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Maintenance affects the stability of a two-tiered microbial ‘food chain’?

Aiping Xua,1,∗, Jan Dolfingb, Thomas P. Curtisb, Gary Montaguea, Elaine Martina

aSchool of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
bSchool of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

Microbial ‘food chains’ are fundamentally different from canonical food chains in the sense that the waste

products of the organisms on one trophic level are consumed by organisms of the next trophic level rather

than the organisms themselves. In the present paper we introduce a generalised model of a two-tiered

microbial ‘food chain’ with feedback inhibition, after applying an appropriate dimensionless transforma-

tion, and investigate its stability analytically. We then parameterised the model with consensus values

for syntrophic propionate degradation compiled by the IWA Task Group for Mathematical Modelling

of Anaerobic Digestion Processes. Consumption of energy for all processes other than growth is called

maintenance. In the absence of maintenance and decay the microbial ‘food chain’ is intrinsically stable,

but when decay is included in the description this is not necessarily the case. We point out that this

is in analogy to canonical food chains where introduction of maintenance in the description of a stable

(equilibrium or limit cycle) predator-prey system generates chaos.

Keywords: Anaerobic wastewater treatment, dimensionless transformation, stability, maintenance

1. Introduction

Anaerobic digestion processes are increasingly applied as a waste treatment technology (Van Lier

et al., 2001, 2008; Ramirez et al., 2009). One of its advantages is that the process requires no energy

input for oxygenation but rather produces energy in the form of methane. Methanogenic degradation

of organic material is a sequential process (Dolfing, 1988; Schink, 1997). A series of micro-organisms is

involved in the various conversion steps of these compounds into the ultimate products of methane and

carbon dioxide. Typically, the product of one conversion step is the substrate for the next organism in

the chain; each organism lives off the waste product(s) of its predecessor. This paradigm shows some

resemblance to the classical concept of a food chain, the difference being that it is not the organisms

themselves but rather their products that serve as a food source for the organisms at the next trophic

level (Dolfing and Prins, 1996). Surprisingly little is known about the stability of these ‘food chains’

(Shen et al., 2007). We therefore seek to investigate the stability of these microbial ‘food chains’ at
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a fundamental level and contrast the findings to what is known about the stability of canonical food

chains. To this end we constructed a generalised model of a two-tiered microbial food chain. The model

is essentially a stripped down version of anaerobic digestion model No. 1 (ADM1), the consensus model

supported by the IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes (IWA

Task Group for Mathematical Modelling of Anaerobic Digestion Processes, 2002), and includes options

for decay, which is the consumption of energy for all processes other than growth, and feedback inhibition,

a salient characteristic of metabolic interactions in methanogenic microbial communities, where hydrogen

and acetate both play this role, although with vastly different kinetic characteristics. The model is made

dimensionless in a way that allows us to investigate decay effects without running into scale imbalance

problems, and analysed for bifurcations. According to the Routh-Hurwitz criteria the non-trivial steady

state is possibly unstable when decay is included. However, simulation results with ADM1 consensus

values indicate that the possibly unstable state is always stable as long as it is meaningful, that is, all its

state values are non-negative.

2. The model

Anaerobic digestion has been the subject of considerable research effort, not least in the area of mod-

elling (Mosey, 1983; Siegrist et al., 1993). The complexity of the process calls for complex models, or so it

seems. The current ADM1 consensus model (IWA Task Group for Mathematical Modelling of Anaerobic

Digestion Processes, 2002) has a staggering 32 dynamic state variables and successfully captures the nec-

essary dynamics of the process. However, this model is far too complex to permit mathematically analysis

of its nonlinear dynamics (Shen et al., 2007). In order to make such studies possible, we have therefore re-

duced the model to its very backbone, a two-tiered microbial ‘food chain’ with feedback inhibition, which

encapsulates the essence of methanogenic degradation processes, see Figure 1. Degradation of propionate

is a case in point. In methanogenic ecosystems syntrophic propionate degrading bacteria convert propi-

onate into hydrogen and acetate, which are then converted into methane by two other trophic groups,

the hydrogenotrophic and the acetoclastic methanogens (Koch et al., 1983; Schink, 1997). For thermo-

dynamic reasons propionate degradation is extremely sensitive to accumulation of hydrogen. Thus in

methanogenic ecosystems propionate degradation is only sustainable in the presence of hydrogenotrophic

organisms (typically methanogens) as hydrogen scavengers (Dolfing, 1988). Syntrophic interactions define

the methanogenic degradation of a wide variety of compounds, including short- and long-chain fatty acids,

amino acids and aromatics (Schink, 1997). Thus our modelling efforts will be undertaken with propionate

as a model substrate. To be able to execute a thoroughly mathematical analysis we study propionate

degradation with hydrogen production while ignoring acetate production. However, the dimensionless

transformations introduced later can be easily extended to the general case. Using the notation also used

in ADM1 the model for a two-tiered ‘food-chain’ with feedback inhibition can be written as
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Figure 1: Propionate degradation with hydrogen and acetate inhibitions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSpro

dt
= D(Spro,in − Spro)−

km,proSpro

Ks,pro+Spro
XproI2

dXpro

dt
= −DXpro + Ypro

km,proSpro

Ks,pro+Spro
XproI2 − kdec,proXpro

dSH2

dt
= −DSH2 + 0.43(1− Ypro)

km,proSpro

Ks,pro+Spro
XproI2 −

km,H2SH2

Ks,H2+SH2

XH2

dXH2

dt
= −DXH2 + YH2

km,H2SH2

Ks,H2+SH2

XH2 − kdec,H2XH2

(1)

where Spro and Xpro are propionate substrate and biomass concentrations; SH2 and XH2 are those for

hydrogen. 0.43 represents the part which goes to hydrogen substrate and the rest (1-0.43 = 0.57) goes

to acetate which is left out in our model. Both growth functions take Monod form and the hydrogen

inhibition function takes the non-competitive one: I2 = 1/(1+SH2/KI,H2). Other inhibition functions can

be easily incorporated in this model. Here apart from the two environmentally controllable parameters:

the inflowing propionate concentration Spro,in and the dilution rate D, the others all have biological

meanings, with suggested values for mesophilic high rate (nom 35oC) taken from IWA Task Group for

Mathematical Modelling of Anaerobic Digestion Processes (2002), see Table 1.

We should pay special attention to the significantly different values of the half-saturation rates of

hydrogen Ks,H2 and of propionate Ks,pro, which decide the scales of their corresponding concentrations

in the chemostat.

Our aim is to study the stability of the model (1) while varying the two control parameters: the

inflowing propionate concentration Spro,in and the dilution rate D, or more accurately to obtain the

bifurcation diagram of (1). Too many biologically meaningful parameters hamper in our ability to identify

factors that govern the stability of the model. Therefore, our first step is to find a suitable dimensionless

transformation.
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Parameters Nominal values Units

km,pro 13 COD/COD/d

Ks,pro 0.3 kgCOD/m3

Ypro 0.04 COD/COD

kdec,pro 0.02 1/d

km,H2 35 COD/COD/d

Ks,H2 2.5×10−5 kgCOD/m3

YH2 0.06 COD/COD

kdec,H2 0.02 1/d

KI,H2 3.5 ×10−6 kgCOD/m3

Table 1: Parameters for a model of a two-tiered microbial ‘food chain’ with feedback inhibition, consisting of a

propionate degrader and a hydrogenotrophic methanogen. The parameters are consensus values listed by IWA

Task Group for Mathematical Modelling of Anaerobic Digestion Processes (2002) for high rate mesophilic systems.

3. Dimensionless transformations

As pointed out in Gurney and Nisbet (1998), the behaviour of a natural system, where most variables

and parameters have units, cannot be affected by the units in which we choose to measure the quantities

we use to describe it. By using dimensionless transformation, we can reduce the number of parameters

determining the dynamics, saving effort on numerical and analytic investigations. However, there is no

unique dimensionless form for the equations. In considering the characteristics of the ADM1 model, which

is ’stiff’ due to the scale imbalance of different substrate concentrations (low hydrogen concentration),

we introduce here the following dimensionless quantities, adapted from those described in Baltzis and

Fredrickson (1984) but different from those commonly used for food chain models (Kot et al., 1992): all

concentrations were rescaled somehow by the inflowing substrate concentration.

τ ≡ km,proYprot; α ≡
D

km,proYpro

; uf ≡
Spro,in

Ks,pro

and

s0 ≡
Spro

Ks,pro

; x0 ≡
Xpro

Ks,proYpro

and

s1 ≡
SH2

Ks,H2

; x1 ≡
XH2

Ks,H2YH2

and

φ ≡
km,H2YH2

km,proYpro

; ω ≡
Ks,pro × 0.43(1− Ypro)

Ks,H2
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and

A ≡
kdec,pro

km,proYpro

; B ≡
kdec,H2

km,proYpro

.

As a result we have the following dimensionless system:

dx0

dτ
= −αx0 + μ0x0 −Ax0

dx1

dτ
= −αx1 + μ1x1 −Bx1

ds0
dτ

= α(uf − s0)− μ0x0

ds1
dτ

= −αs1 + ωμ0x0 − μ1x1

(2)

where

μ0 =
s0

1 + s0
I2; μ1 =

φs1
1 + s1

I2 =
1

1 + SH2/KI,H2

=
1

1 +Ks,H2 × s1/KI,H2

=
1

1 + s1/KI

with KI ≡ KI,H2/Ks,H2.

Utilising this dimensionless transformation we have actually given the two dimensionless growth func-

tions (propionate and hydrogen equivalents) the same half-saturation rates. Thus we have addressed the

scale imbalance problem and at the same time introduced a generalised model, which describes the typical

ADM1 framework with inhibition feedback and covers a wide range of microbial models.

Regarding to the case study of our two-tiered propionate degrading ‘food chain’, the parameters of the

transformed model are:

φ = 4.0385, ω = 4953.6, A = B = 0.0385, KI = 0.14.

From now on we study the stability of the generalised model (2).

The steady state equations predict the following possible steady states (SS) for the system if categorised

by the two microbial populations:

SS1: x0 = 0, x1 = 0: trivial solution where both populations are washed out;

SS2: x0 �= 0, x1 = 0: hydrogen population is washed out while the host survives;

SS3: x0 �= 0, x1 �= 0: both populations survive.

A steady state is called meaningful if and only if all the concentrations are non-negative and s0 ≤ uf .

The local stability of each steady state will be tested by linearisation around the steady state values of

the variables.
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For a system of autonomous ordinary differential equations (ODEs), such as Eq. (2), the stability of

its steady states depends on the signs of the real parts of the eigenvalues of the corresponding Jacobian

matrix (Amundson, 1966). For any n-dimensional ODEs system of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1

dt
= f1(x1, x2, · · · , xn)

dx2

dt
= f2(x1, x2, · · · , xn)
...

dxn

dt
= fn(x1, x2, · · · , xn)

its Jacobian matrix is the matrix of the partial derivatives of the right hand side with respect to the state

variables, that is

J =
( ∂fi
∂xj

)
=

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

⎞
⎟⎟⎟⎟⎟⎠

where all derivatives are evaluated at the steady state. A steady state is (asymptotically) stable if all

eigenvalues have negative real parts. Otherwise, it is unstable. In the next two sections we will check the

stability of all steady states one by one, with and without decay effects respectively, followed by numerical

analysis of the ADM1 model as a case study.

4. Stability analysis without decay effects

The equations describing the generalised model, when decay effects are not taken into account (id est

A = B = 0 in (2)), are written as the following:

dx0

dτ
= −αx0 + μ0x0 (3a)

dx1

dτ
= −αx1 + μ1x1 (3b)

ds0
dτ

= α(uf − s0)− μ0x0 (3c)

ds1
dτ

= −αs1 + ωμ0x0 − μ1x1 (3d)

By combining equations (3c) and (3a), we obtain

d

dt
(s0(t) + x0(t)) = −α(s0(t) + x0(t)) + αuf

As a result

s0(t) + x0(t) = uf + (s0(0) + x0(0)− uf )e
−αt

6



where s0(0) and x0(0) are the initial concentrations of the rescaled propionate substrate and biomass.

It follows that s0(t) + x0(t) → uf as t → ∞. We may, in other words, study the model’s asymptotic

behaviour along s0 + x0 = uf .

With similar reasoning we can obtain the other constraint s1 − ωx0 + x1 = 0. Therefore, when

asymptotic behaviour is concerned we can eliminate two state variables. Our system is thus equivalent to

a two-dimensional one:

⎧⎨
⎩

dx0

dτ
= −αx0 + μ0x0

dx1

dτ
= −αx1 + μ1x1

where

μ0 =
s0

1 + s0
I2; I2 =

1

1 + s1/KI

; μ1 =
φs1

1 + s1

with

s0 = uf − x0; s1 = ωx0 − x1.

Its Jacobian matrix is:

J =

⎡
⎣−α+ μ0 + (−E + ωF )x0 −Fx0

ωGx1 −α+ μ1 −Gx1

⎤
⎦ (4)

where

E =
∂μ0

∂s0
> 0; F =

∂μ0

∂s1
< 0; G =

dμ1

ds1
> 0.

By inspecting the conditions under which each steady state is meaningful and stable, see Appendix A

for detailed analysis, one can conclude that for any pair of values of the operating parameters, α and uf ,

there is always one, and only one, steady state which is meaningful and stable.

5. Consideration of decay effects

Consumption of energy for all processes other than growth is called maintenance, since the processes

involved effectively result in the maintenance of cell viability. In situations where microbial cells are

located in a favourable environment, maintenance can often be neglected. In other situations, however,

a significant portion of the energy-yielding substrate that could be used for growth is consumed for

maintenance (Fredrickson and Tsuchiya, 1977). In the ADM1 model maintenance is taken into account as

decay. In this section the generalised model (2) is studied, taking into consideration maintenance effects,

which means A > 0 and B > 0. This system has the same possible steady states as those analysed in

the previous section. Here we focus on the two positive terms A and B, to evaluate how the stability is

affected by their simultaneous introduction.
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The Jacobian matrix for this system is:

J =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 a13 a14

0 a22 0 a24

a31 0 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎥⎥⎦

(5)

where a11 = −α + μ0 − A, a13 = Ex0, a14 = Fx0, a22 = −α + μ1 − B, a24 = Gx1, a31 = −μ0,

a33 = −α− Ex0, a34 = −Fx0, a41 = ωμ0, a42 = −μ1, a43 = ωEx0, a44 = −α+ ωFx0 −Gx1, with

E =
∂μ0

∂s0
> 0; F =

∂μ0

∂s1
< 0; G =

dμ1

ds1
having the same definitions as before.

A detailed study for this case has been performed, see Appendix B. Analytical conditions for each

steady state to be meaningful have been derived and the characteristics of the eigenvalues have been

studied for stability. Analytical expressions of the criteria for local stability have been developed and

the Routh-Hurwitz criteria (Amundson, 1966) have been checked wherever necessary. The basic results

of the analysis are: no steady state exhibits multiplicity; the steady states are mutually exclusive in the

sense that for any pair of values for the operating parameters, α and uf , at most one steady state can be

meaningful and stable; Hopf bifurcation can possibly occur with the nontrivial steady state.

Remark 1 The steady states depend on the assumption of a specific functional growth and inhibition.

However, our method for the stability analysis is still effective for other functional forms as long as they

keep the signs of their derivatives, both for the cases without and with decays, since any explicit form is

not needed here.

Remark 2 As a special case when only one decay term is taken into consideration, the system can be

reduced into a three-dimensional one. The corresponding Routh-Hurwitz criteria is checked and it is always

satisfied so the nontrivial steady state is always stable as long as it is meaningful.

6. Some simulation results

In consideration of the authors’ specific interests in anaerobic digestion in wastewater treatment and

the role of ADM1 in its modelling, we apply here its consensus parameters for the two-tiered propionate

degrading methanogenic ‘food-chain’ to numerically check its stability, with maintenance neglected and

included, respectively. We will present the operating diagrams, which are very generically useful in the

case of the chemostat since when one decides to study a particular system in a chemostat all but two

(the dimensionless dilution rate α and the dimensionless concentration of the substrate in the feed uf )

of the parameters which appear in the generalised model are fixed for they depend on the organisms and

the substrates which have been picked. The operating parameters α and uf can vary at our will. The

operating diagram shows the regions where each steady state is stable. Therefore this diagram shows how

the system behaves when we vary the two control parameters.
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Figure 2: Bifurcation diagrams for a two-tiered microbial ‘food chain’ without (left) and with (right) maintenance

effects. The model was parameterised with the ADM1 consensus values listed in Table 1

6.1. When maintenance effects are neglected

By applying the ADM1 parameters (φ = 4.0385, ω = 4954, KI = 0.14) and neglecting the decay

terms, which means A = B = 0, we obtain the bifurcation diagram Figure 2(a).

The dimensionless holding time is β = 1/α. Recall the definition of the border which makes SS2

unstable and at the same time SS3 meaningful (the blue curve in Figure 2(a)) F1(s1) = s21− (ω(uf +1)+

KI(β− 1))s1 +ωKI(ufβ− (uf +1)) = 0 with s1 = 1/(φβ− 1). Note that we can actually solve explicitly

uf as a function of β:

uf = −
1−KIβ

2φ− ωKIφ
2β2 − ωφβ + ω − ωKI +KIβ +KIφβ −KI + 2ωKIφβ

−ωφβ − 2ωKIβ2φ+ ωKIβ + ωKIβ3φ2 − ωKI + ω − ωKIφ2β2 + 2ωKIφβ

6.2. When maintenance effects are included

With the ADM1 parameters, the two decay rates are equal, that is, A = B = 0.0385. By applying

the ADM1 kinetics (φ = 4.0385, ω = 4954, KI = 0.14 and A = B = 0.0385) we obtain the partition

of the plane, where different steady states become meaningful, see Figure 2(b). As discussed before the

only possibility of Hopf bifurcation occurs at the steady state SS3 when the two maintenance effects are

included, thus we focus on it to see how to verify its stability, mathematically and numerically and what

needs to be further addressed, when a specific case is considered.

1. Steady state SS3:

SS3 is the solution of the following algebraic equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−αx0 + μ0x0 −Ax0 = 0

−αx1 + μ1x1 −Bx1 = 0

α(uf − s0)− μ0x0 = 0

−αs1 + ωμ0x0 − μ1x1 = 0

9



where

μ0 =
s0

1 + s0
I2; I2 =

1

1 + s1/KI

; μ1 =
φs1

1 + s1
.

It is easy to get that s1 = (α + B)/(φ − (α + B)). If we denote I2 = 1/(1 + s1/KI) then s0 =

(α + A)/(I2 − (α + A)), x0 = α(uf − s0)/(α + A) and x1 = (−αs1 + ωα(uf − s0))/(α + B). The

partition between SS2 and SS3 satisfies:

F1(s1) = s21 −

[
ω(uf + 1) +KI

(
1

α+A
− 1

)]
s1 + ωKI

(
uf

α+A
− (uf + 1)

)
= 0

where

s1 =
1

φ
α+A

− 1

.

Moreover, at SS3,

E =
I2

(1 + s0)2
=

(I2 − (α+A))2

I2

F =
s0

1 + s0

(
−

I22
KI

)
= −

(α+A)I2
KI

G =
φ

(1 + s1)2
=

(φ− (α+B))2

φ

2. Characteristic Polynomial at SS3

From (B.2), the characteristic polynomial at SS3 is

λ4 + f1λ
3 + f2λ

2 + f3λ+ f4 = 0

where

f1 = Ex0 − ωFx0 +Gx1 + 2α

f2 = −ωAFx0 + Ex0Gx1 + 2Ex0α+ α2 +AEx0 − 2αωFx0 + 2αGx1 +Bx1G

f3 = AEx0α− ωAFx0α− ωα2Fx0 + 2Gx1Ex0α+Gx1BEx0 +AEx0Gx1 +Gx1Bα+Gx1α
2 + Ex0α

2

f4 = AGx1BEx0 + αGx1BEx0 +Gx1Ex0α
2 +AGx1Ex0α

As discussed above, all the polynomial coefficients are only functions of the two control parameters

α and uf .

3. Stability check

We further numerically check the stability of SS3. From the Routh-Hurwitz criteria (f1f2f3 >

f2
3 + f2

1 f4) we define a function F = f1f2f3 − (f2
3 + f2

1 f4), which depends only on the two control

parameters α and uf . See Figure 3 as its surface description. The numeric results show that SS3 is

always stable as long as it is meaningful, despite the fact that it can be theoretically unstable, see

Section 5, where the internal constraints of the variables are not taken into account when considering

a generalised model.
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Figure 3: ADM1 stability check at SS3. (a) The part that SS3 is meaningful, duplicated from Figure 2(a); (b) The

surface of function F for stability check at SS3.

7. Discussion

The stability of food chains and food webs has been the subject of numerous studies and it has been

shown that many factors contribute in stabilising the system (Gross , 2004; Gross et al., 2006, 2009; May,

1974). Here we point out that maintenance appears to be a key factor when a two-tiered microbial ’food

chain’ is considered. Kot et al. (1992) have shown that the populations of the protozoan predator and

bacterial prey in a chemostat with an constant inflowing substrate, can coexist on a limit cycle, while

Kooi and Boer (2003) have numerically shown that similar structured model can generate chaos. The

difference between the models used by the different groups is that, unlike Kooi and Boer (2003), Kot et al.

(1992) do not include maintenance. In spite of the fundamental differences between our ‘food chain’ and

the classical predator-prey discerned in macro ecology we observe the same intrinsic effect of maintenance

on the stability of the food chain. In the absence of maintenance our two-tiered ‘food chain’ too is always

stable, but when maintenance is included in its description our two-tiered generalised ‘food chain’ is

not necessarily stable in theory. However, using the consensus parameters of ADM1 we have shown in

numerical simulations that our model of the methanogenic two-tiered propionate-hydrogen food chain is

always stable. Direct application of symbolic analysis programs, such as Maple or Mathematica, turned

out fruitless. Stiefs et al. (2008) have proposed a more effective way to compute and visualise bifurcation

surfaces, which enhance the qualitative understanding of a system and can help to quickly locate more

complex bifurcation situations corresponding to bifurcations. Moreover, numerical analysis using programs

like AUTO (Doedel et al., 1997) can hopefully help to deal with the problem proposed here like in Kooi

et al. (1998). Both will serve as our tools to pinpoint the conditions under which our generalised system

is prone to becoming unstable. For the operators of anaerobic wastewater treatment systems our results

are good news and bad news. Good because we have shown that the syntrophic associations between

propionate degraders and methanogens are inherently stable under realistic environmental conditions.

The bad news though is that it is not a priori possible to generalise; there may well be other two-tiered
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‘food chains’ that become unstable under environmentally realistic conditions, which are the authors’

current research interest.

Hess and Bernard (2008) pointed out that the excessive complexity of ADM1 makes any advanced

mathematical analysis critical. The present analysis is based on a two-tiered model but it opens up the

questions about the stability of longer microbial ‘food chains’ and more intricate ‘food webs’. Computa-

tional methods can be taken into consideration. For example Gross et al. (2005) have demonstrated that

canonical long food chains are in general chaotic, after applying the steady state under consideration to

normalise the ODE system.
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Appendix A. Stability analysis with maintenance neglected

SS1: x0 = 0, x1 = 0. As a consequence s0 = uf and s1 = 0. This steady state is always meaningful.

Since μ0 = uf/(1 + uf ) and μ1 = 0, the Jacobian matrix (4) becomes

J =

⎡
⎣−α+

uf

1+uf
0

0 −α

⎤
⎦

Its eigenvalues are λ1 = −α+ uf/(1 + uf ) and λ2 = −α. SS1 is a node since all eigenvalues are real;

for being stable it must be λ1 < 0. Therefore, SS1 is meaningful and stable if and only if α > uf/(1+uf ).

SS2: x0 �= 0, x1 = 0. As a result μ0 = s0/(1 + s0)/(1 + s1/KI) = α and s1 = ωx0. Note that

s0 + x0 = uf . Thus s0 satisfies the following quadratic equation:

F0(s0) = s20 +

(
KI

ω

(
1

α
− 1

)
+ (1− uf )

)
s0 −

(
KI

ω
+ uf

)
= 0 (A.1)

Due to the fact that −(KI/ω + uf ) < 0, there is only one unique positive real solution for the

equation (A.1). To guarantee that SS2 is meaningful all that we need is s0 < uf , that is, F0(uf ) =

KI(uf − α(uf + 1))/α/ω > 0, which is equivalent to α < uf/(1 + uf ). This implies that as soon as SS1

becomes unstable, SS2 becomes meaningful.

On the other hand, s1 satisfies the following quadratic equation:

F1(s1) = s21 −

[
ω(uf + 1) +KI

(
1

α
− 1

)]
s1 + ωKI

(uf

α
− (uf + 1)

)
= 0 (A.2)
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As previous reasoning α < uf/(1 + uf ), we have ωKI (uf/α− (uf + 1)) > 0 and ω(uf + 1) +

KI (1/α− 1) > 0. We further check its discriminant Δ = [ω(uf + 1) +KI (1/α− 1)]
2
−4ωKI (uf/α− (uf + 1)) =

[ω(uf + 1)−KI (1/α− 1)]
2
+ 4ωKI/α > 0. Consequently there are two real positive roots for the equa-

tion (A.2). Since s1 < ωuf and F1(ωuf ) = −ω
2uf − ωKI < 0, only the smaller root is meaningful, which

we denote as s∗1.

The Jacobian matrix (4) becomes

J =

⎡
⎣(−E + ωF )x0 −Fx0

0 −α+ μ1

⎤
⎦

Its eigenvalues are λ1 = (−E + ωF )x0 < 0 and λ2 = −α + μ1. It is also a node and SS2 is stable if

and only if α > μ1, where μ1 = φs1/(1 + s1).

α > μ1 ⇐⇒ s1 <
α

φ− α
=

1

φ/α− 1

which implies F1 (1/(φ/α− 1)) < 0.

SS3: x0 �= 0, x1 �= 0. As a result μ0 = s0/(1 + s0)/(1 + s1/KI) = α and μ1 = φs1/(1 + s1) = α,

which means s1 = α/(φ − α). If we denote I2 = 1/(1 + s1/KI) then s0 = α/(I2 − α), x0 = uf − s0 and

x1 = −s1 + ω(uf − s0). So to guarantee that SS3 is meaningful we must have

s1 > 0 ⇐⇒ α < φ; (A.3a)

s0 > 0 ⇐⇒ α < I2; (A.3b)

x0 > 0 ⇐⇒ s0 < uf ; (A.3c)

x1 > 0 ⇐⇒ s1 < ω(uf − s0) (A.3d)

First we consider (A.3a) and (A.3b):

α < I2 =
1

1 + s1/KI

=
KI

KI + s1

⇐⇒ s1 <
KI(1− α)

α
= KI

(
1

α
− 1

)
.

Then from (A.3c):

s0 =
α

I2 − α
=

α
KI

KI+s1
− α

< uf

⇐⇒ s1 < KI

(
uf

α(uf + 1)
− 1

)
.

So s1 < KI (uf/α/(uf + 1)− 1). Moreover,

F1

(
KI(

uf

α(uf + 1)
− 1)

)
=

K2
I (−uf + α(1 + uf ))

α2(1 + uf )2
< 0

.

And from (A.3d):

13



s1 < ω(uf − s0)

⇐⇒ s21 −

[
ω(uf + 1) +KI

(
1

α
− 1

)]
s1 + ωKI

(uf

α
− (uf + 1)

)
> 0

Recall the definition of F1 and s1 = 1/(φ/α− 1) we have F1 (1/(φ/α− 1)) > 0.

The Jacobian matrix (4) becomes

J =

⎡
⎣(−E + ωF )x0 −Fx0

ωGx1 −Gx1

⎤
⎦

Its eigenvalues are given as roots of the equation

λ2 + [(E − ωF )x0 +Gx1]λ+ EGx0x1 = 0.

Since E > 0, F < 0 and G > 0, it is obvious that the two eigenvalues λ1 and λ2 satisfy λ1 + λ2 < 0

and λ1λ2 > 0. Moreover, the discriminant of the above equation is Δ = [(E −ωF )x0 +Gx1]
2− 4EGx0x1

and it can be either positive or negative. Therefore, the two eigenvalues can either be real and negative

or complex conjugate with negative real parts. Hence as long as it exists it is stable. It can never be

λ1 + λ2 = 0, hence Hopf bifurcation cannot occur from SS3.

Appendix B. Stability analysis with maintenance included

SS1: x0 = 0, x1 = 0. As a result s0 = uf and s1 = 0. This steady state is always meaningful.

The Jacobian matrix (5) becomes

J =

⎡
⎢⎢⎢⎢⎢⎣

−α+ μ0 −A 0 0 0

0 −α−B 0 0

−
uf

1+uf
0 −α 0

ωuf

1+uf
0 0 −α

⎤
⎥⎥⎥⎥⎥⎦

Its eigenvalues are λ1 = −α + uf/(1 + uf ) − A , λ2 = −α − B < 0 and λ3 = λ4 = −α < 0. SS1 is a

node since all eigenvalues are real; for it being stable we need λ1 < 0. Therefore, SS1 is meaningful and

stable if and only if α > uf/(1 + uf )−A.

SS2: x0 �= 0, x1 = 0. Consequently, μ0 = s0/(1+s0)/(1+s1/KI) = α+A, (α+A)x0 = α(uf −s0) and

αs1 = ω(α+A)x0. Just as the case without maintenance effects we have the constraint s1 = ω(uf − s0).

Thus s0 satisfies the following quadratic equation:

F0(s0) = s20 +

(
KI

ω

(
1

α+A
− 1

)
+ (1− uf )

)
s0 −

(
KI

ω
+ uf

)
= 0

As the same reasoning before, to guarantee that SS2 is meaningful all we need is α < uf/(1+uf )−A.

Note that as long as SS1 becomes unstable, SS2 becomes meaningful.
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And s1 satisfies the following quadratic equation:

F1(s1) = s21 −

[
ω(uf + 1) +KI

(
1

α+A
− 1

)]
s1 + ωKI

(
uf

α+A
− (uf + 1)

)
= 0 (B.1)

As discussed in Appendix A there are two positive roots for the quadratic equation (B.1) but only the

smaller one is meaningful.

The Jacobian matrix (5) becomes

J =

⎡
⎢⎢⎢⎢⎢⎣

0 0 Ex0 Fx0

0 −α+ μ1 −B 0 0

−(α+A) 0 −α− Ex0 −Fx0

ω(α+A) −μ1 ωEx0 −α+ ωFx0

⎤
⎥⎥⎥⎥⎥⎦

Its characteristic polynomial is

|λI − J | =(λ+ α− μ1 +B)(λ+ α)[λ2 + (α+ (E − ωF )x0)λ+ (α+A)(E − ωF )x0]

=0

Its eigenvalues are λ1 = −α + μ1 − B, λ2 = −α < 0, and the other two λ3 and λ4 are given as roots

of the following quadratic equation

λ2 + [α+ (E − ωF )x0]λ+ (α+A)(E − ωF )x0 = 0.

So for being stable it must be λ1 < 0, which implies F1 (1/(φ/(α+B)− 1)) < 0.

SS3: x0 �= 0; x1 �= 0. So s1 = (α + B)/(φ − (α + B)). If we denote I2 = 1/(1 + s1/KI) then

s0 = (α+A)/(I2−(α+A)), x0 = α(uf −s0)/(α+A) and x1 = (−αs1+ωα(uf −s0))/(α+B). As the case

without maintenance effects, to guarantee SS3 is meaningful we must have F1 (1/(φ/(α+B)− 1)) > 0.

The Jacobian matrix (5) becomes

J =

⎡
⎢⎢⎢⎢⎢⎣

0 0 Ex0 Fx0

0 0 0 Gx1

−(α+A) 0 −α− Ex0 −Fx0

ω(α+A) −(α+B) ωEx0 −α+ ωFx0 −Gx1

⎤
⎥⎥⎥⎥⎥⎦

Its characteristic polynomial is

|λI − J | =(λ+ α)2[λ2 + [(E − ωF )x0 +Gx1]λ+ EGx0x1] +ABEGx0x1

+Ax0(λ+ α)[(E − ωF )λ+ EGx1] +BGx1(λ+ α)(λ+ Ex0)

=0

It explicitly indicates how the maintenance affects the system’s long-term behaviour, which is never

seen in any literature up to our knowledge.
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It is obvious that the case, when only one decay (A = 0 and B �= 0, or, A �= 0 and B = 0) or no decay

(A = B = 0), can be regarded as a special case of this one.

For the nontrivial case (A, B > 0), if we expand the above equation as

λ4 + f1λ
3 + f2λ

2 + f3λ+ f4 = 0 (B.2)

where

f1 = Ex0 − ωFx0 +Gx1 + 2α

f2 = −ωAFx0 + Ex0Gx1 + 2Ex0α+ α2 +AEx0 − 2αωFx0 + 2αGx1 +Bx1G

f3 = AEx0α− ωAFx0α− ωα2Fx0 + 2Gx1Ex0α+Gx1BEx0 +AEx0Gx1 +Gx1Bα+Gx1α
2 + Ex0α

2

f4 = AGx1BEx0 + αGx1BEx0 +Gx1Ex0α
2 +AGx1Ex0α

Since E > 0, F < 0 and G > 0, all coefficients fi, i = 1, · · · , 4 are positive. Therefore, (B.2) cannot

have any positive roots. When the Routh-Hurwitz criteria (f1f2f3 > f2
3 + f2

1 f4) are checked one can see

that they are not necessary satisfied. Thus the roots of (B.2) can be real and negative, or pairs of complex

conjugate numbers with either negative or positive real parts. The possibility of having (at least) one pair

of complex eigenvalues with positive real parts implies that Hopf bifurcation can originate from SS3.
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