
HAL Id: hal-00682405
https://hal.science/hal-00682405

Submitted on 26 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Melanoblast proliferation dynamics during mouse
embryonic development: Modeling and validation

Bouchra Aylaj, Flavie Luciani, Veronique Delmas, Lionel Larue, Florian de
Vuyst

To cite this version:
Bouchra Aylaj, Flavie Luciani, Veronique Delmas, Lionel Larue, Florian de Vuyst. Melanoblast pro-
liferation dynamics during mouse embryonic development: Modeling and validation. Journal of The-
oretical Biology, 2011, 276 (1), pp.86. �10.1016/j.jtbi.2011.01.041�. �hal-00682405�

https://hal.science/hal-00682405
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

Melanoblast proliferation dynamics during mouse
embryonic development: Modeling and validation

Bouchra Aylaj, Flavie Luciani, Veronique Delmas,
Lionel Larue, Florian De Vuyst

PII: S0022-5193(11)00067-1
DOI: doi:10.1016/j.jtbi.2011.01.041
Reference: YJTBI6353

To appear in: Journal of Theoretical Biology

Received date: 28 February 2010
Revised date: 1 January 2011
Accepted date: 25 January 2011

Cite this article as:BouchraAylaj, FlavieLuciani,VeroniqueDelmas,LionelLarue andFlo-
rian DeVuyst,Melanoblast proliferation dynamics duringmouse embryonic development:
Modeling and validation, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2011.01.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2011.01.041


Melanoblast proliferation dynamics during mouse
embryonic development. Modeling and Validation

Bouchra Aylaja,∗, Flavie Lucianib, Veronique Delmasb, Lionel Larueb, Florian De
Vuysta,c,d
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Abstract

In this paper, we are looking for mathematical modeling of mouse embryonic melanoblast
proliferation dynamics, taking into account, the expression level of β-catenin. This pro-
tein plays an important role into the whole signal pathway process. Different assump-
tions on some unobservable features lead to different candidate models. From real
data measured, from biological experiments and from a priori biological knowledge,
it was able to validate or invalidate some of the candidate models. Data assimilation
and parameter identification allowed us to derive a mathematical model that is in very
good agreement with biological data. As a result, the produced model can give tracks
for biologists into their biological investigations and experimental evidence. Another
interest is the use of this model for robust hidden parameter identification like double
times or number of founder melanoblasts.
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Nomenclature

nd total number of melanoblasts in dermis

nd(t) total number of melanoblasts in dermis at time t

nd/s total number of melanoblasts in dermis per section

ne/s total number of melanoblasts in epidermis per section

ne total number of melanoblasts in epidermis

Φ flux of melanoblasts from dermis to epidermis

n = nd + ne total population of melanoblasts

yd = y = nd

nd+ne
fraction of melanoblasts in dermis

ye = 1− y = ne

nd+ne
fraction of melanoblasts in epidermis

κ(t) factor coefficient of the flux Φ at time t (κ(t) ≥ 0)

τd(t) doubling time in dermis at time t

τe(t) doubling time in epidermis at time t

μd(t) =
log(2)
τd(t) growth rate in dermis at time t

μe(t) =
log(2)
τe(t) growth rate in epidermis at time t

Nm number of embryonic day measurements

1. Introduction

Tumor progression is a multistep process in which genetic modification occur and
influence proliferation rates. The importance of examining the genetic mutations in
cancer development is emphasized in [6]. The mathematical literature has been de-
voted to modeling gene interactions and their evolution. Two mathematical approaches
are examined in [1], the first one is due to Komarova [10, 11] while the second one
is by Gatenby [5]. The first approach in [10, 11] is focused on the stochastic dynam-
ics of gene interaction in cancer initiation and progression related to mutations which
generate loss and gain of function. Gatenby and Vincent adopted a game theory ap-
proach heavily influenced by population dynamics to investigate the influence of the
tumour-host interface in colorectal carcinogenesis [5] and suggest therapeutic strate-
gies. Moreover, several authors have proposed various models of the macroscopic
behavior cancer tissues, for example, the paper [2] is focused on the modeling and
simulation of large systems of interacting entities whose microscopic state includes
not only geometrical and mechanical variables, but also biological functions. The sys-
tems of partial differential equations can be used to model large systems of interacting
cells whose microscopic state includes internal variables related to biological func-
tions. An introduction to population dynamics with internal structure is given in [20].
Mathematical models can provide biologists and clinicians with tools that might guide
their efforts to elucidate fundamental mechanisms of cancer initiation and progression
and either improves current treatment strategies or stimulates the development of new
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ones. Mathematical models plays significant role for better understanding of evolu-
tionary concepts such as mutation and selection [14]. One of the main purposes of
this study is, being based on developed early models and experiment data, to propose
a new mathematical model. This paper will be led in the context of understanding of
the melanocytes cancerisation mechanisms in melanomas. The skin melanomas can be
very aggressive and often display multi-drug-resistance characteristics. Molecular and
cellular mechanisms occurring during embryonic development. For this purpose, we
start with the definition of the melanoblast during embryonic development.

1.1. Biological context

Melanoma, like other cancers, often presents constitutive activation of the wnt sig-
naling pathway as evidenced by nuclear accumulation of β-catenin. A usual biological
”mirror” model for the understanding of melanoma cancer dynamics is the migration
and proliferation dynamics of melanoblasts, during embryonic development, can be
colored and counted during biological experiments [3, 16, 22]. In [3, 12], it was shown
that β-catenin reduces the number of melanoblasts in vivo.

As a complementary study to [3, 12], it is intended to estimate melanoblast dou-
bling times into dermis and epidermis according to the activity of β-catenin.

To this goal, a mathematical model of mouse embryo melanoblast proliferation
dynamics is needed. This is the aim of this paper. In this model, the total number of
melanoblasts in the dermis nd and the total number of melanoblasts in the epidermis
ne with fluxes between themselves have to be considered.

A priori biological knowledge helps us to design and reduce the set of admissible
models. Experimental measurements can help for:

1. quantitative model closure;
2. validation of the mathematical model;
3. numerical robust identification of hidden parameters.

On the other hand, the macroscopic understanding of the dynamics is not fully
understood and assumptions have to be done. From the experimental point of view,
melanoblasts can be colored and then counted at some instants between embryonic
days E10.5 and E15.5. However, these data generally are subject to some uncertainty
due to the measurements errors or human error during counting process. Moreover,
some important features of the dynamics are unobservable. This is the case for example
for the melanoblast flux from dermis to epidermis because the biological measurements
are performed at fixed instants.

1.2. Biological assumptions

Founder melanoblasts appear at embryonic day E8.5 from the neural tube in the
dermis. The melanoblasts then proliferate and migrate into the dermis dorso laterally
to the somites up to the belly. The biological data presented by Luciani et al. (submit-
ted for publication). From E11.5, melanoblast start to cross the epidermis membrane
matrix with a flux rate Φ and begin to invade the epidermis. In parallel, they con-
tinue to proliferate. Biological observations allow us to assume that there is no trans-
differentiation between melanoblasts and other cells and that apoptosis is negligible.
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Consequently, from an initial number of founder melanoblasts at E8.5, the biological
model (melanoblasts in dermis/melanoblasts in epidermis) is governed by the prolif-
eration and flux between dermis and epidermis without any exogenous exchanges at
the system boundary. Finally, it is biologically reasonable to think that there is no
flux from the epidermis to the dermis. Basic statistics on measurements and biologi-
cal knowledge are able to give lower and upper bounds, i.e. a confidence interval for
the doubling times τd and τe in dermis and epidermis respectively. However, there is
neither knowledge nor experimental evidence of bounds for the epidermis flux rate Φ.
The biological model considered here is summarized in Figure 1.

Figure 1: Definition of biological model

After the above preliminaries, this paper, is organised as follows: the determina-
tion and the illustration of biological data, which are the subject of the mathemati-
cal modelling approache, are given in Section 2. In Section 3, we consider different
mathematical model candidates for the proliferation dynamics. The equivalent form of
the mathematical model without dependency on doubling times is given in Section 4,
this section deals with existence, uniqueness and behavior of solutions, in particular,
the estimates for stability of solution with respect to the model parameters. The sec-
tion 5, deals with the numerical estimation of initial fraction and number of founder
melanoblasts in dermis. From biological BrdU consideration, the coarse estimation of
doubling times is given in Section 6. Section 7 proposes a critical analysis related to
estimate the states of the biological systems and parameters in the model. Section 8 is
reserved for conclusions and research perspectives.

2. Biological measurements and first stage of data processing

2.1. Setup and methodology for mean values and standard deviations

There are two types of biological data:

1. Number of melanoblasts estimated from Whole Mount data: it is a visual counts
on the both sides of a mouse. From E10.5 to E15.5 embroyonic days, the total
number of melanoblasts embryos is shown in [3].
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2. Number of melanoblasts estimated from transversal section of embryos : it
is a visual counts by section of about 7 microns. It shows the visibility of
melanoblasts number in dermis i.e. nd/s and epidermis i.e. ne/s.

The expression of total number of melanoblasts in dermis i.e. nd (resp. epidermis
i.e. ne ) was calculated using the average number of whole mount data i.e. nmultiplied
by number of fraction per section of melanoblasts in dermis (resp. epidermis ), i.e

nd = n
nd/s

nd/s + ne/s
, ne = n

ne/s

nd/s + ne/s
. (1)

By similar considerations, we can also calculate the standard deviations relative to
the total number of melanoblasts.

An md (resp. me)-dimensional values of melanoblasts Nd (resp. Ne) in dermis
(resp. epidermis), given by Fig. (2). N j

d and N j
e are given by expressions (1), for all

j = 1, ...,md (resp. j = 1, ...,me).

The sample mean nd (resp. ne) of melanoblasts in dermis (resp. epidermis), and
the standard deviation are shown in Tab. (1)-(3), with covariance matrix Qd, (resp.
Qe):

nd =
1
md

md∑
j=1

N j
d , ne =

1
me

me∑
j=1

N j
e ,

Qd =
1

md − 1

md∑
j=1

(N j
d − nd)(N

j
d − nd)T , Qe =

1
me − 1

me∑
j=1

(N j
e − ne)(N j

e − ne)T .

2.2. Data plots

Illustrations of biological data are given in Fig (3)-(5), on wild type (WT) mice and
bcatsta and delex26 mutant mice respectively.

It is noted that the plots for WT and bcatsta mice look very similar. The melanoblasts
population in epidermis exponentially grows. Between E12.5 and E14.5 there is a de-
crease of the number of melanoblasts in dermis due either of the decrease of the growth
rate or an important flux into epidermis.

2.3. Feature extraction from biological data

2.3.1. Total number of melanoblasts
For modeling, it is important to reveal some features of the biological data. On fig-

ure 6, the history of the logarithm of the total number of melanoblasts (dermis+epidermis)
is plotted for Wild type mice (WT), bcatsta mutants and delex26 mutants.

Circles represent measurements. The plots are also extended to the embryonic day
E8.5 by an expected value of the number of melanoblasts. It is biologically known
that β-catenin pathway cannot act before embryonic day E10.5, so that the same value
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Figure 2: History of Number of Melanoblasts in both dermis and epidermis for three mice types.

is taken for the three types of mice. At day E8.5, it is biologically expected that the
number of precursor melanoblasts is in the range [10, 30]. To extend the data, we used
an initial number of melanoblasts equal to 16. What it is observed is that the plots for
WT and bcatsta can be well approximated by a line, showing an exponential growth for
the total number of cells. For delex26 mutants, the behaviour is quite different, showing
a fast growth between E8.5 and E11.5 and a slower growth between E11.5 and E15.5
with can be linearly regressed in log scale.

2.3.2. Fractions of melanoblasts in dermis (resp. epidermis)
On figure 7, the fractions of melanoblasts in dermis y and epidermis (1 − y) is

plotted for each of the mice. It appears that the fractions have a S-shaped profile
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E. day Mean nb mel. Std dev nb mel. Mean nb mel. Std dev nb.mel.
in dermis in dermis in epidermis in epidermis

E10.5 98 28.49 0 0

E11.5 366.73 118 26.04 24.37

E12.5 605.96 213.61 455.95 180.02

E13.5 684.83 164.74 2189.03 326.77

E14.5 436.77 211.20 6822.02 1415.15

E15.5 528.63 725.49 18014.03 5397.44

Table 1: Mean values and standard deviations from experimental measurements on wild type (WT) mice.

E. day Mean nb mel. Std dev nb mel. Mean nb mel. Std dev nb.mel.
in dermis in dermis in epidermis in epidermis

E10.5 95 36.58 0 0

E11.5 271.81 87.58 5.71 10.59

E12.5 670.65 173.77 102.67 54.30

E13.5 343.93 83.12 1058.37 222.45

E14.5 127.39 87.19 2451.10 772.88

E15.5 443.45 377.82 5858.37 2058.85

Table 2: Mean values and standard deviations from experimental measurements on bcatsta mutant mice for
both dermis and epidermis.
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Figure 3: History of melanoblasts for WT mice. From left to right: nd(t), ne(t) and log10(n(t)).

revealing an underlying ”logistic” differential equation on the cell fraction y which is
a common feature for the three mice. One can also observe a slight difference between
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E. day Mean nb mel. Std dev nb mel. Mean nb mel. Std dev nb.mel.
in dermis in dermis in epidermis in epidermis

E10.5 106 38.17 0 0

E11.5 532.6 149.58 0 0

E12.5 611.13 76.65 104.06 18.50

E13.5 574.71 153.17 215.95 49.96

E14.5 367.74 177.21 632.25 189.80

E15.5 321.17 89.08 1189.22 170.61

Table 3: Mean values and standard deviations from experimental measurements on delex26 mutant mice for
both dermis and epidermis.
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Figure 4: History of melanoblasts for bcatsta mice. From left to right: nd(t), ne(t) and log10(n(t)).
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Figure 5: History of melanoblasts for delex26 mice. From left to right: nd(t), ne(t) and log10(n(t)).

WT, bcatsta and delex26 in particular on the position of the symmetry position and the
decreasing rate of the S-shaped profile.
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Figure 6: History of the total number of melanoblasts. From left to right: WT, bcatsta and delex26 mice.
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Figure 7: History of fractions of melanoblasts in dermis and epidermis. From left to right: WT, bcatsta and
delex26 mice.

2.3.3. Ratio of melanoblasts between epidermis and dermis
In may also be interesting to plot the ratio of melanoblasts between epidermis and

dermis. On figure 8 the ratio for each of the mice is plotted in log scale. One can again
notice a common feature shared by the three kinds of mice. In log scale the plots can be
reasonably linearly regressed between embryonic days E11.5 and E14.5, showing an
exponential growth of the ratio due to the combined effect of transfer between dermis
and epidermis and proliferation in epidermis. One can also notice a slope break at day
E14.5 for WT and bcatsta and even a slight decreasing of the ratio for bcatsta. This
behaviour may be explained by some feedback effects on the flux between dermis and
epidermis because the ratio has reached a limit threshold. For delex26 mice, the slope
break does not occur maybe because the ratio still has not reached the threshold.

Below in the description of the mathematical model we will see that this ratio plays
an important role in the whole dynamics of the system.
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Figure 8: History of the ratio between epidermis and dermis melanoblasts. From left to right: WT, bcatsta

and delex26 mice.

3. Mathematical Models

3.1. Modeling assumptions and mathematical equations

In this section, we consider different mathematical model candidates for the pro-
liferation dynamics. The variables nd(t) and ne(t) will respectively denote the total
number of melanoblast in the dermis and in the epidermis. We will also denote τd(t)
and τe(t) the doubling times in dermis and epidermis respectively and Φ(t) ≥ 0 the
flux rate of melanoblasts from dermis to epidermis at time t. A deterministic con-
tinuous medium approach is adopted. From the biological assumptions, assuming no
stochastic effect and a continuous medium, the population balance equations are

dnd

dt
= μd(t)nd(t)− Φ(t, nd, ne), (2)

dne

dt
= μe(t)ne(t) + Φ(t, nd, ne). (3)

with

μd(t) =
log(2)
τd(t)

, μe(t) =
log(2)
τe(t)

.

Equations (2)-(3) express the proliferation of melanoblasts at respective rates μd(t)
and μe(t) and the flux Φ(t) from dermis to epidermis. The candidate models discussed
below are particular choices and form of doubling times and flux. The initial condi-
tion corresponding the embryonic day E8.5, i.e. t0 = 8.5, is the number of founder
melanoblasts into dermis:

nd(t0) = n0,d, ne(t0) = 0. (4)

A priori biological knowledge can give a confidence interval for the initial num-
ber of dermis melanoblasts n0,d. Let us emphasize once again that neither biologi-
cal knowledge nor experimental measurements can give information or bounds on the
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quantity of flux rate Φ. This is the main difficulty and major source of uncertainty into
the model.

The system (2)-(3) can be written in different forms. For example, summing up
equations (2) and (3) gives

dn

dt
= μdnd + μene (5)

where n = nd + ne is the total number of melanoblasts. Introducing the fractions
of melanoblasts y in dermis i.e.

y =
nd

nd + ne
, (6)

it is easy to check that the system (2),(3) can be written in the equivalent form (for
n > 0)

dn

dt
= (μd y + μe (1 − y)) n, (7)

dy

dt
= −(μe − μd) y (1− y)− Φ

n
, (8)

The system is equation (7),(8) gives another understanding of the dynamics. Equa-
tion (7) can also be written

d log(n)
dt

= μ(t) (9)

with
μ(t) = y(t)μd(t) + (1− y(t))μe(t) (10)

which is a local exponential proliferation law with local growth rate μ(t).
Let us now derive a differential equation for the logarithm of ratio of number of

melanoblasts in epidermis and dermis. If nd, ne �= 0, equations (2) and (3) can be
rewritten

d log(nd)
dt

= μd − Φ
nd
,

d log(ne)
dt

= μe +
Φ
ne

leading to

d log(ne/nd)
dt

= μe − μd +
Φ

y(1− y)n. (11)

In the previous section, it was shown that the dataset t �→ log(ne(t)/nd(t)) can be
reasonably regressed by a piecewise linear function. Because both μd(t) and μe(t) are
seeked as bounded functions, equation (11) shows that the function

t �→ Φ(t)
y(t)(1 − y(t))n(t)
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has to be a bounded function for any value of y(t) ∈ [0, 1] and n(t) > 0. For that
reason, we will assume below that Φ(t) is in the form

Φ(t) = κ(t)y(t)(1 − y(t))n(t) (12)

for some positive function κ(t).
Combining both equation (8) and expression (12) gives the logistic-like equation

for y

dy

dt
= −c(t)y(1− y) (13)

with

c(t) = μe(t)− μd(t) + κ(t). (14)

Combining equation (11) with expression (12) also gives

d log(ne/nd)
dt

= c(t). (15)

To summarize, we have the following three important equations

d log(n)
dt

= μ(t), (16)

dy

dt
= −c(t)y(1− y), (17)

d log(ne/nd)
dt

= c(t) (18)

where μ = yμd + (1− y)μe.

3.2. Closure

For the moment, the system is not fully closed because we do not know the func-
tions μd(t), μe(t) and κ(t). By (14) it is evident that the doubling times τd(t) and τe(t)
are closely linked to the flux factor κ(t). In the paper appendix, both biological inter-
pretation and dimension of the κ function are detailed. Unfortunately, both biological
knowledge and observations not sufficient to give a closed form for κ. In what follows
we are going to estimate both function c(t) and μ(t) from the data. This will lead to a
system of variables (n, y) in closed form.

We proceed as follows: first, the functions log(n) and log(ne

nd
) are approximated

using the spline tools with additional constraint, indeed, the curve is constrained to be
an increasing function, in order that the resulting curve of μ̂(t) and ĉ(t) has a positive
values. Second, the time derivatives of the functions are computed, giving estimates
μ̂(t) and ĉ(t) of the functions μ(t) and c(t) respectively, see figures (9), (10) and (11).
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Figure 9: Estimation of the functions μ(t) and c(t) for WT mice.
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Figure 10: Estimation of the functions μ(t) and c(t) for bcatsta mice.
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Figure 11: Estimation of the functions μ(t) and c(t) for delex26 mice.

Suppose that both functions μ(t) and c(t) are replaced by their estimates μ̂(t) and
ĉ(t) in the system. The solution of the isolated differential problem

dy

dt
= −ĉ(t)y(1 − y), t ∈ (t0, T ], (19)

y(t0) = y0 (20)

(y0 assumed to be more than one) is clearly
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y(t)
1− y(t) =

y0
1− y0 exp

(
−

∫ t

t0

ĉ(s) ds
)
.

or again

y(t) =
y0 exp(− ∫ t

t0
ĉ(s) ds)

1− y0 + y0 exp(− ∫ t

t0
ĉ(s) ds)

. (21)

This gives a closed form for y once y0 is known. Practically the initial fraction y0
will be identified according to the biological data.

On the other hand, the solution of the differential problem

dn

dt
= μ̂(t)n, t ∈ (t0, T ), (22)

n(t0) = n0 (23)

is in form

n(t) = n0 exp
(∫ t

t0

μ̂(s) ds
)
. (24)

Practically, the initial number of melanoblasts n0 can be identified according to the
biological measurements. Once n(t) and y(t) are computed, we get

nd(t) = n(t)y(t), (25)

ne(t) = n(t)(1− y(t)). (26)

Regarding the doubling times, from the compatibility expressions

ĉ(t) = μe(t)− μd(t) + κ(t), (27)

μ̂(t) = y(t)μd(t) + (1 − y(t))μe(t). (28)

we get the following relations linking the growth rates to the flux factor κ(t):

μd(t) = μ̂(t)− (1 − y(t)) (ĉ(t)− κ(t)) , (29)

μe(t) = μ̂(t) + y(t) (ĉ(t)− κ(t)) . (30)

4. The system without dependency on doubling times

Another way, from the population balance equation (2)-(3), substituting the expres-
sion (12) and taking into account (29)-(30) yields to the following mathematical model

14



dnd

dt
= μ̂(t)nd(t)− ĉ(t) nd(t)ne(t)

nd(t) + ne(t)
, (31)

dne

dt
= μ̂(t)ne(t) + ĉ(t)

nd(t)ne(t)
nd(t) + ne(t)

, (32)

nd(t0) = n0,d, ne(t0) = ε. (33)

For technical considerations, we assume that ne(t0) = ε, with ε near zero. In [21],
the special cases , μ̂(t) and ĉ(t) are constant functions, have been used as a model of
antibiotic-resistant bacterial epidemics, where nd and ne are populations of nonresis-
tant and resistant bacteria respectively, at infection age t.

Now, we consider the existence, uniqueness and behavior of solutions to problem
(31)− (33), in the large. In particular, we establish the estimates for stability of solu-
tions with respect to the parameters (n0,d, n0,e)T .

Any region of the form

D = {x ∈ R2 : 0 ≤ xi, (i = 1, 2)}
is positively invariant. This assumption will be confirmed by the following theorem.
The ODEs (31)− (33) can be written in the compact form as :

{
ẋ(t) = A(t, x),
x(t0) = x0 ∈ D (34)

The non-linear operator A is defined on [t0,∞) × D, by A =
(
A1, A2)T , where

for all (t, x) ∈ [t0,∞)×D,

A1(t, x) = μ̂(t)x1 − ĉ(t) x1x2
x1 + x2

, A2(t, x) = μ̂(t)x2 + ĉ(t)
x1x2
x1 + x2

.

Our basic result is the following

Theorem 4.1. There exists a unique solution x(t0,x0)(t) ∈ D of the initial value prob-
lem (34), for all x0 ∈ D and for all t ≥ t0. Moreover, if x0, z0 ∈ D then, for all
t ≥ t0

‖x(t0,x0)(t)− x(t0,z0)(t)‖ ≤ ‖x0 − z0‖ exp
(
2
∫ t

t0

μ̂(s) + ĉ(s)ds
)

(35)

Proof 1. In order to apply the result given in Theorem 5.1 [13, p. 238], we need
the following results concerning the nonlinear operator A, involved in the dynamics
(31)− (33). Easy manipulations show that, for x, y ∈ D,∣∣∣∣ x1x2x1 + x2

− y1y2
y1 + y2

∣∣∣∣ ≤ x1y1
(x1 + x2)(y1 + y2)

|x2 − y2|+ x2y2
(x1 + x2)(y1 + y2)

|x1 − y1| ,
≤ |x2 − y2|+ |x1 − y1|
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Then we get, for i �= j = (1, 2),

|Ai(t, x) −Ai(t, y)| ≤ (μ̂(t) + ĉ(t))|xi − yi|+ ĉ(t)|xj − yj|.

Whence,
‖A(t, x)−A(t, y)‖ ≤ 2(μ̂(t) + ĉ(t))‖x− y‖. (36)

Consequently, A is an 2(μ̂(t) + ĉ(t))-dissipative operator on D [13, p. 245]. Finally,
the following subtangential condition holds: For each (t, x) ∈ [t0,∞)×D,

lim
h→0+

1
h
d(x+ hA(t, x);D) = 0. (37)

First, observe thatD is given byD =
∏2

i=1Di where, for (i = 1, 2),

Di = {xi ∈ R : xi ∈ [0,∞)}

Let, (t, x) ∈ [t0,∞)×D, since, x2 + hA2(t, x) ∈ D2 then,

lim
h→0+

1
h
d(x2 + hA2(t, x);D2) = 0. (38)

Now, let h0 > 0 be sufficiently small such that h0c̄ ≤ 1, where 0 ≤ ĉ(t) ≤ c̄, for all

t ≥ t0. Then, for all h ∈ (0, h0), x1
(
1− hĉ(t) x2

x1+x2

)
∈ D1.Hence, x1+hA1(t, x) ∈

D1, whence, we have

lim
h→0+

1
h
d(x1 + hA1(t, x);D1) = 0. (39)

Observe that,

d(x+ hA(t, x);D) ≤ d(x1 + hA1(t, x);D1) + d(x2 + hA2(t, x);D2)

and combining, the latter with (38) − (39), we get the desired result. Since A is a
continuous function from [t0,∞) × D into R2 that maps bounded sets into bounded
sets and due to the above previous results (36) − (37), for each x0 ∈ D, there is a
unique solution x(t0,x0) ∈ D to (34) on [t0,∞). Moreover, if x0, z0 ∈ D, the final
assertion, (35), follows directly from Theorem 5.1 [13, p. 238].

5. Numerical estimation of initial fraction and number of founder melanoblasts
in dermis

The next step is to validate the continuous differential model with respect to the
mean data. As mentioned in the previous sections, the variables of interest are of
course nd(t) and ne(t) but also y(t), n(t) and ne(t)/nd(t). The open parameters y0
and n0 have to be identified in such a way that the solutions have to fit at best with all
the variables of interest.
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For the fraction of melanablasts in dermis y(t) for example, we want to find the
best y0 ∈ (0, 1] which minimizes the mean square functional

JNm(y0) =
1
2

Nm∑
k=0

(yd
k − yk)2
σ2

yd
k

+
1
2

(
log(y0)− log(y∗0)

)2

σ2
log(y0)

,

subject to (19)-(20), where yd
k and σyd

k
are, respectively, the mean fraction value and

the standard deviation, computed from the measurements at embryonic day tk. For
numerical purposes, solutions of (19),(20) are discretized in time using a Runge-Kutta
RK4 time advance scheme. The additional components of the cost represents the priori
information term about the parameter values y∗0 . This acts to keep the logarithm of un-
known initial state y0 from deviating much more than σlog(y0) from log(y∗0). Usually
y∗0 is the first guess of the uncertain parameters and the starting value for the optimiza-
tion procedure.
For each mouse type (WT, bcatsta and delex26), we have computed an initial fraction
y0. It can be noticed first that y0 is very close to one, what is expected (the melanoblasts
are in the dermis at dayE8.5). Moreover, the results do not depend of the type of mice,
what is also expected (the effects on β-catenin activation start from day E10.5). How-
ever, the constraint n0 ∈ [10, 30] is taken for the three types of mice. It is observed
that indeed the residuals are quite small, validating the logistic-like behaviour of the
fraction y. From figures 12 to 15, the fraction y and total number n profils given by
the differential model, and total numbers nd and ne given by (25)-(26) and the ratio
between epidermis and dermis ne

nd
, are compared to the mean data. That shows a very

good agreement between mean data and model.

The number of founder melanoblasts was estimated to 16.0016. Moreover, y0 was
found to be very closed to one.

Comment 5.1. The optimal n0,d can be , also, obtained by minimizing the following
criterion JNm(n0,d)

JNm(n0,d) =
1
2

Nm∑
k=0

(zk − xk)TR−1
k (zk − xk) +

1
2
( log(n0,d)− log(n∗0,d)

σlog(n0,d)

)2
(40)

where xk = (nd(tk), ne(tk))T is given by the approximate discrete system of the model
(31)-(33), zk is the (Nx × 1) measurement vector and Rk is the coresponding covari-
ance diagonal matrix

6. Uncertainty on doubling times

It appears that the equations (31)-(32) are independent of function flux factor κ(t).
But, in order to be able to estimate doubling times τd and τe, given by (29) and (30)
respectively, we need the expression of this function κ(t).
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Figure 12: Comparison between data and solutions of the calibrated differential model for WT mice.
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Figure 13: Comparison between data and solutions of the calibrated differential model for bcatsta mice.

6.1. A priori knowledge on bounds on the doubling times

Complementary biological BrdU tests performed between embryonic days E13.5
and E14.5, (Luciani et al., submitted for publication) allowed us to assume that dou-
bling time into epidermis are smaller than doubling times into dermis, i.e.

μe(t) ≥ μd(t). (41)

It is also biologically reasonable to assume that doubling times into dermis cannot
be greater than a factor (greater than one) times the doubling times into epidermis, i.e.
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Figure 14: Comparison between data and solutions of the calibrated differential model for delex26 mice.
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Figure 15: Comparison between data and solutions of the ratio model. From left to right: WT , bcatsta and
delex26 mice.

there is a constantM ≥ 1 such that

μe(t)
μd(t)

≤M ∀t. (42)

Both constraints (41) and (42) have to be taken into account in certain way. If it is
assumed that 0 ≤ κ(t) ≤ ĉ(t) then we have

μe(t) ≥ μ̂(t) ∀t,
μd(t) ≤ μ̂(t) ∀t,

and thus the constraint (41) is satisfied.
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The constraint

κ(t) ≤ ĉ(t) (43)

resembles a flux limiter condition. Second constraint (42) gives the inequality

μd(t) = μ̂(t)− (1− y)[ĉ(t)− κ(t)] ≥ 1
M
μe, (44)

or again

κ(t) ≥ ĉ(t)− (1− 1
M )μ̂(t)

1− y . (45)

Because Φ is assumed to be positive (flux from dermis to epidermis), one ask also
κ(t) to be positive. We then get the admissible range for κ(t)

ĉ(t)− (1 − 1
M )μ̂(t)

1− y ≤ κ(t) ≤ ĉ(t). (46)

6.2. Uncertainty on doubling times

Surprisingly, all the functions κ(t) that satisfy the inequalities (46) are a priori
feasible, leading to admissible doubling times that are compatible with the dynamics
and satisfying the constraints (41) and (42).

That means that there is as most growth rates μd(t) and μe(t) (computed from
(29)-(30)) as functions κ(t) satisfying (46).

As a partial conclusion, the doubling times are not strictly identifiable from the data
and the actual knowledge of the system. The problem of doubling time estimation is ill-
posed from the deterministic point of view. The main difficulty is due to the uncertainty
on the flux factor κ(t). The robust identification of doubling times should be addressed
in a probabilistic way, including a priori uncertainty on both data and model.

6.3. Coarse estimation of doubling times

In this section, we use the inequalities (46) in order to estimate the mean and the
variance for μd(t) and μe(t) (computed from (29)-(30)). First, we estimated the mean
and the variance of unknown function κ using the median, the lower bound �b and the
upper bound ub for κ. �b and ub are given by

�b(t) = max
(
0, ĉ(t)− (1− 1

M )μ̂(t)
1− y

)
, ub(t) = ĉ(t).

The mean and the standard deviation can then be raughly estimated as

κ̄(t) =
�b(t) + ub(t)

2
,

Sκ(t) =
ub(t)− �b(t)

2
.
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Therefore, the mean and the standard deviation for μd and μe can than be estimated as

μ̄d(t) = μ̂(t)− (1− y(t))(ĉ(t)− κ̄(t)), Sμd
(t) = (1 − y(t))Sκ(t), (47)

μ̄e(t) = μ̂(t) + y(t)(ĉ(t)− κ̄(t)), Sμe(t) = y(t)Sκ(t). (48)

When (μ̄d(t), Sμd
(t)) and (μ̄e(t), Sμe(t)) are estimated from (47)−(48), the doubling

times are obtained as

τ̄d(t) =
log(2)
μ̄d(t)

, τ̄e(t) =
log(2)
μ̄e(t)

and the standard error of the doubling times are

Sτd
(t) =

log(2)
μ̄d(t)

− log(2)
μ̄d(t) + Sμd

(t)
, Sτe(t) =

log(2)
μ̄e(t)

− log(2)
μ̄e(t) + Sμe(t)

.

From biological BrdU consideration, we take M = 3. The estimated mean and stan-
dard deviation doubling time were listed in Table (4)-(6).

E. day Mean of τd Std dev of τd Mean of τe Std dev of τe
in dermis in dermis in epidermis in epidermis

E12.5 22.98 6.59 11.87 2.56

E13.5 26.06 8.68 15.73 1.35

E14.5 27.04 9.01 17.65 0.36

E15.5 24.62 7.03 17.44 0.14

Table 4: Mean values and standard deviations of doubling time on wild type (WT) mice for both dermis and
epidermis.

E. day Mean of τd Std dev of τd Mean of τe Std dev of τe
in dermis in dermis in epidermis in epidermis

E12.5 24.97 0 24.97 0

E13.5 44.74 14.91 27.01 2.33

E14.5 30.28 7.04 22.89 0.33

E15.5 17.70 0.77 16.91 0.02

Table 5: Mean values and standard deviations of doubling time on bcatsta mutant mice for both dermis and
epidermis.
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E. day Mean of τd Std dev of τd Mean of τe Std dev of τe
in dermis in dermis in epidermis in epidermis

E12.5 327.25 109.08 151.19 35.51

E13.5 168.12 56.04 101.50 8.75

E14.5 74.34 24.78 48.52 0.99

E15.5 55.36 18.45 36.55 0.35

Table 6: Mean values and standard deviations of doubling time on delex26 mutant mice for both dermis and
epidermis.

7. Discussion, related works

The main goal of this paper was to derive a continuous-time model of mouse em-
bryonic melanoblast proliferation dynamics which is parameterized by an activity rate
of β-catenin.

The present methodology was able to return behavior, features, dependency and
sensitivity with respect to some activity β-catenin at the macroscopic level.

During this work, it appeared very important to use data, not only for final param-
eter calibration but also for model refinement and proper derivation.

In the literature, we found a similar mathematical approach proposed in the paper
by Webb [21] to analyze the dynamics of nonresistant and resistant bacteria strains
in epidemic populations in hospital environments. The link between population of
nonresistant bacteria and resistant bacteria present in a patient infected needs to be
developed also for this type equation with flux rate in function of the fraction of two
classes of bacteria (nonresistant and resistant).

We currently address two important issues of proliferation process modeling. The
first issue discussed in this paper is to develop a general framework for modeling of
proliferation of melanoblasts during mouse embryonic development. Second issue is
to estimate the parameters of the models.

In many biological systems, inter-states cannot be directly measured in experi-
ments. A way to overcome this shortcoming is to include uncertainty models for
the states as well as for parameters seen as additional states into an augmented state
space. There are today numerous robust methods of parameter estimation of nonlinear
dynamic systems from partial noisy observations. The idea is to jointly estimate the
states of the systems and parameters in the model.

The Extended Kalman Filter ”EKF” [18, 15] for example locally performs a Kalman
filter to the linearized system in the vicinity of the actual state of the system. But se-
rious limitations are reported in the literature: linearization can be applied only if the
Jacobian matrix is known. However, this is not always the case and approximate Jaco-
bian matrices can produce unstable filters.

Recently, Julier and Uhlmann [7] have introduced a nonlinear estimation technique
referred to as the Unscented Kalman Filter ”UKF” which yields performance equiva-
lent to the Kalman Filter ”KF” for linear systems, yet generalizes elegantly to nonlinear
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systems without the linearization steps required by the Extended Kalman Filter ”EKF”.
This technique and its variations [19] have been used widely in Engineering and the
physical sciences to estimate factor scores and parameters from noisy data.

Recently, Kolas and his coworkers[8, 9] proposed to use the Constrained Unscented
Kalman Filter “CUKF” to estimate the time-varying parameters with constraint han-
dling in the nonlinear state-space model.

The nonlinear state-space model is defined by two types of equations: state equa-
tions that define the dynamics of melanoblast proliferation dynamics through time and
observation equations that describe how these state variables are observed. The general
melanoblast proliferation model can be formulated as:

dnd

dt
= μd(t)nd − (ĉ(t)− μe(t) + μd(t))y(1 − y)n, (49)

dne

dt
= μe(t)ne + (ĉ(t)− μe(t) + μd(t))y(1− y)n, (50)

dn

dt
= μ̂(t)n, (51)

dy

dt
= −ĉ(t)y(1− y). (52)

The uncertain ”noisy” observation model is defined as

zk = xk + vk, (53)

where x = (nd, ne, n, y)T and zk is the (Nx × 1) measurement vector, vk is the
measurement noise with zero mean and covariance matrix

R(k) = diag(σnd
(k)2;σne(k)

2;σ2
n(k);σ

2
y(k)).

Note that the estimation of doubling times may be solved under some constraints.
These constraints can be handled by several ways, for instance by identifying the natu-
ral logarithms of the parameters. The EKF and CUKF can be used to estimate the pa-
rameter θ(t) = (log(μd(t)), log(μe(t)))T , together with the system state (49)− (52).
We add, to the model (49)− (52), the system equation:

d log(μd(t))
dt

= 0,

d log(μe(t))
dt

= 0.

Thus will be at the aim of a future paper.

8. Concluding remarks

In this paper, a mathematical model of melanoblast proliferation process during
mouse embryonic development is proposed.
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The mathematical model describes the evolution of total number of melanoblasts
in both dermis and epidermis between embryonic development days E8.5 and E15.5.
The developed methodology is a compromise between expected balance equations, be-
haviors and feature extraction from data, verification of data fitting. During the design
of the model, a set of a priori biological informations have also been taken into account
(parameter bounds, interval on ratio of doubling times, etc.).

Three datasets of melanoblast populations corresponding to Wild Type mice, and
two mutant mice with different β-catenin activity are used. The unknow initial number
of founder melanoblasts in the dermis at E8.5 has been identified from biological mea-
surements provided in [3]. As a result, the present model is able to fit with the mean
data very well for the three kinds of mouse lines. In this paper, it is also shown that the
doubling times cannot be identified from the actual experimental observations from the
deterministic point of view.

Future work is aimed at considering doubling times and observations as uncertain
variables (random variables). This will allow us to use robust parameter identifica-
tion algorithms like Unscented Kalman Filter or particle filters for robust estimation of
doubling times (for further detail see Section 7).

Another open question today is the study of the impact of β-catenin activation
level on the migration process (speed of migration, spatial patterns), for more detail,
a numerical algorithm to simulate chemotactic and/or diffusive migration on a one-
dimensional growing domain is developed in [17].

Appendix A. Flux, flux speed and κ function

In this appendix we give a better understanding of what is the dimension and mean-
ing of the κ function and its link with the cell moving velocity from dermis to epi-
dermis. Assume that the mouse trunk is idealized as a cylinder of length L(t) and
radius r(t) at embryonic instant t. Assume also that the thickness of the dermis is
δr(t)� r(t). The volume occupied by the dermis is

V (t) = π[(r(t) + δr(t))2 − r2(t)]L(t) ≈ 2πr(t)δr(t)L(t).

Suppose that the density ρd(t) of melanoblasts in the dermis is spatially homogeneous.
Then we get

ρd(t) =
nd(t)
V (t)

.

The membrane surface between dermis and epidermis is equal to

S(t) = 2πr(t)L(t).

Thus, if u(t) the spatial velocity of melanoblasts from dermis to epidermis in the nor-
mal direction of the membrane, the total flux of melanoblasts through the membrane is
equal to

Φ(t) = S(t)ρd(t)u(t)

= δr(t)u(t)nd(t).
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From the other script

Φ(t) = κ(t)y(t)(1− y(t))n(t),
one obtains

κ(t) =
δr(t)

1− y(t) u(t). (A.1)

The function κ(t) depends on the velocity of cells but also on the thickness of the
dermis. Expression (A.1) makes us think that the function u(t)

1−y(t) has to be bounded.
Unfortunately, the biological knowledge is not sufficient to give a closed form to (A.1).
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