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Existence of a stationary distribution for multi-dimensional infinite volume
forest-fire processes

A. Stahl

University of Toulouse, France

Abstract. Consider the following forest-fire process on a connected graph. Each site of
the graph can be either occupied or vacant. A vacant site becomes occupied with rate 1. A
site is ignited with rate A, and its whole occupied cluster burns instantaneously.

The purpose of this paper is to show the existence of a stationary distribution for forest-
fire processes on Z%, for d > 2. We define a distribution on {0, 1}Zd as a limit of a sequence of
invariant distributions of finite volume forest-fire processes, and then show it is a stationary
distribution for forest-fire processes on Z?, d > 2.

Introduction

Forest-fire models have been introduced within the study of self-organised criticality ([1]).
The idea behind self-organised criticality is the evolution of the system toward a critical
behavior, only driven by its own interaction rules (see [10] for example). In the nineties, a
forest-fire model in discrete time and on a finite graph, introduced by Drossel and Schwabl
[6], has been studied in the physics literature. In 2005 in [2] van den Berg and Jarai
studied the asymptotic behavior of a continuous-time version of the Drossel-Schwabl forest-
fire model, on an infinite graph : Z. Then this model has been studied on Z, on Z? and on
connected graphs with a vertex degree bounded by d, for d > 2.

Let G = (V, E) be a connected graph with vertex degree bounded by d > 2. V' is the set
of vertices and F the set of edges of the graph. In the model, each site of V' can be vacant
or occupied by a tree. Two sites of V' are neighbors if they are linked by an edge in FE.
The evolution is driven by the initial configuration and two families of Poisson processes,
one governing the birth of trees and the other the ignition of a site. Throughout this paper
“birth” of a tree and “growth” of a tree have the same meaning. An empty site becomes
occupied if and only if there is a birth attempt. An occupied site becomes empty either if
the site is ignited or if a site of its connected cluster of occupied sites is ignited. The second
case models the propagation of fire. As the burning is instantaneous here, the speed of the
fire propagation is infinite.

More precisely, the configuration at time t of the forest is the process ((7: 2)zev )i>0 Where
M. takes the value 1 if the site = is occupied at time ¢ and 0 otherwise. If the site x is
occupied at time ¢, its connected cluster Cy, is the set of all occupied sites connected to x
by a path of occupied sites.

Definition 1. (open path and connected cluster of a site)

1. A path between 2 sites x and y in'V is a set of sites {z;}1<i<n 0of V' such that z; = z,
zn =y and for all integers i € {1,...,n— 1} there is an edge of E linking z; and z; 4.
The path is open at time t if all its sites are occupied at time t.

2. The connected cluster Cy, of a site x at time t is the set of all sites of V' linked to x
with an open path.



To each site x € V' are associated two Poisson processes, (Gi.)i>0 and (I;;)i>0, with
intensity 1 and A > 0 respectively. The process G, represents the birth attempts on the site =
whereas [, represents ignition attempts on the site z. These two processes are independent
and moreover independent of each Poisson process of all the other sites. The following
definition gives a rigourous definition of the forest-fire process.

Definition 2. Let S be a subset of V' and A a non negative real number. A forest-fire process
on S with parameter X\ > 0 is a process (7;)i>0 where N, = (M, )zes = M, Gray L) ees,
with values in ({0,1} x N x N)®, that has the following properties.

1. For all sites x in S, the processes (Giy)i>0 and (I;;)i>0, are independent Poisson
processes with parameter 1 and A\ respectively.

2. For all sites x in S, the process (N z, Grz, Ltz )i>0 is Tight continous and left limited.
3. Forallz € S and allt >0,

a) 1 ere 1s a grow o] a tree a e siie xr at timet, en € stie T 1S occupiea a
f th ' th of a t t the sit tt t, then the sit ' ed at
time t,
Gt—,m < Gt,z = Ntx = ]-7

(b) if the site x becomes occupied at time t, then a tree must have grown at the site
T at time t
nt—,az < nt,r = Gt—,x < Gt,m

(c) if the site x is ignited at time t, then all the sites of its connected cluster get
vacant at time t,
It—,x < It,z = VZ/ S Ct—,x7 Mty = Oa

(d) if the site x gets vacant at time t, then the connected cluster of the site x has
been ignited at time t,

nt*,z > nt,a: = Ely € Ct*,ac : It*,y < It,y-

The notation 7(t) will be used to denote the configuration at time t : {7, }zes.

On a finite graph, the forest-fire process is uniquely determined by the following con-
truction. At time zero, the initial configuration of the forest is given. Then, the evolution
is governed by the Poisson processes. Due to the finite number of sites, all the Poissonian
events can be ordered in time. Then, four situations can occur. Imagine that there is a
growth attempt on the site x. If the site x is vacant, then it becomes occupied. But if z
is already occupied, nothing happens. Imagine now that there is an ignition attempt on
the site y. If the site y is vacant, nothing happens. But if y is occupied, then its whole
connected cluster burns down immediately. At each Poissonian event, the configuration is
updated using these rules.

However on an infinite graph, infinitely many Poissonian events can occur in a finite
interval of time. Thus the construction given above does not work anymore. Does this
forest-fire process exist on infinite graphs? The answer is yes. It can easily be seen on Z
using a graphical construction ([11]) but it is harder on Z¢ for d > 2. On Z, if an initial
configuration has infinitely many empty sites, then at a time ¢ > 0 there are almost surely
infinitely many empty sites that have been empty during the whole interval of time [0, {]. An
empty site blocks the propagation of fire on Z. So, Z can be divided into finite pieces and the
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previous construction can be used on each piece. But on Z? for d > 2, an empty site alone
cannot block fires. By using a sequence of finite-volume processes and finding a control
of the influence of the state of long-distance sites, Diirre has shown in [7] the existence
of forest-fire processes on Z? for all initial configurations that contain no infinite clusters.
This result can be extended to connected graphs with vertex degree bounded by d > 2.
However, nothing ensures that given an initial configuration and all the Poisson processes,
the forest-fire process is unique. This uniquenesss result is proven for all parameter A > 0 in
[9], with an assumption on the size of the clusters in the initial configuration. The question
of uniqueness for all initial configurations is still open.

In this paper, we will be interested in stationary distributions of the forest-fire process.
The forest-fire process is a Markov process but not a Feller process. Thus the usual ar-
guments used with interacting particles systems will not work here (see for example [11]).
Brouwer and Pennanen have shown in [5] the existence of at least one stationary distribu-
tion for the process on Z. In [3] Bressaud and Fournier have shown that the stationary
distribution is unique when the parameter \ is equal to 1.

The purpose of this note is to prove the existence of a stationary distribution for
forest-fire processes on Z? with d larger than 2. The method of Brouwer and Pennanen
combined with some tools introduced by Diirre in his thesis [9] will be used. Since the
existence of forest-fire processes on Z¢ is known yet for initial configurations that contain
no infinite clusters, we will consider only such forest-fire processes in this paper.

Theorem 1. A forest-fire process on Z% with d > 2, with parameter X > 0 has at least one
stationary translation-invariant distribution.

This paper is divided into three parts. The first section presents the main notations and
the tools introduced by Diirre in [9] that will be used in this paper. Then, the construction
of the candidate for the stationary distribution is explained in the second part. Finally the
last section is devoted to the proof of Theorem 1.

1 Notations and tools

The purpose of this section is to present the main notations and the tools introduced by
Diirre in [9].

1.1 Notations

Unless stated otherwise, in this section, G will denote a connected graph with a vertices set
V and an edges set . A bound on the vertex degree of the graph G will be denoted by dg.

d
For x = (z1,...,24) € Z%, |2|oo = sup{|z,i = 1...d} and |z|, = Z |4

i=1
The expression the graph Z¢ will refer to a graph with vertices set V(@ = Z? and edges

set E(@ corresponding to the hypercubic lattice : E@ = {{z,y} € Z¢ x Z% : |x — y|; = 1}.

The site (0, ...,0) € Z¢ will be called the origin. We will work with specifc finite subsets
of Z¢ called boxes, and defined by

By ={r€Z%: |z| <k}

Here k is called the radius of the box Bj.



The set of neighbors of a finite set of sites S is called the boundary of S :
N(S)={z €V \S,Fye S linked by an edge in E to z}.
We can define the set S = S U N(S).

Let X = {0, 1}Zd be the set of all possible configuations and B(X) the associated borel
o-field. Let u be a measure on (X, B(X)). For a finite subset J of Z¢ we denote by y; the
restriction of p to J. For a forest-fire process 77 with an initial configuration with law pu, let
us denote by P*(n, € -) its distribution at time ¢.

1.2 Durre’s tools

In this model, the problem is to control the influence of long-distance sites. Two notions
introduced by Diirre in his thesis will be used in this paper. The first one is a condition
on the tail of the distribution of cluster size, named CCSB. The second one is a process,
called the blur-process, used to study the influence on a given site of long-distant sites.
Throughout this section, forest-fire processes on connected graphs will be considered.

1.2.1 CCSB condition

An important quantity to consider here is the size of clusters. In his thesis, Diirre restricted
to forest-fire processes with initial configurations satisfying what he called the conditionned
cluster size bound condition to prove the uniqueness. In order to use his results, we will
need to use this conditionned cluster size bound condition.

This condition is a constraint on the cluster size distribution. It implies a uniform bound
on the cluster size distribution. It is stronger in the sense that the result still holds when
conditionning by the event that a specific configuration of a finite number of sites outside
the cluster occurs.

Definition 3. (Conditionned cluster size bound, CCSB) For alls > 0,6 >0 and m € N, i
has CCSB(s, 8, m) if it has the following property. Let B an D be two finite subsets of V and
x € V\ D. Then conditionned on the occurence of the event UyepCs, = D, the probability
that the size of the cluster at x is larger than m at time s is smaller than or equal to 0. And
almost surely the cluster at x is finite at time s.

More formally, for all finite B,D C V, for allz € V \ D,

P({|Csal >m}({ U Cow=D}) <6 P(|J Coy = D) (1)
and P(|Cy,| = 00) = 0. (2)

For example, consider a configuration where the size of all the clusters is smaller than
an integer m, or a configuration obtained by sub-critical or critical site percolation on Z¢.
Then, a forest-fire process with one of these initial configurations satisfy a CCSB(0,d,m)
condition.

A natural question to ask is whether a forest-fire process satisfies a CCSB condition. If
the forest-fire process has a CCSB at time 0, then the following theorem states that after a
certain time the answer is yes. The uniformity in time and in ¢ will be useful in the proof
of the result.



Theorem 2. (Theorem 2 in [9]) Consider a forest-fire process 7 on G with parameter A >
0 that satisfies CCSB(0, é,m) for some integer m. Then for all real number v > 0,
for all § €]0,1], there exists an integer m. xa.(0) such that for all time s > v, 7 has
CCSB(S,(S, m%,\,da(5)).

In [9] an explicit formula for the parameter m., ) 4. (0) appearing in the CCSB condition
is given.

1.2.2 Blur process

We turn now to the blur-process. The aim of this process is to control the influence of
long-distant sites on a given site. This process is associated with a forest-fire process 7, and
defined from an initial time ¢y, and a finite set S. The blur process indicates if the state
of a site x € S at time ¢ > t, might be influenced by the state of the sites located outside
the set S at time ¢o. If it might, the site is said to be (o, S)-blurred at time ¢. The word
“might” is important here. It means that the blur-process is a domination of the process of
the real influence from outside S. If the site z is not (to, S)-blurred at time ¢, its state at
time ¢ can be recovered by using only the configuration at time tg and the Poisson processes
of the sites in the set S.

The value of the (o, S)-blur process at a site x € S at a time ¢ is either 2 if the site is
blurred or 0 otherwise. Once a site is blurred, it is blurred forever. The set of blurred sites
at to is N(S) and the clusters in 7(ty) intersecting the boundary of S. As time evolves, this
set grows toward the site x, due to births of trees that create new occupied paths. Here is
the formal definition of the blur process.

Definition 4. (blur process) Let to > 0 and S C V' a finite subset. The (ty,S)-blur process

(Bs.z)s>ty.0e5 15 @ process wz‘ih values in {0,2}§, right continuous that has the following
properties. For all site x in S,

e the site x is (to,S)-blurred at time to if and only if its cluster is connected to the
boundary of S :

5 :{ 2if CooNN(S)# @

0 else,
e once a site is (to, S)-blurred, it remains (to, S)-blurred forever :

ifﬁs,x = 2a then vsl Z 3755’@ = 25

e the site x is (to, S)-blurred at time s >ty if and only if the set C,, contains a site
that has been (ty, S)-blurred before time s :

{Bsw=2}={32€C,,NS: Bs-, =2}.

Like for the configuration process, the notation () will be used for {f; ;}zeza-

It seems that the bigger the set S is, the longer it takes for the site x to be S-blurred.
What happens when the size of the set S tends to infinity? Is there a non empty interval
during which a site is not influenced by “infinity”? The answer is given by the following
proposition, assuming a CCSB condition is satisfied by the forest-fire process.

>



Proposition 3. (Proposition 2 in [9]) For allm € N, there exists €,, > 0 with the following
property. Let t > 0 and suppose that the forest-fire process has CCSB(t, é, m). Then for
all sites © in 'V, as n tends to infinity, the probability that the site x is (t, B,)-blurred at
time t + €, tends to zero :

Hm P(Bise, o =2) = 0.
n—oo

Remark. The real number €,, > 0 is chosen such that P(Gy,,, > 0) < m, where Gy,

is the event that there is at least an occurrence in [0, €,,] of a Poisson process with intensity
1.

Remark. This proposition is slightly different from the one written in [9]. The additionnal
hypothesis of almost-sure convergence at time t is omitted here. Actually Dirre has shown
that it is always satisfied for a forest-fire process having a CCSB condition at time zero.

2 A candidate distribution

To prove the existence of a stationary distribution, we exhibit a distribution and then show
that it is stationary. The aim of this section is to explain how the candidate distribution is
obtained. The idea is to use forest-fire processes on finite graphs. To get the translation-
invariance property of the stationary distribution, a modified version of the boxes By will
be used.

2.1 Definition of “finite volume” forest-fire processes

Let k be a non negative integer.

The first step is to define a graph. Contrary to what was mentionned above, the graph
defined below is infinite. The fact that the process defined on it will behave like a finite-
volume forest-fire explains why it is called “finite volume”.

Define a graph G), = (V@ E,). The set of sites is V(@ = Z? The set of edges E,
is bigger than the set of edges of the graph Z¢. Some edges constructed from the box By
defined in Section 1.1 will be added. The goal is to make opposite sites of the interior
boundary of By neighbors.

Recall that E@ is the set of edges corresponding to the hypercubic lattice of Z?¢ (see
Section 1.1).

Define now the additionnal set of edges Ay. For all indices j in {1,...,d}, consider a
site with the j-th coordinate equal to k and the other coordinates in the set {—k,... k}. It
is an interior boundary point. Then consider the opposite boundary site, i.e. the site with
its j-th coordinate equal to —k and the other coordinates exactly the same as the first site.
Then Ay, consists in the edges between such pair of points for the whole interior boundary
of By. More formally, for each j € {1,...,d} the edges between the following couples of
sites are in Ay, :

[k l=]
{(21,...,@],...,m),(zl,..., z],...,zd)} with { e ok, k) if 14

Then the set Ej, is the union of the sets @ and Aj.
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Figure 1: Exemple of additional edges for the graph Gs

In Figure 1, a part of the additional edges for the graph G5 restricted to the box By C Z2
are drawn.

Compared to the graph Z¢, at most d edges to each interior boundary site of By, is added
in the graph Gj. So the vertex degree of Gy, is uniformly bounded by d; = 3d, instead of
2d for Z°. Let us denote d; = 3d this bound.

The extra edges are not necessary to prove the existence of a stationnary distribution
but there are used to prove that the stationnary distribution is translation-invariant.

Now the graph is defined, the second step is to consider a particular forest-fire process
on this graph.

Definition 5. A Gj-forest-fire process 7" with parameter X\ > 0 is a forest-fire process on
the graph Gy, with parameter X > 0 with all the sites outside By always empty : for all times
t >0, for all sites v € By, nﬁx =0.

This forest-fire process behaves like a forest-fire process on B; where the opposite sites
of the interior boundary are neighbors. The dynamic does not take into account the Poisson
processes corresponding to the sites located outside Bj. However, its configurations take
values in {0, 1}Zd. The G-forest-fire process can be seen as a forest-fire process on a discrete
torus of dimension d.

2.2 Construction of the candidate measure

For each non negative integer k, let ¥ be a G)-forest-fire process. The configuration process
n¥ is a finite state-space Markov chain. Consider two possible states of this Markov chain &
and & and study the probability that the state &; leads to &. Consider the following event:
all the occupied sites in & are ignited and then a tree grows on each site which is occupied
in &. As the growths and ignitions are driven by independent Poisson processes, this event
occurs with a non negative probability. Therefore, this Markov chain is irreducible, recurrent
and aperiodic. Thus it has a unique invariant distribution, which will be denoted by u*.

Since the space {0, l}Zd is compact, the sequence (u*)z>o has a weakly convergent
subsequence. Let u be its limit and K the set of indices of the subsequence.

Theorem 4. Let n be a forest-fire process on Z* with parameter X > 0. Then p is an
mvariant and translation-invariant probability measure for 7.



As mentionned above, the G-forest-fire process behaves exactly as a forest-fire process
on a discrete torus. Thus each distribution ©* can be seen as a measure on a discrete
torus, where we have the rotation-invariance property. Here a translation on the graph
G corresponds to a rotation on the discrete torus with (2k + 1)¢ points, due to the G-
forest-fire process behavior. It follows that the weak limit p is translation-invariant.

3 Proof of the result

The goal of this section is to prove Theorem 1. It follows from Theorem 4 stated above. This
section is divided in three parts. The first part contains the proof of Theorem 4 assuming
two lemma. The lemma are then proved in the second and third part.

3.1 Proof of Theorem 4

To show that the distribution p is stationary, the idea is to couple a forest-fire process
with initial configuration with law p with Gg-forest-fire processes with initial configuration
with law p* using the same Poisson processes. Then, the evolution of the processes will be
compared using Diirre’s tools.

A diagram of the main steps of the proof is given at the end of this first subsection.

Let A and v be two non negative real numbers.

For simplification, as A and d; are fixed here, let us denote by m., the real m 4, (1)

4 d?
7

of Theorem 2 (recall that d; = 3d, see Section 2.1).
Let € > 0 be a real number such that P(Gy, > 0) <

—L - where Gy is the event that
4m,ydf >
there is at least an occurrence in [0, €] of a Poisson process with intensity 1.

The aim is to prove the following : for all times ¢t < ¢, for all cylinder events A,

Pr(n(t) € A) = p(A). (3)

Let ¢t be a non negative real number such that ¢t < €, and let A be a cylinder event.

Throughout this proof, two specific sets of sites will be used.

Since A is a cylinder event, it is determined by the configuration on a finite number of
sites. Let I be the smallest box centered at the origin such that the event A can be described
using only sites in I. There exists r; such that I = B,,.

We will need to work with a set containing / but contained in Bj;. Let L be a non
negative integer and J be the box B,,.;. In order to simplify the notation, we will not
write the dependence of J on L.

By

Figure 2: Sets of sites
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For the remainder of the proof, only integers k£ € K satisfying the relation k > r; + L
will be considered.

Using the construction of the candidate measure p, a first upper bound is obtained :

[P*(n(t) € A) — u(A)| < |PH(n(t) € A) — p*(A)] + 1" (A) — u(A)]. (4)
Since p* is an invariant distribution for a Gy-forest-fire process, the equality (3) is sat-
isfied for 4%, Turn now to study of the difference |P#(n(t) € A) — P* (nk(t) € A)|.

Consider a forest-fire process on Z¢ and a Gj-forest-fire process, driven by the same
Poisson processes on each site, and with initial configurations which coincide on J. Is it
possible to find a time ¢t when the two configurations on a site x in I are not the same? The
answer is yes if (and only if) the configuration outside the box J influences the configuration
in the box I during the time interval [0, t] (through some fires outside J). Which events can
allow influence on I from outside J? If at a time to in [0, ¢] there exists a path of occupied
sites linking a site in [ to a site outside J, then a lightning falling in J¢ can burn trees in /.
That means, using the blur process, the existence of a site in the set I that is (¢, J)-blurred.

However, in the difference we are interested in, the initial configuration of the two pro-
cesses have the respective distribution p and p*. In order to use our previous argument, we
are going to optimally couple the measures p; and ,u‘kj. The coupling of y; and uﬁ] is said
to be optimal here if it maximizes the weight of the diagonal of the product of the spaces
of configurations. For two configurations §; with law p; and & with law u‘kj, the optimal
coupling v satisfies v(&; # &) = ;g/\f/l (&1 # &), where M is the set of all possible couplings

of y; and ,uff,.

Now we couple a forest-fire process 77 on Z? with an initial configuration of law y and the
G-forest-fire process 7% with an initial configuration of law ¥, by using the same Poisson
processes and by optimally coupling p; and ,uf“J. Then the following bound is obtained.

Lemma 5. Let us denote by B the (0, J)-blur process associated with n. Then,
[PHn(e) € A) = PG E) € A< 11 sup PG5 = 2) F 2o iy) )
Te

This lemma will be proved in the following section. The idea of the proof is to use the
event “the initial configurations of the two processes coincide on J”. When it occurs, an
upper bound is found using the blur process. Otherwise, the upper bound is given by the
total variation between the two measures y; and ,u‘kj.

Using this lemma, the upper bound of the desired quantity is :
[P (n(t) € A) — p(A)| < || Sup P*(Bre = 2) + 2 drv (g, ufy) + [1°(A) — p(A)]. (6)

The next step is to show that the upper bound of (6) tends to zero when k£ and L tend
to infinity.

The distribution p is the weak limit of a subsequence of (pg)g>0. We first let k& go to
infinity along the set of indices K. Since k > radius(J) = r; + L, L does not depend on k
and J is a finite set of sites, so :

Jim [t (A) — p(A)] =0 (7)
—00

lim dry (p1, ,uf“J) = 0. (8)
k—o0
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Recall that g is a (0, J)-blur process. So the event {f;, = 2} depends on L. To conclude
we need to show that Llim P¥(B; =2) =0. This is given by Proposition 3 applied with
—00

t=0and = ﬁ, provided the CCSB condition is satisfied. The purpose of the following
¥
lemma is to show that this hypothesis holds true.

Lemma 6. For all non negative real number &, a forest-fire process on 7 with parameter
A > 0, with an initial configuration with distribution p, has CCSB(0, 0, M x4, (0)).

Remark. In the last parameter of the CCSB condition, the bound used for the vertex degree
of Z¢ is dy = 3d and not 2d which is the optimal bound. This is due to our argument to
prove this lemma, which uses the Gy-forest-fire process. Nevertheless this is sufficient here
to show our theorem.

A
4d3”
ration with law p has CCSB(0, ﬁ, m%,\vdf(ﬁ)).

Using Lemma 6 with § = we claim that a forest-fire process with an initial configu-

By Proposition 3, there exists €, such that for all site  in 7%, as L tends to infinity,
the probability that the site x is (0,.J)-blurred at time €, tends to zero. That is to say,
with the choice of € made here, that for all t < ¢, for all x € Z¢ Llim PH(Br.=2)=0.

—00

Since |I| < oo, this concludes the proof. O

We conclude this part with a diagram of the main steps of the proof.

(goal : ¥t < ¢, [P (n(t) € A) — u(A)| = 0)
|
use of the subsequence of { i}

I
OP“(n(t) € A) — ()] < |PA((t) € 4) = iH(A)] +jH(4) — M(A)D

|
Lemma 5 : coupling and influence of sites of J¢

i L
[bound : |1]sup P*(x is (0, J)-blurred at t) +2dry (s, pfy) + |1 (A) — ,U,(A)D
Zel . —_———— ~~ Z

| |

| weak convergence
) I

VJ, dTV(HU;M\kj) k—>—o)o 0

#4(4) - (A)] D
\_ —00
L )

|

|radius(J)| < k so

e we let k go to oo
e then we let |radius(J)| go to oo

Proposition 3 and Lemma 6

[‘v’t <€ Ptz e Iis (0,J)-blurred at t) dW 0)
Ta — 00

(conclusion DVt <€ |PH(n(t) € A) — u(A)| = (D

Figure 3: Scheme of the proof
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3.2 Proof of Lemma 5

As mentionned in the proof of Theorem 4, the idea to prove this lemma is to use the event
“the initial configurations of the two processes coincide on J”. Then, the study differs
depending on whether this event occurs or not. A diagram of the main steps of the proof is
given at the end of the section.

Recall that we coupled a forest-fire process 7 on Z? with an initial configuration of law
u and the Gj-forest-fire process n* with an initial configuration of law u*, by using the
same Poisson processes on each site and by optimally coupling p; and u"‘f]. Let v be the
distribution of the optimal coupling. We have

[PH(n(t) € A) = P (" (1) € A)| = [P*((n(t),n*(£) € A x X) = P"((n(t),n* (1)) € X x A)|.

Consider now the event “the initial configurations of the two processes coincide on J”. Let
Cy = {n(0);y = 1*(0),} be this event. Denote by C5 the complement of this event. Then
we can upper bound the difference we are interested in :
k . .
[P*(n(t) € A) = P" (1" (t) € A)| = |Dif + Eq| < |Dif| + |Eq] (9)
with

Dif = P"([(n®),n"(t) € Ax X]NCS) —P([(nt),n*(t)) € X x A]nCY) (10)
Eq = P'([(n(t),n"(t)) € Ax X]nCy) — P“([(n(t),n"(t) € X x A|nCy). (11)

* Study of Dif :
Since p; and p,ff, are optimally coupled,

P(n(0)s # n*(0)1s) < drv (s, )

and we get

1Dif] <2 P"(n(0)1; #1"(0)s) < 2drv (s, pufy)- (12)

* Study of Eq :
After using the Bayes formula in (11), we are interested in the difference

Eq = [P/ (n(t), 1" (1)) € A x X | Cy) = P*( (n(t),"(8)) € X x A | C)|- P(Cy). (13)
We can use indicator functions to rewrite the difference in the righthand term :

Eq = [E"(Lxxa(n(t),n" () — Laxx(n(t),n*(t)) | C1)| - P(Cy).

When is the difference 1xxa(n(t),n"(t)) — Laxx(n(t),n"(t)) non zero? It occurs only
when (n(t),n"(t)) € A x A or when (n(t),n*(t)) € A x A°. These events occur when there
exists a time t; > 0 and a site x in I where the two configurations are not the same, i.e.
Neyw 7 nfl .« The two forest-fire processes are driven by the same Poisson processes and we
conditionned by the event “their initial configurations coincide on J”. So this non equality
must be the consequence of the influence of at least one cluster outside J on the box I. This
is equivalent to the existence of a site in I whose state is influenced by the state of a site
outside J. More precisely, there exists a site = in I which is (0, J)-blurred at time ;.
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Firstly we give some notations associated with the blur processes. We denote by [ the
(0, J)-blur process associated with 77 and by S* the (0, J)-blur process associated with 7*.
To simplify the notation, we do not write the dependence in J (neither in L) of the blur
processes. Let NB be the set of configurations where all the sites of the box I have the
value 0 and N B, be the set of configurations where the site x has the value 0.

Then with these notations we can write
[1xa(n(t),n"(t)) = Laxx (), n* ()| < Inpexnpe(B(t), B5(1)).
So

| Eq E"(Inpexnpe(B(t), (1)) | Cy) PY(Cy)

PY((B(t), B*(1)) € NB® x NB*| Cy) - P(C)

IA A

The (0, J)-blur process associated with a forest-fire process is defined only with the
Poisson processes on the sites of the set J and the initial configuration of the sites of the
box J. We know that the two initial configurations coincide on J and that the two processes
are driven by the same Poisson processes on each site. Thus, the blur processes 3 and /3*
are the same. So

|Eq| < P*(B(t) € NB°).
The complements of the events NB and N B, satisfy the relation NB¢ = U N B¢, so
zel

|Eq| < |1] sup P*(8(t) € NBE). (14)

xel
* Conclusion
Since P*(B(t) € NBS) = P*(fi. = 2), using equations (12) and (14) we obtain the

desired result.

[P(n(t) € A) = P* (1" (1) € A)| < 2 drv (g, pufy) + 1) sup (B = 2).

zel

12



goal :
|Pi(n(t) € A) — P (nf(t) € A)| < |1 sup Pz is (0, J)-blurred at 1) + 2 drv (s, uf)
re
|
optimal coupling of p and
~» either the 2 initial processes coincide on J (Eq)
~ or they are different (Dif)

(1P#(n(t) € 4) — P (i (t) € A)| < |Eq| + | Dif])

[ ]

study of the influence of sites outside J coupling property

|

[ |Eq| i Pr(3x € I :xis (0, J)-blurred at t) J Gsz| <2 dTV(,U/|J7/JJ|kJD

|I| sup,e; P*(z € I is (0, J)-blurred at ¢)
. )

(conclusion : the desired upper bound is obtained)

Figure 4: Scheme of the proof of Lemma 5

3.3 Proof of Lemma 6

The construction of the distribution u as a weak limit of the sequence {u*}rcx is used to
prove this lemma. We will need the CCSB condition for a Gj-forest-fire process, which is
the result of the following lemma.

Lemma 7. Let n be in N and 0 be a non negative real number. Consider a G, -forest-fire

process o™ with parameter \, with an initial configuration with distribution p™.
Then o™ has CCSB(0,0,m54,()).

Proof. (of Lemma 7)
Let n and m be in N.

The goal is to show a CCSB condition. Therefore let B and D be two subsets of B,,,
a site in B, \ D and consider

Condyp p = { e, = D} and  Size,,, = {|C,| > m}.

yeB
To simplify the notations, we denote mwydf((F) by m, s in this section.
The G, -forest-fire process a™ has CCSB(0, 6, My \d; (0)) if
P (a™(0) € Sizeym. , Na™(0) € Condp,p) < IP*" (a"(0) € Condp,p). (15)
Since p™ is the stationary distribution of a Gy,-forest-fire process, (15) can be written :
" (Sizegm, s N Condp,p) < du"(Condp p). (16)
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A forest-fire process having a CCSB condition at time 0 satisfies one for all times t > ~ by
Theorem 2. Thus to show (16), we will use this result combined with the ergodic theorem.

Consider a G,-forest-fire process 5 with parameter A > 0, with an initial configuration
with law p™ and having CCSB(0, ﬁ, m).

Since p" is the unique stationary distribution of a G,-forest-fire process, the ergodic
theorem gives

1 [ .
p"(Sizeym. s N Condp p) = lim — [ P (B € Sizey . ;N B"(s) € Condpp)ds.  (17)

t—oo t 0

Recall that v was set in Section 3.1 and take ¢ > ~.
By Theorem 2, for all times s larger than +, the forest-fire process 8™ has CCSB(s, §, m., 5),

S0
Vs > X, P”(BL € Sizegm, , N B"(s) € Condp p) < 5P (B2 € Condpp).
Therefore,
1" . R
Z/ PP (BY € Sizepm, ;N B"(s) € Condpp)ds < Z/ d PP (B2 € Condp p)ds
' 17 Lo
< 9 ;/ PP (87 € Condp p)ds.
0
Since
1 [ _ . ) vy
i PP (BY € Sizegm, , N B"(s) € Condp p)ds < T
0
we get a bound for the integral :
L[t ) v L.
; P? (6:' S Slzex’mw N ﬁn(S) € COHdB7D)dS S ? + 5; pP? (ﬁ? € COHdB7D)dS.
0 0
Finally, we let ¢ tend to infinity and use (17) twice to get (16). This concludes the
proof. O

We can now show the lemma concerning the distribution pu.

Proof. (of Lemma 6)

Let 6 > 0.

The idea of the proof is to use the fact that the measure p is a weak limit of a subsequence
of (u*)x>0, combined with the previous lemma.

To show the CCSB condition, consider two finite subsets B and D of Z?, a site z in
Z4\ D and

Condp p = { U C, = D} and  Sizeg ;= {|Ca] > my s}
yeB

For all finite subsets B and D of Z? and all sites = in Z% \ D, the sets Condg p and
Sizey . 5 are defined by a finite number of sites. Therefore we can write

p(Sizey ., s N Condp p) = klim ,uk(Sizex,mw , N Condg p) (18)
’ —00 ’
p(Condp p) = lim p¥(Condp p). (19)
—00
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By the previous lemma
uk(Sizeme NCondpp) < § ,uk(CondB,D). (20)
The result is obtained by letting &k tend to infinity :

p(Sizey . s N Condp p) < 6 u(Condp p).
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