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Abstract 

Protein structure analysis and prediction methods are based on non-redundant data 

extracted from the available protein structures, regardless of the species from which the 

protein originates. Hence, these datasets represent the global knowledge on protein folds, 

which constitutes a generic distribution of amino acid sequence – protein structure (AAS-PS) 

relationships. In this study, we try to elucidate whether the AAS-PS relationship could 

possess specificities depending on the specie.  

For this purpose, we have chosen three different species: Saccharomyces cerevisiae, 

Plasmodium falciparum and Arabidopsis thaliana. We analyzed the AAS-PS behaviors of the 

proteins from these three species and compared it to the “expected” distribution of a classical 

non-redundant databank. With the classical secondary structure description, only slight 

differences in amino acid preferences could be observed. With a more precise description of 

local protein structures (Protein Blocks), significant changes could be highlighted.  

Saccharomyces cerevisiae’s AAS-PS relationship is close to the general distribution, 

while striking differences are observed in the case of Arabidopsis thaliana. Plasmodium 

falciparum is the most distant one. 

This study presents some interesting view-points on AAS-PS relationship. Certain 

species exhibit unique preferences for amino acids to be associated with protein local 

structural elements. Thus, AAS-PS relationships are species dependant. These results can give 

useful insights for improving prediction methodologies which take the species specific 

information into account. 

 

Key-words: amino acids, protein folds, secondary structure, structural alphabet, Protein 

Blocks, malaria. 
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1. Introduction 

The knowledge of three dimensional structures of proteins gives valuable insights into their 

functions. Prediction of different features of protein structure like secondary structures (Jones, 

1999; Madera et al., 2010; Pollastri et al., 2002), protein disorder (Madera et al., 2010; Xue et 

al., 2010), transmembrane regions (Illergard et al., 2010; Pylouster et al., 2010), 

phosphorylation sites (Biswas et al., 2010), protein flexibility (Bornot et al., 2011) or the 

generation of structural models (de Brevern, 2010; Kelley and Sternberg, 2009), are mainly 

based on machine learning algorithms (Brylinski and Skolnick, 2008; Rangwala et al., 2009; 

Xu et al., 2008). Protein structure analyses and prediction methods derive information from 

non-redundant databanks that represent the state-of-the-art of available data (i.e., solved 

protein structures). In a way, they reflect a generic (‘expected’) distribution of amino acid 

sequence – protein structure (AAS-PS) relationship. Though the term “protein sequence-

structure relationships” have been used extensively in literature, to avoid confusion with a few 

discussions on genomic data and to add clarity, we use the abbreviation AAS-PS here. 

The number of protein sequences available is enormous and rapidly growing. Indeed, the 

number of completely sequenced genomes currently available is more than 1,250 (Kyrpides, 

1999; Liolios et al., 2008). On the other hand, due to technical difficulties, the number of 

protein structures available is highly limited (Berman et al., 2003; Berman et al., 2000; 

Lattman, 2004; Service, 2008) and these prediction approaches can help in narrowing down 

the gap between the sequence and structure space. 

Though the AAS-PS relationships observed across different proteins in a databank follow 

similar patterns, it is not known whether there could be variations based on the species from 

which the proteins are derived. Analyses of genomic data have given some interesting insights 

in this direction. Considerable variation in the composition of nucleotides has been observed 
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in some genomes, e.g., Plasmodium falciparum (Gardner et al., 2002; Singer and Hickey, 

2000). This compositional bias can be attributed to species-specific and/or environmental 

specific preferences (Dumontier et al., 2002; Wang and Lercher, 2009). Nucleotide bias is 

also reported to have an effect on the codon usage and hence, the amino acid composition of 

encoded proteins (Paila et al., 2008; Singer and Hickey, 2000). An interesting work has been 

carried out on the comparison of protein structural properties in Bacillus subtilis and 

Escherichia coli (Marashi et al., 2007). The main focus was on the amino acid solvent 

accessibilities and helix propensities and they could identify specificities in the properties 

observed in each species. Considering these observations, we base our work on the hypothesis 

that differences in the AAS-PS behaviors could be observed across species. 

Indeed, a few research studies on similar grounds have been reported recently. Out of the 

sequences available for P. falciparum proteins, the functions of 5,460 are predicted and 3,200 

are of unknown function (www.plasmodb.org). Sequence annotation methods work mainly by 

analogy, i.e., by aligning the protein sequences. Improvement in the quality of sequence 

alignment could be achieved with the help of information on the amino acid compositional 

bias or with the use of composition adjusted substitution matrices (Brick and Pizzi, 2008; 

Paila et al., 2008; Yu et al., 2003). Asymmetric substitution matrices were also derived from 

proteomes with biased amino acid distributions (Bastien et al., 2005).  

These studies reflect the fact that different species are marked with variations in their 

genomes and this is reflected at the level of amino acids that build proteins. Nevertheless, 

structural researches rely equally on the information from all the proteins, without taking into 

account the species they come from. Considering these points, we have analyzed whether the 

proteins originating from different species exhibit different AAS-PS relationships. For this 

purpose, we have analyzed protein structures with two main view points: (i) classical 

secondary structure and (ii) a finer description of local fold based on a structural alphabet 
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named Protein Blocks. The secondary structure description based on regular structural 

elements, i.e., α-helix and β-sheet (Pauling and Corey, 1951; Pauling et al., 1951), is widely 

used to describe and visualize 3D structures. Nevertheless, these regular structures do not 

provide a complete description of the local protein structure; more than 50% of the structure is 

described as coil which is defined to represent highly variable backbone conformations. 

However, regular local folds could be traced in the segments assigned as coils. 

Hence, local protein structure libraries that are able to give a complete approximation of 

protein structures, without any a priori knowledge of secondary structure assignments, have 

been developed. The complete set of local structure prototypes defines a structural alphabet 

(Karchin et al., 2003; Offmann et al., 2007). The number of prototypes in a library is 

important for characterizing the local fold (Hunter and Subramaniam, 2003; Martin et al., 

2008; Sander et al., 2006; Tung et al., 2007; Unger et al., 1989). The structural alphabet used 

in this study, is composed of 16 local structure prototypes that are 5 residues long, called 

Protein Blocks (PBs, see Figure 1) (de Brevern et al., 2000; Joseph et al., 2010a; Joseph et al., 

2010b). They efficiently approximate every part of protein structures (de Brevern, 2005)  

From different eukaryotic kingdoms, three species namely Arabidopsis thaliana (At), 

Plasmodium falciparum (Pf) and Saccharomyces cerevisiae (Sc) were chosen for the study. 

The genomes of At and Sc have similar AT content (~62-64%) while Pf is highly diverged 

(82%).With the availability of complete genome sequences, sufficient data on the proteome 

could be also extracted for analyzing the compositions. For these three species, we 

characterize the amino acid preferences associated with different local folds. These behaviors 

were then compared with the general or ‘expected’ AAS-PS distribution. This will help to put 

into evidence the interest and importance of considering the species of origin to refine the 

knowledge on AAS-PS relationship. Moreover, from a methodological point of view, this 
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study highlights the interest of using a more detailed local structure description with a 

structural alphabet, to improve and refine the analysis of sequence-structure relationships. 

 

2. Materials and Methods 

2.1. Data sets. 

In the same way, we have generated three species-specific non-redundant databanks. The 

Protein Data Bank was searched for structures from three species namely Arabidopsis 

thaliana, Plasmodium falciparum and Saccharomyces cerevisiae. Only X-ray crystallography 

structures were selected and the sequence identity cutoff of 90% was chosen. In September 

2008, 68 crystallographic structures of P. falciparum (i.e., 36,175 amino acids), 123 of A. 

thaliana (i.e., 173,450 amino acids) and 427 of S. cerevisiae (i.e. 202,410 amino acids), were 

available (see the Supplementary material 1 for the list of identifiers). These three databases 

are referred as Pf, At and Sc respectively in the text. To analyze the effect of redundancy on 

the results, new non-redundant databanks have been generated for the three species at 50 and 

25% sequence identity cutoffs. 

To compare the composition of the proteome and sequences of structures available in the 

PDB, proteome sequences were obtained from publically available databases. The A. thaliana 

proteome was downloaded from the National Center for Biotechnology Information database 

(ftp://ftp.ncbi.nih.gov/genomes/Arabidopsis_thaliana/). About 33,711 annotated sequences 

were available (version of January 2008). The P. falciparum proteome was obtained from the 

PlasmoDB database (http://plasmodb.org/common/downloads/release-5.4/Pfalciparum/). 

From the database release 5.4, 5,460 automatically annotated sequences were downloaded. 
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2.2. Secondary structure assignments 

Secondary structure assignment has been carried out using DSSP (Kabsch and Sander, 1983) 

(CMBI version 2000). DSSP assignment is based on the hydrogen bond lengths between 

backbone atoms of amino acids describing the 3D structure. As the assignment of more than 3 

basic states is given by DSSP, we have grouped the results in three states: the α-helix contains 

α, 3.10 and π - helices, the β-strand contains only the β-sheet assignment and the coil includes 

the other assignments (β-bridges, turns, bends and coil), as done in earlier studies (Fourrier et 

al., 2004; Tyagi et al., 2009a). Default parameters have been used. 

 

2.3. Protein Blocks 

Protein Blocks (PBs) correspond to a set of 16 local prototypes, labeled from a to p (cf. Figure 

1), described as a series of (Φ, Ψ) dihedral angles corresponding to 5 residues (Joseph et al., 

2010a; Joseph et al., 2010b). They were obtained using an unsupervised classifier similar to 

Kohonen Maps (Kohonen, 2001) and Hidden Markov Models (Rabiner, 1989). The PBs m 

and d can be roughly described as prototypes for the central region of α-helix and β-strand, 

respectively. PBs a through c primarily represent the N-cap of β-strand while e and f 

correspond to C-caps; PBs g through j are specific to coils, PBs k and l correspond to N cap of 

α-helix while PBs n through p to C-caps. This structural alphabet allows a reasonable 

approximation of local protein 3D structures (de Brevern et al., 2000) with a root mean square 

deviation (rmsd) of about 0.42 Å (de Brevern, 2005). PB assignment has been made using an 

in-house tool (available at http://www.dsimb.inserm.fr/DOWN/LECT/), similar assignment is 

also made by PBE web server (http://bioinformatics.univ-reunion.fr/PBE/) (Tyagi et al., 

2006). They have been used to describe the 3D protein backbones (de Brevern, 2005) and to 

perform local structure prediction (Benros et al., 2009; de Brevern et al., 2000; de Brevern et 
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al., 2004; Dong et al., 2008; Etchebest et al., 2005; Rangwala et al., 2009; Zimmermann and 

Hansmann, 2008). PB based approaches have been proved to be effective in prediction based 

on protein sequence-structure relationships (de Brevern et al., 2007; Li et al., 2009; Tyagi et 

al., 2009b). Several other applications based on the PB structural alphabet have also given 

successful results (de Brevern et al., 2009; Dudev and Lim, 2007; Faure et al., 2009; Thomas 

et al., 2006; Tyagi et al., 2008). The characteristics of our structural alphabet have been 

compared with those of 8 other structural alphabets. This comparative study clearly shows 

that our PB alphabet is highly informative, with the best predictive ability of those tested 

(Karchin, 2003; Karchin et al., 2003). 

 

2.4. Z-score 

The Z-score quantifies the preference for each amino acid to occur in a local structural 

element (secondary structures and PBs). The amino acid occurrences in each secondary 

structure and PB have been normalized into a Z-score: 

 

with obs
jin ,  the observed occurrence number of amino acid i in position j for a given secondary 

structure or PB and th
ijn , the expected number. The product of the occurrences in position j 

with the frequency of amino acid i in the entire databank equals th
jin , . Positive Z-scores 

correspond to over-represented amino acids and vice versa; threshold values of 4.42 and 1.96 

were chosen to indicate the level of significance (probability less than 10-5 and 5.10-2 

respectively). On the Figures, a color code is used to highlight and easily compare the 

behavior in different databanks; only the preferences corresponding to the central positions 

are presented. This approach was earlier used to analyze the amino acid representativeness in 

Z ni, j( )= ni, j
obs − ni, j

th

ni, j
th
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Protein Blocks in our earlier works (Benros et al., 2009; Benros et al., 2006; de Brevern and 

Hazout, 2001; de Brevern and Hazout, 2003; de Brevern et al., 2000; de Brevern et al., 2002; 

de Brevern et al., 2007; de Brevern et al., 2004; Etchebest et al., 2005; Etchebest et al., 2007; 

Ghozlane et al., 2009). 

 

3. Results  

3.1. Analysis of the Databanks 

The species specific databanks contain only structures from the species: Saccharomyces 

cerevisiae (noted as Sc in the text), Arabidopsis thaliana (At) and Plasmodium falciparum 

(Pf). A classical non-redundant databank (NR) was also obtained from the PDB (Berman et 

al., 2000). The three specialized databanks (Sc, At and Pf) represents 202,410, 173,450 and 

36,175 amino acid residues respectively. With regards to our previous studies (Bornot et al., 

2009; de Brevern, 2005; de Brevern et al., 2000; de Brevern et al., 2002; de Brevern et al., 

2004; Etchebest et al., 2005; Fourrier et al., 2004), the number of amino acids in each 

databank is sufficient to analyze the sequence – structure relationships in terms of secondary 

structure and Protein Blocks (Tyagi et al., 2009b). 

Amino acid frequencies observed in each databank are reported in Table 1. As explained 

earlier, the NR is considered as the reference dataset. It corresponds to the “expected” 

distribution of amino acids. The amino acid frequencies of the At databank are most similar to 

those of the NR databank. Only one amino acid, i.e., Methionine, is under-represented by 

about 40%, when compared to its frequency in the NR databank. For the other 19 amino acids, 

the variation is below 10%. For the Sc databank, only 3 out of the 20 amino acids exhibit 

notable changes in their relative occurrence frequencies. Isoleucine and Lysine are over-

represented, with an increase of about 30% in the occurrence frequency, while Alanine is 
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under-represented with a decline in the frequency by 30%. For the other 17 amino acids, the 

variations are below 10%. The amino acid frequencies associated with the Pf databank has 

profound differences. Half of the amino acids exhibit variations of more than 30%. Five 

amino acids namely (Isoleucine, Tyrosine, Cysteine, Asparagine and Lysine) have 

significantly higher frequencies, and on the other hand, four others (Alanine, Tryptophan, 

Glutamine and Arginine) have lower frequencies compared with those observed for the NR 

databank. 

 

3.2. Comparison with the proteome sequence dataset 

As a first step, we performed a precise analysis of the protein structure databanks to ensure 

that they reflect the amino acid distribution observed in the proteome of the respective 

species. These differences observed with respect to the NR databank could be due to the 

amino acid composition of each species. Figure 2 shows the distribution of amino acids 

observed within the proteomes of Arabidopsis thaliana and Plasmodium falciparum 

(indicated as Atp and Pfp) and also in the structural databanks At and Pf. Thus, the amino acid 

composition of protein structure databanks mainly reflects the proteomic composition of the 

organisms. Nevertheless, particular behaviors can be observed for two amino acids while 

comparing the compositions of Pf and Pfp. The frequency of Asparagine (N) and Lysine (K) 

in Pfp is significant, i.e., 14.4% and 11.7% respectively, and these are higher than those 

observed in the structural Pf databank. The increase is about two times for N and 25% for K. 

These amino acids mainly characterize the low-complexity regions which are largely absent 

in the solved structures (see Supplementary material 2 for more details and also refer to 

(Aravind et al., 2003; DePristo et al., 2006; Joubert and Joubert, 2008)). 
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The amino acid distributions differ between species (and this is remarkable for Pf) and our 

structure datasets present a good reflection of the proteome content. Hence they can be used 

as representative datasets. Moreover, even if the amino acid frequencies vary between species 

(see Table 1), we can observe that the frequencies of regular secondary structures and Protein 

Blocks (PBs), are quite similar, as indicated in Table 2. Hence, all the datasets can be 

compared in terms of local protein structures. 

 

3.3. Secondary structure contents 

In order to analyze the variation in AAS-PS relationship between species in terms of 

secondary structures, the Z-scores distribution of amino acids associated with α-helix, β-

strand and coil have been computed for the 4 databanks. As Z-score follows a χ-square 

distribution, a statistical threshold can be used to quantify the significance of the under or 

over-representation of an amino acid in the secondary structural element. Z-scores were 

computed on a sequence window of 5 residues (corresponding to PB length). Figures 3a to 3c 

show amino acid frequency (in terms of Z-score) associated with α-helix, β-strand and coil 

for At, Pf, Sc and NR databanks. We perform a precise analysis per state to explore specific 

behaviors within species. Methionine is seen to have a high preference to be associated with 

α-helices, this over-representation is not observed in Pf alone (see Figure 3a). The distribution 

of Histidine and Cysteine in At and Pf databanks, show significant differences. The amino 

acid distribution in β-strands of Pf shows striking variation when compared to the other 

datasets, especially the preference for Tryptophan is not seen (see Figure 3b). For the coil 

state, the amino acid distribution in At shows some differences, marked with a higher 

preference for Phenylalanine, Tyrosine, Tryptophan, Glutamine, Glutamate and Arginine 

while in the case of Pf, only the over-representation for Tryptophan is absent (see Figure 3c). 
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Figure 3d shows a hierarchical clustering of different species based on the amino acid 

distributions. As expected, the secondary structures contents show similarities across the 4 

databanks; the 3 states (α-helix, β-strand and coil) cluster separately, each state localized on a 

specific branch. We can notice that the distribution in Sc is close to NR for all states, while 

amino acid preferences in At has similarity with Pf. Though a few variations are noted, a 

detailed picture of species specific behavior in terms of amino acid distribution cannot be 

obtained using the secondary structure description alone.  

 

3.4. Protein Block contents in terms of species 

The 16-state description of local structures in terms of Protein Blocks (PBs) is expected to 

highlight finer differences in the amino acid preferences in each species (Joseph et al., 2010b). 

We can categorize the amino acid preferences for different PBs into 3 classes while 

comparing At, Pf and Sc with NR: (i) new over- or under-representation, i.e., a higher or lower 

amino acid preference not seen in NR, but found in the other datasets, (ii) absence of over- or 

under-representation, i.e., an over- or under-representation seen in NR but missing in other 

datasets, and (iii) the most important variation, inversion in the preference, i.e., an amino acid 

which has high preference for association with a PB in NR, is poorly represented in one or 

more of the other datasets and vice – versa (see the Supplementary material 3 ).  

For the 16 different PBs, Sc has 32 new and significant amino acid over- or under-

representations, only 4 amino acid preferences are missing and no inversion is observed. This 

roughly corresponds to a change affecting about 2.25 amino acids per PB (11.25%). Pf has a 

more complex behavior as it has 16 new significant associations, but 27 preferences are 

missing and 3 have been inverted. These modifications affect an average of 2.87 amino acids 

per PB (14.35%). Finally, At shows 52 new significant over- or under- amino acid 
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representations, 15 are missing and 6 inversions are observed, this corresponds to a change of 

about 4.5 amino acids per PB (22.50%). However, the extent of variation depends strongly of 

the kind of PB. Some have none or only a few differences when compared to NR. For 

instance, the distribution of PB f’s amino acid preferences is similar for all the datasets; PB m 

has only one new over or under-representation in Sc and two in Pf and At.  

 

3.5. Some characteristic Protein Blocks 

Figure 4 gives a visual representation of the amino acid preferences for 4 representatives PBs. 

PBs j and k exhibit few variations with respect to NR, while PB e shows more changes and PB 

a is the most variant (see Table 3). PB j (see Figure 4c) is quite determinant as it shows a 

strong over-representation of Glycine and all the other amino acids are under-represented. So, 

the over-representation of Glutamine observed for At is a surprising inversion. For Sc, the 

strong under-representation of Asparagine is not observed, Alanine and Arginine are highly 

under-represented in Pf and other significant variations can be observed. For PB k (see Figure 

4d), the distribution is more complex with 4 over-represented and 13 under-represented amino 

acids. An inversion is observed for Arginine in the case of Pf and for Serine in At. A new 

over-representation is seen in Sc and At, two preferences are missing for At and three are 

absent in the case of Pf. 

For PB e (see Figure 4b), 14 differences were observed: (i) two inversions (both in the case of 

At), (ii) three new over-representation for Sc, five for At and one for Pf, and (iii) one missing 

amino acid preference for At and 2 for Pf. PB a (see Figure 4a) exhibits the most striking 

variations that are species specific. Out of the 25 major changes observed, 4 are found in Sc, 

12 in At and 9 in Pf. Importantly, PB a is characterized by 5 over- and 4 amino acid under-

representations unique for the species. Interestingly, even if PB a connects repetitive 
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structures (PBs m to PB d see (de Brevern et al., 2002)), it has weak preferences for Proline 

and Glycine. New preferences dominate the majority of changes; 4 are observed in Sc, 10 in 

At and 5 in Pf. These specificities are further strengthened with 2 missing amino acids 

observed in At and Pf and also the inversion of 2 amino acid preferences in Pf. 

 

3.6. Global comparison in terms of PBs 

As mentioned earlier, slight differences can be observed while analyzing secondary structures, 

but still same states are clustered together. With PB description, strong differences have been 

detected across species. The hierarchical clustering of the associated amino acid distributions 

(see Figure 5) shows that AAS-PS relationship of PBs from different species could be really 

different. Indeed, three kinds of behaviors could be observed (see the Supplementary material 

4). Firstly, the amino acid distributions associated with a PB are clustered together, for the 

four different databanks, e.g., PBs g, n and o. Secondly, three amino acid distributions (for 

different databanks) are clustered and the amino acid distribution of At is associated with 

another cluster. This behavior is observed for PBs e and h. Thirdly, the most common case 

(11 out of 16 BPs), three amino acid distributions are clustered and the amino acid 

distribution corresponding to Pf is not associated with them. The latter behaviors are due to 

two major factors: (i) the difference in informativity of AAS-PS relationship and (ii) the 

specific amino acid preferences which are species -dependent.  

The informativity can be quantified as the sum of absolute values of Z-scores. At has an 

additional informativity of 16% compared to NR. This value decreases to +4% for Sc. For Pf, 

a very weak informativity is observed, i.e., 45% lower than that of NR. Thus, Pf exhibits 

weak AAS-PS relationships compared to other datasets. It must be also noted that some PBs 



15 

 

of At have more informative distributions, e.g. PB a: +72%, PB: e +60%, PB: h +39% and 

PB: g +20%, but still the clustering show variations.  

 

4. Discussion 

4.1. Global view 

In this study, we have analyzed protein AAS-PS relationships existing in A. thaliana, 

Plasmodium falciparum and S. cerevisiae. We have shown that non-redundant protein 

structure databanks specific for these species can be compared without systematic bias, even 

if the P. falciparum specific databank has compositional disequilibrium in terms of certain 

amino acids. 

For the four databanks, the analysis of AAS-PS relationships associated with the secondary 

structures highlights only a few differences. At the light of Protein Block description, striking 

specie specific behaviors are observed. The AAS-PS relationship of Sc is quite close to that of 

NR (i.e., expected distribution). Only slight differences are seen, e.g., no inversion is 

observed. A. thaliana has both an AT-content and proteome composition similar to S. 

cerevisiae. Nevertheless, At exhibits very distinct AAS-PS relationships. Though the 

informativity associated with the distributions in Sc can be compared to that of NR, At is 

clearly more informative, having an average variation of 5 amino acid preferences per PB 

which is quite striking. As seen in Table 3, these differences could result in very different 

amino acid signatures when compared to NR. These precise details on amino acid preferences 

were not   highlighted in their study of Marashi  and co-workers (Marashi et al., 2007). In the 

same way, it is expected that P. falciparum with 82% AT content and strong biases in amino 

acid composition, shows strong divergence in terms of amino acid usage. Its AAS-PS 

preferences are quite surprising. Clustering of these amino acid signatures (see Figure 5) 
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shows that Pf is quite far from the other species, and also from the expected view of AAS-PS 

(NR, see Supplementary material 5). 

The last remark is promising indeed. The extensive genetic diversity of blood stage antigens is 

one of the key challenges for vaccine development against malaria. A recent approach 

proposed for antigen discovery is based on the bioinformatic selection of heptad repeat motifs 

corresponding to α-helical coiled coil structures (Kulangara et al., 2009). Considering the fact 

that the AAS-PS seen in Pf is diverged when compared to the expected / observed values 

(NR), such approaches could be refined or improved. For At, the differences with respect to 

the expected amino acid distributions are mainly due to new amino acids preferences (52), 

coupled with the absence of certain amino acid preferences observed in NR (15), some 

inversions of preferences are also observed (6). Indeed, this can be considered as a 

specialization unique for the species. This ratio of significant new and missing amino acid 

preferences is about 3.47 for At, whereas this is not the case for Pf where the ratio is only 

0.59.  

 

4.2. Specific case of P. falciparum 

The sequence – structure relationship of Pf is weaker than that of the other databanks. In the 

hierarchical clustering shown in Figure 5, the PBs of Sc, NR and At are spread all over the 

dendogram, while the PBs of Pf are seen to cluster in group located in the central part of the 

dendogram. For proteomic approaches also, the results of our study could be of interest. The 

variation in the amino acid preferences associated with the local folds can have an implication 

in the conservation or substitutions of amino acids observed in the sequences of the species. 

58% of predicted proteins of P. falciparum available in PlasmoDB have no known function 

(Aurrecoechea et al., 2009). As P. falciparum proteins have diverged extensively during the 
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course of evolution, it is difficult to find homologues for many of these proteins e.g., protein 

kinases (Anamika et al., 2005). Dedicated amino acid substitution matrix that is biased 

towards the amino acid distribution observed in P. falciparum, could help in better homology 

detection and functional annotation of P. falciparum proteins (Bastien et al., 2005; Brick and 

Pizzi, 2008; Nidhi et al., 2009; Paila et al., 2008).  

Indeed, it is possible to propose equivalent (easily exchangeable) amino acids, for the species 

under consideration in order to obtain a reduced amino acid alphabet (Etchebest et al., 2007). 

This can be followed by simpler pairwise alignments, with a limited number of combinations. 

The detection of putative or/and new homologues would be easier and  particularly interesting 

for Plasmodium falciparum, as its proteins represent potential therapeutic drug targets to 

combat malaria (Salzemann et al., 2009). 

 

4.3. Pilot study 

A pilot study has been carried out to assess the possible influence of species AAS-PS in local 

structure prediction. A classical Bayesian approach (Altschul et al., 1997) has been used to 

predict Protein Blocks from sequence (Joseph et al., 2010a). The principle was to train and 

validate one species specific databank and assess the prediction on the other databanks. It 

gives an idea of the influence of species specific preferences on prediction efficiency. 100 

independent simulations have been carried out, as in one of our earlier works (Tyagi et al., 

2009b). Figure 6 summarizes the results of this analysis. 

For the training based on the amino acid preferences observed in the NR databank, the 

average prediction rate was higher for the non-redundant set (~34%) when compared to the 

species specific validation sets. The least prediction rate was obtained in the case of Pf 

(~30%) for which highly diverged sequence-structure relationships were observed, as 
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explained above. Predictions for Sc and At are slightly lower than the NR prediction rate 

(~32%). 

When species specific training sets were used for the prediction, better prediction rates were 

obtained for the test sets from the same species (see supplementary material 6). The prediction 

rates were highly sensitive to the random choice of protein sequences, underlining the need 

for more protein structures for Plasmodium falciparum or Arabidopsis thaliana. Even though 

these preliminary results need to be assessed in-depth, they give good insights on the idea that 

the knowledge of species specific sequence-structure relationship can be used to improve the 

efficiency of prediction algorithms.  

 

5. Conclusion 
Our work sheds light into the fact that the sequence-structure relationship observed within a 

species can have considerable degree of variation when compared to the global preferences. 

This idea can have a positive implication in prediction and threading approaches, many of 

which make use of sequence alignments (Yang et al., 2008; Zhang, 2008). Here, we have 

shown the importance of specie dependence on protein sequence-structure relationship. 

Adjustments could be made in regards to the species under consideration, our future works 

will mainly focus in this direction. As the knowledge of the three dimensional structures of 

proteins has the potential to accelerate drug discovery (Congreve et al., 2005; Doppelt-

Azeroual et al., 2009), recent developments in bioinformatics that mainly aim in filling the 

gap between sequence and structure space, have greatly transformed this research area 

(Doppelt et al., 2007; Hajduk, 2006; Moriaud et al., 2009). Thus, our work could be 

supportive in such approaches. 
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Hence this study puts emphasis on the fact that variations in protein sequence-structure 

relationships could exist between species with biased or unbiased amino acid compositions, 

demonstrated by the comparative analysis of A. thaliana, S. cerevisiae and P. falciparum. The 

efficiency of using a precise local structure description with the Protein Block approach is 

also underlined, and this approach appears to be more informative in the particular case of the 

P. falciparum. In addition, our preliminary results enable the consideration of other 

interesting tracks either in optimizing prediction methods or in homology modeling (Birkholtz 

et al., 2008). 
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Figures 
Figure 1 – Protein Blocks. From left to right and top to bottom, PyMol images (DeLano, 
2002) of the 16 Protein Blocks of the structural alphabet (de Brevern et al., 2000). Each 
prototype is five residues long and corresponds to a series of eight dihedral angles (φ,ψ). The 
PBs m and d can be roughly described as prototypes for the central α-helix and the central β-
strand, respectively. For each PB, the preferred N terminal conformation is on the left and the 
C-terminal on the right. 
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Figure 2 - Comparison of amino acid distributions. Amino acid distributions observed for P. 
falciparum and A. thaliana proteomes (noted Pfp and Atp) and also in the available structures 
of P. falciparum and A. thaliana (noted Pf and At). Amino acids are ranked on the basis of 
their frequencies in the P. falciparum proteome. 
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Figure 3 – Amino acid preferences of classical secondary structures. (a-c) Z-scores 
associated with the central positions of α-helix, coil and β-strand as assigned by DSSP, for 
the At, Pf, Sc and NR databanks. Each color indicates a Z-Score range; (blue): Z-scores < 
(−4.4), (green): (−4.4) < Z-scores < (−1.96), (white): (−1.96) < Z-scores < (1.96), (orange): 
(1.96) < Z-scores < (4.4), and (red): Z-scores > (+4.4). A legend for color scale is also 
provided. The amino acids are labeled on the vertical axis in the following order: 
IVLMAFYWCPGHSTNQDERK. (d) Hierarchical clustering of the preferences (3a-3c) 
associated with the secondary structures in At, Pf, Sc and NR databanks . 
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Figure 4 – Amino acid preferences of PBs. (a-d) Z-scores associated with the central positions 
of PB a, PB e, PB j and PB k respectively, for At, Pf, Sc and NR (see Figure 3 legend for 
details). 
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Figure 5 – Clustering of the amino acid sequence – protein structure relationships associated 
with PBs. Hierarchical clustering of preferences of PB central positions, seen in At (red), Pf 
(blue), Sc (pink) and NR (black) databanks. The PBs are noted by their respective alphabets 
(from a to p). 
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Figure 6 – PBs prediction and influence of specie context. 100 independent simulations have 
been carried out to predict PBs using a Bayesian prediction procedure (de Brevern et al., 
2000; Etchebest et al., 2005; Tyagi et al., 2009b). From left to right (x axis), each label (NR, 
Sc, At and Pf) indicates databank on which the training is carried out. For each of the 
trainings, the prediction rates on on all databanks are plotted. The 100 prediction rates are 
shown in grey while a selected prediction for NR is in red, for Sc in blue, for At in orange and 
for Pf in black (see Supplementary data 6).  
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Tables 
Table 1 – Amino acid frequencies of the four databanks. In bold red are highlighted the amino 
acids which have a variation in frequency, greater than 25%, when compared to the NR 
databank. Variations between 10-25% are shown in italics. 

 

Table 2 – Secondary structures and Protein Block frequencies of the four databanks. 
Secondary structure and Protein Block frequencies were calculated for each of the 3 databases 
specific for S. cerevisiae, A. thaliana and P. falciparum, noted as Sc, At and Pf respectively; 
and for the non-redundant databank, noted as NR. The secondary structures were defined by 
DSSP, and classified in 3 states -corresponding to α-helix, β-sheet and coil (see material and 
methods).  

 

Table 3 – Significant amino acid preferences in Protein Blocks. Amino acid preferences of 
central positions of (a) PB a, (b) PB e, (c) PB j and (d) PB k, respectively, for the NR, Sc, At 
and Pf databanks. Under “miss” column is given the list of amino acids whose preference is 
absent, compared to the NR databank. (+) and (-) correspond to over-representations (Z-score 
> 1.96) and under-representation (Z-score < -1.96) of the amino acids. If the amino acid is in 
uppercase, the Z-score is higher than 4.4 (or lower than -4.4). Amino acids in blue are over-
represented (or under-represented) and not found over-represented (or under-represented) in 
the NR databank. Amino acid in red indicates inversion, i.e., the amino acid that is over-
represented in the NR databank is under -represented in the specialized databank or vice-
versa. 

 

Supplementary Material 
Supplementary material 1 – PDB identifiers for the 3 databanks. List of identifiers for the 
three databanks, for A. thaliana, P. falciparum and S. cerevisiae. These identifiers correspond 
to X-ray crystallographic structures with less than 90% pairwise sequence identity. 

 

Supplementary material 2 – The high propensities of amino acids N and K in the Pf 
genome. 

 

Supplementary material 3 – Significant amino acids in Protein Blocks. (central) Amino acid 
preferences of five positions of all the 16 PBs, for the NR, Sc, At and Pf databanks – see 
legend of Table 3 for details. 
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Supplementary material 4 – Clustering of the sequence – structure relationship of PBs. 
Each of the 16 PB s (from PB a to PB p) is highlighted in the hierarchical clustering based on 
the amino acid preferences of PB central positions, of the 4 databanks, as depicted on the 
Figure 5. 

 

Supplementary material 5 – Hierarchical clustering of preferences at the central positions 
of the PBs for At, Pf, Sc and NR. 

 

  



33 

 

 
 

  NR Sc At Pf 
I 5.50 6.99 6.18 8.26
V 7.04 6.58 8.11 6.77
L 8.87 9.81 9.40 9.22
M 2.05 1.58 1.28 1.73
A 8.71 6.39 7.50 5.03
F 4.09 4.46 4.55 4.50
Y 3.54 3.77 2.97 4.46
W 1.52 1.18 1.42 0.94
C 1.35 1.28 1.43 2.23
Q 3.81 3.54 3.16 2.63
P 4.68 4.16 4.86 3.53
G 7.75 5.88 7.65 6.13
H 2.38 2.19 2.50 2.08
S 5.76 6.86 6.94 6.02
T 5.60 5.48 4.91 4.70
N 4.33 5.20 3.85 7.23
D 5.94 6.11 5.71 5.80
E 6.52 6.80 6.62 6.59
R 4.97 4.25 4.81 2.84
K 5.59 7.41 6.15 9.33
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NR Sc At Pf 

secondary 
structures 

α-helix 37.37 40.77 36.37 39.48 
coil 42.72 40.96 39.96 41.16 

β-sheet 21.54 19.85 23.67 20.91 

Protein 
Blocks 

a 3.90 3.28 3.42 3.39 
b 4.15 3.84 4.19 4.23 
c 7.91 7.53 7.93 7.70 
d 18.23 17.37 17.69 16.93 
e 2.34 1.64 1.88 2.07 
f 6.50 6.48 6.55 6.76 
g 1.10 1.02 1.17 1.10 
h 2.29 1.71 1.94 1.97 
i 1.79 1.30 1.50 1.57 
j 0.79 0.57 0.56 0.76 
k 5.40 5.41 5.38 5.47 
l 5.38 5.63 5.79 5.75 
m 31.63 36.03 33.61 34.18 
n 2.16 2.05 2.15 2.23 
o 2.88 2.73 2.68 2.59 
p 3.54 3.40 3.55 3.31 
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central miss central miss
PB a (+) NR iVTrK   PB e (+) NR ivfycP   

Sc iVcTrk   Sc IvFPt   
At IVFcQSRk T At vfYpHSN P 
Pf IVaqk TR Pf VY P 

(-) NR aPGd   (-) NR anDek   
Sc AyPgnde   Sc AqNder   
At LmWPHNDE G At imaWDErk   
Pf mfwpgnr   Pf ner D 

central miss central miss
PB j (+) NR G   PB k (+) NR wPsE   

Sc G   Sc PEk   
At qG   At PDE   
Pf G   Pf Pder   

(-) NR IVLMAFYwcQPhsTNdERK   (-) NR IVLMfycqGhTNr   
Sc IVLmAFYqPhsTERK N Sc IVLmFYCQGhtN   
At iVLmAFYwcPhSTNdeRK Q At IVlFcqGHSNrk MT 
Pf Ivlmfyqptnek AR Pf ilFycqgN VMT

 

 




