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Abstract: The first objective of this study was to determihe bioaccumulation kinetics of
pyrene in the soft tissues Gfassostrea gigas (mantle, muscle, gills, digestive gland, and the
remaining soft tissues). As bivalves can biotramafbydrocarbons in more polar compounds
(metabolites) that are more easily excreted, tloersk objective was to investigate the oyster
capacity to metabolize pyrene into its metabothie, 1-hydroxypyrene. To these ends, oysters
were exposed 24h to waterborH€—pyrene then placed in depuration conditions fed. 1
Oysters efficiently bioaccumulated pyrene in thsoft tissues and equilibrium was reached
within the exposure time. The metabolitel-hydroxgme was also detected in oyster tissues
but represented only 4 to 14% of the parent pyrénehe end of the exposure period, the
gills and the mantle showed the highest pyrenegtmmn of total soft tissue content, i.e. 47%
and 26%, respectively. After 15d of depuration, mhantle contained 32% and 30% of the
remaining pyrene and 1-hydroxypyrene, respectivAly.C. gigas did not display a high
capacity for metabolizing pyrene, it can be congdeas a good bioindicator species to

survey and monitor pyrene contamination in the @basarine environment.

Keywords:. polycyclic aromatic hydrocarbons; bivalve; tissligribution; bioaccumulation;

kinetics
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are foundmany common products, such as
petrol, fumes and household heating (e.g. using gak or wood). Petroleum spills and
discharges, seepages, industrial and municipalewasér, urban and suburban surface run-
off, and atmospheric deposition contribute to aguadntamination caused by PAHs (Eisler,
1987). During the last decades, many studies hawsitaned the inputs, fluxes and fate of
PAHSs in the marine environment (Obana et al. 182®&imard et al. 1999). However, in order
to assess the state of the marine ecosystem,niédsssary to know the fraction of these
compounds which can be taken up by aquatic biotiatlaeir potential toxic effects (Escartin
and Porte, 1999).

The quality of aquatic environments can be asshssugh the analysis of organisms
considered as indicators of pollution, such asargstmussels and other bivalve molluscs
(Pereira et al. 1992; Jaffé et al. 1995; LauenstEd95; Beliaeff et al. 1997; Gunther et al.
1999). Indeed, because of their biological (e.gpaciéy of bioaccumulation, resistance to
physico-chemical stresses) and ecological charatitsr (e.g. worldwide distribution,
abundance of their populations), bivalves are ambegbest candidates to be bioindicator
species (Phillips, 1976; Farrington and Tripp, 1)993hese organisms can bioaccumulate a
large variety of pollutants at levels higher th&wde present in the surrounding waters or
sediments, and their behaviour can be recordetdart periods of time (Baumard et al. 1998;
Solé et al. 2000). In this way, mussels have be#ensively used worldwide as sentinel
organisms to monitor the uptake and accumulatioRAdfls in the coastal environments, in
the Mussel Watch Program in the USA (O’Connor 199%&onnor and Lauenstein 2006), the
Coordinated Environmental Monitoring Program (OSP20R0) and the Réseau National de

la Contamination CHimique (ROCCH 2008) in FrancetHis last country, oysters are also
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used as a sentinel species in the ROCCH monitgumiagram, which is particularly relevant
in areas where mussels are absent.

The exposure of marine organisms to PAHs has dftsm evaluated by measuring tissue
contaminant contents (Varanasi et al. 1989). Howewben considering biotransformation
capacities of these organisms, this approach bextess relevant. Indeed, biotransformation
refers to the entire modification of chemical maoles occurring in the organisms.
Metabolism of PAHs in marine invertebrates is appty related to cytochrome P450 (EC
1.14.14.1). This enzyme converts parent hydrophalpid lipid-soluble PAHS, into water
soluble metabolites. However, the mechanisms byhwthe involved enzymes are regulated
are still poorly understood (Hahn, 1998). In manmammals and birds, some studies have
shown that the low concentrations of PAHs in thesues were due to a combination of
inefficient bioaccumulation from food and rapid md@blisation and excretion of accumulated
PAHs (Watanabe et al. 1989; Fossi et al. 1995héncommon sol&olea solea affected by a
strong PAH pollution, the liver produced metabdlitdnat were released through the bile
(Budzinski et al. 2004). Previously, it was belidwbat molluscs possessed a weak to non-
existent ability to metabolize PAHs (Lee et al. 287 Palmork and Solbakken, 1981).
Conversely, molluscs may have relatively strong aielisation systems (McElroy et al.
2000) and it has been shown that molluscs colleatedtrongly polluted environments
contained often low concentrations of PAHs (e.g.aviasi et al. 1989; Baumard, 1997).

The Pacific oystelCrassostrea gigas (Thunberg, 1793) has a high economic value in the
world and especially in France. Indeed, most ofmEneoyster-farming raise this species
which production averages up to 128 000 tonnesypar (CNC, 2004). Many farmhouses
exist all along the French coastline and they agy \sensitive to marine contamination,
especially during oil slicks. It is therefore fumdantal to better understand the mechanisms of

bioaccumulation of PAHSs in this species.
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Various studies have shown that pyrene and othétsP#ith four benzene rings are among
the most predominant PAHs in bivalves (Obana €t1383; Varanasi et al. 1985; Wade et al.
1988; Kaag et al. 1997). Moreover, pyrene is careidd as one of the 16 most toxic
contaminants for the environment and the dominafH$ in the marine environment
(Giessing et al. 2003). Therefore, the first aimtlugé study was to follow the kinetics of
uptake and depuration of pyrene in the organsiasdds ofC. gigas exposed via seawater. In
order to study environmentally realistic contaminiawels, the pyrene used wd€-labelled
and measured using highly sensitive radiodetedegohnique. The second objective of this
work was to determine the presence and the kinefit@mation of 1-hydroxypyrene, i.e. the
pyrene metabolite previously demonstrated to be@renant in fish bile (e.g. Krahn et al.

1987; Ariese et al. 1993),

2. Materials and methods

2.1. Biological material

Oysters were purchased from a shellfish farm onRtench Atlantic coast (La Rochelle).
Organisms were then transferred to the Environrhahbratories premises (IAEA, Monaco).
Prior to the experimentation, specimens were aatioh to laboratory conditions for two
months (constantly aerated open-circuit aquariwatnisy: 36 £ 1 p.s.u.; temperature: 19 +1
°C; pH: 8; light/dark cycle: 12h/12h). During acchtion, bivalves were fed phytoplankton
using the Prymnesiophycedsochrysis galbana (10" cells mi*). Recorded mortality was

lower than 5% over the acclimation period.

2.2. Radiotracer and radioanalyses
The *C-labelled 4, 5, 9, 10 pyrene was purchased frogm&j USA. Specific activity was

2.17 18 Bq mmol*. Stock solutions were prepared in methanol anida €oncentration of

27 pg L was used.
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Two mL of the mixtures containing pyrene and 1-loygpyrene or purified pyrene samples
(see below) were transferred to 20 mL glass skitibh vials (Packard) and mixed with 10
mL of scintillation liquid (Ultima Gold, Packard}*C-radioactivity was measured using a
1600 TR Liquid Scintillation Analyser (Packard). thdity was determined by comparison
with standards of known activities and measuremeset® corrected for counting efficiency
and quenching effect. Counting time was adjustedbtain a propagated counting error less

than 5%.

2.3. Experimental procedure

2.3.1. Uptake phase

Forty four oysters were placed in a 50L glass daqoacontaining natural seawater (closed
circuit) spiked with*“C-labelled pyrene. The initial pyrene concentraiiothe aquarium was
0.27 pg % This concentration matches with PAHs values foimdtrongly polluted areas
(Axelman et al. 1999). Every 30 minutes, seawadioactivity was measured and pyrene
was added as required in order to keep its coret@mir constant during the whole
accumulation phase (24 h). Oysters were not fethguhe exposure period. Four animals
were collected at different times (0, 2, 5, 9, b @4h) in order to follow the uptake kinetics
of **C-pyrene and the formation of its metabolite. A¢ #nd of the exposure period (24h),
seawater was sampled to detect whether metabaliiglsl have been released by exposed
animals.

At each sampling time, oyster soft tissues wersetdited into five compartments: mantle,
gills, muscle, digestive gland and remaining tiss(ie., labial palps, gonad and heart). Each
organ and tissue was weighed and crushed. Themlesuwere treated with 200 pL pf
glucuronidase-aryl-sulfatase mixture containing 000 units mL* of glucuronidase (Sigma)

and 7500 units mit of sulfatase (Sigma) for enzymatic deconjugatibo.this purpose, the
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samples were buffered to pH 5 with 3 mL of 5 M gstam acetate buffer. They were then
placed in an oven at 37°C during 20 hours.

Pyrene and 1-hydroxypyrene were extracted via wsaquent liquid/liquid extractions. The

first extraction was performed by adding 5mL ofex&ne/dichloromethane solution (50:50)
and the second extraction was performed by addmg 4f a methanol/dichloromethane

solution (10:90) to extract pyrene and 1-hydroxgmg, respectively. For both extractions,
the samples were mechanically shaken for 30 mirartdshen centrifuged at 6000 rpm for 5
minutes. In the first extraction, the organic ph@senlL) was recovered in a flat bottom flask.
Following the second extraction, the organic phaage recovered and combined with the first
one. Two mL of the extracted solution was radiogsed to determine the amount of pyrene
+ 1-hydroxypyrene in each organ.

The rest of the mixture was concentrated undeméegstream of nitrogen to 1 mL and then
separated by using upti-clean SPE glass colum@nss/ (Interchim, Montlugon, France).

Pyrene was eluted with 5 mL of a hexane/dichlortvae¢ (50:50) solution which was

radioanalysed.

The 1-hydroxypyrene content in each organ was @kt by comparing the results of the

two radioanalyses.

2.3.2. Depuration phase

At the end of the exposure period, the remainirganisms were placed in an open circuit
50L seawater aquarium (salinity: 361 p.s.u.; terapee: 19 +1 °C; pH: 8; light/dark cycle:
12h/12h). At different times of the depuration pdri(0, 6, 18, 36, 96,192 and 336 h) four
oysters were collected and their soft tissues diedein order to follow the variation in
pyrene and its metabolite. The dissected tissudsoagans were processed according to the

same method as previously described.



163 2.4. Data analyses

164 2.4.1. Uptake kinetics

165 A first order model was used to assess changeg@n@ concentration in oyster tissues along
166 time during the exposure to waterborne pyrenehis tmodel the change in tissue activity
167 with time was calculated by:

168

169 dAorg/ dt = K, Asw- KeAorg (Eq. 1)

170

171  where Ayy = activity of pyrene in tissue (Bg'gissue)

172  Asw = activity of pyrene in seawater (B wvater)

173  ky = uptake rate constant (Bd §)

174 ke = elimination rate constant (B -d%)

175 t=time (h)

176

177 As Asw was maintained constant during the uptake expatinphase, Eg. (1) can be
178 integrated to estimate tissue activities at anyosupe time by:

179

180 Aorgt = Asw (Ku / k) (1-6%¢Y (Eq. 2)

181

182 where Ayt = tissue activity at time

183

184 When steady-state tissue activities are attaineddPyq/ dt = 0), the bioconcentration factor
185 (BCF) can be estimated as follows:

186

187 Aorg! Asw = BCF =k / ke (Eq. 3)



188

189 In this study, the BCF is the ratio betwe¥-labelled pyrene in the body and in the
190 surrounding seawater.

191

192 2.4.2. Depuration kinetics

193 The depuration kinetics were best fitted usingezith single-component exponential equation

194 (Eq.(4)) or a double-component exponential equatam(5)):

195
196 Ac= Ao (€Y (Eq. 4)
197 Ac= Ags (6°=Y + Ag (g% (Eq. 5)
198

199 where A = remaining activity at time(Bq g*)

200 Ao = activity at time0 (Bq ¢*), i.e. at the beginning of the depuration period

201 k.= depuration rate constant (Bg §*)

202

203 For double-component exponential model (Eq. 5ghert-lived’ componentsf and a long-
204 lived’ component I) describe the radiotracer proportion that is dafmd rapidly (s) and
205 slowly (I), respectively. For each exponential camgnt € andl), a biological half-life can
206 be calculated (di2sand Ty1/2) from the corresponding depuration rate constéatsand k;,
207 respectively) according to the relation:

208

209 Tow2=In21/k (Eq. 6)

210

211

212
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2.4.3. Statistical analysis

Model constants and their statistics were estimbyeiterative adjustment of the model using
the nonlinear curve-fitting routines in the Statigt6 software. For depuration kinetics, best
fitting models were selected between single- andbscomponent exponential equation,
according to the highest determination coefficiamtl examination of residuals. The level of

significance for statistical analyses was alwaysase=0.05.

3. Results

3.1. Seawater exposure

Uptake of pyrene in five body compartments (mangiéls, muscle, digestive gland and
remaining tissues) dt. gigas exposed to spiked seawater for 24h is presentétyinl. The
parameters and statistics of the uptake kinetit¢®fpyrene are summarized in Table 1. The
steady-state BCF of pyrene in the whole soft pafrthe oysters was observed within 24h and
reached 1560 + 630 (Table 1). Among the tissuesgilis accumulated rapidly and strongly
the contaminant with a BCF of 2080 + 860. Howeeach organ accumulated the pyrene in a
different way (Fig. 1). For example, during the aka phase, the mantle and the remaining
tissues efficiently accumulated waterborne pyrené the state of equilibrium was not
reached during the time frame of the experimerd.(E).

The final distribution of the contaminant in eacbmpartment after 24h of exposure is
presented in Fig. 2. Among tissues, gills contairedf of the whole body burden
radioactivity and consistently showed the highagt of accumulation with a,lof 433 Bq ¢

h™ (Table 1). In contrast, the muscle was the orgih thie lower rate of accumulation,(k

38 Bq g* hY) and thus, only contained a very low proportio#}®f the total quantity of'C-

pyrene present in oyster soft tissues (Fig. 2).

10
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Quantification of the pyrene metabolites was cdrroeit at each sampling time, and the
proportion of 1-hydroxypyrene represented betweandl14% of the total radioactivity (Fig.

3).

At the end of the exposure period, the concentmatib 1-hydroxypyrene in seawater was

below the detection limit of the method.

3.2. Depuration phase

At the end of the exposure time, non-contaminatiogditions were restored and depuration
kinetics of the pyrene were followed in the organsd tissues of the oysters for 15d. The loss
of incorporated**C-labelled pyrene followed a single or a doubleamantial model in the
different body compartments (Fig. 4 and Table 2)hle muscle, gills and mantle, depuration
was best described by a double-component expohemfietion (R2 =0.42, 0.52 and 0.48,
respectively). The resulting biological half-livé$,1/2) ranged from 1.17 (mantle) to 9.35
hours (gills) for the short-lived compartment anonii 2.75 (muscle) to 7.27 days (gills) for
the long-lived compartment (Table 2). In contrassingle-component exponential equation
better fitted the depuration kinetics in the digestgland and in the remaining tissues (R?2
=0.37 and 0.30, respectively). They were charamdriby a relatively strong retention of
pyrene: the resultingpI;, were 87.4 and 97.4hours, respectively, (i.e., 26d 4.05 days)
(Table 2, Fig. 4).

The distribution of“*C-labelled pyrene among the oyster soft tissues dedsrmined at the
end of the depuration period (Fig. 5). It diffefedm the distribution observed at the end of
the exposure period (Fig. 2), with a lower fractassociated to the gills (24 + 10 vs. 47 +
13%) and a higher fraction associated to the digegfland (19 £ 10 vs. 6 + 4%) and the
remaining tissues (21 + 18 vs. 16 = 3%). At the ehdhe depuration period, the digestive

gland displayed the highest pyrene activity (datd shown). In contrast, the gills had lost

11
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50% of their activity during the depuration phaBmgure 5 also shows the distribution of 1-
hydroxypyrene between the body compartments atetigk of the depuration period. 1-
hydroxypyrene was distributed in similar proportiaas pyrene in the oyster body

compartments.

4. Discussion

Oysters accumulated very efficiently théC-labelled waterborne pyrene following a
saturation model and after a short exposure p€i2ddh), organisms reached the state of
equilibrium. Among soft tissues, the gills accuntedarapidly and strongly the contaminant
with a BCF of 2080 (Table 1) likely because of thigh filtration rate of oysters which could
be as high as 3.9 L’hg™ dry weight (Bougrier et al. 1995). Consequenthe gills displayed
the highest activities at the end of the exposimase. Absorption of pyrene onto gills might
be facilitated in oysters, as it occurs in blue salsMytilus edulis which have a micellar
layer which absorbs hydrocarbons (Lee et al. 197%ayertheless, the accumulated pyrene
was relatively rapidly lost from this tissue (Taldle Indeed, pyrene proportion in the gills at
the end of the depuration phase was half thaneaetial of the exposure period (Figs. 2 and
5). This decrease is due to a fast depurationafapgrene in the gills (Table 1). At the same
time, the increase of pyrene proportions in theeslige gland and remaining tissues suggest
that it was transferred towards from the gills hege tissues as previously reported in other
organisms (Neff, 1979). Therefore, the decreageyodne observed in the gills was also due
to a relative increase of the activity in other gamiments, such as the digestive gland (data
not shown).

During the uptake phase, the mantle and the renmitésues also accumulated pyrene but
the steady-state was not reached for these comguaisnihis is probably due to the fact that,

even if these tissues are in contact with seawthteir, surface is much smaller than that of the

12
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gills, and the cell types and the thickness ofdpithelium differ completely (Auffret, 2003).
The resulting uptake rates  Jkwere lower for both tissues than for gills. Dyyirthe
depuration phase, the mantle released pyrene guitkl contrast, the remaining tissues
showed a slow increase of the pyrene proportiomatthe total pyrene content in oysters as
well as of its metabolite proportion (against tbat metabolite content in oysters) during the
depuration period. It is well-known that tissueshriin lipids, e.g. gonads, accumulate
preferentially PAHs because of the highly hydropbaimature of the latter (Berthelin et al.
2000, Meador et al. 1995). Moreover, a strong imseeof the activity in the remaining tissues
was noticed during the third sampling in the depormaperiod (t = 36h). The four oysters
studied at this moment showed the particularitypeing in the reproduction stage and of
having gonadic tissues more abundant than the geexBother individuals. For this reason,
having acknowledged the unlikely hypothesis thaséhobservations could come partly from
an error of manipulation, it seems that this insecaf activity was rather due to a stronger
retention in mature gonadic tissues. This conclussoconsistent with results of Ellis et al.
(1993), where gonads frof virginica displayed PAH concentrations five times higher than
in somatic tissues.

In contrast, the digestive gland and the muscleclwlare not truly in direct contact with
seawater displayed lower BCF than the gills, thatteaand the remaining tissues (Table 1).
Nevertheless, the uptake rate for the digestivadglaas much higher than the one of the
muscle. The steady-state of pyrene in the digesfiaed was reached very quickly, i.e. after
9h while it took 19h in the muscle (Fig. 1). Thesukts strongly suggest that during the
exposure period pyrene was transferred from tissuesntact with seawater such as qills,
towards the digestive gland. Moreover, the digesgland showed a higher percentage of 1-
hydroxypyrene (19%) in relation to total radioattyi(pyrene + 1-hydroxypyrene) than the

other organs (9-12%) and the proportion of pyreme its metabolite in the digestive gland
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increased from 6-10% at the end of the accumulageriod to 19-24% at the end of
depuration period (Figs. 2 and 5). This sugges#s the digestive gland had a stronger
metabolisation capacity of pyrene than the otlssugs.

Among all the tissues studied, the digestive gland the remaining tissues displayed the
strongest retention capacity with.Jof 87.4 and 97.4h, respectively. Indeed, just dkaost

all organic contaminants, PAHs best store up inesbasues, namely in the hepatopancreas in
invertebrates and in the liver in vertebrates (Meaet al. 1995). Because of their highly
hydrophobic nature, PAHs are mostly accumulatetissues with high lipid contents. The
transformed PAH metabolites generally accumulatéheéhepatopancreas (Lee et al. 1976;
Neff et al. 1976; Meador et al. 1995). It has bpesved that for some invertebrates and for
several fish species exposed to PAHs either vieenvéod or sediments, the cytochrome
P450 enzymatic system connected to an oxygenasgidan(MFO) is activated in their
hepatic structure (Andersson and Forlin, 1992)thim case of fish, this enzymatic system
allows excreting most of the PAHs bioaccumulateal thie bile and the urine (Pritchard and
Bend, 1991). This particular function was diffictdtbring to light concerning bivalves. For a
long time, it was admitted that bivalves did nosgess a P450 system (Lee et al. 1972b;
Vandermeulen and Penrose, 1978). However, moreretaedies have shown that bivalves
do possess a P450 system (Lake et al. 1985; Mclares8urridge, 1987), allowing them to
metabolize PAHSs. As it is the case for the majoatymarine invertebrates, such ability to
metabolize PAHs is weaker than for vertebratesifigstone, 1994; Stegeman and Hahn,
1994).

Data obtained on 1-hydroxypyrene in the tissuesagdns ofC. gigas seem to confirm that
metabolisation of pyrene in oysters is relativelyak and therefore would not be the driving
mechanism responsible for its elimination. It isMewer possible that because of the large

volumes of water they filter continuously, watettdile metabolites would be rapidly

14



337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

excreted and, therefore, not accumulated in tiseidis (James, 1989). If the event lasts only
for few days, it is very likely that most of thecatnulated PAHs are going to be eliminated.
In contrast, Meador et al. (1995) suggested thaing a chronic exposure, a non negligible
fraction of the PAHs could be stored in lipids d®&tome less subject to the elimination by
diffusion or by metabolisation.

In conclusionC. gigas presents a good potential of bioaccumulation efgjrene and seems
to have a low metabolisation capacity for this coomd. Such a bioaccumulation capacity
suggests that. gigas could be used as a valuable bioindicator for pgrémllowing a marine
contamination, oysters are thus able to rapidlyuamdate the contaminant in detectable
concentrations. Besides, as this species is vemymmmn in several regions of the world,
samples can be collected at any time and in maowptdes. This makes the situation easier
for comparing data. However, its speed of depunasaalso quick, thus it does not allow the
recording of long-term pollution. On the contraityis very interesting for the monitoring of

the pollution variations on short-term periods.
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Figure 1: Uptake kinetics dfC-labelled pyrene in five body compartments anth@&awhole

soft parts of the oysters (n=4) during the 24h sgaxvcontamination period. Parameters and

statistics of the uptake kinetics are given in €ahl
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loss kinetics are given in Table 2.
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Table 1. Parameters of the equation describingpiteke of pyrene in the body compartments
and in the whole soft parts of the oysters (n=4gra4h seawater contamination<kptake

rate constant; & elimination rate constant; BCF=Bioconcentratiaotor)

Body compartment K Ke BCF R?
(Bqg'h?) (Bqg'h?) (ko / ko)
Mantle 102+ 10 0.056 + 0.006 1820 + 530 0.45
Gills 433 62 0.208 +0.030 2080 + 860 0.28
Muscle 38+6 0.051 +0.008 750 + 380 0.38
Digestive gland 234 £50 0.137 £ 0.030 1710 + 970 .260
Remaining tissues 100 + 12 0.045 + 0.006 2220 + 810 0.35
Whole body 158 + 20 0.101 +0.014 1560 + 630 0.39

27



Table 2.Parameters of the equations describing the losstigsof pyrene in the different oyster body comipants in the whole soft tissues
(n=4) after a 24h exposure from seawater. O andl-Tand 2-exponential loss equations, respectivily;remaining activity at time; ke
depuration rate constargt; short and; long-lived elimination, respectivelyR*: determination coefficientT,: biological half-life in hours (h)

or days (d). For abbreviation definitions, see @ahd statistical analyses’

Compartment Model Aos Kes Thar2s(h) Ao Kei Th1/21(d) R? p

Mantle T 443 0.591 1.17 769 0.006 4.92 0.42 <0.001
Gills T 1578 0.074 9.35 368 0.004 7.27 0.52 <0.001
Muscle T 291 0.087 7.93 166 0.011 2.75 0.48 <0.001
Digestive gland @) 1360 0.008 87.4 0.37 <0.001
Remaining tissues (0] 1203 0.007 97.4 0.30 <0.001
Whole soft parts T 600 0.195 3.55 721 0.007 4.29 530. <0.001
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