≥ γ i,i-1 truncation of the North/South boundary layers, p. 60 δ y = E 1/4 | ln E| 1/5 (ln | ln E|) -β truncation parameter with respect to y, p. 41 angle between the horizontal vector e x and the exterior normal to the boundary, p. 6 I + set of indices corresponding to East corners (s i ∈ ∂Γ E ), p. 6 λ E , λ W inverse sizes of the East and West boundary layers, p. 21λ N = λ S = λ Σ = E -1/4 inversesize of the horizontal boundary layers, p. 23 M majorizing function, p. 43 ρ i partition of unity, p. 6 s curvilinear abcissa, p. 5 s i curvilinear abcissa of the singular points (s i ∈ ∂Γ E ∪ ∂Γ W ), p. 6 s ± i extremal points of the domain of validity of East and West boundary layers (if relevant), p. 23 t + 1 curvilinear abcissa of the East end of Σ, p. 62 σ ± i extremal points where energy is injected in North and South boundary layers (if relevant), p. 48, 50 σ in initial point for the discontinuity boundary layer ψ lift , ψ Σ , p. 61 Σ surfaces of discontinuity (ordinates of critical points), p. 29 τ forcing term (coming from Ekman pumping), p. 1 ϕ ± i truncation dealing with the transition between East/West and North/South boundary layer terms, p. 49, 50 χ 0 localization near the boundary, p. 5 χ ± localization on Ω ± , p. 30 χ E truncation of τ near the singular point s i , p. 41 x ± E ≡ x ± E (y) graphs of the East boundaries of Ω ± , p. 30 x W 1 abcissa of the West end of Σ, p. 63 (x i , y i ) coordinates of the singular points ((x i , y i ) = (x(s i ), y(s i ))), p. 6 ψ 0 solution to the transport equation, p. 40 ψ 0 t solution to the transport equation with truncated source term, p. 42 ψ N,S North and South boundary layer terms, p. 24 ψ E,W East and West boundary layer terms, p. 22 ψ lift interior singular terms lifting the discontinuities of ψ 0 , p. 62 ψ Σ interior singular layer terms, p. 34 ψ int = ψ 0 t + ψ lift regularization of the solution to the Sverdrup equation, p. 33 ψ = ψ 0 t + ψ E + ψ cor E sum of all terms whose trace is lifted by the North/South boundary layers, p. 49 ψΣ = ψ lift +ψ Σ χ y-y1 δy +ψ corr W sum of all singular layer terms whose trace is lifted on the West boundary, p. 68 Y -parametrization of the interior singular layer, p. 62 Ω = Ω 1 \ ∪ K i=2 Ω i domain with islands Ω i , p.9 Ω ± subdomains of Ω where the transport equation has a continuous solution, p. 29 z distance to the boundary, p. 5 Z = λ(s)z scaled distance to the boundary, p. 20 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ W , s 0 if I 1 = [s 0 , s 1 ] and (σ - 0 , s 0 ) ⊂ Γ E . Term Typical size in L 2 (Ω) Typical size in H 2 (Ω ± )

		Sizes of parameters and terms
		Parameter				Size/Definition
			Case (H2i)	Case (H2ii)
		s ± i -s i	C i E	1 4n+3		∓4α ln E	1 -6	ln | ln E| ln E	+ O	1 ln E
		σ ± i -s i (East coast)					C i	
		1/4 2 ∓4α ln E if I 1 = {s 1 }, ∂ 4 Z f 1 -8 3/4 ln | ln E| ln E 2 . if I 1 λ N,S i -s i (West coast) σ ± C i E 1 4n+4 σ in    σ -1 σ -0 E -1/4	+ O	1 ln E
		λ E,W (s)					E | cos θ(s)|	1/3
		λ E,W (s)		-	E 1/3 sign(cos θ(s))θ (s) sin θ(s) 3| cos θ(s)| 4/3
		λ E,W (s ± i ) λ E,W (σ ± i )	E -n+1 4n+3 E -3n+4 12(n+1)		E -1/4 | ln E| 1/2
		ψ 0 t	1				o(E -3/8 )
		ψ N,S	E 1/8					E -3/8
		ψ W	E 1/6					E -1/2
		ψ E	E 1/2				o(E -3/8 )
	δ i,±	ψ lift ψ Σ	E 1/8 E 1/8					E -3/8 E -3/8
		ψ corr Σ	o(E 1/8 ) ψ corr Σ	o(E -3/8 ) y E -k-2 W k,∞ = O(δ -2 4 )

x = x E (y i ± δ y ) -x E (y i ) local truncation parameter with respect to x, p. 42

θ(s) E -1/4 | ln E| 2/3

Σ 23 Σ 34 Γ 1 Γ
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We use inequality (3.45). We have

Using (4.22), it can be checked that the first term is o(E -5/12 ). There remains to estimate the second term of the right-hand side. We have to distinguish between two cases:

1 in a neighbourhood of the point where |y(s) -y j | 1, then we can use assumption (H2) and the estimates of Appendix B. We infer that

• If cos θ is bounded away from zero at the point where y(s) = y j for some s ∈ Supp ϕ i , j ∈ I + , then we can use the change of variables s → y in the Appendix A: The case of islands: derivation of the compatibility condition (1.15) and proof of Lemma 1.2.1

• The compatibility condition (1.15) is inherited from the Navier-Stokes system satisfied by u = ∇ ⊥ ψ (see [START_REF] Kikuchi | Exterior problem for the two-dimensional Euler equation[END_REF] for a similar argument in the inviscid case). Indeed, we start from the stationary Stokes-Coriolis system in dimension 2, with β-plane approximation, namely (A.1)

The idea is to take the curl of the first equation in order to get rid of the pressure term. However, for Φ ∈ L 2 (Ω) 2 , the identity curl Φ = 0 does not imply the existence of q ∈ H 1 (Ω) satisfying Φ = ∇q. Indeed, Φ is a gradient if and only if its circulation