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Abstract

The present work deals with a Gompertz-type diffusion process, which includes in
the drift term a time-dependent function C(t) representing the effect of a therapy
able to modify the dynamics of the underlying process. However, in experimental
studies is not immediate to deduce the functional form of C(t) from a treatment pro-
tocol. So a statistical approach is proposed in order to estimate this function, when
a control group and one or more treated groups are observed. In order to validate
the proposed strategy a simulation study for several interesting functional forms of
C(t) has been carried out. Finally, an application to infer the net effect of cisplatine
and doxorubicin+ cyclophosphamide in actual murine models is presented.

Key words: Gompertz diffusion process; Therapy; Tumor growth.

1 Introduction

Models used to describe population growth currently play a relevant role in
several fields such as economy, biology (evolution, demography, epidemiology,
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...), medicine, or ecology. In particular, the Gompertz curve seems particularly
apt to capture the main features of several growth phenomena where resources
are limited. This curve is associated with processes in which a slow initial
growth is followed by faster growth and then by another period in which the
limiting size, or limitation imposed by resources, is reached.

Traditionally, Gompertz-type models are solutions of certain ordinary differ-
ential equations. In this sense, they are deterministic, and do not take into
account fluctuations or disturbances usually associated with the dynamics
of real systems. Such fluctuations can be originated by a variety of factors,
usually non-measurable or unknown. In order to include such environmental
fluctuations in the model, the notion of “growth in random environment” was
formulated (see, for instance, [12] and references therein) substituting the in-
trinsic fertility in the growth equation with a normal stochastic process whose
mean is taken as representative of population fertility. Thus, growth is de-
scribed by means of a stochastic differential equation (SDE) obtained from
the deterministic model including a noise term in the associated ordinary dif-
ferential equation. The resulting model is a process that can be treated with
the stochastic methods of the diffusion equations (Lande et al. [8] popularized
this methods for biologists).

In this context, Ricciardi et al. [13] used a homogeneous diffusion model as-
sociated to the Gompertz curve to model population growth and neuronal
activity. Later, Gutiérrez et al. [6] introduced a non-homogeneous Gompertz-
type diffusion process in order to include some exogenous factors. The main
difference between the two models is the limit value of the process: in the for-
mer this value is independent on the initial distribution, whereas in the second
one a dependence on this distribution exists. Such kind of dependence can be
observed in some real contexts in which phenomena exhibit Gompertz-type
growth and several sample-paths are available, each with a common growth
pattern but with different initial values and a different limit value. This is
the case, for example, of the dynamics of growth of individuals in the same
species. It must be pointed out that the methodology used in Gutiérrez et
al. [6] can be extended to other contexts in order to model several modes of
population growth (see, for instance, Roman et al. [14]).

Regarding the use of this process in medicine, many of the models proposed
in the literature to describe the dynamics of tumor growth are based on the
Gompertz growth. In the 1960s, Laird [7] successfully used the Gompertz curve
for the first time to fit data in tumor dynamics. Indeed, tumors are cellular
populations growing in a confined space where the availability of nutrients is
limited. In this context, Gompertzian-type models appear to be particularly
consistent with the evidence of tumor growth (Sachs et al. [15], de Vladar and
Gonzalez [4], Tabatai et al. [16], Castorina and Zappalà [3]). On the other side,
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the abovementioned Gompertz diffusion process, due to be time homogeneous,
can be unsatisfactory for the purpose of modeling the effects of an antitumoral
treatment in such kind of dynamics. Such treatments, usually dependent on
time, become suitable exogenous factors able to modify the growth of tumoral
cells in the context of modeling.

This problem was studied by Albano and Giorno [1] by considering a homo-
geneous diffusion model described by the following SDE:

dX(t) = [αX(t)− βX(t) logX(t)] dt+ σX(t)dW (t)

in order to model the dynamics of an untreated tumor population X(t). Here,
α, β and σ are positive constants representing the growth, death rates and the
width of random fluctuations, respectively, and W (t) is a standard Brownian
motion. Moreover, to include the effect of an antitumoral treatment, they
introduced an exogenous term in the drift representing deterministic tumor
regression rate due to the therapy. This term was modeled by means of a
time-dependent function C, leading to the equation:

dXC(t) =
[
(α− C(t))XC(t)− βXC(t) logXC(t)

]
dt+ σXC(t)dW (t). (1)

This modified process was used in order to describe the evolution of tumoral
cells in a parathyroid tumor by considering that the process is limited by
two absorbing boundaries representing healing threshold and patient death
(carrying capacity), respectively. The first exit time problem was analyzed for
the process inside the boundary-restricted region by introducing a constant
therapy, i.e. C(t) = C as well as a logarithmic one, i.e. C(t) = C0 log(e + δt).

Recently, Lo [9] generalized the model above in order to include both cell
fission and mortality rates, and later, on the basis of this model, proposed
another one in which the size of tumor cells is bounded (Lo [10]). In both
cases the introduced rates are considered to be known.

It must be pointed out that in [1] the functional form of the therapy effect is
assumed as known, as well as in the already mentioned research by Lo. Never-
theless, it seems reasonable to assume that in the first stages of a new medical
treatment, the function C will be unknown; indeed, in experimental studies is
not immediate to deduce the functional form of C(t) from a treatment proto-
col. On the other hand, knowledge of such functional form is fundamental since
it allows to introduce an external control to the system and to explain how
the therapy acts. Moreover, the study of some problems related to the pro-
cess (for example the first-passage-time) requires the functional form of C(t).
For these reasons, we provide a procedure for estimating the function C. The
idea is to take the model X(t) (homogeneous process) as a starting point and
then to use the information provided by individuals in the treated group to

3



try approximate the function C. More precisely, the control group is assumed
to be modeled by the homogeneous process X(t), whereas the treated groups
are modeled by means of the non-homogeneous one, i.e. XC(t). In this way,
parameters of the homogeneous process, i.e. α, β and σ2, can be estimated
by using trajectories of the control group and then, in a second step, C(t)
is estimated by the trajectories of the treated groups and suitable relations
between the two models.

In section 2 we will deal with the non-homogeneous model, showing the dis-
tribution of the process as well as some interesting features that will be used
later. Section 3 shows the strategy proposed in order to estimate function C,
representing the therapy. To this end, the estimation of the parameters for the
model associated to the control group is discussed, and some relations linking
the two processes are shown. Section 4 discusses simulation results for differ-
ent choices of the functional form of C(t). Finally, in Section 5 an application
to breast cancer in order to study the effect of two types of chemotherapy,
concretely cisplatine and doxorubicin+cyclophosphamide, in actual murine
models is presented.

2 The model

Let {XC(t); t0 ≤ t ≤ T} be a diffusion process taking values on R
+ and with

infinitesimal mean and variance

AC
1 (x, t) = [α− C(t)]x− βx log x

AC
2 (x, t) = σ2x2,

(2)

where C is a continuous function in [t0, T ] and α, β and σ are positive con-
stants.

This process was introduced by Albano and Giorno [1] and studied from a
transformation that leads to an Ornstein Uhlenbeck diffusion process. Now
we present a general study of the process. Firstly, the distribution is obtained
from the typical approaches: Kolmogorov’s partial differential equations and
SDE’s. Secondly some of the main characteristics of the process, concretely
the mean, mode and quantile functions, are obtained. Finally, some relations
between the processes X(t) andXC(t) are discussed in order to fit the function
C from real data.
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2.1 Distribution of the process

In this section we will present the distribution of the process {XC(t); t0 ≤ t ≤
T} by means of the two approaches mentioned above. For both cases, finite
dimensional distributions (for tumoral growth, the distribution of tumor size
at all times) will be calculated.

• Distribution of the process from stochastic differential equations

(see Appendix A for details)
The solution to Ito’s SDE (1) with initial condition XC(t0) = x0, being

x0 a positive random variable independent of W (t), is

XC(t) = exp
(
σ e−βt Z(t)

)
(3)

where

Z(t) = z0 +

(
α− σ2

2

)
eβ t − eβ t0

σβ
− 1

σ

t∫
t0

C(s)eβsds+

t∫
t0

eβs dW (s),

with z0 =
(
eβt0 log x0

)
/σ.

The finite dimensional distributions of the process XC(t) are lognormal
Λn(η;Δ), where the components of the vector η and matrix Δ are

ηi = σ e−βti mZ(ti) and δij = σ2 e−β(ti+tj)RZ(ti, tj),

respectively, where

mZ(t) = E[z0] +

(
α− σ2

2

)
eβ t − eβ t0

σβ
− 1

σ

t∫
t0

C(s)eβsds

and

RZ(t, s) = V ar[z0] +
e2β (t∧s) − e2β t0

2β
,

with t ∧ s = min(t, s).
The transition probability density function (p.d.f.) can then be calculated

from the two-dimensional distributions.
• Distribution of the process from partial differential equations.

The solution to the Fokker-Plank and Kolmogorov equations, with initial
conditions lim

t↓τ
fC(x, t|y, τ) = δ(x− y) and lim

τ↑t
fC(x, t|y, τ) = δ(x− y) (see

Appendix B for details) provides, for t > τ ,

fC(x, t|y, τ)= 1

x
√
2πσ2

XC (t|τ)
exp

(
− [log x−MXC (t| log y, τ)]2

2σ2
XC (t|τ)

)
, (4)
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where

MXC (t|y, τ) = e−β(t−τ) y +

(
α− σ2

2

)
1− e−β (t−τ)

β
− e−β t

t∫
τ

C(θ) eβθ dθ

and

σ2
XC (t|τ) = σ2

2β

(
1− e−2β (t−τ)

)
,

corresponding to a lognormal distribution.
Since XC(t) is Markovian, its finite-dimensional distributions depend on

the initial distribution and on the transition p.d.f.. In our case, the transi-
tion p.d.f. is lognormal, given in (4), so we only need to specify the initial
distribution. Accordingly, we consider two initial distributions: a degener-
ate one in x0 > 0, i.e. P [XC(t0) = x0] = 1, and a lognormal one, i.e.
XC(t0) ∼ Λ1(μ0; σ

2
0). These choices ensure that finite dimensional distribu-

tions are lognormal (in accordance with what was established in the previous
approach for the distribution of the process). It must be pointed out that the
first case is a particular case of the second one with σ0 = 0 and μ0 = log x0.
Moreover, in real cases the degenerate initial distribution is able to describe
situations in which only one sample path is available whereas the lognormal
case requires several trajectories.

In particular, since [XC(t)|XC(t0) = x0] ∼ Λ1 (MXC (t| log x0, t0) ; σ2
XC (t|t0)),

taking XC(t0) ∼ Λ1(μ0; σ
2
0), it is possible to calculate the joint distribution

of (XC(t0), X
C(t))′, t > t0, resulting in a two-dimensional lognormal distri-

bution Λ2(μt0,t; Σt0,t) with

μt0,t =

⎛⎜⎝ μ0

MXC (t|μ0, t0)

⎞⎟⎠ and Σt0,t = At0,tΓt0,tAt0,t

being

At0,t = σ

⎛⎜⎝ e−βt0 0

0 e−βt

⎞⎟⎠ and Γt0,t =
σ2
0 e

2βt0

σ2

⎛⎜⎝ 1 1
1 1

⎞⎟⎠+ e2β t

σ2

⎛⎜⎝ 0 0

0 σ2
XC (t|t0)

⎞⎟⎠ .

Thus,XC(t) ∼ Λ1 (MXC (t|μ0, t0), Bt + σ2
XC (t|t0)), where Bt = σ2

0e
−2β(t−t0),

t > t0.
In the same way, the distribution of (XC(t), XC(s)), 0 ≤ t0 < s < t, and

the finite dimensional distributions ofXC(t) can be obtained using Markov’s
property.
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2.2 Some characteristics

Some of the main characteristics of the growth can be obtained through the
unidimensional distributions of the process. We will now proceed to describe
some of them, focusing on three of the most commonly employed in practice, in
particular for fitting and forecasting purposes: the n-th moment, the mode and
the quantile functions (as well as their conditional versions), whose expressions
can be formulated jointly for the two aforementioned initial distributions.

Assuming XC(t0) ∼ Λ1(μ0; σ
2
0) and taking into account the distributions of

XC(t) and XC(t)|XC(τ) = y (t > τ), the mean, mode and quantile functions
can be jointly expressed in the form

Gλ
XC (t|y, τ) = exp

(
λ1MXC (t|y, τ) + λ2

(
λ3Bt + σ2

XC (t|τ)
)λ4

)
, (5)

with λ = (λ1, λ2, λ3, λ4)
′. Table 1 summarizes the different functions according

to the values of λ, τ and y, where zα is the α-quantile of a standard normal
distribution.

Table 1
Values of λ, t, τ and y used to obtain the n-th moment, the mode and quantile
functions from Gλ

XC (t|y, τ).
Function Expression y τ λ

n-th moment E[(XC(t))n] μ0 t0 (n, n2/2, 1, 1)′

n-th conditional moment E[(XC(t))n|XC(s) = xs] log xs s (n, n2/2, 0, 1)′

mode Mode[XC (t)] μ0 t0 (1,−1, 1, 1)′

conditional mode Mode[XC (t)|XC(s) = xs] log xs s (1,−1, 0, 1)′

α-quantile Cα[X
C(t)] μ0 t0 (1, zα, 1, 1/2)

′

α- conditional quantile Cα[X
C(t)|XC(s) = xs] log xs s (1, zα, 0, 1/2)

′

3 Fitting the effect of the therapy

The aim of this section is to approximate function C included in the infinites-
imal mean of the Gompertz diffusion process (2).

Experimental designs to test the effectiveness of a therapy treatment include
untreated (control) and treated groups, and the progress of the tumor size is
observed in both.
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Clearly, the growth of the control group is modeled by the process without
including the function C. The idea is to take this model as a starting point and
then use the information provided by individuals in the treated group to try
and approximate the function C. More precisely, the proposed methodology for
estimating C is based on a two-step procedure: first, to develop the inference on
the original Gompertz diffusion process and second, to establish a relationship
between the characteristics of the two processes (with and without the effect
of the therapy).

3.1 Estimation of the parameters of the process without the effect of a therapy

We will consider the Gompertz diffusion process {X(t); t0 ≤ t ≤ T}, taking
values on R

+, with infinitesimal moments

A1(x, t) = αx− βx log x

A2(x, t) = σ2x2,
(6)

whose transition p.d.f. can be obtained from (4) by choosing C(t) = 0.

By denoting

a = α− σ2

2
, Tβ =

1− e−β(t−τ)√
β (1− e−2β (t−τ))

and considering the transformation in the variable XC(t)|XC(τ) = y (t > τ),

xβ =

√
β
[
log x− e−β(t−τ) log y

]
√
1− e−2β(t−τ)

,

the transition p.d.f. can be expressed as

f(xβ, t|y, τ) = 1√
πσ2

exp

(
− [xβ − aTβ]

2

σ2

)
. (7)

Let us consider a discrete sampling of the process, based on d sample paths,
for times tij , (i = 1, . . . , d, j = 1, . . . , ni) with ti1 = t1, i = 1, . . . , d. That
is, we observe the variables X(tij), the values of which, {xij}i=1,...,d;j=1,...,ni

,
constitute the sample for the inferential study.

The likelihood function depends on the choice of the initial distribution. When

P [X(t1) = x1] = 1, this function is Lxij
(a, β, σ2) =

d∏
i=1

ni∏
j=2

f(xij , tij|xi,j−1, ti,j−1),
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where a, β and σ2 are the parameters to be estimated. If X(t1) ∼ Λ1(μ1, σ
2
1)

the likelihood is Lxij
(μ1, σ

2
1, a, β, σ

2) =
d∏

i=1

fX(ti1)(xi1)
ni∏
j=2

f(xij , tij|xi,j−1, ti,j−1).

In the second case, there are two additional parameters that must be included
in the estimation procedure. Nevertheless, it can be immediately confirmed
that the estimations of μ1 and σ

2
1 depend only on the initial values and do

not influence the estimation of the other parameters. Hence, the maximum
likelihood (ML) estimators of a, β and σ2 are the same in both cases.

Henceforth, we will consider the general case in which the initial distribution
is lognormal. In order to simplify calculations, we transform the xij values by
means of v1j = x1j and

vijβ =

√
β
[
log xij − e−β(tij−ti,j−1) log xi,j−1

]
√
1− e−2β(tij−ti,j−1)

, i = 1, . . . , d; j = 1, . . . , ni.

From (7), and denoting n =
d∑

i=1

ni and vβ, the vector containing the v
ij
β values,

the log-likelihood function for the transformed sample is

logL
vβ
(μ1, σ

2
1, a, β, σ

2) =−n
2
log(2π)− d

2
log σ2

1 −
n− d

2
log σ2

− 1

σ2
1

d∑
i=1

[
vi1 − μ1

]2 − 1

σ2

d∑
i=1

ni∑
j=2

[
vijβ − T ij

β

]2
from which the ML estimations of μ1 and σ

2
1 are

μ̂1 =
1

d

d∑
i=1

log xi1, σ̂1
2 =

1

d

d∑
i=1

(log xi1 − μ̂1)
2.

Deriving the log-likelihood function with respect to a, σ2 and β, and making
the derivatives equal to zero, we obtain, respectively, the following system of
equations:

d∑
i=1

ni∑
j=2

[
vijβ − aT ij

β

]
vijβ = 0, (8)

d∑
i=1

ni∑
j=2

[
vijβ − aT ij

β

]2
=
σ2(n− d)

2
, (9)
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d∑
i=1

ni∑
j=2

[
vijβ − aT ij

β

] d
dβ

{
vijβ − aT ij

β

}
= 0. (10)

Denoting

X1,β =
d∑

i=1

ni∑
j=2

vijβ T
ij
β , X2,β =

d∑
i=1

ni∑
j=2

(
T ij
β

)2
, X3,β =

d∑
i=1

ni∑
j=2

(
vijβ
)2
,

Y1,β =
d∑

i=1

ni∑
j=2

vijβ
d

dβ
vijβ , Y2,β =

d∑
i=1

ni∑
j=2

vijβ
d

dβ
T ij
β ,

Y3,β =
d∑

i=1

ni∑
j=2

T ij
β

d

dβ
vijβ , Y4,β =

d∑
i=1

ni∑
j=2

T ij
β

d

dβ
T ij
β ,

and, after some algebra, from equations (8) and (9), we obtain

aβ =
X1,β

X2,β

and σ2
β =

2

n− d

[
X3,β −

X2
1,β

X2,β

]

whereas (10) becomes

Y1,β − aβY2,β − aβY3,β + a2βY4,β = 0.

This last equation does not have an explicit solution, so the estimation of
β can be found by numerical methods. Estimations of a and σ2 are then
found by â = a

β̂
and σ̂2 = σ2

β̂
, respectively, whereas the ML estimation of α is

α̂ = â+σ̂2/2. Finally, the ML estimation of any parametric function expressed
in (5) can be obtained by applying Zehna’s theorem.

3.2 Relationship between the main characteristics of the processes

Since the process in absence of therapy is a particular case of (2) for C(t) = 0,
we can find the relations between the two processes. On one hand, and using
(3), the trajectories of the processes are related by

XC(t) = X(t) exp

⎛⎝− t∫
t0

C(s) e−β(t−s) ds

⎞⎠ .
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On the other hand, denoting by Gλ
X(t|y, τ) the function defined in (5) for

process X(t), and noting that

MX(t|y, τ) =MXC (t|y, τ)− e−β t

t∫
τ

C(θ) eβθ dθ and σ2
X(t|τ) = σ2

XC (t|τ),

we obtain the following relation

Gλ
XC
(t|y, τ)

Gλ
X(t|y, τ)

=
exp
(
λ1MXC

(t|y, τ) + λ2 (λ3Bt + σ2
X(t|τ))λ4

)
exp
(
λ1MX(t|y, τ) + λ2 (λ3Bt + σ2

X(t|τ))λ4

)
= exp

⎛⎝−λ1 e−βt t∫
τ

C(θ) eβθ dθ

⎞⎠ .

In particular, taking λ = (1, 1/2, 1, 1)′, t = t0 and y = μ0, the mean functions
of both processes verify

E
[
XC(t)

]
E [X(t)]

= exp

⎛⎝− e−βt t∫
t0

C(θ) eβθ dθ

⎞⎠

from which

C(t) = − e−βt d

dt

⎧⎨⎩eβt log
⎛⎝E

[
XC(t)

]
E [X(t)]

⎞⎠⎫⎬⎭ . (11)

3.3 Proposed methodology

The data required for the proposed strategy are the values of tumor size on d1
individuals of a non treated (control) group (xij , i = 1, . . . , d1, j = 1, . . . , n)
and d2 individuals of a treated group (xCij , i = 1, . . . , d2, j = 1, . . . , n), ob-
served in the same time instants t1, . . . , tn.

By using equation (11), we are able to find an approximation of the therapy
function C, and thus of the modified growth rate of the process. We are then
able to implement the following procedure:

• From the data of the control group, estimate the parameters of process
X(t), i.e. without the effect of a therapy. From this first step, we obtain ML
estimations α̂, β̂ and σ̂2.
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• Calling xj and xCj the mean tumor size at time tj in the control group

and in the treated group respectively (that is, xj =
∑d1

i=1 xij/d1 and x
C
j =∑d2

i=1 x
C
ij/d2 ), obtain function m(t) by the interpolation of values

mj = eβ̂tj log

(
xCj
xj

)
. (12)

Note that if t1 = t0, the starting time of therapy, the distribution of X(t1)
and XC(t1) must match, so x1 and x

C
1 should be approximately equal and

thus should be considered for the procedure leading to C(t1) = 0.
• Finally, consider the following function as an approximation of C(t):

Ĉ(t) = −m′(t) e−β̂t . (13)

We point out that the proposed methodology consists of a two-step proce-
dure: (i) estimation of parameters α, β and σ for the control process; (ii)
interpolation of the points mi in (12). Hence, the consistence of the proposed
estimator (13) derives from the consistence of the maximum likelihood esti-
mators in (i) and from the uniform convergence of the interpolation method
in (ii) (for example cubic spline interpolation). So, when the number of data
points increases the proposed estimate becomes better and better.

4 Simulation study

In order to validate the strategy proposed above, a simulation study has been
carried out for several interesting functional forms of function C. Specifically,
we have considered the case of constant, linear and logarithmic functions.

In all cases, for the process modeling the control group we have chosen the
following values for the parameters: α = 0.3, β = 0.1 and σ = 0.01, so the
original homogeneous diffusion model has infinitesimal moments

A1(x) = 0.3x− 0.1x log x

A2(x) = 0.012x2.
(14)

For this model, 100 sample paths (see Figure 1) have been simulated in the
[0, 50] time interval, taking ti = i − 1, i = 1, . . . , 51, and considering a log-
normal initial distribution Λ1[1; 0.2]. The estimation procedure developed in
Section 3.1 provides

α̂ = 0.299239, β̂ = 0.0997214, σ̂ = .00991149.

12
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Figure 1. Simulated sample paths of the process X(t) with α = 0.3, β = 0.1,
σ = 0.01 and initial distribution Λ1[1; 0.2]

In the following subsections we will consider the three types of functions men-
tioned before. In each case, the mean function of the involved processes is
plotted for different C(t) functions in order to better understand the effect of
their introduction in the original model. Then, and for a particular C(t) func-
tion, 100 sample paths have been simulated for the modified process, taking
the same initial distribution and time instants as those chosen for the control
group. Finally, the estimation procedure for the therapy introduced in sec-
tion 3.3. is applied, showing its validity in this context. Moreover, a study of
how the number of data points (the number of sample paths and the number
of data in each of them) affects to the mean relative absolute error of the
estimated therapies has been performed.

4.1 Constant function C(t) = C

Choosing C(t) = C, process XC(t) in (2) is of the same type of the original
one, with a different value of the growth rate α, i.e. α→ α−C. Thus, studying
this model is equivalent to evaluate the influence of a change in the parameter
α of the original model (6). Figure 2 shows the influence of a constant function
in the mean function of XC(t).

In Figure 3, 100 simulated sample paths of the modified version of process
(14) are plotted, choosing C(t) = 0.03, ∀t ≥ t1 = 0.

Using the proposed methodology, the functional form of function C(t) has
been fitted. In Figures 4a and 4b the approximation of C(t), i.e. Ĉ(t), and
the difference C(t) − Ĉ(t) are plotted, showing the proposed procedure is
appropriate.

Table 2 shows the values (expressed as percentages) of the mean relative ab-

13
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Figure 2. Mean function for processes X(t) (upper line) and XC(t) with α = 0.3,
β = 0.1, σ = 0.01 and C(t) = C and C from 0.01 to 0.1 by 0.01.
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Figure 3. 100 simulated sample paths of XC(t) with α = 0.3, β = 0.1, σ = 0.01,
initial distribution Λ1[1; 0.2] and C(t) = 0.03.

solute error of the estimated therapy, i.e. the mean of the quotients of the
absolute differences between estimated and actual values of the therapy and
the actual ones, for several values of number of data points (number of sample
paths and number of data in each of them).

Table 2
Mean relative absolute errors (expressed as percentages) for the estimation of the
constant therapy C = 0.03.

Number of sample paths

Number of data in each path 1 5 10 25 50 100

5 22.51 22.14 22.08 22.03 21.96 21.90

7 5.74 5.13 5.06 5.06 5.05 5.05

10 2.67 1.65 1.49 1.37 1.36 1.35

25 1.83 0.85 0.59 0.39 0.28 0.21

50 1.83 0.85 0.59 0.37 0.28 0.21
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Figure 4. a) Fitted C(t) function. b) Difference between approximate and real C(t)
functions (in the case of a constant therapy).

Note that the errors decrease with increasing the number of sample paths and
the number of data in each one of them, being more marked the improvement
in the latter case for fixed values of the number of sample paths. In addition,
the values of errors are acceptable for a number of data not too high even in
the case of a single sample path.

4.2 Linear function C(t) = Ct

We will focus on the case C(t) = Ct since the effect of the independent term
has been studied in the previous subsection. Figure 5 shows the influence of this
function in the mean function of XC(t), whereas Figure 6 exhibits 100 sample
paths of the modified version of process (14) choosing C(t) = 0.002 t, ∀t ≥
t1 = 0.

Using the proposed procedure, C(t) has been fitted. Figures 7a and 7b show
Ĉ(t) and the difference C(t)− Ĉ(t).

Table 3 shows the values (expressed as percentages) of the mean relative ab-
solute error of the estimated therapy for several values of number of data
points (number of sample paths and number of data in each of them). The
interpretation is analogous to that of Table 2.
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Figure 5. Mean function of X(t) (upper line) and XC(t) with α = 0.3, β = 0.1,
σ = 0.01 and C(t) = Ct, taking C from 0.001 to 0.005 by 0.0005.
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Figure 6. 100 simulated sample paths of XC(t) with α = 0.3, β = 0.1, σ = 0.01,
initial distribution Λ1[1; 0.2] and C(t) = 0.002 t.

Table 3
Mean relative absolute errors (expressed as percentages) for the estimation of the
linear therapy C(t) = 0.002t.

Number of sample paths

Number of data in each path 1 5 10 25 50 100

5 18.61 18.40 18.27 18.27 18.26 18.26

7 7.03 6.87 6.84 6.83 6.83 6.83

10 2.98 2.69 2.64 2.64 2.64 2.64

25 1.70 1.10 0.93 0.82 0.78 0.75

50 1.70 1.10 0.93 0.82 0.78 0.75

4.3 Logarithmic function C(t) = C0 log(e+Ct)

A logarithmic C(t) function was considered by Albano et al. [1] and de Vladar
et al. [5] in the study of antitumoral therapies since it seems that a logarithmic
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Figure 7. a) Fitted C(t) function. b) Difference between approximate and real C(t)
functions (in the case of a linear therapy).

therapy induces a reduction of tumor population larger than the one experi-
enced in a constant therapy and it is more tolerable than one that linearly
increases in time.

Figure 8 shows the influence of a logarithmic function in the mean function
of process XC(t).

With the aim of validating the proposed strategy, we have simulated 100 sam-
ple paths of the modified version of process (14), choosing C(t) = 0.03 log(e+0.2t),
∀t ≥ t1 = 0. The values of the parameters have been chosen arbitrarily but
so that the therapy is effective, i.e. the condition C0 > −βlog(x0) is verified.
Figure 9 shows the trajectories whereas Figures 10a and 10b show Ĉ(t) and
the difference C(t)− Ĉ(t).
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Figure 8. Mean function of X(t) (upper line) and XC(t) with α = 0.3, β = 0.1,
σ = 0.01 and C(t) = C0 log(e+Ct), taking C0 = 0.03 and C= 0.1, 0.2 and 0.25.
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Figure 9. 100 simulated sample paths of XC(t) with α = 0.3, β = 0.1, σ = 0.01,
initial distribution Λ1[1; 0.2] and C(t) = 0.03 log(e+0.2t).
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Figure 10. a) Fitted C(t) function. b) Difference between approximate and real C(t)
functions (in the case of a logarithmic therapy).

Table 4 shows the values (expressed as percentages) of the mean relative ab-
solute error of the estimated therapy for several values of number of data
points (number of sample paths and number of data in each of them). The
interpretation is analogous to Tables 2 and 3.

5 Application to real data of tumor growth

In order to study the effect of two types of chemotherapy in breast cancer
xenografts, we consider data about the growth of BC297MONp5 from three
experimental groups of 7, 8 and 8 mice, respectively. The first one was a
control group (untreated), whereas two treatments, Doxorubicin (a dose of
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Table 4
Mean relative absolute errors (expressed as percentages) for the estimation of the
logarithmic therapy C(t) = 0.003log(e + 0.2t).

Number of sample paths

Number of data in each path 1 5 10 25 50 100

5 49.01 47.87 47.87 47.62 47.59 47.57

7 3.70 3.39 3.33 3.33 3.33 3.33

10 3.44 2.74 2.57 2.55 2.53 2.51

25 1.70 0.85 0.61 0.42 0.34 0.28

50 1.66 0.76 0.57 0.40 0.29 0.24

2mg/Kg at 3-week intervals) + Cyclophosphamide (a dose of 100mg/Kg at
3-week intervals) and Cisplatin (a dose of 6mg/Kg at 3-week intervals) was
applied for the second and the third group, respectively.

Mice of the three groups were treated at days 1, 21 and 42 and the tumor
volume was measured at days 1, 7, 14, 21, 28, 35, 42 and 49. Subsequently,
the relative volume of tumor with respect to the initial volume was calculated.

Figure 11 shows the mean of the relative tumor volume for the three experi-
mental groups as a function of the days after starting the treatment.

0 10 20 30 40 50

0
5

10
15

20
25

30

Days after start of treatment

Re
lat

ive
 M

ea
n T

um
ou

r v
olu

me

Control group
Cisplatin treated group
Doxorubicin+Cyclophosphamide treated group

Figure 11. Tumor growth for the three experimental groups.

From the data of the control group we have estimated the parameters of the
homogeneous process, and obtained the following values

α̂ = 0.112784, β̂ = 0.0184158, σ̂ = 0.104842.

With these estimations, we have considered a process XC(t) for the two treat-
ments, and the functional forms of functions C(t) have been fitted by using
the proposed methodology. The approximate functions are shown in Figure
12.
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Figure 12. C(t) functions fitted for the two treated groups

Once the models XC(t) have been estimated, we have fitted the observed
data by using the mean function of the process (see figures 13a and 13b), the
conditional mean function (figures 14a and 14b) and the percentile functions
(figures 15a and 15b).
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Figure 13. Fit (by the mean function) for the group treated with (a) Cisplatin and
(b) Doxorubicin+Cyclophosphamide.

Once the therapies have been adjusted we can interpret their influence on tu-
mor growth and draw conclusions about the effectiveness of treatment. Recall
that the effect of therapy on the rate of tumor growth in an time instant t is
expressed in terms of

t∫
t0

C(θ)eβθdθ. (15)

As depicted in Figure 12, changes in C(t) determines the trend in tumor
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Figure 14. Fit (by the conditional mean function) for the group treated with (a)
Cisplatin and (b) Doxorubicin+Cyclophosphamide.
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Figure 15. Fit (by the percentile functions) for the group treated with (a) Cisplatin
and (b) Doxorubicin+Cyclophosphamide.

growth. When (15) is positive the rate of tumor growth is negatively affected
and viceversa.

Note that the C(t) patterns displayed by the two therapeutic schedules exam-
ined in this study are different. Cisplatin therapy seems to affect tumor growth
very rapidly with a peak of activity at about 7 days. After day 7 the efficacy of
cisplatin on tumor growth declines and the situation is reversed after 21 days,
at the time of a second application of the drug. A second peak of activity,
lower than the previous one, is found a week after treatment. Importantly af-
ter 30 days C(t) becomes negative, indicating the absence of therapeutic effect
of cisplatin at this period. In addition, between the days 32 and 46, where the
growth curves of the control group and that of the group treated with Cisplatin
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are practically parallel (similar growth rate), the C(·) function is negative, a
reason for which its global effect, in terms of its cumulative integral, vanishes.
The third application of cisplatin results at day 42 in a significant reduction of
tumor growth. The association of cyclophosmadide/doxorubucin reduces tu-
mor growth slower than cisplatin but it is more effective reaching a peak at 21
days. Importantly, the second administration of this therapeutic association
does not result in a C(t) increase and the inversion in the pattern of the curve
is only observed at about 36 days, two weeks after the second administration.
The same phenomenon seems to take place after the third administration of
drugs with a dramatic and rapid decrease in C(t). These results can explain
why cyclophosphamide/doxorubicin affect tumor growth rate only until day
42. After the third administration treated tumors display growth rate kinetics
similar to control untreated tumors.

The experimental data consists of tumor volume throughout the time. Changes
in tumor volume during treatments can be largely affected by the pharmacody-
namics and pharmacokinetics parameters of the drugs. It is therefore difficult
to atribute observed C(t) patterns to the availability of the drugs at the tumor
site, to tumor response itself or both. Moreover, tumors can become resistent
to the drugs after an initial response. The observed patterns of C(t) resulting
from the analyses suggest that the drug schedules applied to the mice, are
not optimal. This can be explained by potential differences in pharmacoki-
netic parameters beween humans and mice. It is worthy to point out that the
schedules used in the mouse experiments analyzed in this work were chosen by
mimicking the schedules applied to humans. Inferring C(t) for new drugs in
preclinical setting can be a valuable method to find the optimal administration
schedule without conducting complex pharmacokinetic studies.

6 Conclusions

In this paper, a modification of a Gompertz diffusion process is considered.
This modified process includes, in its infinitesimal mean a function of time C,
in order to model the effect of a therapy.

We propose a strategy that allows to approximate this function from data of
the evolution over time of the variable under study for a control group and
for one or more treated groups. For example, for the study of tumor growth,
from data on the evolution of tumor growth in individuals of a control group
and the individuals subjected to a chemotherapy treatment.

Our simulation studies show how the proposed strategy detects the functional
form of such function. In addition, an application has been made in order
to explain the behavior of two types of chemotherapy in breast cancer. This
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study has allowed us to interpret the influence of the function modeling the
therapy in the tumor growth rate. In future applications, the knowledge of
the functional form of this function should allow to know and to explain the
effectiveness of a treatment throughout time, and also to establish protocols
for the application of treatments if they do not exist, or to modify those
previously established.
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A Appendix A: Distribution of the process from stochastic differ-

ential equations

We consider Ito’s SDE (1) with initial condition XC(t0) = x0, being x0 a
positive random variable independent on W (t). Considering the analytical
properties of C(t), it follows (see, for example, Arnold [2]) that this equation
has an unique solution that will be the R+-valued diffusion process with initial
distribution x0 and infinitesimal moments given by (2).

By using the transformation Z(t) = eβt logXC(t)/σ, and by Ito’s lemma,
equation (1) becomes

dZ(t) =
eβt

σ

(
α− C(t)− σ2

2

)
dt + eβt dW (t)

Z(t0) = z0

whose solution is

Z(t) = z0 +

(
α− σ2

2

)
eβ t − eβ t0

σβ
− 1

σ

t∫
t0

C(s)eβsds+

t∫
t0

eβs dW (s),

with z0 =
(
eβt0 log x0

)
/σ.
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Furthermore, and according to Arnold [2], Z(t) is a Gaussian process if and
only if z0 is constant or normally distributed. In such case, the mean and
covariance function of Z(t) is given by

mZ(t) = E[z0] +

(
α− σ2

2

)
eβ t − eβ t0

σβ
− 1

σ

t∫
t0

C(s)eβsds

and

RZ(t, s) = V ar[z0] +
e2β (t∧s) − e2β t0

2β
,

respectively, where t∧s = min(t, s). Hence, the finite dimensional distributions
of process Z(t) are normal, that is, ∀n ∈ N

(Z(t1), Z(t2), . . . , Z(tn))
′ ∼ Nn(μ;Σ)

where the i-th component of the vector μ is mZ(ti), i = 1, . . . , n, whereas Σ
is a definite positive matrix with components RZ(ti, tj), i, j = 1, . . . , n.

Finally, the solution of (1) is

XC(t) = exp
(
σ e−βt Z(t)

)

and, therefore, the finite dimensional distributions of the process XC(t) are
lognormal Λn(η;Δ), where the components of the vector η and matrix Δ are

ηi = σ e−βti mZ(ti) and δij = σ2 e−β(ti+tj)RZ(ti, tj),

respectively. The transition probability density function (p.d.f.) can then be
calculated from the two-dimensional distributions.

B Appendix B: Transition p.d.f. through diffusions equations

The transition p.d.f. of XC(t), fC(x, t|y, τ), verifies the forward (or Fokker-
Planck) equation:

∂fC(x, t|y, τ)
∂t

=−∂[([α− C(t)]x− βx log x) fC(x, t|y, τ)]
∂x

+
σ2

2

∂2[x2fC(x, t|y, τ)]
∂x2

(B.1)

and the backward (or Kolmogorov) equation:
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0=
∂fC(x, t|y, τ)

∂τ
+ ([α− C(s)]y − βy log y)

∂fC(x, t|y, τ)
∂y

+
σ2

2
y2
∂2fC(x, t|y, τ)

∂y2
. (B.2)

Equations (B.1) and (B.2) verify the conditions for the existence and unique-
ness of the solution with respect to the initial conditions lim

t↓τ
fC(x, t|y, τ) =

δ(x− y) and lim
τ↑t

fC(x, t|y, τ) = δ(x− y), where δ(·) is the Dirac’s delta func-
tion. Observe that for this process the end points of the diffusion interval are
natural non-attracting boundaries.

In this case, the transition p.d.f. of XC(t) can be found by looking for a
transformation

t′ = φ(t)

x′ = ψ(x, t)

which changes Kolmogorov equation (B.2) into that of a standard Wiener
process. Indeed, infinitesimal moments (2) verify the conditions of Theorem 1
in Ricciardi [11], so such transformation exists. Specifically,

ψ(x, t) =
k
1/2
1

σ eβt0

(
eβt log x− eβt2 log z −

(
α− σ2

2

)
eβ t − eβ t2

β

+

t∫
t2

C(θ) eβθ dθ

⎞⎠+ k2

φ(t)=
k1
2β

(
e2β (t−t0) − e2β (t1−t0)

)
+ k3

where z ∈ R
+, ti > 0 and the ki’s are arbitrary constants with k1 > 0. In this

way, we obtain, for t > τ ,

fC(x, t|y, τ)= 1

x
√
2πσ2

XC (t|τ)
exp

(
− [log x−MXC (t| log y, τ)]2

2σ2
XC (t|τ)

)
,

where

MXC (t|y, τ) = e−β(t−τ) y +

(
α− σ2

2

)
1− e−β (t−τ)

β
− e−β t

t∫
τ

C(θ) eβθ dθ
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and

σ2
XC (t|τ) = σ2

2β

(
1− e−2β (t−τ)

)
,

corresponding to a lognormal distribution.
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