High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D Maxwell case - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2014

High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D Maxwell case

Abstract

This work deals with the scattering of electromagnetic waves by a thin periodic layer made of an array of regularly-spaced obstacles. The size of the obstacles and the spacing between two consecutive obstacles are of the same order $\delta$, which is much smaller than the wavelength of the incident wave. We provide a complete description of the asymptotic behavior of the solution with respect to the small parameter $\delta$: we use a method that mixes matched asymptotic expansions and homogenization techniques. We pay particular attention to the construction of the near field terms. Indeed, they satisfy electrostatic problems posed in an infinite 3D strip that require a careful analysis. Error estimates are carried out to justify the accuracy of our expansion
Fichier principal
Vignette du fichier
DelourmeAsymptotique3D.pdf (763.83 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00682358 , version 1 (25-03-2012)
hal-00682358 , version 2 (03-01-2014)

Identifiers

  • HAL Id : hal-00682358 , version 2

Cite

Bérangère Delourme. High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D Maxwell case. 2014. ⟨hal-00682358v2⟩
363 View
309 Download

Share

More