
HAL Id: hal-00682411
https://hal.science/hal-00682411

Submitted on 26 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A three-species model explaining cyclic dominance of
pacific salmon

Christian Guill, Barbara Drossel, Wolfram Just, Eddy Carmack

To cite this version:
Christian Guill, Barbara Drossel, Wolfram Just, Eddy Carmack. A three-species model explain-
ing cyclic dominance of pacific salmon. Journal of Theoretical Biology, 2011, 276 (1), pp.16.
�10.1016/j.jtbi.2011.01.036�. �hal-00682411�

https://hal.science/hal-00682411
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

A three-species model explaining cyclic dominance
of pacific salmon

Christian Guill, Barbara Drossel, Wolfram Just,
Eddy Carmack

PII: S0022-5193(11)00062-2
DOI: doi:10.1016/j.jtbi.2011.01.036
Reference: YJTBI6348

To appear in: Journal of Theoretical Biology

Received date: 29 July 2010
Revised date: 21 January 2011
Accepted date: 25 January 2011

Cite this article as: Christian Guill, Barbara Drossel, Wolfram Just and Eddy Carmack, A
three-species model explaining cyclic dominance of pacific salmon, Journal of Theoretical
Biology, doi:10.1016/j.jtbi.2011.01.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2011.01.036


A three-species model explaining cyclic dominance of pacific salmon

Christian Guill,a, Barbara Drossela, Wolfram Justb, Eddy Carmackc

aInstitut für Festkörperphysik, TU Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany
bSchool of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E14NS, UK

cInstitute of Ocean Sciences, 9860 West Saanich Road Sidney B.C. V8L 4B2 Canada

Abstract

The four-year oscillations of the number of spawning sockeye salmon (Oncorhynchus nerka) that return

to their native stream within the Fraser River basin in Canada are a striking example of population

oscillations. The period of the oscillation corresponds to the dominant generation time of these fish.

Various - not fully convincing - explanations for these oscillations have been proposed, including

stochastic influences, depensatory fishing, or genetic effects. Here, we show that the oscillations can

be explained as an attractor of the population dynamics, resulting from a strong resonance near a

Neimark Sacker bifurcation. This explains not only the long-term persistence of these oscillations,

but also reproduces correctly the empirical sequence of salmon abundance within one period of the

oscillations. Furthermore, it explains the observation that these oscillations occur only in sockeye

stocks originating from large oligotrophic lakes, and that they are usually not observed in salmon

species that have a longer generation time.
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1. Introduction

In many ecological systems distinct population oscillations are known, with their specific dynamical2

characteristics often captured by simple generic models. Among these are the spatial synchronisa-

tion of the lynx-hare oscillations in Canada [1, 2, 3], the chaotic oscillations of boreal rodents in4

Fennoscandia [4], or the cyclic outbreak dynamics of the spruce budworm [5, 6]. The four-year os-

cillations of sockeye salmon (Oncorhynchus nerka) in the Fraser River basin in Canada are another6

well-documented example of such large-scale population oscillations [7, 8, 9]. They are a typical

example of single-generation cycles [10, 11]. Every fourth year (which is the dominant generation8

time) the abundance of these fish is at very high levels, reaching several million fish in some spawning

populations, but drops to numbers between several hundred and a few ten thousand individuals in10

the following years (hence the term cyclic dominance). Different stocks can have their population

maximum in different years (Fig. 1 and Appendix). The oscillations were reported as early as the12

19th century and are evident for instance in the extremely high catches by fisheries every fourth year

[12]. This both economically and conservationally important phenomenon has been ascribed either to14

transient effects or to stochastic influences [13], to depensatory predation [14], to fishing [15], or to

genetic effects [16, 17], but all of these explanations are still not fully convincing [16, 9].16
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Figure 1: Empirical time series of sockeye salmon abundance. Total escapement (number of male and female
adults that escape the fisheries) of the late Shuswap Lake run. Shuswap lake is one of the most important rearing lakes
of juvenile sockeye salmon. Data for 5 other lakes are provided in the Appendix.

The sockeye salmon return to spawn in their native stream or lake in late summer and then die,

which means that the salmon generations do not overlap. The hatched fry migrate downstream in the18

following spring and feed for one season in large freshwater lakes, before they migrate to the ocean,

where they spend the next two and a half years. The carcasses of the adult salmon are decomposed20

and provide an important phosphorus input into the rearing lakes of the fry. Since the oscillations

of sockeye salmon originating from different lakes are not in phase, we have clear evidence that the22

relevant processes causing the phenomenon of cyclic dominance take place in the rearing lakes rather

than in the ocean.24

2. Model and results of computer simulations

It is our aim to develop a generic model capturing only the essential mechanisms required for the26

occurrence of cyclic dominance. As such, the model is kept very simple and is not designed to

quantitatively predict the population dynamics of all species in the corresponding lake ecosystems.28
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The model uses standard continuous population dynamics equations for sockeye fry, sn(t), their preda-

tor (e.g. rainbow trout), pn(t), and their zooplankton food (mainly daphnia), zn(t), during the growth30

season from spring (t = 0) to fall (t = T ) in year n, combined with a rule for calculating the three

population sizes at the beginning of the next season as a function of the population sizes at the end32

of the previous season(s). The sockeye fry population at the end of a season gives rise to the number

of spawning adults 3 years later, which in turn determines the number of sockeye fry in the following34

spring, and represents a nutrient input that affects the carrying capacity of the zooplankton. A small

fraction of the salmon stays in the ocean for one more year and mature at age 5, thus causing a mixing36

between the four brood lines of a spawning population. An even smaller fraction matures at age 3, but

since these fish are predominantly small-sized males [9] that do not influence the number of fertilised38

eggs, they are neglected in this study.

The general structure of the model, which combines continuous population dynamics during the growth

season with a discrete update scheme capturing the seasonally driven migration and reproduction of

the species of interest, has also been applied in a modelling study of the dynamics of fish preying on

zooplankton [18]. Here, however, we have chosen a much simpler form of the continuous dynamics

which is sufficient to generate cyclic dominance. It is given by the following equations of motion:

d

dt
sn(t) = λ · asz

zn(t) · sn(t)
1 + cs · sn(t) + zn(t)

−aps
sn(t) · pn(t)

1 + cp · pn(t) + sn(t)
− ds · sn(t)

d

dt
zn(t) = zn(t) ·

(
1− zn(t)

Kn

)
(1)

−asz
zn(t) · sn(t)

1 + cs · sn(t) + zn(t)
d

dt
pn(t) = λ · aps

sn(t) · pn(t)
1 + cp · pn(t) + sn(t)

− dp · pn(t)

The variables sn, zn, and pn are biomass densities that are made dimensionless. The parameters in40

these equations and their numerical values used in the computer simulations are as follows. λ = 0.85

denotes the assimilation efficiency of ingested prey biomass of carnivores [19]. The maximal per unit42

mass ingestion rates of salmon, asz = 10, and predators, aps = 1.6, scale allometrically with bodymass

according to a power law with exponent −1/4 [20]. We assume the predators to be approximately 150044

times heavier than the sockeye fry, which fixes the ratio asz/aps. The parameters ds = 1 and dp = 0.16

represent biomass loss due to respiration and mortality; they also scale allometrically with body mass.46

The feeding terms include saturation at high prey densities, and a predator interference term in the

denominator with interference strengths set to cs = 1 and cp = 0.2. This Beddington functional48

response [21] has been chosen since it describes consumer-resource interactions more accurately than

the more frequently used Holling type II form [22]. Similar predator interference terms are also used50

by other modellers [23].

The matching conditions used to determine the biomasses of the species at the beginning of the next
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season from their values at the end of the previous season(s) are given by

sn+1(0) = γ((1− ε)sn−3(T ) + εsn−4(T ))

zn+1(0) = Kn+1 (2)

pn+1(0) = pn(T ) ,

with ε the proportion of surviving sockeye that return to their native lakes at the age of 5 to spawn52

and die. The parameter γ summarises survival from smolt to adult fish (including ocean survivability

and loss to fisheries), spawning success, and egg to fry survival. The various factors are estimated54

from empirical data [15, 24, 25] and yield γ = 0.4.

According to empirical observations [16], the zooplankton level at the end of one year has no effect

on the following year. However, its carrying capacity Kn+1 is a function of the nutrients provided by

the adult salmon and thus a function of the initial fry biomass of that year [26]:

Kn+1 = K0 +
(

κ
sn+1(0)

κ0 + sn+1(0)

)
. (3)

(For a review on the importance of salmon-derived nutrients for freshwater ecosystems, see [27] and56

citations therein.) Consumer dependent resource productivity is certainly a rather uncommon phe-

nomenon. In the lake ecosystems under consideration, it provides an important positive feedback58

to the system, but it does not seem to be crucial for the mathematical mechanism underlying the

oscillations [28]. The three parameters determining the carrying capacity Kn of the zooplankton in60

year n are set to K0 = 15, κ = 10, and κ0 = 2. The numerical values of these parameters are difficult

to determine from empirical data. However, since the nutrient concentration in the brood lakes nearly62

doubles in years following dominant sockeye returns compared to years following non-dominant sock-

eye returns [26], it seems reasonable that the constant fraction of the carrying capacity, K0, and the64

maximum of the variable fraction, κ, are of the same order of magnitude.

Fig. 2a shows a time series of the biomass of the sockeye fry at the end of the growth season. The first66

300 years are cut off to show only the stable periodic oscillation with one strong year followed by one

intermediate year and two weak years, just as in the empirical data of most sockeye stocks showing68

cyclic dominance (Fig. 1 and Appendix). When the simulation parameters are chosen differently (e.g.,

cs = 0.2), the difference between the strong and the intermediate year may become less pronounced.70

By additionally increasing K0 and cp, their order may even become reversed. This is also observed in

the empirical data of some stocks.72

When a parameter is varied, for instance the constant fraction of the zooplankton carrying capacity,

K0, the dynamical pattern may change. Fig. 3 shows the biomass sn(T ) of the sockeye fry at the74

end of the season for different values of K0, from year t =5000 to year 5200. For small K0, all

sockeye lines are equally strong (only one point is visible for each value of K0). This means that76

the dynamics reaches a fixed point and that there is no cyclic dominance. With increasing K0, the

fixed point eventually becomes unstable. First a bifurcation to quasiperiodic behaviour occurs (the78

attractor contains infinitely many points for each value of K0), and then the frequency of the oscillation

becomes locked at 4. Now only four points are visible for each value of the bifurcation parameter,80

indicating periodic oscillations.
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Figure 2: Simulated time series. Attractor of sockeye salmon dynamics generated by computation of the time-
continuous model, showing oscillations with period 4 and the same pattern in the sequence of salmon abundance as
in the empirical data. Only the biomasses at the end of each growth season are shown. a: deterministic model, b:
dynamics with up to 50 percent fluctuations in the survivability of the sockeye salmon in the ocean (proportional to γ),
see Discussion. Parameter values for these simulations are as explained in section 2.
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Figure 3: Bifurcation diagram of the biomass of the sockeye fry at the end of the season. The bifurcation
parameter is the constant fraction of the zooplankton carrying capacity K0. For each value of K0, 200 consecutive data
points are plotted.
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3. Bifurcation analysis82

In order to understand and interpret these observations, we first note that the continuous population

dynamics during the season, together with the matching conditions applied between two seasons, can84

be viewed as a discrete map (a so-called Poincaré map), giving the sockeye and predator biomasses

at the end of one year as function of the biomasses at the end of the previous years.86

To obtain this map, one first has to integrate the dynamical equations over one season, giving sn(T )

and pn(T ) as a function of sn(0) and pn(0). The zooplankton can be eliminated since the initial88

condition of the zooplankton depends on sn(0) only. Next, one expresses sn+1(0) and pn+1(0) as a

function of sn−3(T ), sn−4(T ) and pn(T ), using the matching conditions.90

The mechanism which generates the population oscillation is based on the nature of the instability of

the stationary state sn(T ) = s∗(T ), pn(T ) = p∗(T ) of our system. The corresponding bifurcation can

be investigated in terms of a linear stability analysis. Close to the fixed point, the dynamics can be

approximated by linear terms. Denoting the distance of the biomasses from their fixed point value by

δsn = sn(T )− s∗(T ) etc, the linear approximation of this map has the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δsn+1

δsn

δsn−1

δsn−2

δsn−3

δpn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ms ε1 −a

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 b c mp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δsn

δsn−1

δsn−2

δsn−3

δsn−4

δpn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

with positive parameters ms, mp, a, b, c, ε1. The general structure of the matrix in Eq. (4) is determined

only by the matching conditions and is valid for any time-continuous model applied during the seasons.92

The equations of motion of the latter only determine the numerical values of the parameters in Eq.

(4).94

The first line of the matrix describes the influence on the sockeye fry of year n + 1 of the sockeye fry

of year (n − 3) and (n − 4) (which are the parents of the fry in year (n + 1)), and of the predator96

population. ms and ε1 are positive, since more parents imply more offspring. −a is negative, since

more predators imply less fry. The other nontrivial line of this matrix, the last line, describes the98

influence on the predators of year (n + 1) of the sockeye fry of year (n − 3) and (n − 4) (which are

the parents of the predator’s food), and of the predator population in the previous year. All three100

parameters are positive, since more food implies more predator growth and since more predators in

one year give rise to more predators in the next year.102

The eigenvalues of this matrix determine the nature of the dynamics near the bifurcation. When

all eigenvalues have an absolute value smaller than 1, the fixed point is stable, and the dynamics104

converges to this fixed point. When the absolute value of one or more eigenvalues is larger than 1,

the fixed point is unstable, and the dynamics approaches a different attractor.106

In order to understand the dynamics resulting from this matrix, we first consider the case that the

matrix elements ε1, b, and c vanish. This means that all salmon return at age 4, and that the trout108

have a good choice of other food so that their dynamics is independent of that of the salmon fry. In
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this case the eigenvalues of the matrix are mp, 0, and the four fourth roots of ms. Since the four110

salmon lines are independent from each other in this case, the sequence δsn has trivially the period

4 and simply iterates the initial four values, with an amplitude decreasing for ms < 1 and increasing112

otherwise (and with the trout being independent of the salmon). When ms is increased from a value

smaller than 1 to a value larger than 1, all four eigenvalues m
1/4
s cross the unit circle simultaneously,114

and the fixed point becomes unstable. This degeneracy is lifted when the parameters ε1, b, and c are

made nonzero. As long as these parameters are not large, one can expect the four main eigenvalues116

to remain close to the real and imaginary axis, respectively, implying a (possibly damped) oscillation

with a period close to 4.118

The type of bifurcation that occurs when the fixed point becomes unstable depends on which eigenvalue

crosses first the unit circle as a control parameter is increased. In order to determine the type of the120

bifurcation, we evaluated the parameters of the matrix numerically from our computer simulations

of the time continuous model when going through the bifurcation (i. e., when K0 increases from122

6.4 to 7.5), and we calculated the eigenvalues λ of the matrix. Figure 4 shows that the bifurcation is

caused by a pair of complex conjugate eigenvalues crossing the unit circle, indicating a Neimark Sacker124

bifurcation (the discrete version of the Hopf bifurcation). Since the dominant eigenvalues (depicted

with the symbol +) are close to ±i, the period of the resulting oscillation is close to 4. In the linear,126

time discrete model (Eq. (4)), the bifurcation is mainly driven by the parameters ms and, to a minor

extent, a, which correspond to reproduction of the four-year old sockeyes and predation by the rainbow128

trouts, respectively. The fixed point becomes unstable when either of these parameters increases.
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Figure 4: Eigenvalues of the matrix from Eq. (4), as obtained from a linear stability analysis of the
time-continuous model. K0 increases from 6.4 to 7.5 as the eigenvalues move outwards. The zoom shows that the
eigenvalues close to the imaginary axis (+) are the first ones to cross the unit cycle.

Now, it is known from the theory of bifurcations that if the period at such a bifurcation is close to130

4, there occurs a strong resonance, which means that the period becomes locked exactly at the value

4 not far beyond the bifurcation point. In contrast to conventional mode locking that gives rise to132

Arnold tongues, a strong resonance is due to nonlinearities that are of the same order as the leading

nonlinearity (which ensures the stability of the quasiperiodic orbit in the first place), and frequency134

locking therefore occurs over a much wider range of parameters [29].

The two complex conjugate eigenvalues are the first ones to cross the unit circle when a and ε1 are136
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small non-negative numbers and when mp is well below 1. Since ε1, b, and c are small compared to

ms, the period of the resulting oscillation remains close to 4, and the locking at period 4 therefore138

occurs not far beyond the bifurcation. When these conditions are not met, the unit circle is typically

first crossed at -1, and a period-doubling (or flip) bifurcation occurs.140

4. Discussion

The four-year oscillations of sockeye salmon in the Fraser River are a typical example of single-142

generation cycles (as opposed to predator-prey cycles [10]), a phenomenon that has also been exten-

sively studied in the context of, e.g., host-parasitoid [30] or daphnia-zooplankton [31] systems. In the144

latter case, individuals of different age or size of a consumer species directly compete with each other

for a resource, while the biological situation in the present study is somewhat different: The salmon146

fry of different brood lines do not compete with one another directly, since they populate the rearing

lakes at distinct, non-overlapping times. The interaction between the brood lines is mediated by the148

long-living predators, which have a net effect on the salmon that is similar to competition (apparent

competition). In contrast to other models that produce single-generation cycles, the cycle period 4150

observed in our system is not identical to the mean generation time, which is larger than 4 years, and

not all salmon mature and reproduce at the same age. The locking of the period at 4 is due to a152

strong resonance, a phenomenon which plays no role in the cited models.

The three-species model analysed in this study is in principle also capable of showing conventional154

predator-prey cycles. If the parameters were chosen such that the complex conjugate pair of eigen-

values of the matrix in Eq. (4) that is close to the real axis at +1 is the first to cross the unit circle,156

oscillations with a period much larger than four years occur and the year-to-year variation between

brood lines is rather small (results not shown). However, this type of oscillations is not seen in the158

sockeye populations rearing in the Fraser River basin.

The considerations in the previous section lead to two basic conditions under which strong resonance160

and thus period-four generation cycles can be observed: First, an increase in the number of spawning

salmon must lead to a sufficiently strong increase in this number four years later (i.e. ms must be162

large enough). If the number of fry migrating to the ocean is dominated by other factors, such as a

strongly limited carrying capacity for the fry, the population will be at a fixed point rather than on164

the oscillating side of the bifurcation. Second, the four salmon lines must be coupled in order for the

Neimark Sacker bifurcation to occur, rather than a period doubling bifurcation. In our model, this166

coupling is due to a fraction of sockeye returning at age 5 instead of age 4, and, more importantly,

due to the predator being sufficiently strongly coupled to sockeye dynamics.168

Previous studies of salmon dynamics, used in salmon management, are based on the Ricker model

[7, 24] or the Larkin model [14, 32, 33]. Because both models have a strongly limited carrying capacity170

for the fry, and because they do not include explicitly the predator dynamics, the only bifurcation

occurring in those models is the flip bifurcation. Building on both modelling approaches, Myers et al.172

[13] have demonstrated that an unstable (decaying) period-4 oscillation can be excited by stochastic

driving. However, it remains unclear over how long the oscillations can be maintained in that study174

without a change in the phase. Furthermore, that stochastic model produces only episodically the
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typical sequence of a dominant, a subdominant and two weak years described in section 2 and seen176

in our simulations, Fig. 2).

In principle, the coupling between the four salmon lines can also occur through the food of the sockeye178

fry. However, there is no empirical evidence that there is a negative effect of a strong sockeye year

on the daphnia population in the following year that limits the growth of the sockeye fry in that year180

[16].

The two conditions for a strong resonance of period 4 fit together with the empirical observation that182

it occurs only in large oligotrophic lakes, such as those of the Fraser River basin. The smaller and

ultra-oligotrophic lakes in the outer coast regions of British Columbia do not show these oscillations.184

Their nutrient content is neither large enough to raise large fry numbers, nor to allow for salmon

predators to become strong. On the other hand, cyclic dominance cannot be expected in nutrient-186

rich lakes, because the spawning adults would not be an important nutrient input, and because the

coupling to the predator would not be strong enough in a situation where there were more predator188

species and more prey species for these predators.

Since there are large fluctuations in the proportion of fry that survive to return to their nursery lake,190

we included noise in the matching condition for the sockeyes, Eq. (2), in order to determine with

how much noise superimposed on the deterministic dynamics the period-4 oscillation can persist. Fig.192

2b shows a data series generated with 50 percent noise in ocean survivability superimposed to the

deterministic dynamics. The oscillation is still clearly visible, although the system has a phase shift194

every 300 years on average. With less noise, the phase shift occurs less often, and with 100 percent

noise, the cyclic dominance vanishes in our simulations. When a large perturbation acts only for a196

limited time, the oscillation quickly recovers afterwards. In fact, the recovery following the blocking

of the Fraser River migration routes early in the last century, can be seen in the non-dominant brood198

lines of the Shuswap stock in Fig. 1 and in the data of some of the stocks presented in the Appendix.

Unfortunately, the year 2009 has seen another large perturbation, with most Fraser sockeye expected200

to return that year not surviving in the ocean, so that the expected strong escapement did not occur.

The age composition of sockeye stocks was also found to strongly influence the potential of the system202

to show a strong resonance. The fraction of adult sockeyes that returns at the age of 5 years instead

of 4 years, ε, was set to 0.1 in the simulations and we could show that the resonance appears for204

0 < ε ≤ 0.3, but for very small values of ε (< 0.02) the non-dominant lines disappear completely

with increasing K0. The resonance condition was best met at ε ≈ 0.2, where the resonance occurred206

nearly directly after the Neimark Sacker bifurcation. The parameter ε is also measured in the real

populations [34]. For the sockeye salmon populations of the Fraser River it is approximately 0.08,208

while for the less productive outer coast lakes of British Columbia (where cyclic dominance is not

observed) it is between 0.56 and 0.76.210

Some of the sockeye populations of the Bristol Bay area (Alaska), most notably the Kvichak River

stocks, also exhibit strong oscillations [35, 36] despite a broader distribution of the age at spawning212

than in the Fraser River stocks [37, 38]. However, the oscillations are not as regular, with maxima of

the populations occurring every fourth or fifth year. This is consistent with our model, as it indicates214

10



a quasiperiodic oscillation rather than a fixed oscillation period associated with a strong resonance.

Our results do not rule out additional mechanisms such as depensatory fishing [15] or genetic effects216

[17], which would reduce the population sizes of weak lines to values smaller than those resulting from

our model. However, these additional assumptions are not needed to explain the occurrence of cyclic218

dominance in the first place.
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Appendix: Escapement data for sockeye stocks showing cyclic dominance

Many spawning stocks of sockeye salmon in the upper Fraser River basin are not stationary but have312

been dramatically increasing in size over the last decades (e.g. Figure A1 a, b, and d), following a

massive disturbance of the stocks at the beginning of the 20th century. Nevertheless, the oscillatory314

pattern has clearly emerged again.

In some stocks (most notably the Bowron Lake stock, Figure A1 c), cyclic dominance is observed only316

episodically. This dynamical pattern may appear when the system is close to the bifurcation point.

The sockeye salmon stock of Seton Lake (Figure A1 e) also displayed cyclic dominance, but for nearly318

two decades (five cycles), the dominant line is followed by the weakest line instead of the sub-dominant

line. In this stock, cyclic domaince broke down in the early 1990’s.320
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Figure A1: Escapement data of for sockeye spawing stocks in the Fraser River basin. a: Quesnel Lake, b: Stuart Lake,
c: Bowron Lake, d: Seton Lake, e: Chilko Lake.
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