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Abstract A new algorithm is proposed to deal with the worst-case optimization
of black-box functions evaluated through costly computer simulations. The input
variables of these computer experiments are assumed to be of two types. Control
variables must be tuned while environmental variables have an undesirable effect,
to which the design of the control variables should be robust. The algorithm to be
proposed searches for a minimax solution, i.e., values of the control variables that
minimize the maximum of the objective function with respect to the environmental
variables. The problem is particularly difficult when the control and environmental
variables live in continuous spaces. Combining a relaxation procedure with Kriging-
based optimization makes it possible to deal with the continuity of the variables
and the fact that no analytical expression of the objective function is available
in most real-case problems. Numerical experiments are conducted to assess the
accuracy and efficiency of the algorithm, both on analytical test functions with
known results and on an engineering application.

Keywords computer experiments · continuous minimax · efficient global
optimization · expected improvement · fault diagnosis · Kriging · robust
optimization · worst-case analysis

1 Introduction

Computer models of complex processes are now extensively used in all domains
of pure and applied sciences. These models can be viewed as black-box functions
that provide a response to sampled input values. Choosing where to sample the
input space can be viewed as the design of computer experiments [1]. The optimal
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sampling obviously depends on the goal of the computer experiments. We assume
here that this goal is the optimal choice of control variables. In most real-life
problems, the objective function has no closed-form expression and is expensive to
evaluate. In this context, surrogate models such as those provided by the response-
surface methodology, Kriging, radial basis functions, splines or neural networks are
widely used [2–4]. The idea is to substitute the evaluation of some simple function
for the costly simulation of the complex computer model.

Much research has been carried out on how to choose sampling points in the
input space of the control variables on which the fitting of the surrogate model
should be achieved. Space-filling sampling heavily suffers from the curse of dimen-
sionality [5]. A more interesting strategy explores new input values sequentially
according to some sampling criterion motivated by the improvement of an estimate
of a global optimizer. Kriging [6], also known as Gaussian-process regression [7], is
especially relevant in this context. Under clearly defined assumptions, it provides
the best linear unbiased prediction on the continuous space of inputs, as well as a
measure of the uncertainty of this prediction. These elements have been exploited
to build a highly popular sampling criterion known as Expected Improvement (EI)
and the Efficient Global Optimization (EGO) algorithm [8], which allows the op-
timization of black-box functions on a very reduced sampling budget compared
to other strategies [9]. Variations around EGO can be found in [10–12], and con-
vergence results in [13]. Many successful applications of EGO in engineering have
been reported, e.g., in [11,14–17]. Kriging and EGO will serve as a basis for the
study presented here.

In many real-life applications, the sole consideration of control variables cor-
responds to a simplistic version of the problem, as environmental variables that
affect performance should also be taken into account. For instance, a control law
or an estimation filter for an aeronautical vehicle are subject to measurement
noise, strong uncertainty on the model parameters, variations of the atmospheric
conditions (temperature, pressure) and wind turbulence. In such a case, one is
looking for a design of the control variables that is robust to the effect of these
environmental variables. When dealing with such a robust design, a probabilistic
or deterministic point of view may be adopted [18]. In the probabilistic framework,
a distribution of the environmental variables is assumed, and performance is as-
sessed by the expected value of some robustness measure. However, a design that
is good on average may prove to be poor for particular values of the environmental
variables. In the deterministic framework, it is assumed that the environmental
variables belong to some known compact set and performance is assessed by the
worst possible value of some robustness measure. The design that is best in the
worst case is obviously conservative on average, and the choice between the prob-
abilistic and deterministic points of view should be made on a case-by-case basis.

In the probabilistic context, some papers have addressed robust Kriging-based
optimization with respect to environmental variables. In [19–21], Monte-Carlo sim-
ulations are performed for each sampled value of a space-filling design of the control
variables and a Kriging model is fitted on the resulting mean and variance, be-
fore achieving optimization by classical algorithms. In [22–24], the EI criterion
has been extended to take into account a probability distribution for the environ-
mental variables. The underlying idea is to minimize a weighted average of the
response over a discrete set of values for the environmental variables.
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In the worst-case context, few algorithms seem to have been reported yet to
deal with environmental variables for the robust optimization of black-box func-
tions evaluated by costly computer experiments. Most of the techniques available
use evolutionary algorithms, which are usually computationally expensive [25,26],
and thus impractical in a context of costly simulations. An interesting attempt
combining a surrogate model with evolutionary optimization has been reported
in [27].

The present paper presents an alternative algorithm for the continuous min-
imax optimization of black-box functions. We propose to rely on the iterative
relaxation procedure proposed in [28] and to combine it with Kriging-based op-
timization. Relaxation makes it possible to take into account continuous infinite
spaces for both the control and environmental variables, unlike the discrete prob-
abilistic formulation used in previous work. Kriging-based optimization may also
drastically reduce computational load, compared to evolutionary-based strategies.

This paper is organized as follows. Section 2 formulates the optimization prob-
lem under consideration and briefly presents numerical minimax optimization.
Section 3 recalls elements about Gaussian Processes and Kriging-based optimiza-
tion. The new algorithm combining Kriging-based optimization and a relaxation
procedure is presented in Section 4. Section 5 demonstrates its efficiency first on
test functions from [29] and [25–27], then on a simplified version of an actual
engineering problem.

2 Numerical minimax optimization

Denote the vector of control variables by xc, the vector of environmental variables
by xe and the corresponding scalar value of the objective function as computed
by the complex model by y(xc,xe). Assume that xc ∈ Xc and xe ∈ Xe where Xc

and Xe are known compact sets. The aim of minimax optimization is to find x̂c

and x̂e such that

{x̂c, x̂e} = arg min
xc∈Xc

max
xe∈Xe

y(xc,xe). (1)

This is especially relevant if the design must remain valid when the worst
environmental disturbance occurs. Minimax ideas are widespread in many areas,
e.g., mechanical design [30], control [31,32] or fault diagnosis [33,34]. This kind of
problem is also closely related to bi-level optimization [35], robust optimization [36]
and game theory [37].

While a considerable amount of work has been devoted to the theory of min-
imax optimization, relatively few numerical algorithms have been proposed to
address continuous minimax problems. See [29,38] for a survey and [39,40] for
recent developments. All of these strategies assume that an analytical expression
of the function to be optimized is available, as well as gradient or sub-gradient
information. As a result, they are not applicable to the problem considered here.
A simple idea would be to find a minimizer x̂c of y on Xc for a fixed value xe ∈ Xe,
then to maximize y with respect to xe on Xe for this fixed value x̂c, and to al-
ternate these steps. However, the convergence of this algorithm, known as Best
Replay [41], is not guaranteed and it turns out very often to cycle through useless
values of candidate solutions.
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To overcome these drawbacks, Shimizu and Aiyoshi [28,42] have proposed to
transform the initial problem (1) into the equivalent problem

 min
xc∈Xc

τ,

subject to y(xc,xe) ≤ τ, ∀xe ∈ Xe.
(2)

This problem has an infinite number of constraints and is therefore still intractable.
An iterative procedure can however be employed to find an approximate solution,
by relaxing the problem (2) into

 min
xc∈Xc

τ,

subject to y(xc,xe) ≤ τ, ∀xe ∈ Re,
(3)

where Re is a finite set containing values of xe that have already been explored.
Algorithm 1 summarizes this strategy.

Algorithm 1 Minimax optimization via relaxation

1: Pick x
(1)
e ∈ Xe and set Re =

{
x
(1)
e

}
and i = 1.

2: Compute

x(i)
c = arg min

xc∈Xc

{
max
xe∈Re

y(xc,xe)

}
3: Compute

x(i+1)
e = arg max

xe∈Xe

y(x(i)
c ,xe)

4: If
y(x(i)

c ,x(i+1)
e )− max

xe∈Re

y(x(i)
c ,xe) < εR

then return
{

x
(i)
c ,x

(i+1)
e

}
as an approximate solution to the initial minimax

problem (1).

Else, append x
(i+1)
e to Re, increment i by 1 and go to Step 2.

The threshold εR specifies the accuracy of the desired solution. Note that if the
procedure is stopped before the termination condition of Step 4 is reached, then
an approximate solution is still obtained, corresponding to a higher threshold ε′R.
This is particularly interesting when the number of evaluations of y is restricted.
Under reasonable assumptions, the main loop has been proven to terminate after
a finite number of iterations [28].

This algorithm, also used in [39], is generic and leaves open the choice of the
optimization procedures to be employed at Steps 2 and 3. Kriging-based optimiza-
tion seems particularly appropriate in a context of costly evaluations.



Worst-case global optimization of black-box functions 5

3 Kriging-based optimization

Throughout this section, some black-box function f(ξ) is assumed to depend on a
d-dimensional vector of inputs ξ ∈ X ⊂ Rd. In the context of the relaxation pro-
cedure, ξ will either consist of control variables or of environmental variables, de-

pending of the optimization step, and f(·) will be y(·,xe) at Step 2 and −y(x
(i)
c , ·)

at Step 3. The aim is to find a global minimizer ξ̂ of f(·) on the continuous bounded
space X

ξ̂ = arg min
ξ∈X

f(ξ), (4)

with as few evaluations as possible. The objective function f(·) can only be evalu-
ated at sampled values of ξ and no gradient information is assumed to be available.
An interesting tool in this context is Kriging.

3.1 Kriging

Kriging [6] models the black-box objective function f(·) as a Gaussian process
(GP). A GP can be seen as the generalization of finite-space Gaussian distributions
to a function space of infinite dimension. Just as a Gaussian distribution is fully
specified by its mean and covariance matrix, a GP is characterized by its mean
and covariance functions [7,43]. In what follows, the objective function f(·) will
be modeled as a GP

F (ξ) = pT(ξ)b + Z(ξ). (5)

The mean function is mF (ξ) = pT(ξ)b, where p(ξ) is some known vector of re-
gressors (usually chosen constant or polynomial in ξ) and b is a vector of unknown
regression coefficients to be estimated. Z(ξ) is a zero-mean GP with covariance
function cov(·, ·), usually expressed as

cov(Z(ξi), Z(ξj)) = σ2
ZR(ξi, ξj), (6)

where σ2
Z is the process variance and R(·, ·) a parametric correlation function.

The parameters of R(·, ·) and σ2
Z must be chosen a priori or estimated from the

available data. Many choices are possible for R(·, ·), one of the most frequent being
the power exponential correlation function [1],

R
(
ξi, ξj

)
= exp

(
−

d∑
k=1

∣∣∣∣ξi(k)− ξj(k)

θk

∣∣∣∣pk

)
, (7)

with ξi(k) the k-th component of ξi. The parameters θk > 0 quantify how the
influence of data points decreases with their distance to the point of prediction. In
this paper, all pk are chosen equal to 2, which corresponds to a smooth prediction.
Note that R

(
ξi, ξj

)
→ 1 when ‖ξi − ξj‖ → 0 and R

(
ξi, ξj

)
→ 0 when ‖ξi −

ξj‖ → ∞. In this paper, we use empirical Kriging where covariance parameters
are estimated from the data by maximum likelihood.

It is assumed that a set of training data fn = [f(ξ1), ..., f(ξn)]T has already
been computed, corresponding to an initial sampling Xn = [ξ1, ..., ξn] of n points
in X. The Kriging predictor is the best linear unbiased predictor (BLUP) of f(ξ),
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for any ξ ∈ X. It consists of two parts [44]. The first one is the prediction of the
mean of the Gaussian process at ξ ∈ X by

f̂(ξ) = pT (ξ) b̂ + r (ξ)T R−1
(
fn −Pb̂

)
, (8)

where R is the n× n matrix such that

R|i,j = R(ξi, ξj), (9)

r(ξ) is the n vector

r(ξ) = [R(ξ1, ξ), ..., R(ξn, ξ)]T, (10)

P is the n× dim b matrix

P = [p (ξ1) , ...,p (ξn)]T , (11)

and b̂ is the maximum-likelihood estimate of b from the available data {Xn; fn}

b̂ =
(
PTR−1P

)−1
PTR−1fn. (12)

The prediction of the mean of the GP is linear in fn and interpolates the training
data as f̂(ξi) = f(ξi) for i = 1, ..., n. Kriging can also be seen as a linear predictor
with a weighted sum on a basis of functions [7].

A second, very important part of the Kriging prediction is the estimate of the
variance of the prediction error

σ̂2 (ξ) = σ2
Z

(
1− r (ξ)T R−1r (ξ)

)
, (13)

which quantifies the accuracy of the Kriging prediction at ξ. It is small near
already sampled data points (even zero at their exact location), and large far from
them [11]. This has been used for the definition of optimization algorithms that

look for promising sampling points ξ in the sense that either f̂(ξ) is small or σ̂2(ξ)
is large.

3.2 Optimization

Kriging-based optimization [8] iteratively samples new points where f(·) should
be evaluated, to improve the estimate of a global optimizer. Sampling is made
according to a criterion J(·) that measures the interest of an additional evaluation
at ξ, given the available data, the Kriging predictor (8) and the corresponding
uncertainty measure (13),

ξn+1 = arg max
ξ∈X

J
(
ξ,Xn, fn, f̂(ξ), σ̂(ξ)

)
. (14)

A common choice for J(·) is Expected Improvement (EI) [8], defined as

EI
(
ξ, fn

min, f̂ , σ̂
)

= σ̂ (ξ) [uΦ (u) + φ (u)] , (15)
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where Φ is the cumulative distribution function and φ the probability density
function of the normalized Gaussian distribution N (0, 1), with

u =
fn
min − f̂ (ξ)

σ̂ (ξ)
(16)

and
fn
min = min

i=1...n
{f (ξi)} . (17)

Maximizing EI achieves a trade-off between local search (numerator of u) and
the exploration of unknown areas (where σ̂ is high), which is appropriate in a
context of global optimization. It is at the core of the Efficient Global Optimiza-
tion (EGO) algorithm, described in Algorithm 2. For the sake of simplicity, the

expression of EI
(
ξ, fn

min, f̂ , σ̂
)

is contracted into EI (ξ) in the description of the

algorithms.

Algorithm 2 Efficient Global Optimization

1: Choose an initial sampling Xn = {ξ1, ..., ξn} in X
2: Compute fn = {f (ξ1) , ..., f (ξn)}
3: while max

ξ∈X
EI(ξ) > εEI and n < nmax do

4: Fit the Kriging model on the known data points {Xn, fn} with (8)-(13)
5: Find fn

min = min
i=1...n

{f (ξi)}
6: Find ξn+1 = arg max

ξ∈X
EI(ξ)

7: Compute f(ξn+1), append it to fn and append ξn+1 to Xn

8: n← n+ 1
9: end while

The initial sampling at Step 1 can be performed by, e.g., Latin Hypercube
Sampling (LHS) or any other space-filling design [43]. A rule of thumb is to take ten
samples per dimension of input space, so n = 10d [8]. At Step 6, a new point where
to sample the function is searched for by maximizing EI (15). The EI (15) has a
closed-form expression and can easily be computed and differentiated at any point
of X. Its evaluation only involves computation on the surrogate model. Following
Sasena’s work [11], we used the DIRECT algorithm [45], but other implementations
could be used as well. The procedure is repeated until one of the stopping criteria
is met, either the exhaustion of the sampling budget nmax or the reaching of the
threshold εEI on EI.

4 Worst-case global optimization of black-box functions

This section addresses the initial minimax problem (1) for black-box functions
by combining EGO (Algorithm 2) with the relaxation procedure (Algorithm 1).
At Steps 2 and 3 of Algorithm 1, two functions depending on a vector of input
variables should to be optimized. Two independent EGO algorithms can be used
for this purpose, requiring two initial samplings, X c

0 on Xc and X e
0 on Xe. The
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complete procedure is detailed in Algorithm 3 and called MiMaReK for MiniMax
optimization via Relaxation and Kriging. In this algorithm, the index i is the
number of elements in Re, while j is the number of iterations. Note that Steps 1
to 4 of MiMaReK correspond exactly to the four steps of Algorithm 1. At Step 1a,

the initial vector x
(1)
e may be set arbitrarily.

At Step 2 the aim is to find a minimizer x
(i)
c of the function max

xe∈Re

y(xc,xe),

where Re consists of a finite number of already explored values of xe. The com-
putation of yc

j at Step 2b is thus carried out by picking, for each point xc of the
current design X c

j , the empirical maximum of y(xc,xe) over all elements xe of Re.
This requires j × i evaluations of y at each iteration of the while loop of Step 2.
We chose to rely on the same initial sampling X c

0 at each iteration of the relax-
ation. This reduces the computational cost to i evaluations of y(·, ·) per iteration.
It should also be noted that the fitting of the Kriging model and maximization of
EI are performed on max

xe∈Re

y(xc,xe), which is a function of xc only, instead of y.

At Step 3 the function to be maximized is y(x
(i)
c ,xe), EGO is thus employed

to minimize −y(x
(i)
c ,xe) with x

(i)
c the fixed value obtained at Step 2. This is

a function of xe only. The same initial sampling X e
0 may also be used at each

call of this step, however this does not reduce the overall computational cost
significantly. Most optimization tasks in Steps 2 and 3 simply require picking the
optimum in a finite set of values. Only Steps 2(c)iii and 3(c)iii require the use of an
optimization algorithm for the simple-to-evaluate EI function (15), as explained in
Section 3.2. To use Algorithm 3, one needs to set seven parameters. The dimensions
of the initial samplings nc and ne may be fixed respectively at 10 dim xc and
10 dim xe. The maximal number of iterations allowed per EGO algorithm nc

EI

and ne
EI depend on the computational resources available and the time taken by

the evaluation of the objective function y(·, ·). The tolerance parameter εR on
the stopping condition of the relaxation procedure determines the accuracy of the
minimax optimum. Tolerances εcEI and εeEI on the values of EI for each of the EGO
algorithms determine the accuracy with which the intermediate optimization tasks
are carried out. Empirical considerations on how to choose these values are given
in Section 5.1.3.

5 Examples of application

Two types of applications are developed to assess the efficiency of the minimax
strategy. In Sections 5.1 and 5.2, test functions with known results serve as refer-
ences to study the behavior of the procedure. In Section 5.3, Algorithm 3 is used
to address the robust tuning of hyperparameters of a fault diagnosis method for
an aeronautical system.

5.1 Benchmark 1 (Rustem and Howe [29])

Seven convex-concave test functions for minimax optimization have been defined in
Chapter 5 of [29]. The dimensions of these problems range from 2 control variables
and 2 environmental variables, up to 5 control variables and 5 environmental
variables. In the aforementioned book, three descent methods (Kiwiel’s and two
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Algorithm 3 MiMaReK, MiniMax optimization via Relaxation and Kriging

Set εR, ε
c
EI, n

c
EI, ε

e
EI, n

e
EI, nc, ne.

1. Step 1

(a) Choose randomly x
(1)
e in Xe. Initialize Re =

{
x
(1)
e

}
. Set i← 1.

(b) Choose a design X c
0 = {xc,1, ...,xc,nc} by LHS in Xc.

(c) Choose a design X e
0 = {xe,1, ...,xe,ne} by LHS in Xe.

while e > εR

2. Step 2

(a) Initialize j ← nc and X c
j = X c

0 .

(b) Compute yc
j =

{
max
xe∈Re

{y (xc,1,xe)} , ..., max
xe∈Re

{y (xc,nc ,xe)}
}

.

(c) while max
xc∈Xc

{EI(xc)} > εcEI and j < nc
EI

i. Fit a Kriging model on the known data points
{
X c

j ,y
c
j

}
.

ii. Find yjmin = min
1...j

{
yc
j

}
.

iii. Find the next point of interest xc,j+1 by maximizing EI(xc)
iv. Append xc,j+1 to X c

j .
v. Find max

xe∈Re

{y (xc,j+1,xe)} and append it to yc
j .

vi. j ← j + 1.
end while

(d) Find x(i)
c = arg min

xc∈X c
j

{
yc
j

}
(e) Compute eprec = max

xe∈Re

y
(
x(i)
c ,xe

)
3. Step 3

(a) Initialize k ← ne and X e
k = X e

0 .

(b) Compute ye
k =

{
−y
(
x
(i)
c ,xe,1

)
, ...,−y

(
x
(i)
c ,xe,ne

)}
.

(c) while max
xe∈Xe

{EI(xe)} > εeEI and k < ne
EI

i. Fit a Kriging model on the known data points {X e
k ,y

e
k}.

ii. Find ykmax = min
1...k
{ye

k}.
iii. Find the next point of interest xe,k+1 by maximizing EI(xe)
iv. Append xe,k+1 to X e

k .

v. Compute −y
(
x
(i)
c ,xe,k+1

)
and append it to ye

k.

vi. k ← k + 1.
end while

(d) Find x(i+1)
e = arg min

xe∈X e
k

{ye
k} and append it to Re

4. Step 4

(a) Compute e = y
(
x
(i)
c ,x

(i+1)
e

)
− eprec

(b) i← i+ 1

end while



10 Julien Marzat et al.

types of quasi-Newton schemes) have been compared on these test functions and
provided similar results. These results will serve as reference solutions. In what
follows, these seven test functions are taken as black-box objective functions, and
MiMaReK (Algorithm 3) is applied to evaluate the minimax solution. Its results
are then compared with the references.

5.1.1 Test functions for Benchmark 1

The i-th component of the vector of control variables xc is denoted by xci, and the
i-th component of the vector of environmental variables xe by xei. The analytical
expressions of the seven test functions are

f1(xc,xe) = 5(x2
c1 + x2

c2)− (x2
e1 + x2

e2) + xc1(−xe1 + xe2 + 5) + xc2(xe1 − xe2 + 3), (18)

f2(xc,xe) = 4(xc1 − 2)2 − 2x2
e1 + x2

c1xe1 − x2
e2 + 2x2

c2xe2, (19)

f3(xc,xe) = x4
c1xe2 + 2x3

c1xe1 − x2
c2xe2(xe2 − 3)− 2xc2(xe1 − 3)2, (20)

f4(xc,xe) = −
3∑

i=1

(xei − 1)2 +

2∑
i=1

(xci − 1)2 + xe3(xc2 − 1) + xe1(xc1 − 1) + xe2xc1xc2, (21)

f5(xc,xe) = −(xc1−1)xe1−(xc2−2)xe2−(xc3−1)xe3+2x2
c1+3x2

c2+x2
c3−x2

e1−x2
e2−x2

e3, (22)

f6(xc,xe) = xe1(x2
c1 − xc2 + xc3 − xc4 + 2) + xe2(−xc1 + 2x2

c2 − x2
c3 + 2xc4 + 1) (23)

+ xe3(2xc1 − xc2 + 2xc3 − x2
c4 + 5) + 5x2

c1 + 4x2
c2 + 3x2

c3 + 2x2
c4 −

3∑
i=1

x2
ei,

f7(xc,xe) = 2xc1xc5 + 3xc4xc2 + xc5xc3 + 5x2
c4 + 5x2

c5 − xc4(xe4 − xe5 − 5) (24)

+ xc5(xe4 − xe5 + 3) +

3∑
i=1

(xei(x
2
ci − 1))−

5∑
i=1

x2
ei.

For each of the test functions of Benchmark 1, Table 1 gives the continuous
bounded search sets Xc and Xe for the control and environmental variables, the
minimax solution (x̂c, x̂e) and the corresponding value of the objective function, as
obtained in [29]. Xc is unbounded in [29], so it was chosen large enough to contain
the reference solution and the initialization points of the descent algorithms.
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Table 1: Reference solutions for the seven minimax test functions

Test function Xc Xe Reference x̂c Reference x̂e fi(x̂c, x̂e)

f1(xc,xe) [−5; 5]2 [−5; 5]2
−0.4833

−0.3167

0.0833

−0.0833
−1.6833

f2(xc,xe) [−5; 5]2 [−5; 5]2
1.6954

−0.0032

0.7186

−0.0001
1.4039

f3(xc,xe) [−5; 5]2 [−3; 3]2
−1.1807

0.9128

2.0985

2.666
−2.4688

f4(xc,xe) [−5; 5]2 [−3; 3]3
0.4181

0.4181

0.709

1.0874

0.709

−0.1348

f5(xc,xe) [−5; 5]3 [−1; 1]3
0.1111

0.1538

0.2

0.4444

0.9231

0.4

1.3451

f6(xc,xe) [−5; 5]4 [−2; 2]3

−0.2316

0.2228

−0.6755

−0.0838

0.6195

0.3535

1.478

4.543

f7(xc,xe) [−5; 5]5 [−3; 3]5

1.4252

1.6612

1.2585

−0.9744

−0.7348

0.5156

0.8798

0.2919

0.1198

−0.1198

−6.3509

5.1.2 Results with the new minimax algorithm on Benchmark 1

The results to be presented have been obtained with the following tuning param-
eters, εR = 10−3, εcEI = εeEI = 10−4, nc

EI = ne
EI = 100. One hundred random

initializations of the procedure have been carried out to assess repeatability. The
corresponding average results are given in Table 2. They have been compared to
the reference values from Table 1 by computing the absolute value of their relative
deviation, for the minimizer x̂c, the maximizer x̂e and the function value fi(x̂c, x̂e).
The results of this comparison are reported in Table 3. The worst deviation for
the value of the objective function is 0.29%. More dispersion is observed for the
values of the minimizers and maximizers, since different values of the arguments
can lead to very close values of the objective function. The worst deviation ob-
served is approximately 7%. The number of evaluations required for the black-box
functions is divided by (dimXc + dimXe) (i.e. the total problem dimension) to
reveal the intrinsic complexity of each problem. For example, the third test func-
tion f3 requires a high number of evaluations relative to the minimax dimension,

1 [29] indicated 0.1345, however we obtained 1.345 by evaluating the function at the given
references for the minimax solution, so we assumed it was a typo.
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Table 2: Average results for 100 runs of the procedure for the test functions

Test function average x̂c average x̂e average fi(x̂c, x̂e) Std. deviation fi

f1(xc,xe)
−0.4860

−0.3299

0.0792

−0.0774
−1.6824 0.0295

f2(xc,xe)
1.6966

−0.0033

0.7206

−0.0156
1.4036 0.0012

f3(xc,xe)
−1.1818

0.9119

2.0898

2.6859
−2.4689 0.0682

f4(xc,xe)
0.4181

0.4205

0.6953

1.085

0.6988

−0.1352 0.0213

f5(xc,xe)

0.1142

0.1559

0.202

0.4415

0.9149

0.3954

1.345 0.006

f6(xc,xe)

−0.2239

0.2305

−0.6629

−0.0398

0.6037

0.4032

1.4903

4.5485 0.0207

f7(xc,xe)

1.3922

1.6087

1.1938

−0.9684

−0.7171

0.4719

0.8149

0.2288

0.1086

−0.1337

−6.3334 0.1561

Table 3: Relative deviation of results from reference, in percent

Test function x̂c x̂e fi(x̂c, x̂e) Evaluations per dimension

f1(xc,xe) 1.65 % 6.01 % 0.05 % 64

f2(xc,xe) 0.07 % 0.28 % 0.02 % 147

f3(xc,xe) 0.02 % 0.3 % 0.004 % 251

f4(xc,xe) 0.29 % 0.89 % 0.29 % 94

f5(xc,xe) 1.4 % 0.88 % 0.001 % 81

f6(xc,xe) 2.16 % 0.96 % 0.12 % 382

f7(xc,xe) 2.8 % 7.37 % 0.28 % 402
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even if (dimXc + dimXe) is only equal to 4. Compare with f5 that evolves on 6
dimensions, but seems less difficult to optimize.

Figure 1 shows examples of the dispersion of the results for 100 initializations.
These zoomed-in views around the reference value should be analyzed while keep-
ing in mind that these functions take large values on their domains of definition;
here a rough inner approximation of the domain of variation over Xc × Xe gives
[−414, 496] for f2 and [−95, 170] for f5.

(a) Test function f2 (b) Test function f5

Fig. 1: Estimated minimax values for 100 initializations, compared to reference

5.1.3 Remarks on convergence and parameter tuning

As mentioned in Section 2, the relaxation procedure provides a suboptimal mini-
max solution if interrupted before the threshold εR is reached. This is illustrated
in Figure 2, where values of the current estimates of the minimax solutions at
each iteration of the relaxation procedure are shown, along with reference values.
Good estimates of the minimax solution turn out to have been obtained well before
termination.

(a) Test function f6 (b) Test function f7

Fig. 2: Estimate of the minimax value of objective functions at each iteration of
the relaxation procedure, compared with references

The tolerances on EI and the relaxation procedure were deliberately chosen
small in this benchmark, to assess convergence to reference value. However, Fig-
ure 2 suggests that much larger values of the tolerance parameters for the relax-
ation and EGO algorithms may suffice. To check this hypothesis, an empirical
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campaign has been conducted for the test function f5. Its results are reported in
Figure 3, for a grid of thresholds (εR, εEI) between 10−1 and 10−4 (the same εEI

has been used for the two EGO algorithms). A trade-off between accuracy (small
deviation) and complexity (number of evaluations) clearly appears. For a constant
εR, lowering εEI improves the quality of the estimation of the minimax value. The
converse is also true, and in both cases the number of evaluations of the objective
function grows with the diminution of the threshold values.

(a) (b)

Fig. 3: Deviations from reference (a) and number of evaluations (b) for various
choices of the tolerance thresholds εR and εEI (function f5)

5.2 Benchmark 2 - computational load comparison

To further assess the computational load of the algorithm, tests have also been
carried out with the functions proposed in [25–27], where results with evolutionary
algorithms are reported. These test functions are

f8(xc,xe) = (xc1 − 5)2 − (xe1 − 52), (25)

f9(xc,xe) = min{3− 0.2xc1 + 0.3xe1, 3 + 0.2xc1 − 0.1xe1}, (26)

f10(xc,xe) =
sin(xc1 − xe1)√

x2
c1 + x2

e1

, (27)

f11(xc,xe) =

cos

(√
x2
c1 + x2

e1

)
√

x2
c1 + x2

e1 + 10
, (28)

f12(xc,xe) = 100(xc2 − x2
c1)2 + (1− xc1)2 − xe1(xc1 + x2

c2)− xe2(x2
c1 + xc2), (29)

f13(xc,xe) = (xc1 − 2)2 + (xc2 − 1)2 + xe1(x2
c1 − xc2) + xe2(xc1 + xc2 − 2). (30)

Table 4 summarizes the reference results as indicated in [26]. The numerical results
obtained with MiMaReK with the same tuning parameters as in Section 5.1.2,
averaged on one hundred random initializations, are reported in Table 5. Very
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few evaluations of the black-box functions turn out to be required on these low-
dimensional problems. These numbers are also consistent with those obtained on
the first benchmark for similar dimensions. It should be noted that in [25,26],
between 104 and 105 evaluations of the functions were required to achieve similar
performance.

Table 4: Reference solutions for the six functions of Benchmark 2

Function Xc Xe Reference x̂c Reference x̂e fi(x̂c, x̂e)

f8(xc,xe) [0; 10] [0; 10] 5 5 0

f9(xc,xe) [0; 10] [0; 10] 0 0 3

f10(xc,xe) [0; 10] [0; 10] 10 2.1257 9.7794 · 10−2

f11(xc,xe) [0; 10] [0; 10] 7.0441 10 4.2488 · 10−2

f12(xc,xe) [−0.5; 0.5]× [0; 1] [0; 10]2
0.5

0.25

0

0
0.25

f13(xc,xe) [−1; 3]2 [0; 10]2
1

1

any

any
1

Table 5: Absolute deviation of results for Benchmark 2

Test function x̂c x̂e fi(x̂c, x̂e) Evaluations per dimension

f8(xc,xe) 6 · 10−5 4.7 · 10−6 3.5 · 10−9 83

f9(xc,xe) 4.5 · 10−15 1.4 · 10−14 4.4 · 10−16 51

f10(xc,xe) 1.6 · 10−14 8 · 10−2 3.03 · 10−7 141

f11(xc,xe) 3.7 · 10−3 5 · 10−15 2.7 · 10−5 157

f12(xc,xe) 2.38 · 10−4 1.6 · 10−3 1 · 10−3 38

f13(xc,xe) 6.1 · 10−3 – 4 · 10−3 68

5.3 Engineering application

In this section, a realistic application of minimax design is considered. The problem
under study is the robust tuning of hyperparameters for fault diagnosis methods
that monitor the behavior of an aircraft.

5.3.1 Fault diagnosis

One of the most important purposes of fault diagnosis is to detect unexpected
changes (faults) in a monitored process as early as possible, before they lead to
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a complete breakdown. When a dynamical model of the system is available, for
instance under the form of a set of differential equations, it can be used to predict
its expected behavior and compare it to the one actually observed. This consistency
check makes it possible to compute residuals, i.e., signals that should remain small
as long as there is no fault and become sufficiently large to be noticeable whenever
a fault occurs. Here the residual generator is a Luenberger observer [34] that
estimates the output of the system based on the knowledge of its model and its
input and output. A residual is generated by comparing this estimate with the
measured output. This residual is then analyzed by a decision test, which can be a
simple threshold or a statistical test, to provide a Boolean decision about whether a
fault is present. The decision test considered here is the classical CUSUM test [46].
Figure 4 summarizes the procedure2.

The design problem to be considered now is the choice of the tuning param-
eters, also called hyperparameters, of the Luenberger observer and CUSUM test,
with respect to some performance criterion. This design should be robust to envi-
ronmental variables, such as the amount of measurement noise and the size of the
fault to be detected. This can be formulated as minimax optimization, where the
control variables are the hyperparameters, the environmental variables describe
properties of the disturbances and the objective function is some performance
measure of fault diagnosis. Algorithm 3 is called upon to solve this problem.

Fig. 4: Model-based fault diagnosis with observer and decision test

5.3.2 Test case

The system under study is an aircraft that may suffer a sensor fault, i.e., a per-
sisting error on the measured values provided by sensors. For the sake of sim-
plicity, only the longitudinal motion of the aircraft at a constant altitude of
6000m is considered here. The state of the vehicle is then determined by the
values of three variables, namely the angle of attack, angular rate and Mach
number, which form the state vector x = [α, q,M ]T. The control input is the
rudder angle δ, and the available measurement provided by an accelerometer
is the normal acceleration az. The linearized model around the operating point

2 Actuators are omitted in this simplified version of the problem
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x0 = [ᾱ, q̄, M̄ ]T = [20 deg, 18.4 deg/s, 3]T obeys the following state-space equa-
tion, after discretization by the explicit Euler method with a time step of 0.02s,{

xk+1 = Axk + Bδk

az = Cxk + Dδk + vk + wf,k

(31)

where

A =

 0.9163 0.0194 0.0026

−5.8014 0.9412 0.5991

−0.0485 −0.005 0.996

 , B =

−0.0279

−2.5585

−0.0019


C =

[
−2.54 0 −0.26

]
, D = −0.204

(32)

This model is simulated on a time horizon of 50s. A sensor fault wf on the
measurement of az occurs at time 25s. This fault is simulated by adding a ramp
with slope ς to the current measured value. The measurement noise v is uniformly
distributed in the interval [−ζ, ζ]. The environmental variables ζ and ς form the
vector xe to which the tuning should be robust. The set Xe is an axis-aligned
rectangle such that ζ ∈ [10−7, 10−3] and ς ∈ [10−3, 10−1].

5.3.3 Fault diagnosis filter

The empirical mean and variance of the residual obtained by comparing the output
predicted by the observer and its measurement are estimated on the first 100
values. The residual is then normalized to zero mean and unit variance according
to these estimates, in order to compensate for the differences of behavior induced
by a change of values of the environmental variables. Thus, the same tuning of
a statistical test is applicable to different levels of noise. A CUSUM test is used
on the normalized residual to provide a Boolean decision on whether a fault is
present. The response of the observer is governed by three poles p1, p2 and p3 to
be placed between 0 (fast response) and 1 (slow response) with no imaginary part
to avoid oscillations, and smaller than the real parts of the poles of the system.
The CUSUM test has two parameters, namely the size µ of the change to be
detected and a threshold λ. The method to be tuned has thus five hyperparameters
xc = [p1, p2, p3, µ, λ]T, and Xc is assumed to be an axis-aligned box such that
p1, p2, p3 ∈ [0; 0.8], µ ∈ [0.01; 1] and λ ∈ [1; 10].

5.3.4 Performance indices

A trade-off must be achieved between false-detection and non-detection rates.
Figure 5 shows time zones of the Boolean decision function that are used to define
performance indices. The value of the function before ton and after thor is not to
be taken into account, while tfrom is the instant of time at which the fault occurs.
The indices that will be used for performance evaluation [47] are

– the false-detection rate rfd =
(∑

i t
i
fd

)
/ (tfrom − ton), where tifd is the i-th pe-

riod of time between ton and tfrom where the decision is true;
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Fig. 5: Time zone parameters for the definition of performance indices

– the non-detection rate rnd = 1 − rtd, where rtd =
(∑

i t
i
td

)
/ (thor − tfrom) is

the true-detection rate with titd the i-th period of time between tfrom and thor
where the decision is true.

The objective function y(xc,xe) is y = rfd+rnd. It achieves a trade-off between
the contradictory goals of minimizing false-detection and non-detection, and takes
continuous values in [0; 2], the best performance corresponding to 0.

5.3.5 Results

The parameters of the optimization procedure have been set to εR = 10−4,
nc
EI = ne

EI = 100, εcEI = εeEI = 10−4. The prior mean of the Gaussian process
is assumed constant, while its variance and the parameters θk of the correlation
function (7) are estimated from the available data by maximum likelihood at each
iteration of EGO. As in Section 5.1, 100 runs of the minimax procedure have
been performed to assess the dispersion of its results. Mean and standard devia-
tion for the best hyperparameters and worst environmental variables, along with
corresponding values of the objective function and number of evaluations are re-
ported in Table 6. The dispersion of the hyperparameters obtained suggest that
several tunings of the fault diagnosis method allow acceptable performance to be
reached. The number of evaluations is relatively low, with an average sampling of
approximately 61 points per minimax dimension.

The feasible domain Xe for the environmental vector xe is displayed on Fig-
ure 6, showing the results for the 100 runs of the procedure on the test case.
These results indicate that the worst environmental conditions are located near
the smallest value of the fault and highest value of the noise level, which was to
be expected in this simple case. Note that on a more complex problem, intuition
would not be sufficient to find out what the worst environmental conditions for
the best tuning are.

Figure 7 shows the estimated minimax values of typical hyperparameters and
the objective function obtained for the 100 random initializations of the procedure.
The objective function always takes nonzero values, which indicates that false
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Table 6: Results for 100 initializations of the tuning procedure

Mean Std. deviation

Best hyperparameter vector x̂c

Pole p1 0.7363 5.2 · 10−2

Pole p2 0.7058 6.6 · 10−2

Pole p3 0.72 5.3 · 10−2

Change size µ 0.0714 4.9 · 10−2

Threshold λ 4.5379 0.2

Worst environmental vector x̂e

Noise level ζ 9.3 · 10−4 1.1 · 10−4

Fault slope ς 1.1 · 10−3 2 · 10−4

Minimax cost and number of evaluations per dimension

Objective function y 0.125 4.7 · 10−2

Evaluations 61 31

Fig. 6: Worst-case values for the environmental variables, as estimated by Mi-
MaReK for 100 replications (small dots); mean value indicated by a large spot
and boundaries of Xe by a black rectangle

alarms or non detections cannot be avoided. However the worst possible sum of
the non-detection and false-alarm rates is evaluated and minimized. With a reverse
point of view, one could assess the minimum detectable size of fault for a desired
diagnosis performance level.

Figure 8 displays the residual and corresponding Boolean decision obtained
via the observer and the CUSUM test tuned at the mean of their optimal values
as estimated by the minimax procedure, for the mean of the evaluated worst-case
environmental condition. The worst-case residual satisfactorily detects the fault,
and no false detection is observed. The detection delay is reasonable, given the
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incipient character of the fault and its drowning in high noise. For comparison, a
random point is taken in the environmental space at [ζ, ς] = [10−3; 0.02]T while
keeping the hyperparameters at the same value. The associated residual and deci-
sion function are displayed in Figure 9. The residual reacts more strongly to this
more severe fault than in the worst case, and will therefore lead to easier decision.
The decision function indeed raises an alarm very shortly after the occurrence of
the fault. To illustrate more precisely the performance obtained with the worst-
case optimal tuning of the hyperparameters on the entire environmental space,
Figure 10 shows the value of the objective function y over Xe.

Fig. 7: Dispersion for hyperparameters p1, µ, λ and the objective function. Red
line indicates the mean value and thick black lines correspond to space boundaries

6 Conclusions and perspectives

A new strategy to deal with continuous minimax optimization for costly-to-evaluate
black-box functions has been described in this paper. With [27], this is one of the
first attempt reported to address this difficult problem. The main loop of the al-
gorithm uses a relaxation procedure to facilitate the search for an approximate
solution. Kriging-based optimization deals with the fact that the objective func-
tion is expensive to evaluate. EGO has been employed for this purpose, but other
strategies such as those described in [3,9] may be used instead without the need
to modify the entire algorithm.

The procedure has been tested on two continuous minimax benchmarks with
known results taken as references, and reasonably accurate values of the minimax
optimum have been obtained for any initialization of the algorithm. A simplified
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(a) (b)

Fig. 8: Residual (a) and Boolean decision (b) for the mean of the estimated worst-
case environmental variables xe = [9.3 · 10−4; 1.1 · 10−3]T, with the mean of the
estimates of the minimax-optimal hyperparameters

(a) (b)

Fig. 9: Residual (a) and Boolean decision (b) for a randomly chosen value of the
environmental variables xe = [10−3; 0.02], with the mean of the estimates of the
minimax-optimal hyperparameters

academic version of a practical application in fault diagnosis has also been ad-
dressed and the results obtained are consistent with what common sense suggests.
In both cases, relatively few evaluations of the black-box objective function have
been needed, which is very interesting for costly applications where such designs
are in high demand.

The only constraint on the control and environmental variables considered here
was that they belonged to simple-shaped compact sets. The relaxation procedure
should be able to deal with more complicated sets and constraints, even though
this remains to be assessed through future tests. Building on these initial successful
results, higher-dimensional practical problems in fault detection and isolation for
aerospace vehicles are under study.
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Fig. 10: Value of the objective function over Xe for the mean of the estimates of
the minimax-optimal hyperparameters

References

1. T. J. Santner, B. J. Williams, and W. Notz. The Design and Analysis of Computer
Experiments. Springer-Verlag, Berlin-Heidelberg, 2003.

2. D.R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, 21(4):345–383, 2001.

3. N. V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker.
Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41(1):1–28,
2005.

4. T. W. Simpson, J. D. Poplinski, P. N. Koch., and J. K. Allen. Metamodels for computer-
based engineering design: survey and recommendations. Engineering with Computers,
17(2):129–150, 2001.

5. M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

6. G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266, 1963.
7. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Springer-

Verlag, New York, 2006.
8. D. R. Jones, M. J. Schonlau, and W. J. Welch. Efficient global optimization of expensive

black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.
9. A. I. J. Forrester, A. Sobester, and A. J. Keane. Engineering Design via Surrogate Mod-

elling: a Practical Guide. Wiley, Chichester, 2008.
10. D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,
34(3):441–466, 2006.

11. M.J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global Design
Optimization with Kriging Approximations. PhD thesis, University of Michigan, USA,
2002.

12. J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global op-
timization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509–
534, 2009.

13. E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions. Journal of Statistical Planning and Inference,
140(11):3088–3095, 2010.

14. D. Huang and T.T. Allen. Design and analysis of variable fidelity experimentation applied
to engine valve heat treatment process design. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 54(2):443–463, 2005.

15. J. Villemonteix, E. Vazquez, and E. Walter. Bayesian optimization for parameter iden-
tification on a small simulation budget. In Proceedings of the 15th IFAC Symposium on
System Identification, SYSID 2009, Saint-Malo France, 2009.



Worst-case global optimization of black-box functions 23

16. J. Marzat, E. Walter, H. Piet-Lahanier, and F. Damongeot. Automatic tuning via Kriging-
based optimization of methods for fault detection and isolation. In Proceedings of the IEEE
Conference on Control and Fault-Tolerant Systems, SYSTOL 2010, Nice, France, pages
505–510, 2010.

17. J. Defretin, J. Marzat, and H. Piet-Lahanier. Learning viewpoint planning in active recog-
nition on a small sampling budget: a Kriging approach. In Proceedings of the 9th IEEE
International Conference on Machine Learning and Applications, ICMLA 2010, Wash-
ington, USA, pages 169–174, 2010.

18. H. G. Beyer and B. Sendhoff. Robust optimization – a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218, 2007.

19. G. Dellino, J. P. C. Kleijnen, and C. Meloni. Robust optimization in simulation: Taguchi
and response surface methodology. International Journal of Production Economics,
125(1):52–59, 2010.

20. W. Chen, J. K. Allen, K. L. Tsui, and F. Mistree. A procedure for robust design: minimiz-
ing variations caused by noise factors and control factors. ASME Journal of Mechanical
Design, 118:478–485, 1996.

21. K. Lee, G. Park, and W. Joo. A global robust optimization using the kriging based
approximation model. In Proceedings of the 6th World Congresses of Structural and
Multidisciplinary Optimization, Rio de Janeiro, Brazil, 2005.

22. B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design of computer experiments
to minimize integrated response functions. Statistica Sinica, 10(4):1133–1152, 2000.

23. J. S. Lehman., T. J. Santner, and W. I. Notz. Designing computer experiments to deter-
mine robust control variables. Statistica Sinica, 14(2):571–590, 2004.

24. C. Q. Lam. Sequential Adaptive Designs in Computer Experiments for Response Surface
Model Fit. PhD thesis, The Ohio State University, 2008.

25. A. M. Cramer, S. D. Sudhoff, and E. L. Zivi. Evolutionary algorithms for minimax prob-
lems in robust design. IEEE Transactions on Evolutionary Computation, 13(2):444–453,
2009.

26. R. I. Lung and D. Dumitrescu. A new evolutionary approach to minimax problems. In
Proceedings of the 2011 IEEE Congress on Evolutionary Computation, New Orleans,
USA, pages 1902–1905, 2011.

27. A. Zhou and Q. Zhang. A surrogate-assisted evolutionary algorithm for minimax op-
timization. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation,
Barcelona, Spain, pages 1–7, 2010.

28. K. Shimizu and E. Aiyoshi. Necessary conditions for min-max problems and algorithms
by a relaxation procedure. IEEE Transactions on Automatic Control, 25(1):62–66, 1980.

29. B. Rustem and M. Howe. Algorithms for Worst-Case Design and Applications to Risk
Management. Princeton University Press, 2002.

30. B. Brown and T. Singh. Minimax design of vibration absorbers for linear damped systems.
Journal of Sound and Vibration, 330(11):2437–2448, 2011.

31. D. M. Salmon. Minimax controller design. IEEE Transactions on Automatic Control,
13(4):369–376, 1968.

32. J. Helton. Worst case analysis in the frequency domain: The H∞ approach to control.
IEEE Transactions on Automatic Control, 30(12):1154–1170, 1985.

33. E. Y. Chow and A.S. Willsky. Analytical redundancy and the design of robust failure
detection systems. IEEE Transactions on Automatic Control, 29:603–614, 1984.

34. P. M. Frank and X. Ding. Survey of robust residual generation and evaluation methods in
observer-based fault detection systems. Journal of Process Control, 7(6):403–424, 1997.

35. B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
Operations Research, 153(1):235–256, 2007.

36. A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations
Research, 23(4):769–805, 1998.
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