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ON GROWTH RATE AND CONTACT HOMOLOGY

ANNE VAUGON

Abstract. It is a conjecture of Colin and Honda that the number of Reeb
periodic orbits of universally tight contact structures on hyperbolic mani-
folds grows exponentially with the period, and they speculate further that the
growth rate of contact homology is polynomial on non-hyperbolic geometries.
Along the line of the conjecture, for manifolds with a hyperbolic component
that fibers on the circle, we prove that there are infinitely many non-isomorphic
contact structures for which the number of Reeb periodic orbits of any non-
degenerate Reeb vector field grows exponentially. Our result hinges on the
exponential growth of contact homology which we derive as well. We also com-
pute contact homology in some non-hyperbolic cases that exhibit polynomial
growth, namely those of universally tight contact structures non-transverse to
the fibers on a circle bundle.

1. Introduction and main results

The goal of this paper is to study connections between the geometry of a manifold
and the asymptotic number of Reeb periodic orbits with period smaller than L as
L → ∞. We first recall some basic definitions of contact geometry. A 1-form α
on a 3-manifold M is called a contact form if α ∧ dα is a volume form on M . A
contact structure ξ is a plane field locally defined as the kernel of a contact form.
In what follows, we will always assume that contact structures are co-orientable.
If ξ is co-oriented, it is globally defined by a (non unique) contact form. The
Reeb vector field associated to a contact form α is the vector field Rα such that
ιRαα = 1 and ιRαdα = 0. It strongly depends on α. The Reeb vector field (or
the associated contact form) is called hypertight if there is no contractible periodic
orbit. It is called non-degenerate if all periodic orbits are non-degenerate (1 is not
an eigenvalue of the first return map).

A fundamental step in the classification of contact structures was the definition
of tight and overtwisted contact structures given by Eliashberg [20] in the line
of Bennequin’s work [1]. A contact structure ξ is overtwisted if there exists an
embedded disk tangent to ξ on its boundary. Otherwise ξ is said to be tight.
Universally tight contact structures are structures admitting a tight lift on universal
cover. Universally tight and hypertight [29] contact structures are always tight.

To get information on the contact structure from the Reeb vector field, one
usually focuses on Reeb periodic orbits. On closed 3-manifolds, Reeb vector fields
always admit a periodic orbit. This is not true for a general vector field: Kuper-
berg [37] constructed a smooth vector field on S3 without periodic orbits. This
theorem of Taubes [45] is the 3-dimensional case of Weinstein conjecture. Beyond
the existence of a single periodic Reeb orbit, Colin and Honda are interested in the
number NL(α) of Reeb periodic orbits with period at most L and they connect it
to the Thurston geometry of the manifold.

Conjecture 1.1 (Colin-Honda [17, Conjecture 2.10]). For all non-degenerate con-
tact form α of a universally tight contact structure on hyperbolic closed 3-manifolds,
NL(α) exhibits an exponential growth.
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We focus on manifolds with a non-trivial JSJ decomposition including a hy-
perbolic component that fibers on the circle (see [2] for more information). The
following theorem is one of the main results of this text.

Theorem 1.2. Let M be a closed oriented connected 3-manifold which can be cut
along a nonempty family of incompressible tori into irreducible manifolds including
a hyperbolic component that fibers on the circle. Then,M carries an infinite number
of non-isomorphic, hypertight, universally tight contact structures such that for all
hypertight non-degenerate contact form α, NL(α) grows exponentially with L.

If contact homology is well defined and invariant1, NL(α) grows exponentially if
α is only non-degenerate.

The exponential growth of the number of Reeb periodic orbits for a universally
tight contact structure on a hyperbolic closed manifold that fibers on the circle, a
special case of Conjecture 1.1, remains an open problem. In addition, if Thurston’s
“virtually fibered” conjecture [46] is confirmed, hyperbolic manifolds that fibers on
the circle will become the general situation up to finite covering. Very recently,
Agol announced a proof of this conjecture2.

Introduced in the vein of Floer homology by Eliashberg, Givental and Hofer in
2000 [21], contact homology and more generally Symplectic Field Theory (SFT) is an
invariant of the contact structure computed through a Reeb vector field Rα. The
complex is the super-commutative Q-algebra generated by Reeb periodic orbits
and the differential “counts” pseudo-holomorphic curves in the symplectisation3

(R×M,d(eτα)). Computation of contact homology hinges on finding periodic orbits
and solving elliptic partial differential equations and thus is usually out of reach.
The growth rate of contact homology is an invariant derived from contact homology
introduced by Bourgeois and Colin [6]. It “describes” the asymptotic behavior of the
number of Reeb periodic obits with period smaller that L that contribute to contact
homology. It is the contact equivalent of the growth rate of symplectic homology
introduced by Seidel [44] and used by McLean [42] to distinguish between cotangent
bundles and smooth affine varieties. Theorem 1.2 is a corollary of Theorem 1.3.

Theorem 1.3. Let M be a closed oriented connected 3-manifold which can be cut
along a nonempty family of incompressible tori into irreducible manifolds includ-
ing a hyperbolic component that fibers on the circle. Then, M carries an infinite
number of non-isomorphic, hypertight, universally tight contact structures with an
exponential growth rate of contact homology restricted to primitive classes.

Under Hypothesis H, the growth rate of linearized contact homology is exponen-
tial.

This result draws its inspiration in Colin and Honda’s results [17] on exponential
growth of contact homology for contact structures adapted to an open book with
pseudo-Anosov monodromy. As proved by Thurston [47], a manifold that fibers
on the circle is hyperbolic if and only if it is the suspension of a surface by a
diffeomorphism homotopic to a pseudo-Anosov.

Colin and Honda speculate further that the growth rate of contact homology is
polynomial in non-hyperbolic situations.

Conjecture 1.4 (Colin-Honda). On manifolds with spherical geometry, the growth
rate of contact homology for universally tight contact structures is linear.

1Though commonly accepted, existence and invariance of contact homology remain unproved.
Some results in this paper depend on these properties. In what follows this assumption will be
called Hypothesis H, see section 2 for more details.

2see http://ldtopology.wordpress.com/2012/03/12/or-agols-theorem/
3τ is the R-coordinate.
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On manifolds with a geometric structure neither hyperbolic nor spherical, the
growth rate of contact homology for universally tight contact structures is usually
polynomial.

In this text, we study contact structures on circles bundles. Giroux [27] and
Honda [33] classified them independently. Figure 1 gives a summary of this clas-
sification. Statements such as “tangent to the fibers” or “transverse to the fibers”
mean that there exists an isotopic contact structure with this property, χ(S) is the
Euler characteristic and χ(S, V ) the Euler class.

Universally tight contact structures

non-transverse to the fibers transverse to the fibers

tangent to the fibers
quadratic growth if

χ(S) = 0
exponential growth if

χ(S) < 0

non-tangent to the fibers

χ(S, V ) < 0
linear growth 0 ≤ χ(S, V ) ≤ −χ(S)

Figure 1. Universally tight contact structures on circle bundles
over a surface S of non-positive Euler characteristic.

In some cases, the contact homology and its growth rate are already known. For
instance, contact structures tangent to the fibers are fibered covering of (UTS, ξstd)
where UTS is the unitary tangent bundle over S and ξ is the contact element con-
tact structure (see [25]). In this case, the Reeb flow of the standard contact form
associated to a Riemannian metric is the geodesic flow. If the surface is hyper-
bolic, there exists an unique closed geodesic in each homotopy class [36, Theorem
3.9.5] and the number of homotopy classes has exponential growth with respect to
length [43]. Therefore, growth rates of the number of periodic Reeb orbits and of
contact homology are exponential. This is an exception to the second statement of
Conjecture 1.4.

If S is a torus, universally tight contact structures are standard contact struc-
tures on T 3 [26], the contact homology is known and its growth rate is quadratic
(see [3]). Bourgeois [3] also studied contact structures transverse and non-tangent
to the fibers with χ(S, V ) < 0. By use of Morse-Bott theory, he computed contact
homology and obtained a linear growth rate. These structures have a S1-invariant
contact structure in their isotopy class.

In this text we study universally tight contact structures non-transverse to the
fibers.

Definition 1.5 (Giroux [27]). A contact structure ξ on a fiber bundle π : M → S
is walled by an oriented multi-curve Γ on S if

(1) ξ is transverse to the fibers on M \ π−1(Γ);
(2) ξ is transverse to π−1(Γ) and tangent to the fiber on π−1(Γ).

Walled contact structures admit a S1-invariant walled contact structure in their
isotopy class.
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Theorem 1.6 (Giroux [27]). Universally tight contact structures non-transverse
to the fibers are exactly contact structures isotopic to a contact structure walled by
a non-trivial multi-curve with no contractible component.

Theorem 1.7 is the second main result of this paper.
Theorem 1.7. Let (M, ξ) be a fiber bundle over a closed oriented surface carry-
ing a contact structure walled by a non-trivial multi-curve Γ =

⋃n
i=0 Γi with no

contractible component. If X = M \ π−1(Γ), let X+
1 . . . X+

n+
denote its connected

components for which ξ is positively transverse to the fibers and X−1 . . . X−n− de-
note those for which ξ is negatively transverse to the fibers. Let a be a loop in M .
Then, there exists a hypertight contact equation α such that the cylindrical contact
homology HC [a]

∗ (M,α,Q) is well defined and

(1) if [a] = [fiber]k and ±k > 0, then HC [a]
∗ (M,α,Q) =

n±⊕
j=1

H∗(W±j ,Q);

(2) if [a] = [fiber]k[Γj ]k
′ and4 k′ 6= 0, then HC [a]

∗ (M,α,Q) =
⊕

[Γi]=[Γj ]

H∗(S1,Q);

(3) otherwise, HC [a]
∗ (M,α,Q) = 0.

Under Hypothesis H, these contact homologies are the homologies HC [a]
∗ (M, ξ,Q)

and the growth rate of contact homology is quadratic.
It remains to compute contact homology of contact structures transverse to the

fibers with 0 ≤ χ(S, V ) ≤ −χ(S).
Colin and Honda’s conjectures remain out of reach as we are rather ignorant of

contact structures on hyperbolic manifolds. As observed above, there is actually
a counterexample to Conjecture 1.4. This suggests that we need more examples
to refine the statement of this conjecture. The following questions provide some
alternative way to tackle connections between geometry and Reeb periodic orbits.
Question 1. Is the growth rate of contact homology related to that of the funda-
mental group ?
Question 2. Are there growth rates of contact homology that lie between quadratic
and exponential growths ?

This paper is derived from the PhD thesis of the author [49]. This text is
organized as follows. In Section 2, we introduce contact homology, our main tool to
study Reeb periodic orbits. Morse-Bott contact homology, outlined in Section 3, is
a generalization of contact homology and is a significant ingredient in the proof on
Theorem 1.7. In Section 4, we give a detailed definition of the growth rate of contact
homology. Though this definition dates from 2005, there is no complete description
and proof of invariance. Positivity of intersection helps to control holomorphic
cylinders and is an important ingredient in the proofs of Theorems 1.2 and 1.7.
In Section 5 we discuss positivity of intersection for tori foliated by Reeb orbits.
Section 6 contains the proof of Theorem 1.7 and Section 7 the proof of Theorem 1.2.

Acknowledgements. I am deeply grateful to my advisor, Vincent Colin, for his
guidance and support. I would also like to thank Frédéric Bourgeois for helpful
explanations and suggestions on Morse-Bott contact homology, Paolo Ghiggini and
François Laudenbach for stimulating discussions. Thanks also go to Chris Wendl
for his help with holomorphic curves, Patrick Massot for illuminating explanations
on contact structures, Jean-Claude Sikorav for suggesting numerous improvements

4The fiber is central in π1(V ), thus products of a free homotopy class with the fiber are
well-defined.



ON GROWTH RATE AND CONTACT HOMOLOGY 5

and corrections and Marc Mezzarobba for proofreading this text. I am grateful for
the hospitality of the Unité de Mathématiques Pures et Appliquées (ens Lyon).

2. Contact homology

Gromov [28] introduced pseudo-holomorphic curves in the symplectic world in
1985 for compact manifolds. Hofer [29] generalized them to symplectisation to
study the Weinstein conjecture. Pseudo-holomorphic curves are a key ingredient in
the contact homology introduced by Eliashberg, Givental and Hofer [21]. Here we
consider contact homology over Q. For a more general definition over a Novikov
ring one can refer to [5]. A complete proof of existence and invariance of contact
homology is still missing. This is mainly due to severe transversality issues for
multiply-covered curves.

2.1. Almost-complex structures and holomorphic curves. The symplectisa-
tion of a contact manifold (M, ξ = ker(α)) is the non-compact symplectic manifold
(R ×M,d(eτα)) where τ is the R-coordinate. An almost complex structure on a
even-dimensional manifold M is a map J : TM → TM preserving the fibers and
such that J2 = −Id. An almost complex structure J on a symplectisation is adapted
to α if

(1) J is τ -invariant;
(2) J ∂

∂τ = Rα;
(3) Jξ = ξ;
(4) ω(·, J ·) is a Riemannian metric5.

A map u : (M1, J1) → (M2, J2) is pseudo-holomorphic if du ◦ J1 = J2 ◦ du. One
can refer to [41] for more information.

Theorem 2.1 ([41, Lemma 2.4.1]). Let U be an open subset of a Riemann surface
(S, j) and (M,J) be an manifold with an almost complex structure. Then, the
critical points of any non-constant J-pseudo-holomorphic map u : (U, j) → (M,J)
are isolated.

To define contact homology, we consider pseudo-holomorphic maps u : (Σ̇, j)→
R×M where (Σ̇, j) is a punctured Riemannian surface. The simplest non-constant
holomorphic maps are trivial cylinders: if γ is a T -periodic Reeb orbit, the associ-
ated trivial cylinder is

R× S1 −→ R×M
(s, t) 7−→ (Ts, γ(Tt)).

Recall that the Hofer energy E of u = (a, f) : Σ̇→ R× V is

E(u) = sup
{∫

Σ̇
u∗d(ϕα), ϕ : R→ [0, 1], ϕ′ ≥ 0

}
If u = (a, f) is a pseudo-holomorphic map, then E(u) ≥ 0. If E(u) = 0, the
image of f is contained in a Reeb trajectory (see [8, 5.3]). Choose some polar
coordinates (ρ, θ) centered on the puncture x of Σ̇ in a neighborhood of x. The
map u = (a, f) : Σ̇ → R ×M is positively asymptotic to a T -periodic orbit γ in a
neighborhood of x if

(1) limρ→0 a(ρ, θ) = +∞;
(2) limρ→0 f(ρ, θ) = γ (−Tθ).

It is negatively asymptotic to γ if
(1) limρ→0 a(ρ, θ) = −∞;

5On a symplectic manifold (M,ω), an almost complex structure is compatible if ω(·, J ·) is a
Riemannian metric.
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(2) limρ→0 f(ρ, θ) = γ (+Tθ).
We now assume that α is non-degenerate. It is a theorem of Hofer [29, Theorem
31] that holomorphic curves u : (Σ̇, j) → (R × M,J) with finite Hofer energy
are asymptotic to a Reeb periodic orbit near each puncture. By Stokes theorem, if
u : Σ̇→ R×M is a holomorphic map with finite Hofer energy, positively asymptotic
to γ+

1 , . . . , γ
+
n+

and negatively asymptotic to γ−1 , . . . , γ−n− . Then

E(u) =
n+∑
i=1
A(γ+

i )

where A(γ) =
∫
γ
α is the period of γ and represents the action

The following proposition is used in Section 5 to prove smoothness of the pro-
jection of a holomorphic curve on M .

Proposition 2.2 (see [41, Lemma 2.4.1]). Let (M, ξ) be a contact manifold, α a
contact equation and J an almost complex structure on (R×M,d(eτα)). Consider
the standard complex structure j on R × S1. For every non-constant map u :
(R× S1, j)→ (R×M,J) which is not a trivial cylinder, the points (s, t) such that
∂
∂τ ∈ im(du(s, t)) are isolated.

2.2. Full contact homology. Consider (V, ξ = ker(α)) a contact manifold, γ
a T -periodic Reeb orbit and p ∈ γ. Let ϕt denote the Reeb flow. The map
dϕT (p) : (ξp,dα) → (ξp,dα) is a symplectomorpism. A non-degenerate periodic
orbit γ is called even if dϕT (p) has two real positive eigenvalues and odd if dϕT (p)
has two complex conjugate or two real negative eigenvalues. Let γm be the m-th
multiple of a simple orbit γ1. Then γm is said to be good if γ1 and γm have the same
parity, otherwise, γm is said to be bad. The Conley-Zehnder index gives a relative
grading of Reeb periodic orbits. Its parity matches with the above definitions.

2.2.1. Definition. Let (M, ξ = ker(α)) be a contact manifold with a non-degenerate
contact equation. We sketch the construction of full contact homology chain com-
plex (A∗(M,α), ∂) defined in [21] by Eliashberg, Givental and Hofer. The chain
complex A∗(M,α) is the super-commutative Q-algebra generated by good Reeb
periodic orbits (here we consider simple periodic orbits and their good multiples).
Choose an almost complex structure J adapted to the symplectisation. To define
∂γ, consider the set

M[Z](J, γ, γ′1, . . . γ′n).
of equivalence classes (modulo reparametrization of Σ̇) of solutions of the Cauchy-
Riemann equation with finite energy, positively asymptotic to γ, negatively asymp-
totic to γ′1 . . . γ′n and in the relative homotopy class [Z]. The R-translation in R×M
induce a R-action onM[Z](J, γ, γ′1, . . . γ′n) (see [5] for more details).

Hypothesis H. There exists an abstract perturbation of the Cauchy-Riemann
equation such that

M[Z](J, γ, γ′1, . . . γ′n) =M[Z](J, γ, γ′1, . . . γ′n)/R
is a union of branched labeled manifolds with corners and rational weights whose
dimensions are given by [Z] and the Conley-Zehnder indices of asymptotic periodic
orbits.

Fredholm theory for multi-covered curves is not written anywhere. There ex-
ists different approches to the perturbation of moduli spaces due to Fukaya and
Ono [24], Liu and Tian [39], Hofer, Wysocki and Zehnder [30, 32, 31] (see [32]) or
Cieliebak and Oancea in the equivariant contact homology setting [13] (see [10]).
There also exist partial transversality results due to Dragnev [19].
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Let nγ,γ′1,...γ′n denote the signed weighted counts of points in 0-dimensional com-
ponents of M[Z](J, γ, γ′1, . . . γ′n) [21, 9] for all relative homology classes [Z]. The
differential of a periodic orbit γ is

∂γ =
∑
γ′1...γ

′
n

nγ,γ′1,...γ′n
i1! . . . il!κ(γ′1) . . . κ(γ′n)γ

′
1 . . . γ

′
n

where i1 . . . il are multiplicities in {γ′1 . . . γ′n} and κ(γ) is the multiplicity of γ. The
definition is extended using the graded Leibniz rule.

Under Hypothesis H, it is reasonable to expect the following: if there exists an
open set U ⊂ R×M containing all the images of J-holomorphic curves positively
asymptotic to γ, negatively asymptotic to γ′1 . . . γ′n, then U contains the images of
all solutions of perturbed Cauchy-Riemann equations with the same asymptotics
for all small enough abstract perturbations.

The Hypothesis H is the key ingredient to get existence and invariance of contact
homology.
Theorem 2.3 (Eliashberg-Givental-Hofer). Under Hypothesis H,

(1) ∂2 = 0;
(2) the associated homology HC∗(M, ξ) does not depend on the choice of the

contact form, complex structure and abstract perturbation.
If ∂2 = 0 for some contact form α, we denote HC∗(M,α, J) the associated

homology.
Some computations were carried out by Bourgeois and Colin [6] to distinguish

toroidal irreducible 3-manifolds, Ustilovsky [48] to prove the existence of exotic
contact structures on spheres and Yau [50] who proved that the contact homology of
overtwisted contact structures is trivial. Bourgeois [3] provided other computations
using Morse-Bott contact homology.

2.2.2. Changing contact form. The proof of invariance of contact homology hinges
on constructing maps between chain complexes associated to different contact
forms. One can refer to [3] or [17] for more details. These maps are useful to
prove invariance of the growth rate of contact homology.

First, we consider proportional contact forms. Let α be a non-degenerate contact
form of (M, ξ) and J be an adapted almost complex structure. For all c > 0,
consider the adapted almost complex structure Jc such that Jc|ξ = J|ξ and Jc ∂∂τ =
Rα
c . The diffeomorphism

ϕc : R× V −→ R× V
(τ, x) 7−→ (cτ, x)

sends a J-holomorphic curve on a Jc-holomorphic curve. The identification of
geometric Reeb periodic orbits induce an isomorphism θ(α, J, c) between the chain
complexes (A∗(M,α), ∂J) and (A∗(M, cα), ∂Jc). Let Θ(α, J, c) denote the induced
map on homology.

Let α1 and α0 be two non-degenerate, homotopic contact forms. Then there
exist c > 0 and a homotopy (αt)t∈R such that

(1) lim
t→−∞

αt = cα0;
(2) lim

t→∞
αt = α1;

(3) if α denote the induced form on R×M , then dα ∧ dα > 0.
Choose an almost complex structure J compatible with dα and interpolating be-
tween two almost complex structures J1 and Jc0 adapted to α1 and cα0. There
exists a chain map counting J-holomorphic curves

ψ((α1, J1), (cα0, J
c
0)) : (A∗(M,α1), ∂J1)→ (A∗(M, cα0), ∂Jc0 ).
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This map decreases the action by Stokes’ theorem. The induced map in homology

Ψ((α1, J1), (cα0, J
c
0)) : HC∗(M,α1, J1),→ HC∗(M, cα0, J

c
0).

does not depend on αt or J . These maps have natural composition properties as
stated in the following theorem.

Theorem 2.4 (Eliashberg-Givental-Hofer). On a closed 3-manifold, under Hypoth-
esis H,

(1) if Ψ((α2, J2), (α1, J1)) and Ψ((α1, J1), (α0, J0)) are well-defined, then

Ψ((α2, J2), (α0, J0)) = Ψ((α1, J1), (α0, J0)) ◦Ψ((α2, J2), (α1, J1)).

(2) Ψ((α1, J1), (α1, J
′
1)) and Ψ((α1, J

′
1), (α1, J1)) always exist.

(3) For all c > 0,

Θ(α0, J0, c) ◦Ψ((α1, J1), (α0, J0)) = Ψ((cα1, J
c
1), (cα0, J

c
0)) ◦Θ(α1, J1, c).

(4) if c < 1, one can choose ψ((α, J), (cα, Jc)) = θ(α, J, c).

Sketch of proof. (3) Denote αt and J the homotopy and almost complex struc-
ture used to define ψ((α1, J1), (α0, J0)). Consider the homotopy cα t

c
and the al-

most complex structure Jc = ϕ∗J where ϕ : (τ, x) 7→ (cτ, x). Then ϕ sends
J-holomorphic curves to Jc-holomorphic curves.

(4) Consider the homotopy αt = c(t)α0 between cα0 and α0 where t 7−→ c(t) is
a non-decreasing function. Let J0 be an almost complex structure adapted to α0
and C be an antiderivative of c. The almost complex structure J = ϕ∗J0 where
ϕ : (τ, x) 7−→ (C(τ), x) is adapted to αt. Then ϕ sends J0-holomorphic curves to
J-holomorphic-curves and the J0-holomorphic curves used to define

ψ((α0, J0), (α0, J0))

are trivial cylinders. �

2.3. Cylindrical contact homology. Let (M, ξ) be a closed contact manifold and
α be a non-degenerate hypertight contact form. The chain complex (Ccyl

∗ (M,α), ∂)
of cylindrical contact homology is the Q-vector space generated by good Reeb pe-
riodic orbits associated to the form α. Choose an almost complex structure J
adapted to the symplectisation. The differential of a periodic orbit γ is

∂γ =
∑
γ′

nγ,γ′

κ(γ′)γ
′.

As in full contact homology situation, the case of multiply covered cylinders is
knotty.

Theorem 2.5 (Eliashberg-Givental-Hofer). Under Hypothesis H,
(1) ∂2 = 0;
(2) the associated homology HCcyl∗ (M, ξ) does not depend on the choice of a

contact form α, an almost complex structure J and an abstract perturbation.

Nevertheless there exists a well defined and invariant partial version of cylindrical
contact homology.

Definition 2.6. Let Λ be a set of free homotopy classes of M . The partial cylin-
drical homology restricted to Λ is the homology of the chain complex (CΛ

∗ (M,α), ∂)
where CΛ

∗ (M,α) is generated by good Reeb periodic orbits in Λ and ∂ is the re-
striction of the cylindrical contact homology differential.
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If Λ contains only primitive free homotopy classes, Dragnev’s work [19, Corollary
1] shows that for a generic almost complex structure, the partial contact homology
HCΛ

∗ (M,α, J) is well defined and does not depend on the choice of J or of a
hypertight non-degenerate form: if an orbit is in a primitive homotopy class, any
holomorphic cylinder asymptotic to it is somewhere injective.

Fact 2.7. The morphisms from Theorem 2.4 induce morphisms ψcyl et Ψcyl on
cylindrical contact homology complex and on cylindrical contact homology with sim-
ilar properties.

2.4. Linearized contact homology. Cylindrical contact homology is a special
case of linearized contact homology. Introduced in Chekanov’s work on Legendrian
contact homology [12], linearized contact homology was generalized to contact ho-
mology by Bourgeois, Eliashberg and Ekholm [7]. One can also refer to [17].

Definition 2.8. An augmentation ε : (A, ∂) → (Q, 0) is a Q-algebra homomor-
phism that is also a chain map.

An augmentation ε in (A, ∂) gives a “change of coordinates” a 7→ a = a− ε(a).
Let (Aε(M,α), ∂ε) denote the new chain complex and write ∂ε = ∂ε1 + ∂ε2 + . . .
using the filtration by word length. In particular ∂ε0 = 0.

Proposition 2.9 (Bourgeois-Ekholm-Eliashberg). If ε is an augmentation, then
(∂ε1)2 = 0.

Definition 2.10. Let (M, ξ = ker(α)) be a contact manifold with a non-degenerate
contact form and ε be an augmentation of A∗(M,α). The linearized contact ho-
mology HCε(M,α, J) with respect to ε is the homology of (Aε∗(M,α), ∂ε1) where
Aε∗(M,α) is the Q-vector space generated by {γ, γ good period orbit}.

Proposition 2.11. Under Hypothesis H, if the contact form α is hypertight, the
complex A∗(M,α) admits the trivial augmentation. The linearized contact homology
is then the cylindrical contact homology.

Let α0 and α1 be two non-degenerate, homotopic contact forms and

ϕ : (A(M,α1), ∂J1)→ (A(M,α0), ∂J0)

be a chain map. If ε0 is an augmentation on (A(M,α0), ∂J0) then ϕ induces a pull
back augmentation ε1 = ε0◦ϕ on (A(M,α1), ∂J1). The morphisms ψ et Ψ described
in Theorem 2.4 induce morphisms ψε0 and Ψε0 . We define θε0 and Θε0 in the same
line.

Theorem 2.12 (Bourgeois-Ekholm-Eliashberg, see [17, Theorem 3.2]). Under Hy-
pothesis H,

(1) The set of linearized contact homologies

{HCε(M,α, J), ε augmentation of (A∗(M,α), ∂J)}

is an invariant of the isotopy class of the contact structure ξ = ker(α).
(2) Let ϕ1, ϕ2 : (A(M,α1), ∂J1) → (A(M,α0), ∂J0) be two homotopic chain

maps and ε0 be an augmentation on (A(M,α0), ∂J0). Let ε1 and ε2 denote
the pull-back augmentations by ϕ1 et ϕ2. Then, the map

ϕ(ε1, ε2) : (Aε1
∗ (M,α1), ∂J1) −→ (Aε2

∗ (M,α1), ∂J1)
γ − ε1(γ) 7−→ γ − ε2(γ)

induces an isomorphism Φ(ε1, ε2) in homology such that the diagram
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HCε1
∗ (M,α1, J1) HCε2

∗ (M,α1, J1)

HCε0
∗ (M,α0, J0)

Φ1

Φ(ε1, ε2)

Φ2

commutes if Φ1 and Φ2 are the morphisms induced by ϕ1 and ϕ2.

Augmentations ε1 et ε2 are said to be homotopic, see [17, 3.2] for a general
definition.

3. Morse-Bott contact homology

Bourgeois introduced Morse-Bott contact homology in his PhD thesis [3] in 2002.
Morse-Bott contact homology gives a way to compute contact homology when the
contact form is degenerate and there exists submanifolds foliated by Reeb periodic
orbits. The main idea is to compare the Morse-Bott degenerate situation to non-
degenerate situations obtained by perturbing the degenerate form using a Morse
function. In this text, we will only use part of the theory on simple examples to
compute the contact homology of circle bundles.

3.1. Morse-Bott perturbations. Let (M, ξ = ker(α)) be a contact manifold with
a contact form α and ϕt be the Reeb flow.

Definition 3.1. The form α is of Morse-Bott type if
(1) σ(α) = {A(γ), γ periodic orbit} is discrete;
(2) if L ∈ σ(α), then NL = {p ∈ V, ϕL(p) = p} is a smooth closed submanifold;
(3) the rank of dαNL is locally constant and TpNL = ker(ϕL − I).

For instance, the standard contact form αn = sin(nx)dy+ cos(nx)dz on T 3 is of
Morse-Bott type. The Reeb vector field is

Rαn =

 0
sin(nx)
cos(nx)


and its flow preserves all tori {x = cst}. A torus {x = x0} is foliated by Reeb peri-
odic orbits if and only if sin(nx0) and cos(nx0) are rationally dependent. Another
important example is the case of a contact structure transverse to the fibers on
a circle bundle and S1-invariant: such a contact structure admits a contact form
whose Reeb vector field is tangent to the fibers. The whole manifold is then foliated
by Reeb periodic orbits of the same period.

The Reeb flow induces an S1-action on NL for all L ∈ σ(α). In general, the
quotient space SL is an orbifold. However in the examples studied in this text,
spaces SL will be smooth manifolds. Hence, we assume that SL is smooth.

We now describe how to perturb a contact form α of Morse-Bott type. Fix
L ∈ σ(α). For all L′ ∈ σ(α)∩ [0, L], choose a Morse function fL′ on SL′ and extend
it to NL′ so that dfL′(Rα) = 0. Then, extend it toM in such a way that its domain
is contained in a small neighborhood of NL′ . Let fL denote the sum of all these
functions. Perturb the contact equation into

αλ,L = (1 + λfL)α.

Proposition 3.2 ([3]). For all L > 0, there exists Λ > 0 such that for all 0 <
λ ≤ Λ, the periodic orbits of αλ,L with period smaller than L correspond to critical
points of fL′ on SL′ for L′ ∈ σ(α) ∩ [0, L]. Additionally, these periodic orbits are
non-degenerate.



ON GROWTH RATE AND CONTACT HOMOLOGY 11

Remark 3.3. An S1-invariant contact structure J on the symplectization R×M
induces a Riemannian metric dα(·, J ·) on SL.

3.2. Morse-Bott contact homology. Roughly speaking, the complex of Morse-
Bott contact homology is generated by critical points of the functions fL, and
the differential counts generalized holomorphic cylinders. Generalized holomorphic
cylinders are a combination of holomorphic curves asymptotic to periodic orbits in
the spaces NL and gradient lines in the spaces SL. See [3] for more details, [4] for
a summary of [3], or [5] for a general presentation.

Consider a family of S1-invariant almost complex structures Jλ adapted to αλ,L.
Generalized holomorphic cylinders are limits of Jλ-holomorphic curves when λ→ 0
and derive from two main phenomenas. On one side, holomorphic buildings appear
similarly to the non-degenerate situation: up to reparametrization, a sequence con-
verges in C∞-loc to a holomorphic curve with asymptotic periodic orbits in some
intermediate spaces NL. On the other hand, when the asymptotics of two adjacent
levels in a holomorphic building differ, projections on SL grow nearer to a gradient
trajectory of fL: up to reparametrization, a sequence converges in C∞-loc to a
trivial cylinder over any point of the gradient trajectory. The associated compacity
theorem derives from Bourgeois’ thesis [3, Chapters 3 and 4]. One can also refer
to [8]. In our simpler setting, Bourgeois’ results lead to the following theorems.

Theorem 3.4 (Bourgeois [3]). Let π : M → S be a circle bundle over a closed
oriented surface carrying a S1-invariant contact form α transverse to the fibers. Fix
L > 0 and a Morse-Bott perturbation fL induced by a Morse function f : S → R.
Let Jλ be a family of S1-invariant almost complex structures on R×M adapted to
αλ,L and converging to an almost complex structure J adapted to α. Assume that
(f, g) is a Morse-Smale pair where g is the Riemannian metric on S induced by J
and α.

Fix two critical points x+et x− of f so that index(x+) − index(x−) = 1 and
let γ+ and γ− denote the associated Reeb periodic orbits. Then, for all small
enough λ, the moduli space M(γ+, γ−, Jλ) is a 0-dimensional manifold. Addition-
ally, M(γ+, γ−, Jλ) identifies with the set of gradient trajectories from x+ to x−,
the holomorphic curves are arbitrarily close to cylinders over the gradient trajec-
tories and the orientations induced by contact homology and Morse theory are the
same.

Theorem 3.5 (Bourgeois [3]). Consider the standard contact form α = sin(x)dy+
cos(x)dz on T 3. Fix L > 0 and Morse-Bott perturbation fL induced by a Morse
function f : S1 → R with two critical points. Let Jλ be a family of almost complex
structures on R × M adapted to αλ,L, S1-invariant on NL′ for all L′ ≤ L and
converging to an almost complex structure J .

Fix L′ ≤ L and let T be a torus in NL′ . Let γ+ and γ− denote the two periodic
orbits in T associated to the critical points of f . Then for all small enough λ, the
moduli spaceM(γ+, γ−, Jλ) has exactly two elements with opposite orientations and
the homomorphic curves are arbitrarily close to cylinders over gradient trajectories
of f . In addition, if γ+ and γ− are not in the same torus,M(γ+, γ−, Jλ) is empty.

Remark 3.6. This theorem generalizes to contact forms sin(nx)dy + cos(nx)dz
and f(x)dy + g(x)dz if f and g have the same variations as x 7→ sin(nx) and
x 7→ cos(nx).

These theorems derive from Bourgeois’ work and do not depend on Hypothesis H.
The solutions of the Cauchy-Riemann equations is the 0-set of a Fredholm section
in a Banach bundle (described in [3, 5.1.1]) and thus a 3-manifold. To achieve
transversality of this section, Bourgeois proves that the linearized Cauchy-Riemann



12 ANNE VAUGON

operator is surjective on its 0-set by studying its surjectivity for curves close to
holomorphic curves (the curves are defined in [3, 5.3.2], the surjectivity is proved
in [3, Proposition 4.13 and 5.14]) and then using an implicit function theorem [3,
Proposition 5.16]. To obtain the desired moduli space, we quotient the space of
solutions by the biholomorphisms of R × S1 and the R-action. The orientation
issues are studied in [3, Proposition 7.6].

Corollary 3.7 (Bourgeois [3]). Let M be an oriented circle bundle over a closed
oriented surface S carrying a S1-invariant contact structure ξ which is transverse
to the fibers. Let f denote the homotopy class of the fiber. Then, for all k > 0,
there exists a contact form α such that

HCf
k

∗ (M,α,Q) = H∗(S,Q).
The cylindrical contact homology is trivial in all other homotopy classes. Under
Hypothesis H, the growth rate of contact homology is linear.

Corollary 3.8. Fix n ∈ N∗. Let αn = sin(nx)dy + cos(nx)dz be the standard
contact form on T 3. Let cy and cz denote the free homotopy classes associated to
S1 × {0} × S1 and S1 × S1 × {0}. Let a = c

ny
y c

nz
z be a non-trivial homotopy class.

Then there exists a contact form α′n such that

HCa∗ (T 3, α′n,Q) =
n⊕
i=1

H∗(S1,Q).

The cylindrical contact homology is trivial in all other homotopy classes. Under
Hypothesis H, the growth rate of contact homology is quadratic.

Note that contact homology distinguishes between the contact structures ξn =
ker(αn).

4. Growth rate of contact homology

4.1. Algebraic setting. In this text, we mainly focus on the dichotomy between
polynomial and exponential growth rate.

Definition 4.1. The growth rate of f : R+ → R+ is polynomial of order ≤ n if
there exists a > 0 such that f(x) ≤ axn for all x ∈ R+. It is exponential if there
exist a > 0 and b > 0 such that f(x) ≥ a exp(bx) for all x ∈ R+.

The growth rate Γ(f) of a non-decreasing function f may itself be defined as its
equivalence class under the relation : two non-decreasing functions g : R+ → R+
and h : R+ → R+ are equivalent is there exists C > 0 such that

h
( x
C

)
≤ g(x) ≤ h(Cx)

for all x ∈ R+ (see for instance [18]). This definition is more precise than the
polynomial growth rate of f given by

lim sup
x→∞

log
(

max(f(x), 1)
)

log(x) .

McLean [42] defines the growth rate of symplectic homology using this formula and
this growth rate is common in topology, see for instance [35].

The following algebraic preliminaries are similar to [42]. A filtered directive
system is a family of vector spaces (Ex)x∈[0,∞[ such that for all x1 ≤ x2, there
exists a linear map ϕx1,x2 : Ex1 −→ Ex2 such that

(1) ϕx1,x1 = Id for all x1 ≥ 0
(2) ϕx1,x3 = ϕx2,x3 ◦ ϕx1,x2 for all 0 ≤ x1 ≤ x2 ≤ x3.
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A filtered directive system admits a direct limit E = lim
x→∞

Ex. By definition, there
exists ϕx : Ex → E such that the following diagram commutes for all 0 ≤ x1 ≤ x2.

Ex1

E

Ex2

ϕx1,x2

ϕx1 ϕx2

In what follows, we will assume that Ex is a finite dimensional space for all x ≥ 0.
Definition 4.2. The growth rate Γ((Ex)x∈[0,∞[) of (Ex) is the growth rate of
x 7→ rk(ϕx).

A morphism of filtered directive systems from (Ex)x∈[0,∞[ to (Fx)x∈[0,∞[ consists
of a positive number C and a family of linear maps Φx : Ex −→ FCx such that the
following diagram commutes for all 0 ≤ x1 ≤ x2:

Ex1 FCx1

Ex2 FCx2

Φx1

Φx2

Two systems (Ex) and (Fx) are isomorphic if there exists a morphism (C,Φ) from
(Ex) to (Fx) and a morphism (C ′,Ψ) from (Fx) to (Ex) such that for all x ≥ 0

ΨCx ◦ Φx = ϕEx,CC′x and ΦC′x ◦Ψx = ϕFx,CC′x.

Lemma 4.3. Two isomorphic filtered directive systems have the same growth rate.
Proof. Consider two filtered directive systems (Ex) and (Fx). By definition, the
following diagram

Ex1 limE

FCx1
limF

ECC′x1
limElimE

Id

ϕx1

ϕx,CC′x
ψCx1

u

v

commutes. Thus rk(ϕx1) ≤ rk(ψCx1). Similarly rk(ψx1) ≤ rk(ϕC′x1). �

4.2. Action filtration. Let M be a compact manifold and α be a hypertight non-
degenerate contact form on M . Fix L > 0 and let Ccyl

≤L(M,α) be the Q-vector
space generated by the good periodic Reeb orbits with period smaller than L. This
is a finite dimensional vector space. Since the differential decreases the action,
(Ccyl
≤L(M,α), ∂≤L)L>0 is a chain complex. We denote (HCcyl

≤L(M,α, J))L>0 the
associated homology. The inclusion

i : Ccyl
≤L(M,α) −→ Ccyl

≤L′(M,α)
induces a linear map in homology for all L′ ≥ L. Similarly, given an set of free
homotopy classes Λ and for all L > 0 we define a chain complex (CΛ

≤L(M,α), ∂≤L)
and a homology HCΛ

≤L(M,α, J).
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Fact 4.4. The families (HCcyl
≤L(M,α, J))L>0 and (HCΛ

≤L(M,α, J))L>0 are filtered
directed systems whose morphisms are induced by inclusions. Besides

lim
→
HCcyl

≤L(M,α, J) = HCcyl
∗ (M,α, J)

lim
→
HCΛ

≤L(M,α, J) = HCΛ
∗ (M,α, J).

Let M be a compact manifold and α be a non-degenerate contact form on M
such that (C∗(M,α), ∂) admits an augmentation ε. Then ∂ε1 decreases the action
on Aε(V, α) and we define a filtered directed systems.
Definition 4.5. The growth rate of contact homology is the growth rate of the
associated filtered directed system.

Remark 4.6. As rk(ϕL) ≤ dimHCcyl
≤L(M,α, J) ≤ dimCcyl

≤L(M,α), if the growth
rate of contact homology is exponential, the number of Reeb periodic orbits grows
exponentially with the period.
4.3. Invariance of the growth rate of contact homology.
Fact 4.7. The maps from Theorem 2.4 restrict to maps denoted ψ≤L and Ψ≤L in
the filtered case. In addition θ and Θ restrict to maps

θ≤L :(A≤L(M,α), ∂J)→ (A≤cL(M, cα), ∂Jc)
Θ≤L :HC≤L(M,α, J)→ HC≤cL(M, cα, Jc).

Analogous restrictions exist in the cylindrical and linearized situations. The map
ϕ(ε1, ε2) induces a map

Φ≤L(ε1, ε2) : HCε1
≤L(M,α, J)→ HCε2

≤L(M,α, J).
In addition to the properties from Theorem 2.4, these maps satisfies the following

properties.
(1) For all 0 < c < 1,

Θ≤L
(
cα, Jc,

1
c

)
◦Ψ≤L((α, J), (cα, Jc))

is the map induced by the inclusion HC≤L(α, J)→ HC≤Lc
(α, J).

(2) If ϕ1 = ψ((α1, J1), (cα, Jc)) ◦ ψ((α, J), (α1, J1)) and ϕ2 = θ(α, J, c) then

Φ≤Lc (ε2, ε1) ◦Θε2
≤L

(
cα, Jc,

1
c

)
◦Ψε0
≤L((α, J), (cα, Jc))

is the morphism induced by the inclusion HCε1
≤L(α, J)→ HCε1

≤Lc
(α, J).

Proposition 4.8. Let α0 and α1 be two homotopic hypertight contact forms on
a compact manifold M . Under Hypothesis H, the two filtered directed systems
HCcyl

≤L(M,α0) and HCcyl
≤L(M,α1) are isomorphic.

Proof. The morphisms between HCcyl
≤L(M,α1) and HCcyl

≤L(M,α0) are

ϕL : HCcyl
≤L(M,α1)→ HCcyl

≤Lc
(M,α0)

ϕL = Θcyl
≤L

(
cα0, J

c
0 ,

1
c

)
◦Ψcyl
≤L ((α1, J1), (cα0, J

c
0))

and
ϕ′L : HCcyl

≤L(M,α0)→ HCcyl
≤ L
c′

(M,α1)

ϕ′L = Ψcyl
≤ L
c′

((α0

c′
, J

1
c′
0

)
, (α1, J1)

)
◦Θcyl
≤L

(
α0, J0,

1
c′

)
.

These morphisms give an isomorphism by Fact 4.7. �
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Corollary 4.9. Let α0 and α1 be two homotopic hypertight contact forms on a
compact manifold M . Under Hypothesis H, the associated cylindrical contact ho-
mologies have the same growth rate.

Proposition 4.10. Let α0 and α1 be two homotopic hypertight contact forms on a
compact manifold M . Let Λ be a set of primitive free homotopy classes of M . Then
the associated cylindrical partial contact homologies have the same growth rate.

Proposition 4.11. Let α0 and α1 be two isotopic contact forms, J0 and J1 be two
adapted almost complex structures such that (A∗(α0), ∂J0) has an augmentation ε0
and ψ((α1, J1), (α0, J0)) exists. Then, under Hypothesis H, the two filtered directed
systems HCε1

≤L(α1, J1) and HCε0
≤L(α0, J0) are isomorphic. Thus, the growth rates

of linearized contact homology are the same.

Proof. Consider the morphisms

ϕL : HCε1
≤L(M,α1, J1)→ HCε0

≤L(M,α0, J0)
ϕL = Ψε0

≤L ((α1, J1), (α0, J0))

and

ϕ′L : HCε0
≤L(M,α0, J0)→ HCε1

≤Lc
(M,α1, J1)

ϕ′L = Ψε1
≤Lc

((α0

c
, J

1
c
0

)
, (α1, J1)

)
◦ Φ≤Lc (εc0, ε′0) ◦Θεc0

≤L

(
α0, J0,

1
c

)
where εc0 is the pull back augmentation of ε0 by θ

(
1
cα0, J

1
c
0 , c

)
and ε′0 is the pull

back by ψ((α1, J1), (α0, J0))◦ψ
((

1
cα0, J

1
c
0 , c

)
, (α1, J1)

)
. These morphisms give an

isomorphism by Fact 4.7. �

5. Positivity of intersection

Introduced by Gromov [28] and McDuff [40], positivity of intersection states
that, in dimension 4, two distinct pseudo-holomorphic curves C and C ′ have a finite
number of intersection points and that each of these points contributes positively
to the algebraic intersection number C · C ′. In this text we will only consider the
simplest form of positivity of intersection: let M be a 4-dimensional manifold, C
and C ′ be two J-pseudo-holomorphic curves and p ∈M so that C and C ′ intersect
transversely at p. Consider v ∈ TpC and v′ ∈ TpC ′ two non-zero tangent vectors.
Then (v, Jv, v′, Jv′) is a direct basis of TpM (J orients TpM). In contact world,
positivity of intersection results in the following lemma.

Lemma 5.1. Let (V, ξ) be a contact manifold, α be a contact form and J be an
adapted almost complex structure. Consider U an open subset of C, u = (a, f) :
U → R ×M a J-pseudo holomorphic curve and p ∈ U such that dfp is injective
and transverse to R(f(p)).Then, R(f(p)) is positively transverse to dfp.

Proof. Let γ : [−ε, ε] → V be a arc in a Reeb trajectory such that γ(0) = f(p).
Consider the holomorphic curve

v : R× [−ε, ε] −→ R× V
(s, t) 7−→ (s+ f(p), γ(t)).

The two holomorphic curves u and v intersect transversely at u(p) and
(
∂
∂τ , R(f(p))

)
is a direct basis for the tangent plan to v at u(p). The projection of u toM is smooth
as dfp is injective. The positivity of intersection gives the desired result. �
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The hypothesis “dfp injective and transverse to R(f(p))” is generic (see Theorem
2.1 and Proposition 2.2). We will use positivity of intersection in the following
situation. Let (M, ξ = ker(α)) be a contact manifold with a chart J × S1 × S1

and coordinates (x, y, z) such that α = f(x)dθ + g(x)dz. Assume that the tori
{∗} × S1 × S1 are incompressible6 in M . Consider u = (a, f) : R × S1 → R ×M
a pseudo-holomorphic cylinder with finite energy and asymptotic to γ+ and γ−.
Assume that u intersects R× {x} × S1 × S1 = R× Tr for all x ∈ I.

Lemma 5.2. There exist a nonempty open interval I ⊂ J such that for all x0 ∈ I
u−1 (u(R× S1) ∩ (R× Tx0)

)
is a disjoint union of smooth circle homotopic to {∗} × S1.

Let C be a circle given by Lemma 5.2, then C inherits the orientation of {∗}×S1

and induces a homotopy class of Tx0 . Let p a vector tangent to Tx0 so that the
associated line is in the homotopy class associated to C. If A is a collar neighbor-
hood of C, denote A± the two connected components of A \ C corresponding to
the connected component of R× S1 \ C asymptotic to {±∞} × S1.

Lemma 5.3. If (p,R) is a direct basis of Tx0 then
f (A−) ⊂ ]x, x0[× S1 × S1 and f (A+) ⊂ ]x0, x[× S1 × S1.

Otherwise
f (A−) ⊂ ]x0, x[× S1 × S1 and f (A+) ⊂ ]x, x0[× S1 × S1.

In other words, holomorphic cylinders cross a torus foliated by Reeb periodic
orbits in just one direction.

Proof of Lemma 5.2. There exists an nonempty open interval I ′ ⊂ I such that
I ′ × S1 × S1 does not intersect γ+ et γ−. Thus u−1 (u(R× S1) ∩ I × S1 × S1) is
contained in a compact subset of R × S1. As the points such that du(s, t) = 0 or
∂
∂τ ∈ im(du(s, t)) are isolated in R × S1, there exists an nonempty open interval
J ⊂ I ′ such that J×S1×S1 does not contain images of points such that du(s, t) = 0
or ∂

∂τ ∈ im(du(s, t)).
Consider x0 ∈ J and (s, t) ∈ R × S1 such that u(s, t) ∈ R × Tx0 . As ∂

∂τ /∈
im(du(s, t)) and u is pseudo-holomorphic, R(s, t) /∈ im(du(s, t)) and

Vect
(
∂

∂τ
,Ru(s,t)

)
∩ im(du(s, t)) = {0}.

As du(s, t) 6= 0

Vect
(
∂

∂τ
,Ru(s,t)

)
⊕ im(d(s,t)u) = Tu(s,t)(R×M).

Thus im(du) + T (R× Tx0) = Tu(R×M) and, by transversality,
u−1 (u(R× S1) ∩ (R× Tx0)

)
is a 1-dimensional compact submanifold of R× S1.

By contradiction, if u−1 (u(R× S1) ∩ (R× Tx0)
)
has a contractible component

C, then u(C) = c is contractible in R×V . As c ⊂ R×Tx0 and Tx0 is an incompress-
ible torus, c is contractible in R × Tx0 . As Vect

(
∂
∂τ , Ru(s,t)

)
∩ im(du(s, t)) = {0},

the projection of c to M is smooth and transverse to R. Yet the torus Tx0 is foli-
ated by Reeb orbits. Thus u−1 (u(R× S1) ∩ (R× Tx0)

)
has only non-contractible

components and, as it is a smooth manifold, these components are homotopic to
{∗} × S1. �

6A torus T is incompressible in M if the map π1(T )→ π1(M) is injective.
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Proof of Lemma 5.3. Let C(t) be a parametrization of C and c be the projection
of u(C) on Tx0 , c is a smooth curve transverse to R. If

(
c′(t0), R(c(t0))

)
is a direct

basis of Tx0 for some t0, then
(
c′(t), R(c(t))

)
is a direct basis for all t. Thus (p,R)

is a direct basis Tr0 if and only if
(
c′(t), R(c(t))

)
is a direct basis.

The sets f(A±) are connected and therefore contained in ]x0, x[ × S1 × S1 or
in ]x, x0[ × S1 × S1. Let V be a normal vector to C at C(t) so that (V,C ′(t)) is
a direct basis (V points toward A+). Consider v = dfC(t)V , then (v, c′(t), R) is
a direct basis by positivity of intersection. If (p,R) is a direct basis then the x
component of v is positive. Conversely if (R, p) is a direct basis, the x component
of v is negative. �

6. Contact homology of walled contact structures

In this section we prove Theorem 1.7. Walled contact structures are similar to
contact structure ker(sin(x)dy + cos(x)dz) on thickened tori near the wall and to
S1-invariant contact structures transverse to the fiber elsewhere. In the closed case,
these situations can be studied with Morse-Bott theory (see Section 3). Theorem 1.7
states that cylindrical contact homology of a walled contact structure is the sum of
cylindrical contact homologies of the components of this decomposition.

Let π : M → S be a circle bundle over a closed oriented surface and ξ be a
contact structure on M walled by a curve Γ without contractible components. To
prove Theorem 1.7 we first construct an “almost Morse-Bott” contact form such
that

(1) in an union of thickened tori in a neighborhood of π−1(Γ), Reeb orbits
foliate the tori;

(2) elsewhere, the Reeb vector field is tangent to the fiber.
This contact form is not of Morse-Bott type as some spaces NT have a nonempty
boundary. Then, in Section 6.2, we perturb the contact form from Section 6.1 as
in the More-Bott case and control Reeb periodic orbits. We prove the quadratic
growth rate of contact homology. In Section 6.3, we prove that there is no holo-
mophic cylinders between two components of the decomposition using positivity of
intersection and end the proof using Morse-Bott theory.

Remark 6.1. Contact structures ker(sin(nx)dy+ cos(nx)dz) on T 3 = T 2×S1 are
walled by the curves x = π

2n + kπ
n . Theorem 1.7 and Proposition 3.8 give the same

contact homology.

6.1. “Almost Morse-Bott” contact form. The following proposition results
from Giroux’s work [27].

Proposition 6.2. Let ξ be a contact structure on a circle bundle M walled by a
nonempty multi-curve Γwithout contractible component. Then there exists a contact
structure isotopic to ξ, a contact form α, and a neighborhood U ' ]−1, 1[× Γ× S1

of π−1(Γ) ' {0} × Γ× S1 with coordinates (x, y, z) such that:
(1) ker(α) is walled by Γ;
(2) α = β + εdz on M \ U ' S1 × S1 where ε = ±1;
(3) α = f(x)dy+ g(x)dz on U where f is negative and strictly convex and g is

increasing outside a neighborhood of ±1 where g = ±1 and has an inflexion
point at 0;

(4) the change of coordinates between U and a neighborhood of M \U is a linear
map (x, y, z) 7→ (x, y, z + ky).
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− 1
2

1
2

f g f ′

g′

Figure 2. Maps f and g

Remark 6.3. On M \ U the Reeb vector field is ± ∂
∂z . On U ,

Rα = 1
f ′(x)g(x)− g′(x)f(x)

 0
−g′(x)
f ′(x)

 .

The open set U is a union of thickened tori foliated by Reeb orbits.

Proof. Let ]−1, 1[ × Γ × S1 be a neighborhood of π−1(Γ) = {0} × Γ × S1 with
coordinates (x, y, z) so that ∂

∂x ∈ ξ and S1 is the fiber. In this chart, any contact
form is written

α = f(x, y, z)dy + g(x, y, z)dz
where g(0, y, z) = 0 and g(x, y, z) 6= 0 for all x 6= 0. Orient Γ so that Γ is negatively
transverse to ξ. Without loss of generality, one can assume f(0, y, z) = −1.

Consider the path of contact forms

αs =
(
sf(x, y, z) + (1− s)f(x, 0, 0)

)
dy +

(
sg(x, y, z) + (1− s)g(x, 0, 0)

)
dz

in a small neighborhood of {0} × Γ× S1. For all s ∈ [0, 1], αs is a contact form as
f(0, y, z) = f(0, 0, 0) and g(0, y, z) = g(0, 0, 0). Moser’s trick (see for instance [25,
2.2]) provides us with a vector field Xs near {0} × Γ× S1 such that

(1) Xs(0, y, z) = 0;
(2) Xs is collinear to ∂

∂x (as ξs ∩ ξ = R ∂
∂x );

(3) ker(ϕ∗sα) = ker(αs) where ϕs is the flow of Xs.
Extend Xs to V × [0, 1] using a cut-off function. Then ϕs is well defined for all
s ∈ [0, 1]. The contact structure associated to ϕ∗sα is transverse to the fibers on
M \ {0}× Γ× S1 as ϕ∗sα = f ◦ϕsdy+ g ◦ϕsdz, (ϕs)|{0}×Γ×S1 = Id and α = αs on
M \U . Therefore ξ is isotopic to a contact structure such that there exist a contact
form α and a chart U ′ = ]−1, 1[× Γ× S1 near π−1(Γ) with

α = f(x)dy + g(x)dz

where g(0) = 0 and g(x) 6= 0 for all x 6= 0. By the contact condition, g′(0) > 0 and
one can assume that g = −1 on

]
−1, 1

2
]
and g = 1 on

[ 1
2 , 1
[
.

For each connected component of Γ, choose f0 and g0 so that
(1) f0 is negative and strictly convex;
(2) g0 is increasing outside a neighborhood of ±1 where g0 = ±1 and has an

inflexion point at 0;
(3) f0 = f and g0 = g near x = ±1;
(4) f0(x) (resp. g0(x)) is the same for all connected component and for all

x ∈
[
− 3

4 ,
3
4
]
.
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Write f(x) + ig(x) = ρ(x) exp(iθ(x)) and f0(x) + ig0(x) = ρ0(x) exp(iθ0(x)). By
the contact condition, θ and θ0 are decreasing and have the same image as g(x) = 0
(resp. g0(x) = 0) if and only if x = 0. By use of Gray’s theorem (see for instance
[25, 2.2]) on the path(

(1− s)ρ(x) + sρ0(x)
)

exp
(
i((1− s)θ(x) + sθ0(x))

)
we obtain an isotopic contact form such that

α = f0(x)dy + g0(x)dz

on U ′. Let W be a neighborhood of a connected component of M \
( ]
− 1

2 ,
1
2
[
×

Γ × S1
)
. As Γ 6= ∅ and S is connected, W is a manifold with boundary and the

circle bundle is trivial. Let S′ × S1 be a trivialization such that the change of
coordinates between W and ]−1, 1[×Γ×S1 is linear (i.e. (x, y, z) 7→ (x, y, z+ ky))
in polar coordinates near the boundary. Therefore α = β + εdz near ∂W . On W ,
α = βz + hdz and h 6= 0, so one can assume h = ε. By use of Gray’s theorem on
the path αs = sβz(x) + (1− s)β0(x) + εdz we obtain the desired contact form. �

6.2. Morse-Bott perturbation. Let α be a contact form as in Proposition 6.2
and write Ui = ]− 1

2 ,
1
2 [×Γi × S1 where Γ = ∪Γi. On Ui, α = f(x)dy+ g(x)dz and

the Reeb vector field is

R = 1
f ′g − fg′

 0
−g′
f ′


If f ′(x) 6= 0 and −g

′(x)
f ′(x) = p

q with p ∧ q = 1, the period of the Reeb periodic orbits
in Tx = {x} × Γi × S1 is

T =
 (f ′g − fg′)q

f ′

 = |qg + fp| .

If g′(x) 6= 0 and f ′(x)
−g′(x) = q

p with p ∧ q = 1, the period of the Reeb periodic orbits
in Tx is

T =
 (f ′g − fg′)p

−g′

 = |qg + fp| .

In what follows we will assume q ≥ 0. On W = M \
⋃
Ui, all the fibers are periodic

orbits of period 1.
As in the Morse-Bott case, let σ(α) denote set set of periods of Reeb periodic

orbits, and write

NL = {p ∈ V, ϕL(p) = p} and SL = NL/S1

for all L ∈ σ(α).

Lemma 6.4. σ(α) is discrete and #(σ(α)∩[0, L]) exhibits (exact) quadratic growth
with L.

Proof. There exist A > 0 and intervals I1 and I2 such that
(1) ]− 1

2 ,
1
2 [ = I1 ∪ I2;

(2)
∣∣∣ 1
g′

∣∣∣ < A on I1 and
∣∣∣ 1
f ′

∣∣∣ < A on I2;
(3) 1

A < f ′g − fg′ < A, |f ′| < A and |g′| < A.

Consider L > 0 and x ∈ I1 such that f ′(x)
−g′(x) = q

p and
∣∣∣ (f ′g−fg′)p−g′(x)

∣∣∣ < L. There is

at most 3A6L2 rational numbers q
p such that

∣∣∣ (f ′g−fg′)p−g′(x)

∣∣∣ < L for some x ∈ I1.
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As x 7→ f ′(x)
−g′(x) is increasing, for all rational number q

p there is one x such that
f ′(x)
−g′(x) = q

p . Therefore the growth rate is at most quadratic.
The growth rate is also at least quadratic: consider B > 0 and p, q such that

p2 + q2 ≤ B. Then, there exists x such that f ′(x)
−g′(x) = q

p . The associated torus is
foliated by Reeb periodic orbits of period smaller than A2B. �

Fact 6.5. Let a be a loop such that [a] 6= [fiber]k and [a] 6= [fiber]k[Γj ]k
′ , then there

exists a contact form α such that HC [a]
∗ (V, α) = 0.

As in the Morse-Bott case, we perturb the degenerate contact form with Morse
functions on space SL. Fix L > 0 and for all L′ ≤ L consider a function fL′ :
NL′ → R such that

(1) if Tx ⊂ NL′ , then fL′(x, y, z) = h(qy − pz) where h : S1 → R is a Morse
function;

(2) f1 is z-invariant on W , f1 does not depend on y and ε∂f1
∂x > 0 in cylindrical

coordinates (x, y, z) near ∂W ,.
Extend fL′ to M by use of a cut-off function. Let fL denote the sum of fL′ for all
L′ ≤ L. Perturb the contact equation in

αλ,L = (1 + λfL)α.

Note that the length in the x-coordinate of connected components of dom(fL) tends
to 0 as N →∞ and that the flow of RαL,λ preserves dom(fL) and V \ dom(fL).

Lemma 6.6. For all L > 0, there exists Λ > 0 such that for all 0 < λ ≤ Λ, the
periodic orbits of αλ,L with period smaller than L correspond to critical points of
fL′ on SL′ , L′ ∈ σ(α) ∩ [0, L]. These periodic orbits are non-degenerate.

Proof. Outside a neighborhood of ∂W , Morse-Bott theory applies directly (see
[3, Lemma 2.3]). In a neighborhood of ∂W , in the trivializing chart of W with
coordinates (x, y, z), contact equation is written

α = (f(x) + kg(x))dy + g(x)dz = fW (x)dy + g(x)dz.
as the change of coordinates is linear (Proposition 6.2). As fL only depends on x,

RαL,λ = 1
(f ′W g − fW g′)(1 + λfL)2

 0
−g′(1 + λfL)− λgf ′L
f ′W (1 + λfL) + λfW f

′
L

 .

In a small neighborhood of ∂W and for λ small enough, the y coordinate of the
Reeb vector field is as small as desired and do not vanish. Therefore there is no
Reeb periodic orbit with period smaller that L. �

Lemma 6.7. Let a be a loop such that [a] = [fiber]k with k 6= 0 or [a] = [fiber]k[Γj0 ]k′

with k′ 6= 0. Then, there exist L0 and L 7→ λ(L) > 0 decreasing such that for all
L ≥ L0 and λ ≤ λ(L)

(1) Reeb periodic orbits of αL,λ homotopic to a have a period smaller than L;
(2) αL,λ is hypertight

In addition, there exist arbitrarily small non-degenerate and hypertight perturba-
tions of αL,λ.

Proof. Let W1, . . . ,Wm be the connected components of W . Consider
⋃m
i=1W

′
i ∪⋃n

j=1 U
′
i an open covering of M such that W ′i ∩ π−1(Γ) = ∅ for all i = 1 . . .m and

U ′j ∩W = ∅ for all j = 1 . . . n. There exists ε > 0 such that, in the trivialization of
W ′i induced by Proposition 6.2, |Rz| > ε where Rz is the z-coordinate of the Reeb
vector field and, in the trivialization of U ′j induced by Proposition 6.2, |Ry| > ε
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where Ry is the y-coordinate of the Reeb vector field. If there exists a loop b in
Wi (resp. Uj) such that [b] = [a], let ki (resp. k′j) denote the multiplicity of the
fiber (resp. Γj) in the decomposition of b in the associated trivialization. Consider
L0 > 0 such that

(1) L0 >
max({|ki|, |k′j |})

ε
;

(2) periodic orbits of Rα homotopic to a have a period smaller than L0;
(3) for all L′′ ≥ L0 , the connected components of dom(fL′′) are contained in

an open component of the covering.
By Lemma 6.6, there exists λ(L) such that for all λ ≤ λ(L), all Reeb periodic orbits
of αL,λ with period smaller that L are non-degenerate and such that ε is a lower
bound for the z-component of RαL,λ in W ′i and for the y-component in U ′j .

Let γ be a αL,λ Reeb periodic orbit with period greater than L. Then, either
γ ⊂ dom(fL) or γ ⊂M \ dom(fL). If γ ⊂

(
M \ dom(fL)

)
then γ is not homotopic

to a by condition 2. If γ ⊂ dom(fL), by condition 3, either γ ⊂
(
dom(fL)∩W ′i

)
or

γ ⊂ (dom(fL) ∩ U ′j
)
. If γ ⊂

(
dom(fL) ∩W ′i

)
, then γ covers the fiber at least ±εL

times and hence γ covers the fiber at least |ki|+1 or −|ki|−1 times by condition 1. If
γ ⊂ (dom(fL)∩U ′j

)
then covers Γj at least |k′j |+1 or −|k′j |−1 times. Consequently,

γ is not homotopic to a and non-contractible as Γj is not contractible and the fiber
is not a torsion element. By Lemma 6.6, αL,λ is hypertight.

Assume that the boundaries of U ′j and W ′i are tori x = cst with dense Reeb
orbits. To get a non-degenerate hypertight perturbation of αL,λ, we choose a small
non-degenerate perturbation that preserves the boundaries of U ′j and W ′i . �

Lemma 6.8. Under Hypothesis H, the growth rate of contact homology is (at most)
quadratic.

Proof. Let α′ be a non-degenerate and hypertight contact form (given for instance
by Lemma 6.7). Let αLi,λi be a sequence of contact forms with Li → ∞ such
that Li /∈ σ(α) and λi ≤ λ1(Li) for all i ∈ N∗. Perturb αLi,λi to obtain a non-
degenerate hypertight form α′Li,λi (Lemma 6.7). For λi small enough and for small
perturbations, the Reeb periodic orbits of α′Li,λi with period smaller than Li are in
bijection with the Reeb periodic orbits of αLi,λi with period smaller than Li and
the difference between their period and the period of the associated Rα periodic
orbits is bounded by 1

2 . Thus, there exists C > 0 such that for all i ∈ N∗ and for
all L ≤ Li

#Ccyl
≤L(V, α′Li,λi) ≤ C# (σ(α) ∩ [0, L+ 1]) .

In addition, there exists D > 0 such that

1
D
< sup

{
fLi,λi(p),

1
fLi,λi(p)

}
< D

where α′ = fLi,λiα
′
Li,λi

.
By invariance of cylindrical contact homology (Corollary 4.9) and by [17, 10],

there exists C(D) such that, for all L > 0 and for all i, rk(ψL) ≤ rk(ψiC(D)L)
where ψiL : HCcyl

≤L(M,α′Li,λi) → HCcyl(M,α′Li,λi) and ψL : HCcyl
≤L(M,α′) →

HCcyl(M,α′) are the maps defining the direct limit. Hence,

rk(ψL) ≤ C# (σ(α) ∩ [0, C(D)L+ 1])

and rk(ψL) exhibits a quadratic growth. �
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6.3. Holomorphic cylinders and Morse-Bott theory. Let [a] be a free ho-
motopy class such that [a] = [fiber]k or [a] = [fiber]k[Γj ]k

′ . By Lemma 6.7 there
exists L > 0 and λ > 0 such that all the RαL,λ-periodic orbits homotopic to a
are non-degenerate, associated a critical point of fL′ , L′ ≤ L and have a period
smaller than L. Consider W ′j =

⋃
k∈Kj Uk where Kj = {k, Uk is adjacent to Wj}.

Then W ′j is a trivial circle bundle. Extend the trivialization from Proposition 6.2
in W ′j ' S′j × S1. In these coordinates, α = (f(x) +mg(x)) dy + g(x)dz and the
Reeb vector field is positively collinear to

Rα =

 0
−g′

f ′ +mg′

 .

Note that the y-coordinate is negative in W ′j \Wj .

Lemma 6.9. Let u = (au, fu) : R×S1 → R×M be a holomophic cylinder negatively
asymptotic to γ ∈Wj. Then fu(R× S1) ⊂Wj.

Proof. We prove the lemma by contradiction. Assume fu(R × S1) ∩ Ul 6= ∅ for
l ∈ Kj , then there exists an open interval I such that, in I × S1 × S1 ⊂ Ul,

(1) α = f1(x)dθ + g1(x)dz in the trivialization of W ′j ;
(2) fu(R× S1) ∩ {x} × S1 × S1 6= ∅ for all x ∈ I.

By Lemma 5.2, for all x0 ∈ I,

u−1 (u(R× S1) ∩ R× Tx0

)
is a finite union of smooth circles homotopic {∗}×S1. For all l ∈ Kj , choose x0 ∈ I
and cut R × S1 along the associated circles. Choose the connected component
asymptotic to −∞ × S1. Let C denote the oriented boundary of this component
and choose a collar neighborhood A = A+ ∪ A− of C as in Lemma 5.3: A± are
open annuli in the connected component of R × S1 \ C asymptotic to ±∞ × S1.
Let W+ (resp W−) denote the union of the connected components of W such that
the Reeb vector field is positively (resp negatively) tangent to the fiber.

If γ ⊂ W+, the line in Tx0 tangent to p = (0, 1) is in the homotopy class of γ.
Hence (p,R) is a direct basis. By Lemma 5.3, fu (A−) ⊂ ]x, x0[× S1 × S1.

W− W+

x0

fu(A−) fu(A+)

x

Yet fu (A−) ⊂ ]x0, x[× S1 × S1 as u is negatively asymptotic to γ. This leads to a
contradiction.

If γ ⊂ W−, the line tangent to p = (0,−1) in Tx0 is in the homotopy class of γ
and (p,R) is not a direct basis. Thus fu (A−) ⊂ ]x0, x[× S1 × S1.

W− W+

x0

fu(A+) fu(A−)

x

This leads to a contradiction as u is negatively asymptotic to γ. �

Lemma 6.10. Let u = (au, fu) : R×S1 → R×M a holomophic cylinder negatively
asymptotic to γ ∈ Uj. Then fu(R× S1) ⊂ Uj and fu(R× S1) ⊂ dom(fT )

Proof. Consider x0 such that γ ∈ Tx0 in the trivialization
]
− 1

2 ,
1
2
[
× S1 × S1 of

Uj . We prove the lemma by contradiction. Thus there exists an open interval
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I ⊂
]
− 1

2 ,
1
2
[
such that α = f(x)dy+ g(x)dz and f(R×S1)∩ {x}×S1×S1 6= ∅ for

all x ∈ I. By Lemma 5.2, for all x1 ∈ I,
u−1 (u(R× S1) ∩ R× Tx1

)
is a finite union of smooth circles homotopic to {∗} × S1. Cut R × S1 along
these circles and denote C the oriented boundary of the component asymptotic to
−∞× S1. Let p be such that the line tangent to p in Tx0 is homotopic to γ and A
be a collar neighborhood A = A+ ∪A− of C as in Lemma 5.3: A± are open annuli
in the connected component of R× S1 \ C asymptotic to ±∞× S1.

If x1 > x0 then (p,R) is not a direct basis (f ′ is increasing) and fu (A−) ⊂
]x1, x[ × S1 × S1 by Lemma 5.3. If x1 < x0 then (p,R) is a direct basis and
fu (A−) ⊂ ]x, x1[× S1 × S1.

xx1

fu(A−) fu(A+)

x1

fu(A+) fu(A−)

x0

This leads to a contradiction as u is negatively asymptotic to γ. �

Lemma 6.11. For all j = 1 . . .m, there exists a contact closed manifold without
boundary (W̃j , α̃) extending (Wj , α) such that α̃ is of Morse-Bott type. For all
i = 1 . . . n, there exists a contact closed manifold without boundary (Ũi, α̃) extending
(Ui, α) such that α̃ is of Morse-Bott type.

Proof. In the trivializationWj ' Sj×S1, the contact form is α = β+εdz and, near
∂Wj , there exists coordinates (x, y, z) ∈ [0, 1]× S1 × S1 such that {1}× S1 × S1 ⊂
∂Wj and α = f(x)dy + εdz.

Let S′ be an oriented compact surface such that ∂S′ and ∂Sj have the same
number of connected components. Choose a pairing between these components and
glue a neighborhood of each component of ∂Wj to a neighborhood of the associated
component of ∂S′ × S1 with the diffeomorphism ϕ : (x, y, z) 7→ (x, y, z + ey) where
e ∈ Z. Let W̃j denote the resulting manifold. Near ∂S′ × S1,

ϕ∗α =
(
f(x) + eε

)
dy + εdz = β̃e + εdz.

For each component, choose e so that εβ̃e is positive on ∂S′. There exist a 1-form
β′ on S′ such that εdβ′ > 0 and β̃e = β′ near the boundary. The contact form
β′ + εdz extends ϕ∗α and the induced form α̃ on W̃j is of Morse-Bott type.

On Uj = A × S1, the contact form is written α = f(x)dy + g(x)dz. Extend f
and g to maps f̃ and g̃ on S1 so that α̃ = f̃(x)dy+ g̃(x)dz is a contact form on T 3.
The form α̃ is of Morse-Bott type. �

Proof of Theorem 1.7. It remains to compute contact homology when [a] = [fiber]k
or [a] = [fiber]k[Γj ]k

′ . By Lemma 6.7, there exist L > 0 and λ > 0 such that all
the RαL,λ-periodic orbtis homotopic to a have a period smaller than L and are
non-degenerate and associated to a critical point of fL′ , L′ ≤ L.

Extend fL to the contact manifolds W̃j and Ũi (Lemma 6.11) to get a Morse-
Bott perturbation. Let (λn) be a decreasing sequence such that λn ∈ ]0, λ] and
limn→∞ λn = 0. Choose almost complex structures Jλn adapted to (V, αL,λn) and
J̃λn adapted to the union of (W̃j , α̃L,λn) for j = 1 . . .m and (Ũi, α̃L,λn) for i = 1 . . . i
so that

(1) Jλn = J̃λn on R×Wj and R× Ui;
(2) Jλn and J̃λn are S1-invariant on R×NL′ for all L′ ≤ L;
(3) (fL′ , gL′) (resp (f̃L′ , g̃L′)) is Morse-Smale on SL′ where gL′ (resp g̃L′) is the

metric induced by Jλn (resp J̃λn) for all L′ ≤ L.
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By Theorems 3.4 and 3.5, for all j = 1 . . .m (resp i = 1 . . . n) and for n big
enough, J̃λn -holomorphic cylinders asymptotic Reeb periodic orbits in Wj (resp.
Ui) are contained in Wj (resp. Ui) as gradient lines between two points in Sj are
contained in Sj .

By Lemmas 6.9 and 6.10, for all j = 1 . . .m (resp i = 1 . . . n) and for n big
enough, Jλn -holomorphic cylinders asymptotic Reeb periodic orbits in Wj (resp.
Ui) are contained in Wj (resp. Ui). Therefore the differential of contact homology
is well defined and identifies with the differential in the Morse-Bott case and thus
with the differential in Morse homology. Hence

(1) if [a] = [fiber]k with ±k > 0,

HC
[a]
∗ (M,α,Q) =

⊕
Wj⊂W±

HM∗ (Wj , (f1, g1),Q)

(2) si [a] = [fiber]k[Γj ]k
′ with k′ 6= 0,

HC
[a]
∗ (V, α,Q) =

⊕
[Γi]=[Γj ]

HM∗ (S1, (fL, gL),Q)

where HM∗ (X, (f, g),Q) is the Morse homology associated to the function f and
the metric g (we do not consider the graduation in the identifications). �

Latschev and Wendl [38] used similar methods to study algebraic torsion of
contact homology.

7. Hyperbolicity and exponential growth rate

In this section we prove Theorem 1.2. This results hinges on the exponential
growth of contact homology for a specific family of contact structures (Theorem
1.3). The invariance of contact homology leads to the exponential growth of NL(α)
for all contact forms for non-degenerate contact forms. For a general non-degenerate
contact form, the proof depends on Hypothesis H. Yet, as we restrict contact ho-
mology to primitive homotopy classes, the proof of invariance of cylindrical contact
homology may be easier than in the general case.

LetM be a 3-manifold which can be cut along a nonempty family of incompress-
ible tori T1, . . . TN into irreducible manifolds including a hyperbolic component that
fibers on the circle. We construct contact forms on each irreducible components
and add torsion near the irreducible tori Tk, k = 1 . . . N (Section 7.2). We compute
the growth rate of contact homology by controlling the holomorphic cylinders that
intersect the tori Tk, k = 1 . . . N (Section 7.3). The study of periodic orbits and
contact homology in the hyperbolic component hinges on properties of periodic
points of pseudo-Anosov automorphisms recalled in Section 7.1.

7.1. Periodic points of pseudo-Anosov automorphisms. Let S be a compact
orientable surface. An automorphism ψ : S → S is said to be pseudo-Anosov if
there exists two measured foliations (F s, µs) and (Fu, µu) such that ψ(Fu, µu) =
(Fu, λ−1µu) and ψ(F s, µs) = (F s, λµs) for a positive real number λ. One can
refer to [11] for the study of pseudo-Anosov on surfaces without boundary and [22]
for a complete presentation. In this section, we assume that S is compact and
∂S = ∅.

Theorem 7.1. The number of simple k-periodic points of a pseudo-Anosov auto-
morphism on S exhibits an exponential growth with k.

This theorem follows from the construction of a Markov partition on S (see
[17, 11]). Nielsen classes are used to transfer properties of periodic points of a
pseudo-Anosov to properties of periodic points of homotopic diffeomorphisms.
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Definition 7.2. Let h : S → S be an automorphism. Two fixed points x and y
are in the same Nielsen class if there exists δ : [0, 1] → S continuous such that
δ(0) = x, δ(1) = y and h(δ) is homotopic to δ.

Let ht : S → S, t ∈ [0, 1] be a homotopy of automorphism of S. A fixed points
x0 of h0 and a fixed points x1 of h1 are in the same Nielsen class if there exists
δ : [0, 1]→ S continuous such that δ(0) = x, δ(1) = y and t 7→ ht(δ(t)) is homotopic
to δ.

See [23] for more information on Nielsen classes. These definitions extend nat-
urally to periodic points. Two periodic points are in the same Nielsen class of a
diffeomorphism h if and only if the induced periodic orbits of the vertical vector
field in the suspension of S by h are homotopic.

Theorem 7.3. All the periodic points of a pseudo-Anosov automorphism on S are
in different Nielsen classes.

A periodic point x of h : S → S is non-degenerate is 1 is not an eigenvalue
of dhk(x). For a non-degenerate periodic point, let εhk(x) denote the sign of
det(dhk(x)− Id). If all the periodic points in a Nielsen class n are non-degenerate,
consider

Λhk(n) =
∑
x∈n

εhk(x).

Theorem 7.4. Let h0 : S → S and h1 : S → S be two homotopic automorphisms,
x0 be a periodic point of h0 and x1 be a periodic point of h1 in the same Nielsen
class. If the Nielsen classes n0 of x0 (for h0) and n1 of x1 (for h1) contain only
non-degenerate points then Λhk0 (n0) = Λhk1 (n1).

Theorem 7.5. Let S1 = S \ ∪Ii=1Di where for all i = 1 . . . I, Di are disjoint open
disks in S. Let h : S1 → S1 be an automorphism such that h = Id in a neighborhood
of ∂S1 and ψ : S1 → S1 be a pseudo-Anosov automorphism homotopic to h. Extend
h to S by the identity and let ĥ denote the resulting automorphism. Then, there
exists a branched cover Ŝ of S and a pseudo-Anosov ψ̂ homotopic to ĥ such that
the projection of ψ̂ is ψ.

7.2. Contact forms on M .

7.2.1. In the hyperbolic component. LetM0 be the hyperbolic component, thenM0
is written (S × S1)/h where

(1) S is a compact oriented surface with boundary;
(2) h : S → S is a diffeomorphism homotopic to a pseudo-Anosov;
(3) h = Id in a neighborhood of ∂S.

We use the usual construction on a contact structure on a suspension. Choose
cylindrical coordinates (r, θ) in a neighborhood of ∂S so that ∂

∂θ is positively tangent
to ∂S. Let β be a 1-form on S such that dβ > 0 and β = b(r)dθ with b > 0 and
b′ > 0 near ∂S. Let F : [0, 1] → [0, 1] be a smooth non-decreasing function such
that F = 0 near 0 and F = 1 near 1. On S × [0, 1] consider the contact form

α = (1− F (t))β + F (t)h∗β + dt

where t is the coordinate on [0, 1]. This contact form induces a contact form on
M0. The associated contact structure is universally tight.

Lemma 7.6. The Reeb vector field is positively transverse to S ×{∗} and the first
return map on S × {0} is homotopic to h.



26 ANNE VAUGON

Proof. If the Reeb vector field is tangent to S × {t} in (p, t) then

ιR((1− F (t))dβ + F (t)h∗dβ)(p, t) = 0

as
dα = (1− F (t))dβ + F (t)h∗dβ + F ′(t)dt ∧ (h∗β − β).

Yet dβ and h∗dβ are two positive volume forms. Hence R is transverse to S × {t}.
It is positively transverse by the boundary condition. The first return map is well
defined and homotopic to h as h is the first return map of ∂

∂t on S × {0} and R

and ∂
∂t are homotopic in the space of vector fields transverse to S × {∗}. �

InM0, Reeb periodic orbits correspond to periodic points of the first return map
on S ×{0}. Without loss of generality, we may assume that all the periodic points
of the first return map in the interior of S are non-degenerate.

7.2.2. In non-hyperbolic components. We use the following theorem of Colin and
Honda.

Theorem 7.7 (Colin-Honda, [16]). Let M be a compact, oriented, irreducible 3-
manifold with boundary such that ∂M is a union of tori. Then there exists an
hypertight contact form α on M such that, in a neighborhood T ×I with coordinates
(x, y, z) of each boundary components, α = cos(z)dx − sin(z)dy. In addition there
exists arbitrarily small non-degenerate hypertight perturbations of α.

The construction in [16] gives the same contact structures as [34] and [15]. With-
out loss of generality, all the periodic orbits whose free homotopy class does not
correspond to a class in the boundary are non-degenerate.

7.2.3. Interpolation and torsion. In the previous sections we constructed an hyper-
tight contact form α onM\

⋃N
k=1 ν(Tk) where ν(Tk) is a neighborhood of Tk. Choose

k ∈ 1 . . . N . There exists coordinates (x, y, z) in a neighborhood Tk × [a, b] of Tk
such that in a neighborhood of T×{a} the contact form is written fa(x)dy+ga(x)dz
and in a neighborhood of T × {b} the contact form is written fb(x)dy + gb(x)dz.

Lemma 7.8. For all n ∈ N∗, there exists fn : [a, b] −→ R and gn : [a, b] −→ R two
smooth functions such that

(1) fn extends fa and fb;
(2) gn extends ga and gb;
(3) α = fn(x)dy + gn(x)dz is a contact form;
(4) in coordinates (θ, z), the Reeb vector field Rα sweeps out an angle in]

2nπ − π

2 , 2nπ + 3π
2

]
.

Proof. The contact condition is f ′ngn − fng′n > 0 and the Reeb vector field is

Rα = 1
f ′ngn − fng′n

 0
−g′n
f ′n

 .

The conditions 3 and 4 are equivalent to “the parametrized curve (fn, gn) in R2

turns clockwise and its normal vector sweeps out an angle in
]
2nπ − π

2 , 2nπ + 3π
2
]
”.

We choose a parametric curve in R2 extending (fa, ga) and (fb, gb) with these prop-
erties. �

For all n ∈ N∗, construct a contact form αn on M by extending α by αn =
fn(x)dy + gn(x)dz in a neighborhood of T1 and by αn = f1(x)dy + g1(x)dz in a
neighborhood of T2, . . . TN .
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Remark 7.9. If {b} × T is in ∂M0, then fb < 0, f ′b > 0 and gb = 1 near b. If
{a} × T is in ∂M0, then fa > 0, f ′a > 0 et ga = 1 near a (changes in signs are due
to the orientation convention of the boundary).

By [14, Théorème 4.2], as contact structures ξn = ker(αn) are universally tight
on each components, (M, ξn) is universally tight for all n ∈ N∗. In addition, as our
construction correspond to the construction in [15, 4], by Theorem [15, 4.5], there
exists infinitely many non-isomorphic ξn.

7.3. Growth rate of contact homology.
Lemma 7.10. For all adapted almost complex structures on R ×M , there is no
holomorphic cylinder u = (a, f) : R×S1 → R×M asymptotic to two Reeb periodic
orbits contained in different connected components of M \ (

⋃N
k=1 Tk × [a, b]).

Proof. We prove this result by contradiction. If such a u exists then there exists
k ∈ 1 . . . N such that f(R × S1) ∩ Tk × {x} 6= ∅ for all x ∈ [a, b]. By Lemmas 2.1
and 2.2, there exists x0 and x1 in [a, b] such that

(1) Rαn(x0) = −Rαn(x1);
(2) du(s, t) 6= 0 and ∂

∂τ /∈ im(du(s, t)), for all

(s, t) ∈ C = u−1 (u(R× S1) ∩ (R× {x0, x1} × T )
)
.

By Lemma 5.3, C is a finite union of smooth circles homotopic to {∗} × S1. Cut
R× S1 along these circles and choose a connected component Σ such that f(Σ) ∩
{x} × T 6= ∅ for all x ∈ [x0, x1]. Then ∂f(Σ) is a union of two homotopic circles:
one in {x0}× T and one in {x1}× T . By positivity of intersection the Reeb vector
field is positively transverse to these circles in {x0} × T and {x1} × T . This leads
to a contradiction as R(x0) = −R(x1). �

Let Λ0 be the set of primitive free homotopy classes that correspond to periodic
orbits in M0 and do not represent a homotopy class in a torus Tk, k = 1 . . . N . All
the Reeb periodic orbits with homotopy class in Λ0 are non-degenerate. As there
is no contractible periodic orbits, the associated partial contact homology is well
defined.

There exists C > 0 such that all periodic orbits in M0 associated to a k-periodic
point of the first return map h1 have a period smaller that kC.

Lemma 7.11. For all a ∈ Λ0, dim(HCa∗ (V, α)) ≥ 1. In addition, if a is associated
to k-periodic points, for all L > kC the map HCa≤L(V, α)→ HCa∗ (V, α) has a rank
greater than 1.

Proof. Choose a ∈ Λ0. Write Ca∗ = C0 ⊕ C1 where C0 by periodic orbits in M0
homotopic to a and C1 is generated by periodic orbits in M \M0 homotopic to a.
By Lemma 7.10, the differential is written(

∂a 0
0 ∗

)
.

We prove that dim (ker(∂a)/im(∂a)) ≥ 1. Write C0 = E ⊕O where E is generated
by even periodic orbits and O by odd periodic orbits (as a is primitive all the
periodic orbits are good). Then

∂a =
(

0 ∂O
∂E 0

)
and

ker(∂a)/im(∂a) = ker(∂E)/im(∂O)⊕ ker(∂O)/im(∂E)
Hence, dim (ker(∂a)/im(∂a)) = {0} if and only if dim(ker(∂E)) = dim(im(∂O)) and
dim(ker(∂O)) = dim(im(∂E)).
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By Section 7.1, there exist a branched cover Ŝ of S and a pseudo-Anosov ψ̂ such
that the lift ĥ1 of h1 is homotopic to ψ̂. Let n denote the Nielsen class associated to
the periodic orbits in M0 homotopic to a and k denote the order of the associated
periodic points. Let n̂ be a Nielsen class of ĥ1 containing a lift of a point in n.
As n does not contain points in ∂S, all periodic points in n̂ are non-degenerate
and there exists s such that n̂ contains exactly s lifts of each points in n. By
Theorems 7.3 and 7.4, Λĥk1 (n̂) = Λψ̂k(n̂) 6= 0. A periodic point of h1 is even if
and only if the associated Reeb orbit is even. Therefore Λĥk1 (n̂) = sdim(E) −
sdim(O) and dim(ker(∂O)) + dim(im(∂O)) 6= dim(ker(∂E)) + dim(im(∂E)). Hence,
dim (ker(∂a)/im(∂a)) > 0.

For all L > kC, write Ca≤L = C0 ⊕ C≤L. The differential is written(
∂a 0
0 ∗

)
.

Thus, dim(ker(∂a)/im(∂a)) ≥ 1 and HCa≤L(V, α)→ HCa∗ (V, α) is injective. �

Proof of Theorem 1.3. It remains to prove that the growth rate of HCΛ0
∗ (V, αn)

is exponential. By Theorems 7.1, 7.3, 7.4 and 7.5, the number of Nielsen classes
associated to periodic points of the first return map h1 grows exponentially. As
the number of homotopy classes in tori Tk, k = 1 . . . N exhibits a quadratic growth
(Lemma 6.4) and by Lemma 7.11, the growth rate of partial cylindrical homology
is exponential. �

Proof of Theorem 1.2. By invariance of the growth rate of partial contact homol-
ogy (Proposition 4.10), the growth rate of the number of Reeb periodic orbits is
exponential if cylindrical contact homology is well defined (Remark 4.6), i.e. if the
contact form is non-degenerate and hypertight.

Under Hypothesis H, let αpn be a non-degenerate contact form such that ξn =
ker(αpn). By Theorem 7.7 and Lemma 6.7 there exists an hypertight non-degenerate
contact form α′n of ξn. By Theorem 1.3 the growth rate of cylindrical contact
homology is exponential. Consider the map A∗(V, αpn, J)→ A∗(V, α′n, J ′) given by
Theorem 2.4 and the pull back augmentation induced by the trivial augmentation
on A∗(V, α′n, J ′) (Proposition 2.11). By invariance of the growth rate of linearized
contact homology (Proposition 4.11), NL(αpn) exhibits an exponential growth with
the period. �
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