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Abstract 

This paper describes a two-dimensional finite element simulation for fracture and fatigue behaviours of 

pure alumina microstructures found at hip prosthesis. Finite element models are developed using actual 

Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found 

at a slip zone between a femoral head and an acetabular cup of hip prosthesis. Effects of microstructures 

and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the 

microstructure is determined by performing simulations under cyclic loading conditions. It is identified 

that total crack length observed in a microstructure increases with increasing the magnitude of applied 

contact stress. Cyclic simulation results show that progressive crack growth occurs with respect to 

number of fatigue cycles. Finally, this proposed finite element simulation offers an effective method for 

identifying fracture and fatigue behaviours of a microstructure. 
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1. Introduction 

 

Alumina is known as a primary ceramic material in biomedical industry. Particularly, Al2O3 is widely 

used as the material of a femoral head and an acetabular cup of hip prosthesis. Al2O3 maintains good 

biocompatibility, high mechanical strength and fracture toughness, showing low friction coefficient at the 

contact surface of hip prosthesis. Alumina ceramics are available in different purities, typically from 85 % 

to 99.5 %, and high purity (> 99.5 %) alumina is used in hip prostheses [1, 2]. Repeated mechanical 

loadings, due to human gait and micro separation between head and cup, are imposed on the surface 

between a head and a cup of artificial hip prosthesis, leading to shock degradations [3]. Failure of hip 

prosthesis resulting from shocks brings about serious damages to the human body. For this reason, shock 

degradation is one of critical concerns in design of hip prosthesis. Several studies were carried out in 

order to investigate mechanical and wear damages of hip prostheses [4-6]. Hausselle [4] investigated 

fracture toughness and wear rate of alumina heads or cups of hip prostheses by performing shock 

experiments. Stewart et al. [5] investigated wear and fracture of alumina cups against zirconia heads with 

a hip simulator. Wear rate was measured under micro-separation conditions. De Aza et al. [6] determined 

crack growth resistance of bio-ceramics including alumina applicable to hip prostheses.  

Finite element method is widely used for simulating crack initiation and propagation of a structure 

resulting from external loading. Warner and Molinari [7] developed a two-dimensional finite element 

model of compressive fracture in ceramics. Finite element modelling was performed with pure alumina 

microstructures generated by Voronoi tessellation of randomly positioned seeds. Sfantos and Aliabadi [8] 

performed micro-and macro-scale boundary element modelling with polycrystalline Al2O3 ceramics. 

Three-point bending was loaded to a model and crack propagation was then investigated. However, a 

finite element model using actual alumina microstructures for hip prosthesis has not been developed in 
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spite of its importance. 

Several methods for investigating failure behaviour have been considered including fracture 

mechanics, continuum damage mechanics, and so on. Particularly, a method using cohesive zone law is 

remarkable, since this method enables simulating fracture of interfaces between physical parts and 

characterizing post-yield softening. Elements used in cohesive zone modelling do not represent any 

physical material but contain cohesive forces arising when they are being pulled apart. If these elements 

satisfy a pre-defined damage criterion, cohesive forces are completely removed. Thus, it is possible to 

simulate crack growth in a structure. Camacho and Ortiz [9] developed a lagrangian finite element 

method of fracture and fragmentation in brittle materials. Propagation of multiple cracks under impact 

loading was modelled with a cohesive zone law. Thermal effect induced in the course of impact loading 

was taken into account in the model. Ortiz and Pandolfi [10] extended this cohesive model to three 

dimensions. A three-dimensional finite-deformation cohesive element was developed, using irreversible 

cohesive laws. Nguyen et al. [11] developed a cohesive model for fracture and fatigue behaviours of a 

plane strain sample. An irreversible cohesive law with unloading-reloading hysteresis was implemented 

for describing fracture processes. Espinosa and Zavattieri [12, 13] developed a grain level model for 

failure initiation and evolution in polycrystalline brittle materials. Wave propagation experiments were 

simulated with various properties of cohesive zone [12]. In addition, finite element analysis of ceramic 

microstructures subjected to dynamic pressure-shear loadings was performed with cohesive zone law [13]. 

Yang et al. [14] formulated a cohesive fracture model for human femoral cortical bones. Subit et al. [15] 

developed a micro-mechanical model for predicting damages in ligament-to-bone attachment of a human 

knee joint. A cohesive zone model theory was proposed, focusing on the development of behaviour laws 

for crack initiation and propagation at an interface within a fibrous material or at the interface between 

materials.  

In fully dense Al2O3 ceramics, grains are rather various in size and shape. Thus, difficulties in 



modelling Al2O3 microstructures exist, leading to the increase of simulation time. A commercial finite 

element package (ABAQUS® 6.8) enables building complex elements and implementing cohesive zone 

models. In this paper, a two-dimensional finite element model was developed by using actual Al2O3 

microstructures. Fracture behaviour of grain boundaries was described with a bilinear cohesive law. 

Simulation conditions chosen were similar to those found at hip prosthesis. Crack propagation in Al2O3 

microstructures was investigated, and fatigue behaviour of the microstructure was then obtained by 

performing simulations under cyclic loading conditions.   

 

2. Cohesive model 

 

Mechanical properties of grain boundaries can be described with a bilinear, time-independent cohesive 

zone law. Cohesive behaviour is directly defined in terms of a traction-separation law [16]. This cohesive 

behaviour allows specification of mechanical properties such as relative displacement at failure, stiffness, 

and strength. Moreover, the behaviour allows assumption that the failure of elements is characterized by 

progressive degradation of the material stiffness.  

A cohesive element is subjected to normal and shear displacements under loading condition. The 

maximum value of a displacement is defined by  2max
s

2max
n

max δδδ  max
n

max
sδ

, where δ  and 

 are maximum values of normal and shear displacements attained during the loading history, 

respectively. In order to quantify the damage of a cohesive element, a damage variable (D) proposed by 

Camanho and Davila [17] is used 
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fδ 0δwhere  denotes the effective displacement at complete failure, and  is the effective displacement 

when normal stress (Tn) and shear stress (Ts) of a cohesive element satisfy the following equation. 
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where  and T are maximum values of the nominal normal stress and the nominal shear stress, 

respectively. The symbol  denotes that a pure tensile deformation initiates damage. 

 

[Fig. 1] 

 

Fig. 1 illustrates the stress versus displacement curve for cohesive behaviour. Normal and shear 

displacements are considered in cohesive elements. Cohesive behaviour under pure tensile deformation is 

described in Fig. 1b; line 1 is a loading and unloading path before damage initiation. Line 2 is an example 

of an unloading and reloading path after damage initiation. Cohesive behaviour in the shear direction is 

similar to that in the normal direction. Normal stress (Tn) and shear stress (Ts) can be expressed as 
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nT sTwhere and  are normal and shear stresses calculated by the elastic traction-separation behaviour 



for the current strains without damage, respectively. The cohesive model described above can be 

implemented in a finite element framework. From the principal of virtual work, an equilibrium form is 

expressed as 
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where S and ε  are internal stress and strain tensors.  , T  and C  denote the volume, external 

boundary, and cohesive boundary, respectively. Tex is the externally applied traction, and u and  are 

displacement vectors. T is a cohesive traction tensor. The last term in equation 4 is equal to the virtual 

work done by cohesive elements.  

Δ

For the purpose of resolving the cohesive zone accurately, sufficient number of cohesive elements is 

needed. An approximate cohesive zone length (Lcohesive) under plain strain condition is given by [18] 
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where E is elastic modulus,   is Poisson’s ratio, and GIC is the cohesive energy. For ensuring mesh 

independency, the cohesive element size in the authors’ simulation needs to be less than 
6

cohesiveL
. 

 

3. Finite element simulation 

 

[Fig. 2] 
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Fig. 2 illustrates a proposed simulation algorithm for calculating crack lengths in a microstructure. A 

data digitalization program written by Python programming language digitalizes actual 2D microstructure 

images and generates finite element models including cohesive layers. Material properties of grains and 

cohesive layers are then defined. Plan strain, implicit analysis is performed in the simulation. During 

simulation, stresses and strains of all elements are calculated along with damage variables of cohesive 

elements. Fracture of grain boundaries is evaluated in terms of damage variables of cohesive elements. 

When the damage variable of an element is equal to unity, the element is deleted and considered as crack. 

Commercial finite element software (ABAQUS® 6.8 standard) was used for simulating models. Each 

model was simulated on a cluster with 10 calculation nodes (Intel Xeon Quad Core 3 GHz, 64 bits with 1 

GB). Viscous stabilization was implemented to avoid severe convergence arising from softening 

behaviour and stiffness degradation, as recommended by ABAQUS [16, 17]. Dissipated energy fraction 

specified for stabilization was 0.002~0.005 during calculation.  

 

[Fig. 3] 

 

Fig. 3a and 3c show the microstructure images of Al2O3 (AKP-53, Sumitomo Co., Japan) sintered at 

1400 °C for 2 hours. Fig. 3b illustrates a generated model with Fig 3a, including 23 grains. Dark lines in 

the model denote cohesive layers. The size of a quadrangle element for a cohesive element is 0.01 µm × 

0.01 µm. All grains were meshed sufficiently finely for guaranteeing appropriate degree of resolution of 

local stress concentration effects. Fig. 3d is the other model generated by the same procedure.  

These models are assumed to represent small volume elements at the contact surface of a head. During 

human gait, a head comes in frictional contact with the inner surface of a cup and then slips over the 

surface. It can be understood that some parts of microstructures located at the surface of a head are 
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subjected to compressive and shear deformation resulting from sliding. In order to reproduce this 

deformation approximately, normal and shear stresses were applied to the top surface of a model. The 

bottom surface was fixed in all directions but the left and right sides remained free while the stresses were 

being applied. In these models, surface roughness was ignored, since it was less than 0.003 µm. The 

magnitude of normal stress varies according to locations within an actual contact surface, ranging from 5 

MPa to 500 MPa [4]. In this paper, four normal stress magnitudes of 70, 80, 90 and 100 MPa were 

selected. According to the normal stress, the magnitude of shear stress was determined on the basis of 

Coulomb friction coefficient of the material (i.e. 0.4 at dry conditions and at room temperature) [19, 20].  

 

[Table 1] 

 

Table 1 shows mechanical properties of grains and cohesive layers used for this simulation. The 

maximum normal stress chosen lies within the range of 0.95-1.5 GPa found at literature [8, 21-23]. Under 

this condition, fracture energy release rate is equal to 1 Jm-2 for a pure tensile mode and similar to those 

found at literature [24]. This fracture energy release rate was uniformly distributed to all cohesive layers. 

The maximum shear stress is assumed on the basis of the grain boundary shear strength’s dependence on 

the compressive yield strength (3000 MPa) similar to friction coefficient (0.13) of a metallic glass [25]. 

Stiffness values of the cohesive element are assumed as 3.74 × 1010 MPa.mm-1 (in the normal direction) 

and 1.53 × 1010 MPa.mm-1 (in the shear direction). 

 

4. Results and discussion 

 

Contact stress between a head and a cup of hip prosthesis is one of key parameters inducing cracks in 

Al2O3 microstructures. For the purpose of investigating the effect of contact stresses, finite element 
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simulations were performed with four different stress magnitudes.  

 

[Fig. 4] 

 

Fig. 4 shows the total crack length versus applied normal stress chart for models A and B after one 

loading-unloading cycle. Total crack length on the chart is defined as the sum of longitudinal distances of 

cracks generated in the microstructure. It is apparent that the total crack length rapidly increases with 

increasing applied stress magnitude. The crack growth rate of model A is higher than that of model B. In 

addition, the total crack occurred in model A is longer than that found in model B. 

 

[Fig. 5] 

 

Fig. 5 illustrates crack distribution of model A with respect to applied contact stress magnitude. 2D 

plots were obtained after one loading-unloading cycle. At a normal stress of 70 MPa, three cracks 

occurred within the entire model (Fig. 5a). At 80 MPa, longer cracks were observed at the upper-right 

side of a model (Fig. 5b). It was identified from the plots that the total crack length was increased with 

increasing applied contact stress magnitude (Fig. 5c). At 100 MPa, four grains located at the upper-right 

side of the model were finally separated from the microstructure, since cohesive layers surrounding the 

grains were completely removed (Fig. 5d). In addition, other cohesive layers were damaged due to the 

contact stress.  

 

[Fig. 6] 

 

Fig. 6 shows crack distributions of model B with respect to applied contact stress magnitude. These 
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crack distributions were obtained after a loading-unloading cycle. Cracks initiated at the upper-left side of 

the model, differently from the result of model A. This crack path may be closed due to the applied 

normal stress but it is opened after unloading. Cracked zones were extended with increasing contact stress 

magnitude. At a normal stress of 100 MPa, long cracks occurred at the upper side of the model, eventually 

leading to grain separation from the microstructure.  

 

[Fig. 7] 

 

Cyclic loadings were applied onto model A for investigating fatigue behaviour of a microstructure. 

The multi-step finite element simulations were performed by applying contact stress in a triangular 

waveform. Fig. 7 illustrates crack distribution of model A with respect to number of fatigue cycles. Three 

small cracks occurred at the upper-right side of the model after the initial fatigue cycle. These cracks grew 

with increasing number of fatigue cycles. Long cracks were then generated by combining small ones. 

Additional cracks were also found at other grain boundaries, and these cracks gradually grew along 

deformed boundaries. Finally, cohesive elements surrounding three grains were almost removed. This 

progressive damage was allowed, since a stress field in a model was changed according to number of 

cycles. That is, stress concentration occurred near cracked areas after the initial cycle and cracked areas 

were exposed to larger displacement upon reloading. Furthermore, stiffness of a cohesive element was 

degraded when the stress reached a maximum value (Tmax). The degradation of stiffness also increased the 

progressive damage. Crack path shown in Fig. 7c (after 15 cycles at a normal stress of 70 MPa) is similar 

to that found at Fig. 5c (after one cycle at a normal stress of 90 MPa). It can be concluded that repeated 

contact stresses lead to progressive damages in a microstructure, eventually resulting to grain separation. 

Material loss rate in a microstructure can be approximately evaluated with the amount of separated 

grains with respect to number of cycles. If the amount of cohesive elements remaining between grains is 
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so small that grains are considered to be separated in Fig. 7d, the loss area in model A is approximately 

2.0×10-6 mm2 after 25 cycles. Supposing that grain thickness is 0.001 mm, the loss rate is calculated as 

0.08×10-9 mm3/cycle. This loss rate corresponds to a local wear rate at contact surfaces of hip prosthesis 

subjected to high contact stress, since an applied normal stress of 70 MPa is approximately 12 times 

higher than a global value (5 MPa) found to contact between a head and a cup [4]. Thus, the total wear 

volume (~8.0×10-3 mm3 per cycle) predicted in an entire contact area (~300 mm2) is somewhat larger than 

the value (~1.3×10-3 mm3 per cycle, i.e. 30 mm3 in a head after 22500 cycles) measured with non-hot 

isostatically pressed alumina of hip prosthesis at dry condition [26].  

 

[Fig. 8] 

 

[Fig. 9] 

 

Fig. 8 shows the evolution of the total crack length with respect to number of fatigue cycles in model 

A. The total crack length gradually increases with increasing number of fatigue cycles and can be 

expressed as a linear function of a cycle. The slopes on the graph are equal to crack growth rates. It is 

identified from the slope values that crack growth rates of the model are similar within the range of 70-90 

MPa despite small variance. Fig. 9 shows a graph of the magnitude of a cyclic normal stress (S) against 

the number of cycles to failure (Nf) of model A. The number of cycles to failure was defined as the cycle 

when the total crack length reached 6.3 µm. The number of cycles to failure was decreased with 

increasing the magnitude of the cyclic normal stress. Although further simulations under various loading 

conditions and microstructures are needed, this proposed simulation enables producing the S-N curve of a 

microstructure. The S-N curve can be used as a reference for predicting the lifetime of a microstructure.  

In this simulation, external stresses were applied to the models for reproducing deformation of a 
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microstructure at the contact surface of a head. Displacement could be imposed to the models instead of 

the shear stress. This modelling can be achieved after identifying actual relative displacement between a 

head and a cup. The number of grains in the selected models was 23 and 25, respectively. Thus, the 

selected models may not correspond to representative volume elements (RVE). Bigger models need to be 

generated and analyzed in future work. Nevertheless, it was demonstrated that this proposed method 

allows simulating fracture and fatigue behaviours of a microstructure.  

 

5. Conclusions 

 

This paper developed a two-dimensional finite element modelling for investigating fracture and 

fatigue behaviours of Al2O3 ceramics at the microscopic level (i.e. ceramic grain scale). Two different 

Al2O3 microstructures without voids were selected and modelled with commercial finite element software 

(ABAQUS®) and a data digitalization program developed by authors. Simulation algorithm from model 

generation to analysis was detailed, enabling cyclic loadings. A bilinear, time-independent cohesive zone 

law was implemented for describing fracture behaviour of grain boundaries. The cohesive zone law 

allows elements in grain boundaries to be removed when they satisfy a pre-defined failure criterion. 

Repeated mechanical loading gives rise to degradation of the contact surface between a femoral head and 

an acetabular cup of hip prosthesis. At the microscopic level, short and long cracks are observed among 

grain boundaries at the contact surface. The fracture phenomenon of a microstructure was reproduced by 

applying contact stresses to a model.  

The effect of contact stresses was investigated, by applying four different stress magnitudes. Total 

crack length occurring in a microstructure was measured after an initial fatigue cycle (loading and 

unloading). It was identified that the crack length was increased with increasing the contact stress. In 

addition, differences of the crack length and path were observed between selected microstructures. It can 
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be concluded that grain arrangement and size determine the total crack length and crack path. 

It is of importance that fatigue behaviour of Al2O3 ceramic is investigated at the microscopic level. 

For the purpose of investigating the fatigue behaviour, cyclic loading was applied to a model. Short 

cracks were found at a variety of grain boundaries, and crack growth was apparently observed. That is, 

cracks progressively grew with increasing number of fatigue cycles. Results also showed that some grains 

were separated after the final fatigue cycle. 

In conclusion, the proposed finite element model allows simulating fracture and fatigue behaviours of 

alumina microstructures found at hip prostheses. Further work will focus on the generation of a 

representative volume element, the development of a three-dimensional finite element model, and 

application to microstructures of bio-materials such as zirconia and alumina-zirconia ceramics.  
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Figure Captions 

 

Fig. 1 Illustration of cohesive response (a) in a mixed mode and (b) in a pure tensile mode.  

Fig. 2 Simulation algorithm. Ni denotes the ith cycle.  

Fig. 3 Images of Al2O3 microstructures (purity of 99.99 %, and sintered at 1400 °C for 2 hours) and finite 

element models. The right images (b, d) are models generated with the left images (a, c). (b) and (d) are 

denoted as model A and model B, respectively. 

Fig. 4 Total crack length versus applied normal stress chart of models A and B. Shear stresses were 

applied with the normal stresses together.  

Fig. 5 Illustrations of crack distributions in model A with respect to applied contact stress magnitude: (a) 

a normal (shear) stress of 70 MPa (28 MPa), (b) a normal (shear) stress of 80 MPa (32 MPa), (c) a normal 

(shear) stress of 90 MPa (36 MPa), and (d) a normal (shear) stress of 100 MPa (40 MPa). Grey areas are 

Al2O3, black lines denote cohesive layers, and white ones denote cracks. 

Fig. 6 Illustrations of crack distributions in model B with respect to applied contact stress magnitude: (a) 

a normal (shear) stress of 70 MPa (28 MPa), (b) a normal (shear) stress of 80 MPa (32 MPa), (c) a normal 

(shear) stress of 90 MPa (36 MPa), and (d) a normal (shear) stress of 100 MPa (40 MPa). Grey areas are 

Al2O3, black lines denote cohesive layers, and white ones denote cracks. 

Fig. 7 Illustrations of crack distributions in model A with respect to number of fatigue cycles: (a) cycle 1, 

(b) cycle 10, (c) cycle 15, and (d) cycle 25. Grey areas are Al2O3, black lines denote cohesive layers, and 

white ones denote cracks. Triangular load wave was applied, ranging from zero to 70 MPa for normal 

stress (28 MPa for shear stress). 
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Fig. 8 Evolution of the total crack length with respect to number of fatigue cycles in model A. 

Fig. 9 S-Nf curve for model A. Circle markers are calculated data. The number of cycles to failure was 

defined as the cycle when the total crack length reached 6.3 µm. 

 

Table  

Grain Cohesive layer 

Elastic modulus, E 

(shear, G), MPa 

Poisson ratio, 

ν 

Nominal normal stress, Tn
max 

(Nominal shear stress, Ts
max), 

MPa 

Displacement at failure, 

, µm fδ

374000 (153000) 0.22 1000 (400) 0.002 

Table 1. Mechanical properties of grains and cohesive layers. 

 

List of notation 

a: total crack length 

D: damage variable 

E: elastic modulus  

G: shear modulus 

GIC : cohesive energy 

Lcohesive : approximate cohesive zone length 

N: number of cycles  

P: applied normal stress 

Tn: normal stress  

Ts : shear stress 

max
nT : nominal normal stress  
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max
sT : nominal shear stress 

nT : normal stress calculated by the elastic traction-separation behaviour for the current strains without 

damage 

sT

maxδ

max
nδ

δ

δ

δ

δ

ε







Δ



: shear stress calculated by the elastic traction-separation behaviour for the current strains without 

damage 

S: internal stress tensor 

T: cohesive traction tensor 

Tex : the externally applied traction 

u: displacement vector for external loading 

: the maximum value of a displacement 

: the maximum value of normal displacement during the loading history 

max
s : the maximum value of shear displacement during the loading history 

f : the effective displacement at complete failure 

f
n : the effective normal displacement at complete failure 

0 : the effective displacement at damage initiation 

: strain tensor  

: volume  

: external boundary T

: cohesive boundary  C

: displacement vector for cohesive element 

: Poisson’s ratio  
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