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Chapter 1

Chaotic mathematical circuitry

R. LOZI
Laboratoire J.A. Dieudonné - UMR CNRS 7351

Université de Nice Sophia-Antipolis
Parc Valrose

06108 NICE Cedex 02
FRANCE
lozi@unice.fr

Following the worldwide tradition of use of Chua�s circuits for various purposes, we introduce the paradigm
of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry -the
design of electronic circuit- especially in the frame of chaotic attractors. An electronic circuit is composed of
individual electronic components, such as capacitors, diodes, inductors, resistors, transistors and connected
by conductive wires. Recently, in 2009, three more components discovered by L. O. Chua have been added to
the set of devices, namely: memristors, memcapacitors and meminductors. In the same way a mathematical
circuit is composed of individual components we design: generators, couplers, samplers, mixers, reducers and
cascaders, connected by streams of data. The combination of such mathematical components allows many new
applications in chaotic cryptography, genetic algorithms in optimization or in control.
To appear in: �Chaos CNN, Memristors and Beyond,� (commemorating the 75th birthday of Prof Leon

O. Chua), Eds. A. Adamtzky, & Guanrong (Ron) Chen.

1. Introduction

Since the seminal work of E. N. Lorenz16 in 1963,
who discovered by accident the �rst chaotic strange
attractor, chaotic dynamical systems have been fully
studied. Fifty years after, only few chaotic attrac-
tors involving di¤erential equations remain actively
explored. Among them Chua�s attractor is nowadays
incredibly used, because both of its realizations: elec-
tronic circuit or system of di¤erential equations can
be combined for multiple purpose.8 Following the �rst
studies applying such combinations to crypted trans-
mission, our aim is to build an analog of paradigm
of electronic circuitry, which is the design of elec-
tronic circuit: the paradigm of chaotic mathemat-
ical circuitry, in order to improve the performance
of well known chaotic attractors for application pur-
pose (cryptography, generic algorithms in optimiza-
tion, control,...).
An electronic circuit is composed of individual

electronic components, such as resistors, transistors,
capacitors, inductors and diodes, connected by con-
ductive wires through which electric current can �ow.
The combination of components and wires allows var-
ious simple and complex operations to be performed.
In the same way a mathematical circuit is com-
posed of individual components we introduce (gen-
erators, couplers, samplers, mixers, reducers and cas-
caders,...) connected through streams of data. The
combination of such mathematical components leads
to several news applications such as improving the
performance of well known chaotic attractors (Be-
lykh,17 Lorenz, Rössler,28 ...) for application pur-
pose (chaotic cryptography, genetic algorithms in op-
timization, control,...).
In Sec. 2 we recall a �rst historic example of

chaotic mathematical circuitry: the cascading of two
identical receivers in Chua�s circuit. In Sec. 3, we in-
troduce the new paradigm of chaotic mathematical
circuitry, some examples of applications of which are
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given in Sec. 4.

2. A �rst historic example of chaotic
mathematical circuitry: the cascading
of two identical receivers in Chua�s cir-
cuit

2.1. Chua�s circuit

In october 1983, visiting T. Matsumoto at Waseda
University, L. O. Chua invented an electronic circuit
(Fig. 1(a) and (b)) mimicking directly on an oscillo-
scope screen a chaotic signal (Fig. 1(c)).
Only two autonomous systems of ordinary di¤er-

ential equations were generally accepted then as be-
ing chaotic, the Lorenz equations16 and the Rössler
equations.28 The nonlinearity in both systems is a
the product function of two variables which is very
di¢ cult to build in electronic circuit. L. O. Chua4

says, � The fault lies on the dearth of a critical non-
linear IC component with a near-ideal characteris-
tic and a su¢ ciently large dynamic range; namely,
the analog multiplier. Unfortunately, this component
was the key to building an autonomous chaotic cir-
cuit in 1983.� He adds, �Suddenly [in the evening
of the precise day he attended an unsuccesful pre-
sentation of an electronic circuit realization of the
Lorenz Equations] it dawned upon me that since the
main mechanism which gives rise to chaos, in both
the Lorenz and the Rössler Equations, is the presence
of at least two unstable equilibrium points -3 for the

Lorenz Equations and 2 for the Rössler Equations-
it seems only prudent to design a simpler and more
robust circuit [than that built by Matsumoto�s team]
having these attributes. Having identi�ed this alter-
native approach and strategy, it becomes a simple ex-
ercise in elementary nonlinear circuit theory to enu-
merate systematically all such circuit candidates, of
which there were only 8 of them, and then to sys-
tematically eliminate those that, for one reason or
another, can not be chaotic.�
The Chua�s equations he laid down

8<:
:
x = � (y � x� f (x)) ;
:
y = x� y + z;
:
z = ��y;

(1)

where

f (x) = bx+
1

2
(a� b) [jx+ 1j � jx� 1j] ; (2)

and

� = 15:60; � = 28:58; a = �1
7
; b =

2

7
; (3)

were soon numerically analyzed by T. Matsumoto.26

The �nonlinear� characteristic which is in fact only
piecewise linear allows some exact computations.
Henceforth, L. O. Chua et al.3 proved in the same
breath that the mechanism of chaos exists in this at-
tractor.

2.2. Secure communication via chaotic
synchronization

2.2.1. Synchronization

The synchronization of two Chua�s circuit was stud-
ied experimentaly height years later in 1992,5 soon
followed by its application to crypted transmission.
The �rst laboratory demonstration of a secure com-
munication system which uses a chaotic signal for
masking purposes27 and which exploits the chaotic
synchronization techniques to recover the signal was
reported in 1992.15 While the �transmitter� in this
system is a direct implementation of the method pro-
posed in oppenheim et al.,27 the �receiver� di¤ers
from their computer simulation approach in that it
actually contains two subsystems of the �chaotic�
transmitter (Chua�s circuit in that case).

2.2.2. Single chaotic synchronization

The mathematical translation of the dynamics of the
circuit used by Kocarev et al.,15 for the experimental
demonstration of secure communication is as follows:
the basic building block is a Chua�s circuit, the dy-
namics of which is given by the Chua�s equations (1)
and (2). Here x(t) is used as noise-like �masking�
signal. Let s(t) be an information-bearing signal.
The transmitted signal is r(t) = x(t) + s(t), where
the power level of s(t) is assumed to be signi�cantly
lower than that of x(t), in order to have the signal
e¤ectively hidden. The receiver consists of two sub-
sytems.
The �rst one is driven by the transmitted signal
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Fig. 1. (a) Realization of Chua�s circuit from.5 (b) Three-segment piecewise-linear v-i characteristic of nonlinear resistor in
Chua�s circuit. (c) Chua attractor.

r(t): � :
y1 = r (t)� y1 + z1;
:
z1 = ��y1:

(4)

The second subsytem is driven by the signal y1(t):
:
x2 = � (y1 (t)� x2 � f (x2)) : (5)

Then s(t) is recovered as

s2 (t) = r (t)� x2 (t) � s (t) : (6)

Actually the dynamics of the experimental set-up
(see Fig. 2) is described by� :

x2 = � (y1 (t)� x2 � f (x2)) ;
:
z2 = ��y1 (t) :

(7)

However, as long as we do not need z2(t) to re-
cover s2(t), we continue to use Eq. 6 instead of Eq. 7
in the following improved system.

2.2.3. Cascade chaotic synchronization

Ten years after the invention of his ubiquitous real-
world example of a chaotic system, leading some to
declare it �a paradigm for chaos�, and few months

after the experimental demonstration of secure com-
munication using the properties of this chaotic gen-
erator, Professor L. O. Chua was visiting us for one
month, in May 1993, at the University of Nice.
In both implementations -electronic circuit real-

ization (Fig. 3) or computer simulation (Fig. 2)- of
the circuit used by Kocarev et al.,15 there is an in-
evitable error introduced by the signal s(t). Then the
claim was to enhance the performance of the chaotic
masking technique by improving the convergence of
the recovered signal s2(t) towards the information-
bearing signal s(t). Having in mind the knowledge
of relaxation methods used in numerical analysis (in
numerical mathematics, relaxation methods are iter-
ative methods for solving systems of equations, in-
cluding nonlinear systems), we proposed to iterate
the process of recovering the signal, cascading a sec-
ond identical receiver to the �rst one, i.e. introducing
a second system of equations comparable to Eqs. 4-5
driven by x2(t) instead of r(t); as displayed in Fig. 5.
The second receiver also consists of two subsytems.
The �rst one is driven by the signal x2(t) which is
assumed to be more synchronized to x(t) than the
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Fig. 2. Experimental set up. Block diagram of the system. It contains one Chua�s circuit and two partial Chua�s circuits, that
is, subsystems #1 et #2 of Fig. 3, from.15

transmitted signal r(t):

� :
y3 = x2 (t)� y3 + z3

:
z3 = ��y3

(8)

The second subsystem of the second receiver is
then driven by the signal y3(t) from Eq. 8:

:
x4 = � (y3 (t)� x4 � f (x4)) (9)

Then s(t) is recovered as

s4 (t) = r (t)� x4 (t) � s (t) (10)

In practice we simply make two copies of the re-
ceiver as shown in Fig. 4. By identifying the sym-
bols (VC1 ; VC2 ; Il) in Chua�s circuit (see Figs. 2 and
3) with (x; y; z), the electronic circuit implementa-
tion in Fig. 4 can be translated into the block di-
agram shown in Fig. 5. Although no two electronic
circuits can be made perfectly identical in practice,
this ideal situation can be approached with the help
of the integrated circuit technology demonstrated in
Delgado-Restituto & Rodriguez-Vasquez.6 By fabri-
cating several identical Chua�s circuits on the same
silicon chip, the resulting circuits are almost �clones�

of each other. This technique has the additional se-
curity adavantage in that even if someone else has
discovered the parameters (�; �) used in the system,
integrating it into another silicon chip invariably in-
troduces discrepancies due to the di¤erent process-
ing parameters from di¤erent silicon �foundries�. We
have shown by computer experiments that by con-
necting two identical receivers, a signi�cant amount
of noise can be reduced, thereby allowing the recovery
of a much higher quality signal.18

2.2.4. Numerical experiments

Due to the limited extend of this chapter, we give only
a sketch of results of numerical experiments. Assum-
ing that the input (information-bearing) signal s(t)
is a single tone (sine wave) of amplitude k � 1:

s(t) = k sin(!t) with k > 0: (11)

Therefore s(t) has a power level signi�cantly lower
than that of x(t).
Let us de�ne the errors

kes (k; !)k2 = ks2(t)� s(t)k2 (12)

kec (k; !)k2 = ks4(t)� s(t)k2 (13)
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Fig. 3. Practical realization of the receiver. The �rst subsystem is a partial Chua�s circuit consisting of the
�
vC2 ; iL

�
-subsytem

driven by the transmitted signal r (t). The second subsystem is a partial Chua�s circuit consisting of the
�
vC1

�
-subsytem driven

by the transmitted signal v(1)C2
. The triangular symbols are OpAmps which decoupled the systems, acting as the signal drive

elements, from.15

Fig. 4. Electronic circuit implementation of the two stage �receiver� consisting of two identical copies of the circuit given in
Fig.3.

where

kf (t)k2 , lim
T!1

1

T

"Z T

0

f2 (t) dt

# 1
2

(14)

denotes the quadratic norm of f(t).
Extensive computer studies show that both

kes (k; !)k2 = ks(t)k2 and kec (k; !)k2 = ks(t)k2 are in-
dependent of k, and that both norms kes (k; !)k2 and

kec (k; !)k2 are decreasing in accordance to a power
law with an exponent greater than 2 when ! is in-
creasing. Moreover kec (k; !)k2 is always less than
kes (k; !)k2. This shows that the cascade chaotic syn-
chronization technique o¤ers a good improvment over
the single-stage chaotic synchronization results.
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Fig. 5. Block diagram of the electronic circuit implemented in Fig. 4.

Fig. 6. Symbols of the three recently discovered circuit elements with memory.

3. Mathematical circuitry

Our aim is to build an analog of paradigm of elec-
tronic circuitry, which is the design of electronic cir-
cuit: the paradigm of mathematical circuitry and es-
pecially chaotic mathematical circuitry in order to
improve the performance of well known chaotic at-
tractors (Belykh,17 Lorenz,16 Rössler,28 ...) for ap-
plication purpose (chaotic cryptography, genetic al-
gorithms in optimization, control, emergence of ram-
doness from chaos,...).
An electronic circuit is composed of individual

electronic components, such as capacitors, diodes, in-
ductors, resistors, transistors and connected by con-
ductive wires through which electric current can �ow.
Recently, in 2009, three more components discovered
by L. O. Chua et al.,7 have been added: memristors,
memcapacitors and meminductors (Fig. 6). The com-
bination of components and wires allows various sim-
ple and complex operations to be performed: signals
can be ampli�ed, computations can be accomplished,
and data can be moved from one place to another. In
the same way a mathematical circuit is composed of
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Fig. 7. Generators. (a) Continuous generator (Chua�s circuit, expanded symbol). (b) Simpli�ed continuous generator. (c) Discrete
generator (Hénon map, expanded symbol). (d) Simpli�ed discrete generator. (e) 1-dimensional logistic generator.

individual components we introduce now: generators,
couplers, samplers, mixers, reducers and cascaders,
connected by streams of data. The combination of
such mathematical components leads to several per-
forming news applications, such as Chaotic Pseudo
Random Number Generators (CPRNG), as we will
show in the rest of this article.

3.1. Generator

Analog circuits are very commonly represented in
schematic diagrams, in which wires are shown as
lines, and each component has a unique symbol. We
present in this section the symbols we design in order
to draw mathematical schematic diagrams. The �rst
symbols we describe, generator symbols, are, from a
mathematical point of view, equivalent to a battery
or a current generator in electronic circuit. However
we consider that they generate a numerical signal (in
one or more dimensions) rather than a voltage or an
intensity variation (nonetheless, a voltage or intensity
variation can be considered as a physical signal which
can be discretized). This signal can be either contin-
uous, as in Chua�s circuit, or discrete as in Hénon
map.13

In the expanded symbol of continuous genera-
tor (see Fig. 7(a)), the solid line arrows coming out
from the generator represent the three components of
the signal x (t) = (x (t) ; y (t) ; z (t)) (see Eq. 1), the
dashed line arrow points at � which stands for the

parameter value de�ned by Eq. 3, and the dot line
arrow points at x0 = x (0), the given initial value of
the signal. If there is no ambiguity on the nature of
the generator used, the symbol can be simpli�ed as
in Fig. 7(b).
We need also to design chaotic circuitry for dis-

crete signal. To this aim two generators can be con-
sidered: in dimension 2, the Hénon map (see Figs.
7(c) and (d))

Ha;b :

�
x

y

�
=

�
y + 1� ax2

bx

�
(15)

with

a = 1:4; b = 0:3; (16)

which is associated to the dynamical system,�
xn+1 = yn + 1� ax2n
yn+1 = bxn

(17)

and the logistic map

fr (x) = rx (1� x) (18)

linked to the one dimensional system which is chaotic
when r = 4 (see Fig. 7(e)).

xn+1 = rxn (1� xn) (19)

Thereafter, another 1-dimensional chaotic gener-
ator, the symmetric tent map, will be, also, repre-
sented by the same symbol.
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Fig. 8. Five identical coupled Chua�s circuits forming a ring, from.14

3.2. Coupler

Two years after the experimental study of the syn-
chronization of two Chua�s circuit, in 1994, experi-
mental observation of hyperchaotic attractors in open

and closed chain of Chua�s circuit was reported.14

The layout of the �ve identical coupled Chua�s cir-
cuit forming a ring is displayed on Fig. 8, the state
equations of this circuit are as follows

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C1
dv

(1)
C1

dt = G
�
v
(1)
C2
� v(1)C1

�
� f

�
v
(1)
C1

�
;

C2
dv

(1)
C2

dt = G
�
v
(1)
C1
� v(1)C2

�
+ i

(1)
L +K1

�
v
(2)
C2
� v(1)C2

�
;

L
di
(1)
L

dt = �v(1)C2 ;

C1
dv

(2)
C1

dt = G
�
v
(2)
C2
� v(2)C1

�
� f

�
v
(2)
C1

�
;

C2
dv

(2)
C2

dt = G
�
v
(2)
C1
� v(2)C2

�
+ i

(2)
L +K2

�
v
(3)
C2
� v(2)C2

�
;

L
di
(2)
L

dt = �v(2)C2 ;
� � �
� � �
� � �

C1
dv

(5)
C1

dt = G
�
v
(5)
C2
� v(5)C1

�
� f

�
v
(5)
C1

�
;

C2
dv

(5)
C2

dt = G
�
v
(5)
C1
� v(5)C2

�
+ i

(5)
L +K5

�
v
(1)
C2
� v(5)C2

�
;

L
di
(2)
L

dt = �v(5)C2 :

(20)
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Fig. 9. Numerical circuit corresponding to electronic circuit of Fig. 8.

Each Chua�s circuit (see Fig. 1 (a)) contains three
linear energy-storage elements (an inductor and two
capacitors), a linear resitor, and a single nonlinear re-
sistor, namely, Chua�s diode with three segment lin-
ear characteristic de�ned by

f (vR) = m0vR+
1

2
(m1 �m0) [jvR +Bpj � jvR �Bpj]

(21)

where the slopes in the inner and the outer regions are
m0 andm1, respectively, and �Bp denotes the break-
points (see Fig. 1 (b)). Equation 21 is equivalent to

Eq. 2. By identifying the symbols
�
V
(i)
C1
; V

(i)
C2
; I
(i)
l

�
in

each Chua�s circuit with
�
xi; yi; zi

�
, the state equa-

tions of the circuit can be translated into the di¤er-
ential equations (22) and the electronic circuit sym-
bolized by the mathematical circuit of Fig. 9.

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

:
x
1
= �

�
y1 � x1 � f

�
x1
��
;

:
y
1
= x1 � y1 + z1 + k1

�
y2 � y1

�
;

:
z
1
= ��y1;

:
x
2
= �

�
y2 � x2 � f

�
x2
��
;

:
y
2
= x2 � y2 + z2 + k2

�
y3 � y2

�
;

:
z
2
= ��y2;

� � �
� � �
� � �

:
x
5
= �

�
y5 � x5 � f

�
x5
��
;

:
y
5
= x5 � y5 + z5 + k5

�
y1 � y5

�
;

:
z
5
= ��y5:

(22)

In this �gure the double arrows symbolize the cou-
pling ki

�
yi+1 � yi

�
of one Chua�s circuit to the next

one. In order to represent the coupling between math-
ematical equation, depending on the nature of the
coupling, we can use both symbols: the ring coupler
corresponding to the coupling of one generator to the
next one (Fig. 10(a)), and the full coupler when the
coupling involves more connections between the cou-
plers (Fig 10(b)).

Remark 1.1. In the rest of this article, we use solid
line arrow for continuous signal x (t), and dashed line
arrow for discrete signal xn.

It has been shown, a few years ago20 that the
ultra-weak coupling of several logistic maps (Eq. 18)
or symmetric tent maps

fa (x) = 1� a jxj (23)
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Fig. 10. (a) Ring coupler. (b) Full coupler.

xn+1 = fa (xn) (24)

when a = 2; allows the production of long series of
chaotic numbers equally distributed over the interval
J = [�1; 1] � R.
When a dynamical system is realized on a com-

puter using �oating point numbers, the computation
is of discretization, where �nite arithmetic replaces
continuum state space. For chaotic dynamical sys-
tems, the discretizations often have collapsing e¤ects
to a �xed point or to short cycles.25 Instead, the
ultra-weak coupling of logistic or symmetric tent map

8<:
x1n+1 = (1� 2"1) f

�
x1n
�
+ "1f

�
x2n
�
+ "1f

�
x3n
�

x2n+1 = "2f
�
x1n
�
+ (1� 2"2) f

�
x2n
�
+ "2f

�
x3n
�

x3n+1 = "3f
�
x1n
�
+ "3f

�
x2n
�
+ (1� 2"3) f

�
x3n
�
(25)

symbolized by Fig. 11(a) gives rise to sterling model
of generator of chaotic numbers with a uniform dis-

tribution of these numbers of the interval [�1; 1].
Ultra-weak coupling means "i 2

�
10�15; 10�7

�
for

computations using double precision numbers.24 The
periodic solutions of such generator have period far
greater than ten billions. Of course, more than three
1-dimensional generators can be coupled under the
same process, enhancing the ergodic properties of the
generator.
The considered system of the p-coupled dynami-

cal systems is

Xn+1 = F (Xn) = A:
�
f(Xn)

�
(26)

with

Xn =

0B@x
1
n
...
xpn

1CA f(Xn) =

0B@ f(x
1
n)
...

f(xpn)

1CA (27)

and the coupling matrix A: F is a map of Jp =
[�1; 1]p � Rp into itself. The mathematical circuit
of this system is displayed on Fig. 11(b).

A =

0BBBBBBBBBBBBB@

"1;1 = 1�
j=pP
j=2

"1;j "1;2 � � � "1;p�1 "1;p

"2;1 "2;2 = 1�
j=pP

j=1;j 6=2
"2;j � � � "2;p�1 "2;p

...
. . .

...
...

...
. . .

...
...

"p;1 � � � � � � "p;p�1 "p;p = 1�
j=p�1P
j=1

"p;j

1CCCCCCCCCCCCCA
(28)
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Fig. 11. (a) Circuit of ultraweak coupling of three 1-dimensional chaotic maps. (b) Circuit of ultraweak coupling of p 1-
dimensional chaotic maps.

It is noteworthy that these families of very weakly
coupled maps are more powerful than the usual for-
mulas used to generate chaotic sequences mainly be-
cause only additions and multiplications are used in
the computation process; no division being required.
Moreover the computations are done using �oating
point or double precision numbers, allowing the use of
the powerful Floating Point Unit (FPU) of the mod-
ern microprocessors. In addition, a large part of the
computations can be parallelized taking advantage of
the multicore microprocessors which are common in

laptop computers, nowadays.
We display in Table 1 the discrepancies in

quadratic norm (Eq. 14) between the distribution
of the iterated values x1n and the Lebesgue mea-
sure vs. the number of iterates Niter, for 2, 3 and
4-coupled symmetric tent maps. Computations are
done using double precision numbers (� 14� 15 dig-
its), "i;j = i"1, j = 1; 4, "1 = 10�14, initial val-
ues: x10 = 0:330000013113, x20 = 0:338756413113,
x30 = 0:331353442113, x

4
0 = 0:333213583113.

Table 1

Niter 2� coupled equation 3� coupled equation 4� coupled equation
105 0:100199 0:099820996 0:099610992

106 0:01006199 0:0098781898 0:01022057

107 0:0010442081 0:0010014581 0:0010055967

108 0:0001055816 9:8853067� 10�5 0:00010197872

109 1:567597� 10�5 1:0047459� 10�5 1:0326474� 10�5
1010 7:3577797� 10�6 9:7251536� 10�7 9:9932242� 10�7
1011 6:6338453� 10�6 1:0434293� 10�7 1:0070523� 10�7
1012 1:116009� 10�8 9:6166733� 10�9

3� 1012 4:0443118� 10�9 3:2530773� 10�9

Remark: the ring coupler of Fig. 10(a) corre-
sponds to an hollow matrix, in which only one di-
agonal and one other coe¢ cient are not empty. The
full coupler of the same �gure stands for a matrix
more �lled with non vanishing coe¢ cients as in Eq.
28.

3.3. Sampler

However chaotic numbers are not pseudo-random
numbers because the plot of the couples of any com-
ponent (xln; x

l
n+1) of iterated points (Xn; Xn+1) in

the corresponding phase plane reveals the map f used
as one-dimensional dynamical systems to generate
them via Eq. 26. Nevertheless we have recently in-
troduced a family of enhanced Chaotic Pseudo Ran-
dom Number Generators (CPRNG) in order to com-
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Fig. 12. Circuit of enhanced Chaotic Pseudo Random Number Generators (CPRNG) based on chaotic sampling.

pute very fast long series of pseudorandom numbers
with desktop computer21 ;22 ;23 and its properties have
been analyzed.10 ;11 ;12 This family is based on the
previous ultra-weak coupling which is improved in
order to conceal the chaotic genuine function.
In order to hide f of Eq. 26, in the phase space
(xln; x

l
n+1); two mechanisms are used. The pivotal

idea of the �rst one mechanism is to sample chaoti-
cally the sequence (xl0; x

l
1; x

l
2; ::: ; x

l
n; x

l
n+1; :::) gen-

erated by the l-th component xl, selecting xln every
time the value xmn of the m-th component xm, is
strictly greater (or smaller) than a threshold T 2 J ,
with l 6= m, for 1 � l;m � p.
That is to say, to extract the subsequence

(xln(0) ; x
l
n(1)
; xln(2) ; ::: ; x

l
n(q)
; xln(q+1) ; :::) denoted here

(x0; x1; x2; ::: ; xq; xq+1; :::) from the original one, in
the following way:
Given 1 � l;m � p, l 6= m

(
n(�1) = �1
xq = x

l
n(q)

; with n(q) = min
r2N

fr > n(q�1) j xmr > Tg (29)

The sequence (x0; x1; x2; ::: ; xq; xq+1; :::) is then
the sequence of chaotic pseudo-random numbers.
The mathematical formula (29) can be best un-

derstood in algorithmic way. The pseudo-code, for
computing iterates of (29) corresponding to N iter-
ates of Eq. 26 is:
X0 = (x

1
0; x

2
0; :::; x

p�1
0 ; xp0) = seed

n = 0; q = 0;
do { while n < N

do { while (xmn � T )
compute (x1n; x

2
n; :::; x

p�1
n ; xpn);n++}

compute (x1n; x
2
n; :::; x

p�1
n ; xpn);

then n(q) = n;xq = x1n(q);n++; q++}
This chaotic sampling is possible due to the in-

dependence of each component of the iterated points
Xn vs. the others.21 We introduce the symbol on the
right hand side of Fig. 12 in order to give a schematic
representation of this sampling (also called subsam-
pling) process.

3.4. Mixer

A second mechanism can improve the unpredictabil-
ity of the pseudo-random sequence generated as
above, using synergistically all the components of the
vector Xn, instead of two. Given p� 1 thresholds

T1 < T2 < ::: < Tp�1 2 J

and the corresponding partition of

J =

p�1[
k=0

Jk

with J0 = [�1; T1], J1 =]T1; T2[ , Jk = [Tk; Tk+1[ for
1 < k < p� 1 and Jp�1 = [Tp�1; 1[,
this simple mechanism is based on the chaotic mixing
of the p� 1 sequences

(x10; x
1
1; x

1
2; ::: ; x

1
n; x

1
n+1; :::), (x

2
0; x

2
1; x

2
2; ::: ; x

2
n; x

2
n+1; :::),

... , (xp�10 ; xp�11 ; xp�12 ; ::: ; xp�1n ; xp�1n+1; :::), ...
using the last one (xp0; x

p
1; x

p
2; ::: ; x

p
n; x

p
n+1; :::) in or-

der to distribute the iterated points with respect
to this given partition de�ning the subsequence
(x0; x1; x2; ::: ; xq; xq+1; :::) by
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Fig. 13. Circuit of enhanced Chaotic Pseudo Random Number Generators (CPRNG) based on chaotic mixing.

8<:n(�1) = �1xq = x
k
n(q)

; with n(q) = min
1�k�p�1

�
sk(q) = min

r2N
frk > n(q�1) j xprk 2 Jkg

�
(30)

The pseudo-code, for computing the iterates of
Eq. 30 corresponding to N iterates of Eq. 26 is
X0 = (x

1
0; x

2
0; :::; x

p�1
0 ; xp0) = seed

n = 0; q = 0 ;
do { while n < N

do {while (xpn 2 J0) compute
(x1n; x

2
n; :::; x

p�1
n ; xpn);n++}

compute (x1n; x
2
n; :::; x

p�1
n ; xpn)

let k be such that xpn 2 Jk
then n(q) = n;xq = xkn(q);n++; q++}

We introduce the symbol on the right hand side of
Fig. 13 in order to give a schematic representation of
the chaotic mixing process. For sake of simplicity we
have only displayed a circuit with three 1-dimensional
generators. However the mixing process runs better

when more generators are coupled.
We display in Table 2 the discrepancies in

quadratic norm (Eq. 14) between the autocorrelation
distribution of the iterated values and the Lebesgue
measure vs. the number of subsampled or mixed iter-
ates Niter, for 4-coupled symmetric tent maps. Sam-
pling: the �rst component x1 is sampled by x4 for
the threshold value 0:998. Mixing: the three com-
ponents x1 , x2, x3 are mixed and sampled by x4

for the threshold values T1 = 0:998, T2 = 0:9987,
T3 = 0:9994. Computations are done using double
precision numbers (� 14 � 15 digits), "i;j = i"1,
j = 1; 4, "1 = 10�14, initial values: x10 = 0:330,
x20 = 0:3387564, x

3
0 = 0:50492331, x

4
0 = 0:0.

Table 2

Niter sampling of 4� coupled equation mixing of 4� coupled equation
105 0:70947368 0:68924731

106 0:26570546 0:25881773

107 0:079871223 0:086706776

108 0:023190157 0:026815309

109 0:0071386288 0:0089111078

1010 0:002493667 0:0027932033

1011 0:00071561417 0:00085967214

1012 0:00025442753 0:0002346851

1013 0:000088445108 0:000073234736
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We can say that the design of mathematical cir-
cuit including couplers, samplers or mixers allows the
emergence of complexity in chaotic systems which
leads to randomness.24

3.5. Reducer

The accelerated development of modern data trans-
action applications such as telecommunications re-
quires encoding techniques with higher standards of
security.
Classically, these encoding sequences are ob-

tained using Pseudo Random Number Generators
(PRNG). Since the seminal work presented in Sec.
2, an e¢ cient alternative, the chaotic-based genera-
tors (CPRNG) are used to achieve even higher de-
manding encryption standards. Indeed, the chaotic
systems exhibit a plethora of properties which make
them suitable to meet the above requirements.
The advantage to use chaotic systems lies in their

extreme sensitivity to small parameter and initial
conditions variations: in this way, as many di¤erent
chaotic carriers as wanted can be generated. However,
the appropriate selection of a chaotic map that satis-
�es cryptographic applications requirements is a huge
problem. It has to be emphasized that all chaotic
maps are not applicable, because the chaotic gen-
erator -which is deterministic- has to satisfy at the
same time the criteria for closeness to random sig-
nals. Therefore many practical problems arise, from
the choice of the chaotic generator and its parame-
ters, to the chaotic properties veri�cation after the
quantisation. Ideally, for cryptographic applications
and higher security, an everywhere dense chaotic at-
tractor is required, so all chaotic signal samples will
appear with the same probability. We have shown
that highly e¢ cient discrete-time chaotic generators
can be obtained from coupling, sampling, and mix-
ing quite simple models such as the logisic map or the
symmetric tent map. We have built the correspond-
ing mathematical circuit. Moreover there exist other
combinations of such 1-dimensional chaotic attractor.
We introduce now, as an example, another com-

bination which can directly provides random number
without sampling or mixing, although it is possible
to combine these processes with it.
The idea leading to this system is to con�ne on

Jp = [�1; 1]p � Rp, considered as a torus, a ring of
p�coupled symmetric tent map (or logistic map).9
Consider the equation

8>>><>>>:
x1n+1 = 1� 2

��x1n��+ k1x2n
x2n+1 = 1� 2

��x2n��+ k2x3n
...

xpn+1 = 1� 2 jxpnj+ kpx1n

(31)

where the parameters ki 2 f�1; 1g. In order to
con�ne the variables xin+1 on J

p, we do, for every
iteration the transform

if xin+1 < �1; add 2 (32)

if xin+1 > 1; substract 2 (33)

We desing a new symbol: the reducer (on the right
hand side of Fig. 14) in order to give a schematic rep-
resentation of the projection of the variable on the
torus Jp. For sake of simplicity we have only dis-
played a circuit with three 1-dimensional generators.
However this new pseudo-random number generator
works better when more generators are coupled.
To evaluate the random properties of these gen-

erators, a set of statistical based test known as NIST
test developed by the National Institute of Standards
and Technology have been used.
The random properties validation of a 4-

dimensional system has been carried out. Addition-
ally, the chaotic carrier output needs to be quantised
and binarised (0 and 1) in order to be validated as
being random using NIST tests. Therefore, di¤erent
methods of binarisation (converting real signals to
binary ones) have been implemented and compared.
A �rst 1�bit binarisation has been applied to the

system (31) with n = 4, output: the results showed
to be highly sensitive to the type of binarisation.
Eventually, after testing several di¤erent methods,
a 32�bit binarisation has been chosen as being the
most suitable solution. Because the system is con�ned
to the p�dimensional torus, 31 bits are assigned to
represent the decimal part, and 1 bit to the sign. To
illustrate the results, the NIST tests for the four di-
mensional system (31) with parameters ki = (�1)i+1

are shown in Fig. 15. The chosen conditions are:
Length of the original sequence: 108 bits, length

of bit string: 106, quantity of bit strings: 100. The
output of the system has been arbitrary chosen as
being: y = x4n.
Furthermore, as the results show their indepen-

dence from the initial conditions, every bit string in
this test is the resulting sequence of a di¤erent ran-
domly chosen initial condition.
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Fig. 14. Reducer for the circuit of Eq. 31, with n = 3.

Fig. 15. Successful result of the NIST tests.

The criterion for a successful test is that the
p�value has to be superior to the signi�cance level
(0:01 for this case). For the present model, all tests
were successful thus the sequence can be accepted as
being random. As we said above, in order to improve
even more the random properties of that random sig-
nal, two possible strategies are possible: increasing
the system order or under-sampling the output sig-
nal, which is possible with the circuit of Fig. 14 in

which a sampler is added on hand right side.

3.6. Cascader

Finally, turning back to the problem of chaotic mask-
ing, via the cascading of Chua�s attractor, the last
symbol we design in order to schematise mathemati-
cally the cascading method is the cascader displayed
on Fig. 16(a).

4. mathematical circuit engineering

4.1. Signal masking

In the limited extend of this chapter, we give only
two examples of the engineery of mathematical cir-
cuits we have introduced in the previous Section. The

�rst one is an improvement of the cascading of two
identical receivers of Chua�s circuit. Albeit this im-
provement is rather from a numerical point of view
than a practical one, it is given in order to illustrate
more in deep the combination of circuit elements. It
is possible to combine two cascading receiver as in
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Fig. 16. (a) Cascader symbol. (b) Two cascading receivers combined.

Fig. 17. Chaotic multistream PRNG (Cms-PNRG).

Fig. 16(b).
The equations of this circuit are

� :
y5 = x4 (t)� y5 + z5
:
z5 = ��y5

(34)

:
x6 = � (y5 (t)� x6 � f (x6)) (35)

� :
y7 = x6 (t)� y7 + z7

:
z7 = ��y7

(36)

:
x8 = � (y7 (t)� x8 � f (x8)) (37)

Then s(t) is recovered as

s8 (t) = r (t)� x8 (t) � s (t) (38)

Numerical experiments show an improvement of
the results.1 ;19

4.2. Noise-resisting cryptography

The second example which highligt the complex com-
bination of circuit element belongs to the new �our-
ishing �eld of chaotic based cryptography. We pro-
posed last year,2 a novel noise-resisting ciphering
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method resorting to a chaotic multi-stream pseudo-
random number generator (denoted Cms-PRNG) de-
scribed below. This Cms-PRNG co-generates an ar-
bitrarily large number of uncorrelated chaotic se-
quences. These cogenerated sequences are actually
used in several steps of the ciphering process. Noisy
transmission conditions are considered, with realistic
assumptions. The e¢ ciency of the proposed method
for ciphering and deciphering is illustrated through

numerical simulations based on a Cms-PRNG involv-
ing ten coupled chaotic sequences.
The CPRNG decribed in Fig. 14, can be im-

proved in order to generate uncorrelated sequences of
pseudo-random numbers, possessing a large number
of keys. This is simply obtained by adding a coupler
as a keyer as in the circuit of Fig. 17 corresponding
to Eq. 39 for 4-streams, or Eq. 40 for p�streams.

8>><>>:
x1n+1 = 1� 2

��x1n��+ k1 (1� "1;3 � "1;4)x2n + "1;3x3n + "1;4x4n
x2n+1 = 1� 2

��x2n��+ k2 (1� "2;4 � "2;1)x3n + "2;4x4n + "2;1x1n
x3n+1 = 1� 2

��x3n��+ k3 (1� "3;1 � "3;2)x4n + "3;1x1n + "3;2x2n
x4n+1 = 1� 2

��x4n��+ k4 (1� "4;2 � "4;3)x1n + "4;2x2n + "4;3x3n
(39)

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

x1n+1 = 1� 2
��x1n��+ k1

  
1�

pP
j=3

"1;j

!
x2n +

pP
j=3

"1;jx
j
n

!
...

xmn+1 = 1� 2 jxmn j+ km

  
1�

pP
j=1;j 6=m;m+1

"m;j

!
xm+1n +

pP
j=1;j 6=m;m+1

"m;jx
j
n

!
...

xp�1n+1 = 1� 2
��xp�1n

��+ kp�1  1� p�2P
j=1

"p�1;j

!
xpn +

p�2P
j=1

"p�1;jx
j
n

!

xpn+1 = 1� 2 jxpnj+ kp

  
1�

p�2P
j=1

"p;j

!
x1n +

p�2P
j=1

"p;jx
j
n

!

(40)

The ring coupling which is expressed as a di-
agonal matrix in Eq. 31 is completed with numer-
ous other non vanishing coe¢ cients of the matrix
used as secret keys in Eq. 40. Then the originality
of the noise-resisting ciphering method introduced
which uses this Cms-PRNG is twofold. First a novel
ciphering method is proposed aimed at resisting to
a noisy transmission channel. The main idea is to
establish, between the transmitter and the receiver,
a correspondence between the alphabet constituting
the plain text and some intervals de�ning a parti-
tion of [�1; 1]. Some realistic assumption about the
noise boundedness allows to restrict the bounds of
the aforementioned intervals in order to precisely re-
sist to the e¤ects of the noise. An extra scrambling
resorting to a co-generated chaotic sequence enhances
the ciphering process. Then a new chaotic substitu-
tion method is developed: considering a chaotic car-
rier, belonging to the set of cogenerated and cou-
pled pseudo-random chaotic sequences, the idea is

to randomly/chaotically (in fact, this is determined
by a second pseudo-random chaotic sequence) replace
some elements of the carrier by a ciphered element (a
letter here) of the message. At the receiver end, a copy
of the Cms-PRNG, with the same parameters (hence
we deal with a symmetrical ciphering method) al-
lows to generate the necessary chaotic sequences and
therefore to retrieve the initial message.
This process can be summarized in both circuits

of Figs. 18, 19. Due again to the limited extend of this
chapter, we cannot expand these �gures in order to
show the constituting symbols in each oval shaped re-
gion of the circuit. The originality of the method lies
in the use of a chaotic pseudo-random number gen-
erator: several co-generated sequences can be used at
di¤erent steps of the ciphering process, since they
present the strong property of being uncorrelated.
Each letter of the initial alphabet of the plain text
is encoded as a subinterval of [�1; 1]. The bounds
of each interval are de�ned in function of the known
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Fig. 18. Transmitter

Fig. 19. Receiver

bound of the additive noise. A pseudo-random se-
quence is used to enhance the complexity of the ci-
phering. The transmission consists of a substitution
technique inside a chaotic carrier, depending on an-
other cogenerated sequence. The e¢ ciency of the pro-
posed scheme is illustrated on some numerical simu-

lations.2 As further work, some studies should be per-
formed of several sets of unknown parameters, since
with the considered Cms-PRNG with 10 states, the
number of possible parameters amounts to 90 (the
"i;j and the ki).



March 23, 2012 9:32 World Scienti�c Review Volume - 11in x 8.5in swp0000

Chaotic mathematical circuitry 19

5. Conclusion

Following the worldwide tradition of use of Chua�s
circuits for various purposes, we have introduced the
paradigm of chaotic mathematical circuitry which
shows some similarity to the paradigm of electronic
circuitry -the design of electronic circuits. This new
paradigm allows, as an example, the building of new
chaotic and random number generators. In this be-
ginning of the third Millenium, the old tradition of
design of electronic circuits is drastically revolution-
ized by the introduction by L. O. Chua of new compo-
nents with memory, namely memristor, memcapaci-
tor and meminductor. These devices are common at
the nanoscale and their combination in circuits open
up new functionnalities in electronics. Apart from the
obvious use of these elements in nonvolatile memo-
ries, several applications can be already envisioned,

especially in neuromorphic devices to stimulate learn-
ing, adaptative and spontaneous behavior.7

Alongside to this electronic circuits revolution,
the new theory of mathematical circuits allows many
new applications in chaotic cryptography, genetic al-
gorithms in optimization and in control,... Due to
the versatility of the new components we introduce,
the combined operation of these chaotic mathemat-
ical circuits is still largely unexplored. We hope our
work will motivate experimental and theoretical in-
vestigations in this direction. For the 75th birthday
of Professor L. O. Chua, one can highlight that his
seminal work since more than forty years is fruitful
exceeding his wide-ranging �eld of research. In this
chapter (as suggested in the title of the anniversary
book) we followed him from chaos to memristor and
we went beyond.
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