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COHERENT PRESENTATIONS OF ARTIN MONOIDS

STÉPHANE GAUSSENT YVES GUIRAUD PHILIPPE MALBOS

Abstract – We compute coherent presentations of Artin monoids, that is presentations
by generators, relations, and relations between the relations. For that, we use methods
of higher-dimensional rewriting that extend Squier’s and Knuth-Bendix’s completions
into a homotopical completion-reduction, applied to Artin’s and Garside’s presenta-
tions. The main result of the paper states that the so-called Tits-Zamolodchikov 3-cells
extend Artin’s presentation into a coherent presentation. As a byproduct, we give a
new constructive proof of a theorem of Deligne on the actions of an Artin monoid on
a category.

M.S.C. 2000 – 20F36, 18D05, 68Q42.
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INTRODUCTION

A Coxeter system (W, S) is a group W together with a presentation by a finite set of involutions S
satisfying some (generalised) braid relations that we recall in Section 3. Forgetting about the involutive
character of the generators and keeping only the braid relations, one gets Artin’s presentation of the Artin
monoid B+(W). For example, if W = S4, the group of permutations of {1, 2, 3, 4}, then S consists of the
elementary transpositions r = (1 2), s = (2 3) and t = (3 4), and the associated Artin monoid is the
monoid B+

4 of positive braids on four strands, with generators r, s, t satisfying the relations

rsr = srs, rt = tr and sts = tst.

The aim of this article is to push further Artin’s presentation and study the relations between the braid
relations. A coherent presentation of a monoid (or more generally of a category) consists of a set of
generators, a set of generating relations and some coherence conditions. These coherence conditions
can be thought of as elements of a homotopy basis of a 2-dimensional CW-complex associated to the
presentation. In the case of the braid monoid B+

4 on 4 strands, Deligne [13] notes that the homotopy basis
associated to Artin’s presentation contains only one element whose boundary consists of the reduced
expressions graph of the element of maximal length in S4 (this graph can be seen in Subsection 4.3).

Such a graph can be considered for any element w in W. The vertices are the reduced expressions
of w and two such are linked by an edge if one is obtained from the other by a braid relation. In [39],
Tits proves that the fundamental group of the reduced expressions graph is generated by two types of
loops in the graph, the most interesting ones are associated to finite parabolic subgroups of rank 3 of W.
Actually, for the purpose of finding generators for the homotopy basis of B+(W) associated to Artin’s
presentation, the generators of the first type are degenerate and part of the generators of the second
type are superfluous. The main result of our paper, Theorem 4.1.1, states that there exists exactly one
nondegenerate generator of the homotopy basis for every finite parabolic subgroup of rank 3 of W.

We now give some more details on the techniques we are using. The notion of coherent presentation
is formalised in terms of polygraphs, which are presentations of higher-dimensional categories intro-
duced by Burroni in [7], and by Street in [37] under the name of computad. A 2-polygraph corresponds
to a presentation of a monoid by a rewriting system, that is a presentation by generators (1-cells) and
oriented relations (2-cells). For example, Artin’s presentation of B+

4 has three generating 1-cells r, s, t
and three generating 2-cells

rsr⇒ srs, rt⇒ tr and sts⇒ tst.

In [22], the last two authors have introduced the notion of (3, 1)-polygraph as a presentation extended by
3-cells on the 2-category defined by the congruence generated by the presentation. A coherent presenta-
tion is then a (3, 1)-polygraph such that the extension is a homotopy basis. We recall all these notions in
Section 1.

To obtain coherent presentations for monoids, in Section 2, we develop a homotopical completion-
reduction method that is based on Squier’s and Knuth-Bendix’s completions. The completion-reduction
is given in terms of Tietze transformations, known for presentations of groups [38, 31], here defined for
(3, 1)-polygraphs. More precisely, we extend Squier’s completion to terminating 2-polygraphs thanks
to Knuth-Bendix’s completion [27]. This is a classical construction of rewriting theory, similar to
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Buchberger’s algorithm for computing Gröbner bases [6]. The procedure transforms a terminating 2-
polygraph Σ into a convergent one by adding to Σ a potentially infinite number of 2-cells so that every
critical branching is confluent. Confluence of a 2-polygraph means that every time two 2-cells share the
same source but two different targets, there exist two 2-cells having those different 1-cells as source and
the same target. So, we end up with a (3, 1)-polygraph S(Σ) where every critical branching has given
a 3-cell in the homotopy basis. Since the 2-polygraph we started with presents the monoid, S(Σ) is a
coherent presentation of this monoid. Next, we introduce homotopical reduction as a general construc-
tion to coherently eliminate unnecessary cells in a coherent presentation. The (3, 1)-polygraph S(Σ) has
usually more cells than one could expect. For example, one can eliminate the pairs of redundant 2-cells
and collapsible 3-cells adjoined by homotopical completion for nonconfluent critical branchings. Some
of the remaining 3-cells may also be redundant: one way to detect them is to compute the 3-spheres as-
sociated to the triple critical branchings of the presentation. Let us mention that the two last authors and
Mimram have applied those methods to compute coherent presentations of plactic and Chinese monoids
in [24].

In Section 3, we use the homotopical completion-reduction method to get a coherent presentation
Gar3(W) of the Artin monoid B+(W). The starting presentation is Garside’s presentation, denoted by
Gar2(W). It has the elements of W \ {1} as generators and the relations are

u|v = uv if l(uv) = l(u) + l(v).

The notation ·|· stands for the product in the free monoid over W \ {1} and l(u) is the length of u
in W. The resulting coherent presentation Gar3(W), that we obtain in Theorem 3.1.3, corresponds to
the coherence data given by Deligne in [13, Theorem 1.5]. We generalise our construction to Garside
monoids, so that we are able to associate to every Garside monoid M a coherent presentation Gar3(M)
(see Theorem 3.3.3).

In Section 4, we homotopically reduce Garside’s coherent presentation Gar3(W) into the smaller co-
herent presentation Art3(W) associated with Artin’s presentation of the monoid B+(W). The homotopy
basis of Gar3(W) boils down to one 3-cell Zr,s,t for all elements t > s > r of S such that the subgroup
of W they span is finite. To sum up, Theorem 4.1.1 says that the coherent presentation Art3(W) has
exactly one k-cell, 0 ≤ k ≤ 3, for every subset I of S of rank k such that the subgroup WI is finite. The
precise shape of the 3-cells is given in 4.3.

As an application, in Theorem 5.1.6, we prove that if Σ is a coherent presentation of a monoid M,
then the category Act(M) of actions of M on categories is equivalent to the category of 2-functors from
the associated (2, 1)-category Σ> to Cat that send the elements of the homotopy basis to commutative
diagrams. In [13, Theorem 1.5], Deligne already observes that this equivalence holds for Garside’s
presentation of spherical Artin monoids. The constructions are described in the homotopical setting of
the canonical model structure on 2-categories given by Lack [28, 29]. In this spirit, as a byproduct of
our main theorem, to determine the action of an Artin monoid on a category, it suffices to attach to any
generating 1-cell s ∈ S an endofunctor T(s) and to any generating 2-cell a natural isomorphism, such
that these satisfy coherence relations given by the Tits-Zamolodchikov 3-cells.

Finally, let us remark that, in [22, Theorem 4.5.3], Squier’s completion is extended in higher di-
mensions to produce polygraphic resolutions of monoids, of which coherent presentations form the first
three dimensions. From that point of view, the present work is a first step towards the construction of
polygraphic resolutions Gar∗(W) and Art∗(W) of Artin monoids, extending the coherent presentations
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1. Coherent presentations of categories

Gar3(W) and Art3(W). Moreover, the relationship between those resolutions and the higher categorical
constructions in [33] should be explored. Further, the abelian resolutions obtained from Gar∗(W) and
Art∗(W) by [22, Theorem 5.4.3] should be related to the abelian resolutions introduced in [10].

Acknowledgments. The authors wish to thank Pierre-Louis Curien, Kenji Iohara, François Métayer,
Samuel Mimram, Timothy Porter and the anonymous referee for fruitful exchanges and meaningful
suggestions. This work has been partially supported by the project Cathre, ANR-13-BS02-0005-02.

1. COHERENT PRESENTATIONS OF CATEGORIES

1.1. Higher-dimensional categories

If C is an n-category (we always consider strict, globular n-categories), we denote by Ck the set (and the
k-category) of k-cells of C. If f is a k-cell of C, then si(f) and ti(f) respectively denote the i-source and
i-target of f; we drop the suffix i if i = k− 1. The source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

We respectively denote by f : u → v, f : u ⇒ v, f : u V v and f : u �? v a 1-cell, a 2-cell, a 3-cell
and a 4-cell f with source u and target v. If f and g are i-composable k-cells, that is if ti(f) = si(g), we
denote by f ?i g their i-composite; we simply write fg if i = 0. The compositions satisfy the exchange
relations given, for every i 6= j and all possible cells f, g, h and k, by

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k).

If f is a k-cell, we denote by 1f its identity (k+ 1)-cell. If 1f is composed with cells of dimension k+ 1
or higher, we simply denote it by f; for example, we write ufv and ufvgw instead of 1u ?0 f ?0 1v and
1u ?0 f ?0 1v ?0 g ?0 1w for 1-cells u, v and w and 2-cells f and g.

1.1.1. (n, p)-categories. In an n-category C, a k-cell f, with source x and target y, is invertible if there
exists a k-cell f− in C, with source y and target x in C, called the inverse of f, such that

f ?k−1 f
− = 1x and f− ?k−1 f = 1y.

An (n, p)-category is an n-category whose k-cells are invertible for every k > p. In particular, an
(n,n)-category is an ordinary n-category and an (n, 0)-category is an n-groupoid.

1.1.2. Spheres. Let C be an n-category. A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for
1 ≤ k ≤ n, a k-sphere of C is a pair γ = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g). We call f the source of γ and g its target and we write s(γ) = f and t(γ) = g. If f is a
k-cell of C, for 1 ≤ k ≤ n, the boundary of f is the (k− 1)-sphere (s(f), t(f)).

1.1.3. Cellular extensions. Let C be an n-category. A cellular extension of C is a set Γ equipped with a
map from Γ to the set of n-spheres of C, whose value on γ is denoted by (s(γ), t(γ)). By considering all
the formal compositions of elements of Γ , seen as (n+1)-cells with source and target in C, one builds the
free (n+1)-category generated by Γ over C, denoted by C[Γ ]. The quotient of C by Γ , denoted by C/Γ , is
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1.2. Coherent presentations of categories

the n-category one gets from C by identification of the n-cells s(γ) and t(γ), for every n-sphere γ of Γ .
If C is an (n, 1)-category and Γ is a cellular extension of C, then the free (n + 1, 1)-category generated
by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) = C[Γ, Γ̌ ]
/

Inv(Γ)

where Γ̌ contains the same (n + 1)-cells as Γ , with source and target reversed, and Inv(Γ) is the cellular
extension of C[Γ, Γ̌ ] made of two (n+ 2)-cells

x̌ ?n x
λx
// 1t(x) and x ?n x̌

ρx
// 1s(x)

for each (n+ 1)-cell x of Γ .

1.1.4. Homotopy bases. Let C be an n-category. A homotopy basis of C is a cellular extension Γ of C
such that, for every n-sphere γ of C, there exists an (n+1)-cell with boundary γ in C(Γ) or, equivalently,
if the quotient n-category C/Γ has n-spheres of shape (f, f) only. For example, the n-spheres of C form
a homotopy basis of C.

1.2. Coherent presentations of categories

1.2.1. Polygraphs. A 1-polygraph is a pair Σ = (Σ0, Σ1) made of a set Σ0 and a cellular extension Σ1
of Σ0. The free category Σ∗ over Σ is Σ∗ = Σ0[Σ1]. A 2-polygraph is a triple Σ = (Σ0, Σ1, Σ2) where
(Σ0, Σ1) is a 1-polygraph and Σ2 is a cellular extension of the free category Σ∗1. The free 2-category Σ∗

over Σ, the free (2, 1)-category Σ> over Σ and the category Σ presented by Σ are respectively defined by

Σ∗ = Σ∗1[Σ2] , Σ> = Σ∗1(Σ2) and Σ = Σ∗1/Σ2.

A (3, 1)-polygraph is a pair Σ = (Σ2, Σ3) made of a 2-polygraph Σ2 and a cellular extension Σ3 of the
free (2, 1)-category Σ>2 . The free (3, 1)-category Σ> over Σ and the (2, 1)-category presented by Σ are
defined by

Σ> = Σ>2 (Σ3) and Σ = Σ>2 /Σ3.

The category presented by a (3, 1)-polygraph Σ is the one presented by its underlying 2-polygraph,
namely Σ2. If Σ is a polygraph, we identify its underlying k-polygraph Σk and the set of k-cells of the
corresponding cellular extension. We say that Σ is finite if it has finitely many cells in every dimension.
A (3, 1)-polygraph Σ can be summarised by a diagram representing the cells and the source and target
maps of the free (3, 1)-category Σ> it generates:

Σ0 Σ∗1
t0

oo

s0
oo Σ>2

t1
oo

s1
oo Σ>3 .

t2
oo

s2
oo

1.2.2. Coherent presentations of categories. Let C be a category. A presentation of C is a 2-poly-
graph Σ whose presented category Σ is isomorphic to C. We usually commit the abuse to identify C
and Σ and we denote by u the image of a 1-cell u of Σ∗ through the canonical projection onto C. An
extended presentation of C is a (3, 1)-polygraph Σ whose presented category is isomorphic to C. A
coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ3 of Σ>2
is a homotopy basis.
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1. Coherent presentations of categories

1.2.3. Example (The standard coherent presentation). The standard presentation Std2(C) of a cate-
gory C is the 2-polygraph whose cells are

− the 0-cells of C and a 1-cell û : x→ y for every 1-cell u : x→ y of C,

− a 2-cell γu,v : ûv̂⇒ ûv for all composable 1-cells u and v of C,

− a 2-cell ιx : 1x ⇒ 1̂x for every 0-cell x of C.

The standard coherent presentation Std3(C) of C is Std2(C) extended with the following 3-cells

ûvŵ γuv,w
�.

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2Fαu,v,w
��

1̂xû
γ1x,u

�"
û

ιxû
.B

û

λu
��

û1̂y
γu,1y

�"
û

ûιy
/C

û

ρu
��

where u : x → y, v : y → z and w : z → t range over the 1-cells of C. It is well known that those
3-cells form a homotopy basis of Std2(C)>, see [32, Chap. VII, § 2, Corollary].

1.3. Cofibrant approximations of 2-categories

Let us recall the model structure for 2-categories given by Lack in [28] and [29]. A 2-category is cofibrant
if its underlying 1-category is free. A 2-functor F : C → D is a weak equivalence if it satisfies the
following two conditions:

− every 0-cell y of D is equivalent to a 0-cell F(x) for x in C, i.e., there exist 1-cells u : F(x) → y

and v : y→ F(x) and invertible 2-cells f : u ?1 v⇒ 1F(x) and g : v ?1 u⇒ 1y in D;

− for all 0-cells x and x ′ in C, the induced functor F(x, x ′) : C(x, x ′) → D(F(x), F(x ′)) is an
equivalence of categories.

In particular, an equivalence of 2-categories is a weak equivalence. More generally, a 2-functor is a weak
equivalence F : C → D if, and only if, there exists a pseudofunctor G : D → C, see Section 5, that is a
quasi-inverse for F, i.e., such that GF ' 1C and FG ' 1D.

If C is a 2-category, a cofibrant approximation of C is a cofibrant 2-category C̃ that is weakly equiva-
lent to C.

1.3.1. Theorem. Let C be a category and let Σ be an extended presentation of C. The following asser-
tions are equivalent:

i) the (3, 1)-polygraph Σ is a coherent presentation of C;

ii) the (2, 1)-category Σ presented by Σ is a cofibrant approximation of C.

Proof. Let us assume that Σ3 is a homotopy basis of Σ>2 . By definition, the 2-category Σ is cofibrant. Let
us check that it is weakly equivalent to C. We consider the canonical projection π : Σ> � C that sends
every 0-cell to itself, every 1-cell to its equivalence class and every 2-cell and 3-cell to the corresponding
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1.3. Cofibrant approximations of 2-categories

identity. This is well defined since two 1-cells of Σ>2 have the same equivalence class in C if, and only if,
there exists a 2-cell between them in Σ>2 and since parallel 2-cells of Σ> are sent to the same (identity)
2-cell of C.

Since π is the identity on 0-cells, it is sufficient to check that it induces an equivalence of categories
between Σ(x, y) and C(x, y) for all 0-cells x and y in C. We define a quasi-inverse ι by choosing, for
each 1-cell u : x→ y of C, an arbitrary representative 1-cell ι(u) in Σ. By construction, we have that πι
is the identity of C(x, y). Moreover, for every 1-cell u : x → y of Σ, the 1-cell ιπ(u) is a 1-cell of Σ
from x to y that has the same equivalence class as u: we choose an arbitrary 2-cell αu : u⇒ ιπ(u) in Σ.
Since all the parallel 2-cells of Σ are equal, we get the following commutative diagram for every 2-cell f
of Σ:

ιπ(u) ιπ(f)

u

αu )=

f #7

= ιπ(v)

v αv

1E

This proves that α is a natural isomorphism between ιπ and the identity of Σ(x, y), yielding that π is a
weak equivalence and, as a consequence, that Σ is a cofibrant approximation of C.

Conversely, let us assume that Σ is a cofibrant approximation of C. Let F : Σ → C be a weak
equivalence and let f, g : u ⇒ v : x → y be parallel 2-cells of Σ>. Since F is a 2-functor and C has
identity 2-cells only, we must have F(u) = F(v) and F(f) = F(g) = 1F(u). By hypothesis, the 2-functor F
induces an equivalence of categories between Σ(x, y) and C(x, y): we choose a quasi-inverse G and a
natural isomorphism α between GF and the identity of Σ(x, y). We write the naturality conditions for f
and g and, using GF(f) = GF(g) = 1GF(u), we conclude that f and g are equal in Σ:

GF(u) GF(f)

u

αu )=

f #7

= GF(v)

v αv

0D

GF(u) GF(g)

u

αu )=

g #7

= GF(v)

v αv

0D

Thus Σ is a coherent presentation of C.

1.3.2. Remark. The cofibrant approximations of a category C form, in general, a strictly larger class
than the 2-categories presented by coherent presentations of C. Indeed, let C be the terminal category: it
contains one 0-cell and the corresponding identity 1-cell only. Then C is cofibrant and, as a consequence,
it is a cofibrant approximation of itself: this corresponds to the coherent presentation of C given by the
(3, 1)-polygraph with one 0-cell and no higher-dimensional cells. But C also admits, as a cofibrant
approximation, the “equivalence” 2-category with two 0-cells x and y, two 1-cells u : x → y and
v : y → x and two invertible 2-cells f : uv ⇒ 1x and g : vu ⇒ 1y, and this 2-category is not presented
by a coherent presentation of C, since it does not have the same 0-cells as C.

1.3.3. Example (The standard cofibrant approximation [28]). For any 2-category C, we denote by Ĉ

the cofibrant 2-category with the same 0-cells as C and the following higher cells:

− the 1-cells of Ĉ are freely generated by the ones of C, with u in C denoted by û when seen as a
generator of Ĉ;
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2. Homotopical completion and homotopical reduction

− the 2-cells from û1 · · · ûm to v̂1 · · · v̂n in Ĉ are the 2-cells from u1 · · ·um to v1 · · · vn in C, with
the same compositions as in C.

The canonical projection Ĉ � C is the identity on 0-cells and maps each generating 1-cell û to u and
each 2-cell to itself: this is a weak equivalence whose quasi-inverse lifts a 2-cell f : u ⇒ v to its
distinguished representative f̂ : û⇒ v̂. Hence, the 2-category Ĉ is a cofibrant approximation of C, called
the standard cofibrant approximation of C.

When C = C is a category, the 2-category Ĉ has exactly one 2-cell from û1 · · · ûm to v̂1 · · · v̂n if, and
only if, the relation u1 · · ·um = v1 · · · vn holds in C: this is a representative of an identity and, thus, it is
invertible. As a consequence, the standard cofibrant approximation Ĉ of C is exactly the (2, 1)-category
presented by the standard coherent presentation Std3(C) of C.

2. HOMOTOPICAL COMPLETION AND HOMOTOPICAL REDUCTION

2.1. Tietze transformations of (3, 1)-polygraphs

An equivalence of 2-categories F : C → D is a Tietze equivalence if the quotient categories C1/C2 and
D1/D2 are isomorphic. Two (3, 1)-polygraphs are Tietze-equivalent if the 2-categories they present are
Tietze-equivalent. In that case, they have the same 0-cells (up to a bijection). In particular, two coherent
presentations of the same category are Tietze-equivalent.

2.1.1. Tietze transformations. Let Σ be a (3, 1)-polygraph. Following the terminology of [5], a 2-cell
(resp. 3-cell, resp. 3-sphere) γ of Σ is called collapsible if it satisfies the following:

− the target of γ is a 1-cell (resp. 2-cell, resp. 3-cell) of the (3, 1)-polygraph Σ,

− the source of γ is a 1-cell (resp. 2-cell, resp. 3-cell) of the free (3, 1)-category over Σ \ {t(γ)}.

If γ is collapsible, then its target is called a redundant cell. A collapsible cell and its redundant target can
be coherently adjoined or removed from a (3, 1)-polygraph, without changing the presented 2-category,
up to Tietze equivalence. These operations are formalised by Tietze transformations.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with domain Σ> that
belongs to one of the following six operations:

1. Coherent adjunction or elimination of a redundant 1-cell with its collapsible 2-cell:

• u
// •

ιu
//

πα
oo •

u
##

x

;;α�� •

The coherent adjunction ιu : Σ>� Σ>(x)(α) is the canonical inclusion. The coherent elimination
πα : Σ> � Σ>/αmaps x to u and α to 1u, leaving the other cells unchanged. The (3, 1)-category
Σ>/α is freely generated by the following (3, 1)-polygraph Σ/α:

Σ0 (Σ1 \ {x})
∗

t0
oo

s0
oo (Σ2 \ {α})

>

πα ◦ t1
oo

πα ◦ s1
oo Σ>3 .

πα ◦ t2
oo

πα ◦ s2
oo
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2.1. Tietze transformations of (3, 1)-polygraphs

2. Coherent adjunction or elimination of a redundant 2-cell with its collapsible 3-cell:

•
��

CCf
��

•
ιf
//

πγ
oo •

��

CCf
��

α
��

γ
%9 •

The coherent adjunction ιf : Σ>� Σ>(α)(γ) is the canonical inclusion. The coherent elimination
πγ : Σ> � Σ>/γ maps α to f and γ to 1f, leaving the other cells unchanged. The (3, 1)-category
Σ>/γ is freely generated by the following (3, 1)-polygraph Σ/γ:

Σ0 Σ∗1
t0

oo

s0
oo (Σ2 \ {α})

>

t1
oo

s1
oo (Σ3 \ {γ})

>.
πγ ◦ t2
oo

πγ ◦ s2
oo

3. Coherent adjunction or elimination of a redundant 3-cell:

•
��

CC�� ��

A
%9 •

ιA
//

π(A,γ)
oo •

��

CC�� ��

A
%9

γ
%9 •

The coherent adjunction ιA : Σ> � Σ>(γ) is the canonical inclusion. The coherent elimination
π(A,γ) : Σ

> � Σ>/(A,γ) maps γ to A, leaving the other cells unchanged. The (3, 1)-category
Σ>/(A,γ) is freely generated by the following (3, 1)-polygraph Σ/(A,γ):

Σ0 Σ∗1
t0

oo

s0
oo Σ>2

t1
oo

s1
oo (Σ3 \ {γ})

>.
t2

oo

s2
oo

If Σ and Υ are (3, 1)-polygraphs, a (finite) Tietze transformation from Σ to Υ is a 3-functor F : Σ> → Υ>

that decomposes into a (finite) sequence of elementary Tietze transformations.

2.1.2. Example (The reduced standard coherent presentation). Let C be a category. One can reduce
the standard coherent presentation Std3(C) of C, given in Example 1.2.3 into the smaller reduced stan-
dard coherent presentation Std ′3(C) of C. It is obtained from Std3(C) by a Tietze transformation that
performs the following coherent eliminations, the resulting coherent presentation of the category C being
detailed in [22, 4.1.6]:

− the 3-cells α1x,u,v, αu,1y,v and αu,v,1z , since they are parallel to composites of λs and ρs,

− the 2-cells γ1x,u and the 3-cells λu,

− the 2-cells γu,1x and the 3-cells ρu,

− the 1-cells 1̂x and the 2-cells ιx.

9



2. Homotopical completion and homotopical reduction

2.1.3. Theorem. Two (finite) (3, 1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists
a (finite) Tietze transformation between them. As a consequence, if Σ is a coherent presentation of a
category C and if there exists a Tietze transformation from Σ to Υ, then Υ is a coherent presentation
of C.

Proof. Let us prove that, if two (3, 1)-polygraphs are related by a Tietze transformation, then they are
Tietze-equivalent. Since isomorphisms of categories and equivalence of 2-categories compose, it is
sufficient to check the result for each one of the six types of elementary Tietze transformations on a
fixed (3, 1)-polygraph Σ. By definition, the 3-functors π ◦ ι are all equal to the identity of Σ> and the
3-functors ι ◦ π induce identities on the presented category. Moreover, the latter induce the following
2-functors on the presented 2-category Σ:

ιu ◦ πα ' 1Σ, ιf ◦ πA = 1Σ, ιA ◦ π(A,γ) = 1Σ.

Indeed, the first isomorphism is the identity on every cell, except on x which is mapped to α. The second
and third isomorphisms are, in fact, identities since they do not change the equivalence classes of 2-cells
modulo 3-cells.

Conversely, let Σ and Υ be Tietze-equivalent (3, 1)-polygraphs. We fix an equivalence F : Σ → Υ

of 2-categories that induces an isomorphism on the presented categories. We choose a weak inverse
G : Υ → Σ and pseudonatural isomorphisms σ : GF ⇒ 1Σ and τ : FG ⇒ 1Υ, in such a way that the
quadruple (F,G, σ, τ) is an adjoint equivalence, which is always feasible [32, Chap. IV, § 4, Theorem 1].
This means that the following “triangle identities” hold:

FGF

Fσ
�,

τF

2F F= GFG

Gτ
�-

σG

1EG=

Let us lift the 2-functor F to a 3-functor F̂ : Σ> → Υ>, defined as F on the 0-cells and 1-cells. For every
2-cell α : u ⇒ v of Σ, we choose a representative F̂(α) : F(u) ⇒ F(v) of F(α) in Υ> and, then, we
extend F̂ by functoriality to every 2-cell of Σ>. For a 3-cell γ : fV g of Σ, we have f = g by definition
of Σ, so that F(f) = F(g) holds in Υ, meaning that there exists a 3-cell in Υ> from F̂(f) to F̂(g): we take
it as a value for F̂(γ) and we extend F̂ to every 3-cell of Σ> by functoriality. We proceed similarly withG
to get a 3-functor Ĝ : Υ> → Σ>.

Then, for a 1-cell x of Σ, we choose a representative σ̂x : GF(x) ⇒ x of σx in Σ> and we extend it
to every 1-cell by functoriality. If α : u⇒ v is a 2-cell of Σ, the naturality condition satisfied by σ on α
lifts to an arbitrarily chosen 3-cell of Σ

GF(v) σ̂v

�*
σ̂α
��

GF(u)

ĜF̂(α) *>

σ̂u
#7

v

u α

2F

10



2.1. Tietze transformations of (3, 1)-polygraphs

We proceed similarly with τ. The conditions for the adjoint equivalence also lift to a 3-cell λx of Υ> for
every 1-cell x of Σ and to a 3-cell ρy of Σ> for every 1-cell y of Υ:

FGF(x)

F̂(σ̂x)

�,

τ̂F(x)

2F
F(x)λx��

GFG(y)

Ĝ(τ̂y)

�,

σ̂G(y)

2F
G(y)ρy

��

Now, let us build a Tietze transformation from Σ to Υ. We start by constructing a (3, 1)-polygraph Ξ
that contains both Σ and Υ, together with coherence cells that correspond to the Tietze equivalence. The
(3, 1)-polygraph Ξ has the same 0-cells as Σ (and as Υ) and it contains the 1-cells, 2-cells and 3-cells
of Σ and Υ, plus the following cells:

− Two 2-cells ϕx : F(x) ⇒ x and ψy : G(y) ⇒ y, for all 1-cells x of Σ and y of Υ. Using the fact
that F is a functor that preserves the 0-cells, we extend ϕ to every 1-cell u of Σ> by functoriality,
i.e. by ϕ1p = 11p and ϕuu ′ = ϕuϕu ′ , to get a 2-cell ϕu : F(u) ⇒ u for every 1-cell u of Σ>.
We proceed similarly with ψ to define a 2-cell ψv : G(v)⇒ v of Ξ> for every 1-cell v of Υ>.

− Two 3-cells ϕα and ψβ, for all 2-cells α : u⇒ u ′ and β : v⇒ v ′, with the following shapes:

F(u)
F̂(α)

%9 F(u ′)
ϕu ′

�'
u

ϕ−
u

,@

α
';

ϕα
��

u ′

G(v)
Ĝ(β)

%9 G(v ′)
ψv ′

�'
v

ψ−
v

,@

β

';

ψβ
��

v ′

We use the 2-functoriality of the sources and targets of ϕα and ψβ to extend ϕ and ψ to every
2-cells f of Σ> and g of Υ>, respectively.

− Two 3-cells ξx and ηy, for all 1-cells x of Σ and y of Υ, with the following shapes:

GF(x)
σ̂x

�)
ξx
��

F(x)

ψ−
F(x)

+?

ϕx

(< x

FG(y)
τ̂y

�(
ηy
��

G(y)

ϕ−
G(y)

+?

ψy

(< y

We then extend ε and η to all 1-cells u of Σ> and v of Υ>, respectively.

We construct a Tietze transformationΦ from Σ to Ξ step-by-step, as follows.

− Adjunction of the cells of Υ. For every 1-cell y of Υ, we apply ιG(y) to coherently add y and
ψy : G(y) ⇒ y. Then, for every 2-cell β : v ⇒ v ′ of Υ, we apply ι

ψ−
v ?1Ĝ(β)?1ψv ′

to coherently

11



2. Homotopical completion and homotopical reduction

add β and ψβ. Then, we add every 3-cell δ : g V g ′ of Υ with ιB, where B is the 3-cell of Ξ>

defined by
B = ψ−

g ?2
(
ψ−
v ?1 G(δ) ?1 ψv ′

)
?2 ψg ′

and pictured as follows:

v

g

�'
ψ−
v

%9

g ′

7KG(v)

G(g)
�+

G(g ′)

4H
G(v ′) ψv ′ %9 v ′

ψ−
g��

G(δ)
��

ψg ′
��

− Adjunction of the coherence cells for Σ. For every 1-cell x, we apply ιψ−
F(x)

?1σ̂x
to coherently add

the 2-cell ϕx and the 3-cell ξx. Then, for every 2-cell α : u ⇒ u ′ of Σ, we add the 3-cell ϕα
with ιA, where A is the 3-cell of ξ> defined by

A =
(
ϕ−
u ?1 ξu ?1 σ̂

−
u ?1 ψF(u) ?1 ψ

−

F̂(α)
?1 ξ

−
u ′
)
?2
(
σ̂−u ?1 σ̂α

)
and pictured as follows, where we abusively simplify the labels of 3-cells for readability:

F(u)
F̂(α)

%9

ψ
F̂(α)

F(u ′) ϕu ′

�$
ψ−
F(u ′)
��

u

ϕ−
u

&:

σ̂−u
%9

α

1EGF(u)

ψF(u)

EY

ĜF̂(α) %9 GF(u
′) σ̂u ′ %9 u ′

ξu ξu ′

σ̂α

− Adjunction of the last coherence cells for Υ. For every 1-cell y of Υ, we add the 3-cell ηy with ιC,
where C is the 3-cell of Ξ> defined by

C =
(
ϕ−
G(y) ?1 ξG(y) ?1 σ̂

−
G(y) ?1 ψFG(y) ?1 ψ

−
τ̂y

)
?2
(
σ̂−
G(y) ?1 ρy ?1 ψy

)
and pictured, in a simplified way, as follows

FG(y) τ̂y

�$
G(y)

ϕ−
G(y)

';

σ̂−
G(y)

%9 GFG(y)

ψFG(y)

EY

Ĝ(τ̂y)
��

ψτ̂y y

G(y) ψy

:N

ξG(y)

ρy

12



2.2. Homotopical completion

As a result, we get a Tietze transformationΦ from Σ to Ξ. Since the construction and the result are totally
symmetric in Σ and Υ, and since the Tietze transformationΦ contains coherent adjunctions only, we also
get a Tietze transformation Ψ from Ξ to Υ. By composition, we get a Tietze transformation from Σ to Υ.
To conclude, we note that bothΦ and Ψ are finite when both Σ and Υ are.

Finally, if Σ is a coherent presentation of a category C, then the 2-category it presents is a cofibrant
approximation of C by Theorem 1.3.1. Moreover, if there exists a Tietze transformation from Σ to Υ,
they are Tietze-equivalent by the first part of the proof. Thus, the categories presented by Σ and Υ are
isomorphic (to C), and the 2-categories they present are equivalent, hence weakly equivalent. As a conse-
quence, the 2-category presented by Υ is also a cofibrant approximation of C so that, by Theorem 1.3.1,
we conclude that Υ is a coherent presentation of C.

2.1.4. Higher Nielsen transformations. We introduce higher-dimensional analogues of Nielsen trans-
formations to perform replacement of cells in (3, 1)-polygraphs. The elementary Nielsen transformations
on a (3, 1)-polygraph Σ are the following operations:

1. The replacement of a 2-cell by a formal inverse (including in the source and target of every 3-cell).

2. The replacement of a 3-cell by a formal inverse.

3. The replacement of a 3-cell γ : fV g by a 3-cell γ̃ : h ?1 f ?1 kV h ?1 g ?1 k, where h and k are
2-cells of Σ>.

Each one of those three elementary Nielsen transformations is a Tietze transformation. For example, the
last one is the composition of the following elementary Tietze transformations:

− the coherent adjunction ιh?1γ?1k of the 3-cell γ̃ : h ?1 f ?1 kV h ?1 g ?1 k,

− the coherent elimination πh−?1γ̃?1k− of γ.

The replacement of a 2-cell α : u⇒ v by a formal inverse α̃ : v⇒ u is the composition of:

− the coherent adjunction ια− of the 2-cell α̃ : v⇒ u and a 3-cell γ : α− V α̃,

− the Nielsen transformation that replaces γ with γ̃ : α̃− V α by composition with α on one side
and by α̃− on the other side,

− the coherent elimination πγ̃ of α and γ̃.

In what follows, we perform coherent eliminations of cells that are collapsible only up to a Nielsen
transformation (a composition of elementary ones). If f is Nielsen-equivalent to a collapsible cell f̃, we
abusively denote by πf the corresponding coherent elimination, with a precision about the eliminated
cell t(f̃) when it is not clear from the context. In a similar way, if (A,B) is a noncollapsible 3-sphere
of Σ>, we denote by π(A,B) the potential coherent elimination corresponding to a collapsible 3-sphere Σ>

obtained from (A,B) by composition with 2-cells and 3-cells of Σ>.

2.2. Homotopical completion

In this section, we recall notions of rewriting theory for 2-polygraphs from [21, 4.1] and [22, 4.1], to-
gether with Squier’s completion to compute coherent presentations from convergent presentations. Then
we extend Squier’s completion to terminating 2-polygraphs thanks to Knuth-Bendix’s completion [27].
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2. Homotopical completion and homotopical reduction

2.2.1. Rewriting properties of 2-polygraphs. A rewriting step of a 2-polygraph Σ is a 2-cell of the
free 2-category Σ∗ with shape

y
w

// x

u
##

v

<<
α�� x ′

w ′
// y ′

where α : u ⇒ v is a 2-cell of Σ and w and w ′ are 1-cells of Σ∗. A normal form is a 1-cell that is the
source of no rewriting step.

We say that Σ terminates if it has no infinite rewriting sequence (no infinite sequence of composable
rewriting steps). In that case, the relations s(f) > t(f) for f a rewriting step define a termination order:
this is a well-founded order relation on the 1-cells that is compatible with the composition. Another
example of termination order is the deglex order that first compares the length and, then, uses a lexico-
graphic order on the words of same length. In fact, the existence of a termination order is sufficient to
prove termination.

A branching of Σ is a (non-ordered) pair (f, g) of 2-cells of Σ∗ with a common source, also called
the source of the branching. We say that Σ is confluent if all of its branchings are confluent, that is, for
every branching (f, g), there exist 2-cells f ′ and g ′ in Σ∗, as in the following diagram:

v f ′

�+
u

f ';

g #7

u ′

w g ′

5I

A branching (f, g) is local if f and g are rewriting steps. The local branchings are classified as follows:

− aspherical branchings have shape (f, f),

− Peiffer branchings have shape (fv, ug), where u = s(f) and v = s(g),

− overlap branchings are all the other cases.

Local branchings are ordered by inclusion of their sources, and a minimal overlap branching is called
critical. Under the termination hypothesis, confluence is equivalent to confluence of critical branchings.

We say that Σ is convergent if it terminates and is confluent. Such a Σ is called a convergent presen-
tation of the category Σ, and of any category that is isomorphic to Σ. In that case, every 1-cell u of Σ∗

has a unique normal form, denoted by û, so that we have u = v in Σ if, and only if, û = v̂ holds in Σ∗.
This extends to a section Σ � Σ∗ of the canonical projection, sending a 1-cell u of Σ to the unique
normal form of its representative 1-cells in Σ∗, still denoted by û. A (3, 1)-polygraph is convergent if its
underlying 2-polygraph is.
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2.2. Homotopical completion

2.2.2. Squier’s completion for convergent polygraphs. Let us assume that Σ is convergent. A family
of generating confluences of Σ is a cellular extension of Σ> that contains exactly one 3-cell

v f ′

�,

��
u

f ';

g #7

u ′

w g ′

3G

for every critical branching (f, g) of Σ. Such a family always exists by confluence but it is not necessarily
unique. Indeed, the 3-cell can be directed in the reverse way and, for a given branching (f, g), one can
have several possible 2-cells f ′ and g ′ with the required shape (see [22, 4.3.2] for a constructive ver-
sion, based on normalisation strategies). We call Squier’s completion of Σ the (3, 1)-polygraph obtained
from Σ by adjunction of a chosen family of generating confluences of Σ. The following result is due to
Squier, we refer to [23, Theorem 4.4.2] for a proof in our language.

2.2.3. Theorem ([36, Theorem 5.2]). For every convergent presentation Σ of a category C, Squier’s
completion of Σ is a coherent presentation of C.

2.2.4. Homotopical completion. Let Σ be a terminating 2-polygraph, equipped with a total termination
order ≤. The homotopical completion of Σ is the (3, 1)-polygraph S(Σ) obtained from Σ by successive
application of Knuth-Bendix’s and Squier’s completions. In fact, both constructions can be interleaved
to compute S(Σ), as we describe here.

One considers each critical branching (f, g) of Σ. There are two possible situations, shown below,
depending on whether (f, g) is confluent or not:

v f ′

�.
γ
��

u

f ';

g #7

v̂ = ŵ

w g ′

1E

v
f ′ %9

γ
��

v̂EY

α

��
u

f ';

g #7 w
g ′

%9 ŵ

If (f, g) is confluent, the left case occurs and one adds the dotted 3-cell γ to Σ. Otherwise, one performs a
Tietze transformation on Σ to coherently add the 2-cell α and the 3-cell γ. To preserve termination, the 2-
cell α is directed from v̂ to ŵ if v̂ > ŵ and in the reverse direction otherwise. To be formal, the coherent
adjunction would add a 3-cell γ with target α, but we implicitly perform a Nielsen transformation for
convenience.

The potential adjunction of additional 2-cells α can create new critical branchings, whose confluence
must also be examined, possibly generating the adjunction of additional 2-cells and 3-cells. This de-
fines an increasing sequence of (3, 1)-polygraphs, where Σn+1 is obtained by completion of the critical
branchings of Σn:

(Σ, ∅) = Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σn ⊆ Σn+1 ⊆ · · ·

The (3, 1)-polygraph S(Σ) is defined as the union of this increasing sequence. If the 2-polygraph Σ is
already confluent, the homotopical completion is exactly Squier’s completion. As a consequence of The-
orem 2.2.3, we get that the potentially infinite (3, 1)-polygraph S(Σ) satisfies the following properties.
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2. Homotopical completion and homotopical reduction

2.2.5. Theorem. For every terminating presentation Σ of a category C, the homotopical completion
S(Σ) of Σ is a coherent convergent presentation of C.

2.2.6. Example. From [26], we consider the presentation Σ =
(
s, t, a ; ta

α %9 as , st
β %9 a

)
of

B+
3 = B+(S3), obtained from Artin’s presentation by coherent adjunction of the Coxeter element st and

the 2-cell β. The deglex order generated by t > s > a proves the termination of Σ. The homotopical
completion of Σ is the (3, 1)-polygraph

S(Σ) =
(
s, t, a ; ta

α %9 as , st
β %9 a , sas

γ %9 aa , saa
δ %9 aat ; A,B,C,D

)
where A, B, C and D are the following 3-cells, induced by completion of critical pairs (βa, sα) and
(γt, saβ):

aa

sta

βa *>

sα  4
sas

γ

J^

A��

aat

sast

γt *>

saβ  4
saa

δ

J^

B��

aaas

C��
sasas

γas ,@

saγ �2

aata

aaα^r

saaa δa

9M

aaaa

D��

aaast
aaaβey

sasaa

γaa +?

saδ
�2
saaat

δat
%9 aatat

aaαt

J^

2.3. Homotopical reduction

2.3.1. Generic homotopical reduction. Let Σ be a (3, 1)-polygraph. A collapsible part of Σ is a triple
Γ = (Γ2, Γ3, Γ4) made of a family Γ2 of 2-cells of Σ, a family Γ3 of 3-cells of Σ and a family Γ4 of 3-spheres
of Σ>, such that the following conditions are satisfied:

− every γ of every Γk is collapsible (potentially up to a Nielsen transformation),

− no γ of any Γk is redundant for some element of Γk+1,

− there exists well-founded order relations on the 1-cells, 2-cells and 3-cells of Σ such that, for
every γ in every Γk, the target of γ is strictly greater than every generating (k− 1)-cell that occurs
in the source of γ.

In that case, the recursive assignment

πΓ (x) =


πΓ (s(γ)) if x = t(γ) for γ in Γ
1πΓ (s(γ)) if x = γ is in Γ
x otherwise

defines a Tietze transformation πΓ : Σ> → Σ>/Γ by well-founded induction, called the homotopical re-
duction of Σ with respect to Γ . The target (3, 1)-category is freely generated by the (3, 1)-polygraph Σ/Γ
obtained from Σ by removing the cells of Γ and of the corresponding redundant cells, and by replace-
ment of the source and target maps of Σ by their compositions with πΓ . Moreover, by construction, the
(3, 1)-polygraph Σ/Γ is Tietze-equivalent to Σ.
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2.3. Homotopical reduction

2.3.2. Generating triple confluences. The coherent elimination of 3-cells of a (3, 1)-polygraph Σ by
homotopical reduction requires a collapsible set of 3-spheres of Σ>. When Σ is convergent and coherent,
its triple critical branchings generate a convenient way to build such a set.

We recall from [22] that a local triple branching is a triple (f, g, h) of rewriting steps with a common
source. Like branchings, local triple branchings are classified into three families:

− aspherical triple branchings have two of their 2-cells equal,

− Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two,

− overlap triple branchings are the remaining local triple branchings.

Local triple branchings are ordered by inclusion of their sources and a minimal overlap triple branching
is called critical.

If Σ is a coherent and convergent (3, 1)-polygraph, a triple generating confluence of Σ is a 3-sphere

v

f ′1
!5

A

x ′

h ′′

� 

v

f ′1
!5

f ′2
�(

x ′

h ′′

� 
u

f
.B

g %9

h �0

w

g ′1

6J

g ′2
�(

C ′ û
ω
�? u

f
.B

C

h �0

w ′ g ′′ %9

B ′

A ′

û

x

h ′2

)=

B

v ′
f ′′

>R

x

h ′1

6J

h ′2

)= v ′
f ′′

>R

where (f, g, h) is a triple critical branching of Σ and the other cells are obtained as follows. First, we
consider the branching (f, g): we use confluence to get f ′1 and g ′1 and coherence to get the 3-cell A. We
proceed similarly with the branchings (g, h) and (f, h). Then, we consider the branching (f ′1, f

′
2) and

we use convergence to get g ′′ and h ′′ with û as common target, plus the 3-cell B ′ by coherence. We do
the same operation with (h ′1, h

′
2) to get A ′. Finally, we build the 3-cell C ′ to relate the parallel 2-cells

g ′1 ?1 h
′′ and g ′2 ?1 f

′′.

2.3.3. Homotopical completion-reduction. In the applications we consider, homotopical reduction is
applied to the homotopical completion S(Σ) of a terminating 2-polygraph Σ. This induces a collapsible
part Γ of S(Σ) made of

− some of the generating triple confluences of S(Σ),

− the 3-cells coherently adjoined with a 2-cell by homotopical completion to reach confluence,

− some collapsible 2-cells or 3-cells already present in the initial presentation Σ.

If Σ is a terminating 2-polygraph, the homotopical completion-reduction of Σ is the (3, 1)-polygraph

R(Σ) = πΓ (S(Σ))
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3. Garside’s coherent presentation of Artin monoids

obtained from the homotopical completion of Σ by homotopical reduction with respect to some collapsi-
ble part Γ of S(Σ). The definition and the notation should depend on Γ , and we make them precise in
each application we consider.

2.3.4. Theorem. For every terminating presentation Σ of a category C, the homotopical completion-
reduction R(Σ) of Σ is a coherent presentation of C.

2.3.5. Example. In Example 2.2.6, we have obtained a coherent convergent presentation S(Σ) of B+
3

by homotopical completion. We consider the collapsible part Γ of S(Σ) consisting of the two generating
triple confluences

aata
aaα %9

Ba��

aaas

sasta

γta %9

saβa %9

sasα $8

saaa

δa

L`

saA��

sasas

saγ

L`
ω1
�?

aata aaα

�&
sasta

γta )=

sasα  4

q aaas

C��sasas

γas
.B

saγ !5

aata

aaα`t

saaa δa

7K

and

aaast
aaaβ %9

Ct ��

aaaa

sasast

γast &:

saγt %9

sasaβ $8

saaat
δat

%9

saB��

aatat

aaαt

[o

sasaa

saδ

L`
ω2
�?

aaast aaaβ

�'
sasast

γast *>

sasaβ !5

q aaaa

D��

aaast
aaaβey

sasaa
γaa

.B

saδ  4
saaat

δat
%9 aatat

aaαt

EY

together with the 3-cells A and B coherently adjoined with the 2-cell γ and δ during homotopical com-
pletion and the 2-cell β : st ⇒ a that defines the redundant generator a. We have that ω1, ω2, A, B
and β are collapsible (up to a Nielsen transformation), with respective redundant cells C, D, γ, δ and a.
We conclude that Γ is collapsible with the orders

D > C > B > A, δ > γ > β > α, a > t > s.

Thus the homotopical reduction of S(Σ) with respect to Γ is the (3, 1)-polygraph

R(Σ) =
(
s, t ; tst⇒ sts ; ∅

)
.

By Theorem 2.3.4, we recover that the monoid B+
3 admits a coherent presentation made of Artin’s pre-

sentation and no 3-cell.

3. GARSIDE’S COHERENT PRESENTATION OF ARTIN MONOIDS

Recall that a Coxeter group is a group W that admits a presentation with a finite set S of generators and
with one relation

(st)mst = 1, withmst ∈ Nq {∞}, (1)

for every s and t in S, with the following requirements and conventions:

18



3.1. Garside’s presentation of Artin monoids

− mst =∞ means that there is, in fact, no relation between s and t,

− mst = 1 if, and only if, s = t.

The last requirement implies that s2 = 1 holds in W for every s in S. As a consequence, the group W
can also be seen as the monoid with the same presentation. Let us note that a given Coxeter group can
have several generating sets that fit the given scheme, but we always assume that such a set S has been
fixed and comes equipped with a total order.

Following [4, (1.1)], we denote by 〈st〉n the element of length n in the free monoid S∗, obtained by
multiplication of alternating copies of s and t. Formally, this element is defined by induction on n as
follows:

〈st〉0 = 1 and 〈st〉n+1 = s〈ts〉n.

When s 6= t and mst < ∞, we use this notation and the relations s2 = t2 = 1 to write (1) as a braid
relation:

〈st〉mst = 〈ts〉mst . (2)

A reduced expression of an element u of W is a representative of minimal length of u in the free
monoid S∗. The length of u is denoted by l(u) and defined as the length of any of its reduced expressions.
The Coxeter group W is finite if, and only if, it admits an element of maximal length, [4, Theorem 5.6];
in that case, this element is unique, it is called the longest element of W and is denoted by w0(S). For
I ⊆ S, the subgroup of W spanned by the elements of I is denoted by WI. It is a Coxeter group with
generating set I. If WI is finite, we denote by w0(I) its longest element.

We recall that the Artin monoid associated to W is the monoid denoted by B+(W), generated by S
and subject to the braid relations (2). This presentation, seen as a 2-polygraph, is denoted by Art2(W)
and called Artin’s presentation: this is the same as the one of W, except for the relations s2 = 1.

In this section, we fix a Coxeter group W and we apply the homotopical completion-reduction
method to get a coherent presentation for the Artin monoid B+(W).

3.1. Garside’s presentation of Artin monoids

We recall some arithmetic properties on Artin monoids, observed by Garside for braid monoids in [17]
and generalised by Brieskorn and Saito in [4]. Garside’s presentation is explicitly given in [13, 1.4.5] for
spherical Artin monoids and in [34, Proposition 1.1] for any Artin monoid. We refer to [20] for proofs.

3.1.1. Length notation and divisibility. For every u and v in W, we have l(uv) ≤ l(u) + l(v) and we
use distinct graphical notations depending on whether the equality holds or not:

u v ⇔ l(uv) = l(u) + l(v),

u v
× ⇔ l(uv) < l(u) + l(v).

Whenw = uv holds in W with u v, we writew .
= uv. We generalise the notation for a greater number

of elements of W. For example, in the case of three elements u, v and w of W, we write u v w when

19



3. Garside’s coherent presentation of Artin monoids

both equalities l(uv) = l(u) + l(v) and l(vw) = l(v) + l(w) hold. This case splits in the following two
mutually exclusive subcases:

u v w ⇔ {
u v w

l(uvw) = l(u) + l(v) + l(w),

u v w
× ⇔ {

u v w

l(uvw) < l(u) + l(v) + l(w).

If u and v are two elements of B+(W), we say that u is a divisor of v and that v is a multiple of u if
there exists an element u ′ in B+(W) such that uu ′ = v. In that case, the element u ′ is uniquely defined
and called the complement of u in v [4, Proposition 2.3]. Moreover, if v is in W, seen as an element of
B+(W) by the canonical embedding (given by Matsumoto’s theorem, see [20, Theorem 1.2.2]), then we
also have u and u ′ in W and uu ′ .= v. If two elements u and v of B+(W) have a common multiple, then
they have a least common multiple, lcm for short [4, Proposition 4.1].

3.1.2. Garside’s coherent presentation. Let W be a Coxeter group. We call Garside’s presentation of
B+(W) the 2-polygraph Gar2(W) whose 1-cells are the elements of W \ {1} and with one 2-cell

αu,v : u|v ⇒ uv

whenever l(uv) = l(u) + l(v) holds. Here, we write uv for the product in W and u|v for the product
in the free monoid over W. We denote by Gar3(W) the extended presentation of B+(W) obtained from
Gar2(W) by adjunction of one 3-cell

uv|w
αuv,w

�(
Au,v,w��

u|v|w

αu,v|w +?

u|αv,w �3

uvw

u|vw
αu,vw

6J

for every u, v and w of W \ {1} with u v w .

3.1.3. Theorem. For every Coxeter group W, the Artin monoid B+(W) admits Gar3(W) as a coherent
presentation.

The (3, 1)-polygraph Gar3(W) is called the Garside’s coherent presentation of the Artin monoid B+(W).
Theorem 3.1.3 is proved in the following section by homotopical completion-reduction of Gar2(W).

3.2. Homotopical completion-reduction of Garside’s presentation

Let us define a termination order on the 2-polygraph Gar2(W). Let < denote the strict order on the
elements of the free monoid W∗ that first compares their length as elements of W∗, and then the length
of their components, starting from the right. For example, we have that u1|u2 < v1|v2|v3 (first condition)
and uv|w < u|vw if u v w (second condition). The order relation ≤ generated by < by adding
reflexivity is a termination order on Gar2(W): for every 2-cell αu,v of Gar2(W), we have u|v > uv.
Hence the 2-polygraph Gar2(W) terminates, so that its homotopical completion is defined.
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3.2. Homotopical completion-reduction of Garside’s presentation

3.2.1. Proposition. For every Coxeter group W, the Artin monoid B+(W) admits, as a coherent con-
vergent presentation, the (3, 1)-polygraph S(Gar2(W)) with one 0-cell, one 1-cell for every element of
W \ {1}, the 2-cells

u|v
αu,v

%9 uv and u|vw
βu,v,w

%9 uv|w,

respectively for every u, v of W \ {1} with u v and every u, v,w of W \ {1} with u v w
×

, and the nine
families of 3-cells A, B, C, D, E, F, G, H, I given in Figure 1.

uv|w
αuv,w

�(
Au,v,w��

u|v|w

αu,v|w +?

u|αv,w �3

uvw

u|vw
αu,vw

6J
u|v|w

αu,v|w

�3

u|αv,w �1

uv|w

u|vw
βu,v,w

7KBu,v,w
��

uv|wx βuv,w,x

�+
Cu,v,w,x��

u|v|wx

αu,v|wx *>

u|βv,w,x �3

uvw|x

u|vw|x αu,vw|x

3G

u|v|wx

αu,v|wx

!5

u|βv,w,x �3

uv|wx

u|vw|x
βu,v,w|x

%9 uv|w|x
uv|αw,x

3G
Du,v,w,x
��

uv|w|x uv|αw,x

�+
Eu,v,w,x��

u|vw|x

βu,v,w|x +?

u|αvw,x  4

uv|wx

u|vwx βu,v,wx

3G

uv|w|xy uv|αw,xy

�1
u|vw|xy

βu,v,w|xy (<

u|βvw,x,y �2

uv|wxy

u|vwx|y
βu,v,wx|y

%9 uv|wx|y
uv|αwx,y

5I
Fu,v,w,x,y��

uv|w|xy uv|βw,x,y

�,
Gu,v,w,x,y��

u|vw|xy

βu,v,w|xy *>

u|βvw,x,y  4

uv|wx|y

u|vwx|y βu,v,wx|y

2F

uv|xy
βuv,x,y

�'
u|vxy

βu,v,xy
-A

βu,vx,y

+? uvx|y
Hu,v,x,y
��

uv1|w1 = uv1|x1y βuv1,x1,y

�)

Iu,v1,w1,v2,w2��

u|v1w1
=

u|v2w2

βu,v1,w1 ,@

βu,v2,w2
�2

uv1x1|y
=

uv2x2|y

uv2|w2 = uv2|x2y
βuv2,x2,y

5I

Figure 1: The 3-cells of the homotopical completion of Garside’s presentation

The 3-cells of Figure 1 are families indexed by all the possible elements of W \ {1}, deduced by the
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3. Garside’s coherent presentation of Artin monoids

involved 2-cells. For example, there is one 3-cell Au,v,w for every u, v, w with u v w , and one 3-cell

Fu,v,w,x,y for every u, v, w, x, y with u v w x y
× ×

.

Proof. The 2-polygraph Gar2(W) has exactly one critical branching for every u, v andw of W\{1} such
that u v w:

uv|w

u|v|w

αu,v|w $8

u|αv,w
&: u|vw

Then there are two possibilities. If u v w , the branching is confluent, adjoining the 3-cell Au,v,w.

Otherwise, we have u v w
×

and the branching is not confluent, thus homotopical completion coherently
adjoins the 2-cell βu,v,w and the 3-cell Bu,v,w. The family β of 2-cells creates new critical branchings,
each one being confluent and conducting to the adjunction of one or several 3-cells. The sources of all
the 2-cells α and β have size 2 in the free monoid over W \ {1}. As a consequence, there are two main
cases for the critical branchings that involve at least one 2-cell β.

The first case occurs when the sources of the 2-cells of Gar2(W) that generate the branching overlap
on one element of W \ {1}. The source of such a branching has size 3, with one 2-cell of the branching
reducing the leftmost two generating 1-cells and the other one reducing the rightmost two. This leaves
three main cases of branchings:

uv|wx

u|v|wx

αu,v|wx %9

u|βv,w,x
%9 u|vw|x

uv|w|x

u|vw|x

βu,v,w|x %9

u|αvw,x
%9 u|vwx

uv|w|xy

u|vw|xy

βu,v,w|xy %9

u|βvw,x,y
%9 u|vwx|y

The first branching occurs when u v w x
×

, splitting into the two disjoint possibilities u v w x
×

and u v w x
× ×

, respectively corresponding to the 3-cells Cu,v,w,x and Du,v,w,x. The second branching

appears when u v w x
×

and corresponds to the 3-cell Eu,v,w,x. The third branching happens when

u v w x y
×

, with the extra condition that l(vwxy) < l(vw) + l(xy) since vw|xy is the source of the

2-cell βvw,x,y: this situation splits into the two disjoint possibilities u v w x y
× ×

and u v w x y
× ×

,
respectively corresponding to the 3-cells Fu,v,w,x,y and Gu,v,w,x,y.

The second main case occurs when the 2-cells of Gar2(W) that generate the branching have the
same source. Since one of those 2-cells must be a β, the source must have shape u|v1w1 with u v1 w1
preventing the other 2-cell to be an α. The only remaining possibility is to have a different decomposition
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3.2. Homotopical completion-reduction of Garside’s presentation

v1w1 = v2w2, with u v2 w2
×

, so that the branching is as follows:

uv1|w1
u|v1w1

=
u|v2w2

βu,v1,w1 #7

βu,v2,w2
'; uv2|w2

The properties of Artin monoids ensure that we have the following relations in B+(W):

· w1

$$

x1
��

=

·

v1
77

v2 ''

= · y // ·

·
x2

AA

w2

::

=

Indeed, we note that the elements v1 and v2 have a common multiple since v1w1 = v2w2. Hence, they
admit an lcm. The elements x1 and x2 are respectively defined as the complements of v1 and v2 in their
lcm. The element y is the complement of the lcm v1x1 = v2x2 of v1 and v2 in their common multiple
v1w1 = v2w2. By uniqueness of the complements of v1 and v2 in v1w1 = v2w2, we get w1 = x1y and

w2 = x2y. Moreover, we have v1 x1 y and v2 x2 y . Finally, from the hypothesis u v1 w1 we get
that y 6= 1. Then, there are two possible subcases for the confluence diagram, depending on x1 and x2.
The first subcase is when we have either x1 = 1 or x2 = 1. We note that both cannot happen at the same
time, otherwise v1 = v2 and w1 = w2, so that the branching would be aspherical and not critical. We
get the 3-cell Hu,v,x,y if x2 = 1, inducing v2 = v1x1, w1 = x1y and w2 = y, with v = v1 and x = x1.
The second subcase, when x1 6= 1 and x2 6= 1 gives the 3-cell Iu,v1,w1,v2,w2 .

3.2.2. Homotopical reduction of S(Gar2(W)). We consider the following generating triple conflu-
ences, associated to some of the triple critical branchings of S(Gar2(W)):

− The 3-sphereωCu,v,w,x in the case u v w x
×

:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x /C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x
αu,vw|x

<P

u|v|wx
u|βv,w,x

<P
u|Bv,w,x

�?

uv|w|x

uv|αw,x
�*

αuv,w|x

�,
=u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx βuv,w,x %9

Cu,v,w,x

uvw|x

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
αu,vw|x

<P

Buv,w,x
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3. Garside’s coherent presentation of Artin monoids

− The 3-sphereωDu,v,w,x in the case u v w x
× ×

:

uv|w|x

uv|αw,x
"6
uv|wx

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

βu,v,w|x

[o

u|v|wx

u|βv,w,x

<P

Bu,v,w|x

u|Bv,w,x

�?

uv|w|x

uv|αw,x

!
=u|v|w|x

αu,v|w|x /C

u|v|αw,x �/

uv|wx

Du,v,w,x

uv|w|x

uv|αw,x
h|

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
βu,v,w|x

<P

− The 3-sphereωEu,v,w,x in the case u v w x
×

:

uv|w|x uv|αw,x

�,
u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

Bu,v,w|x
u|vw|x

βu,v,w|x

Vj

u|αvw,x
�*

u|Av,w,x

Eu,v,w,x
uv|wx

u|v|wx

u|αv,wx

(< u|vwx
βu,v,wx

<P �?

uv|w|x

uv|αw,x

�"
=u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

u|v|wx

αu,v|wx

4H

u|αv,wx

(<Bu,v,wx u|vwx

βu,v,wx
\p

− The 3-sphereωFu,v,w,x,y in the case u v w x y
× ×

:

uv|w|x|y

uv|αw,x|y
"6

Eu,v,w,x|y

uv|wx|y

uv|αwx,y
��

u|vw|x|y

βu,v,w|x|y
.B

u|αvw,x|y %9

u|vw|αx,y �0

u|vwx|y

βu,v,wx|y

2F

uv|wxy

u|vw|xy

u|βvw,x,y

:N
u|Bvw,x,y

�?

uv|w|x|y
uv|αw,x|y %9

uv|w|αx,y
�,

uv|wx|y

uv|αwx,y
�+

uv|Aw,x,y

u|vw|x|y

βu,v,w|x|y
.B

u|vw|αx,y �0

= uv|w|xy uv|αw,xy %9 uv|wxy

u|vw|xy

βu,v,w|xy

2F

u|βvw,x,y �0
u|vwx|y

βu,v,wx|y
%9 uv|wx|y

uv|αwx,y

EY

Fu,v,w,x,y

− The 3-sphereωGu,v,w,x,y in the case u v w x y
× ×

:

uv|w|xy

uv|βw,x,y
"6
uv|wx|y

u|v|w|xy

αu,v|w|xy
.B

u|αv,w|xy %9

u|v|βw,x,y �0

u|vw|xy

βu,v,w|xy
Xl

u|βvw,x,y
�,

u|Cv,w,x,y

Gu,v,w,x,y

u|v|wx|y

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y

I]

Bu,v,w|xy
�?

uv|w|xy

uv|βw,x,y

�#
=u|v|w|xy

αu,v|w|xy
.B

u|v|βw,x,y �0

uv|wx|y

u|v|wx|y

αu,v|wx|y

2F

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y
\p

Bu,v,wx|y
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3.3. Garside’s coherent presentation for Garside monoids

− The 3-sphereωHu,v,w,x in the case u v w x

×
:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x
�*

u|Av,w,x

u|v|wx

u|αv,wx

(< u|vwx

βu,vw,x

Xl

Bu,vw,x �?

uv|w|x

αuv,w|x
"6

uv|αw,x
�*

=

uvw|x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

βuv,w,x

4H

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx

βu,v,wx

Vj

βu,vw,x

XlBuv,w,x

Bu,v,wx

Hu,v,w,x

− The 3-sphereωIu,v1,w1,v2,w2 in the case u v1 w1
×

and u v2 w2
×

with v1w1 = v2w2:

uv1|w1 βuv1,x1,y

�*
Iu,v1,w1,v2,w2

u|v1w1

βu,v1,w1
)=

βu,v2,w2
%9

βu,v1x1,y

3Guv2|w2 βuv2,x2,y
%9

Hu,v2,x2,y

uv1x1|y �?

uv1|w1 βuv1,x1,y

�+
u|v1w1

βu,v1,w1 *>

βu,v1x1,y

5Iuv1x1|yHu,v1,x1,y

We consider the collapsible part Γ of S(Gar2(W)) made of each of those 3-spheres and all the 3-cells
Bu,v,w, with the order I > H > · · · > C. The homotopical reduction of S(Gar2(W)) with respect to Γ is
exactly Garside’s coherent presentation Gar3(W), ending the proof of Theorem 3.1.3.

3.3. Garside’s coherent presentation for Garside monoids

Garside monoids have been introduced as a generalisation of spherical Artin monoids by Dehornoy and
Paris [11, 8] to abstract the arithmetic properties observed by Garside on braid monoids [17] and by
Brieskorn-Saito and Deligne on spherical Artin monoids [4, 12]. We refer the reader to [9] for a unified
treatment of Garside structure.

We fix a Garside monoid M and we follow [18] for most of the terminology and notation.

3.3.1. Recollections on Garside monoids. In the monoid M, all elements u and v admit a greatest
common divisor u ∧ v. Moreover, the monoid M has a Garside element, denoted by w0, such that the
set W of its divisors generates M. The complement of an element u of W in w0 is denoted by ∂(u). A
pair (u, v) of elements of W is left-weighted if we have ∂(u)∧ v = 1. For each pair (u, v) of elements
of W, there exists a unique left-weighted pair (u ′, v ′) of elements of W such that uv = u ′v ′ holds in M:
we takeu ′ = u(∂(u)∧v) and v ′ to be the complement of ∂(u)∧v in v. The operation transforming (u, v)
into (u ′, v ′) is called local sliding. It induces a computational process that transforms any element u
of W∗ into its (left) normal form by a finite sequence of local slidings, thereafter represented by dashed
arrows:

u // (· · · ) // û.
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4. Artin’s coherent presentation of Artin monoids

Moreover, two elements u and v of W∗ represent the same element of M if, and only if, they have the
same normal form, so that they are linked by a finite sequence of local slidings and their inverses:

u // û v.oo

3.3.2. Garside’s presentation. First, let us note that, since the set W of divisors of w0 generates M,
then so does W \ {1}. Given two elements u and v of W \ {1}, we use the notations u v and u v

× to
mean

u v ⇔ ∂(u)∧ v = 1,

u v
× ⇔ ∂(u)∧ v 6= 1.

We define Garside’s presentation of M as the 2-polygraph Gar2(M) with one 0-cell, one 1-cells for every
element of W \ {1} and one 2-cell

u|v
αu,v %9 uv

for every u and v in W \ {1} such that u v holds.
Let us check that Garside’s presentation is, indeed, a presentation of the monoid M. If u v holds,

transforming u|v into uv is a local sliding since uv is the normal form of u|v, so that each 2-cell αu,v is
an instance of local sliding. Conversely, if u|vw is transformed into uv|w by local sliding, this implies,
in particular, that both u v and v w hold. Thus, the composite 2-cell

u|v|w
αu,v|w

�)
u|vw

u|α−
v,w

,@

// uv|w

corresponds to the local sliding transformation applied to u|vw. We define Garside’s coherent presenta-
tion Gar3(M) as done in 3.1.2 for Artin monoids. The proof of Theorem 3.1.3 adapts in a straightforward
way to this case.

3.3.3. Theorem. Every Garside monoid M admits Gar3(M) as a coherent presentation.

4. ARTIN’S COHERENT PRESENTATION OF ARTIN MONOIDS

Let W be a Coxeter group with a totally ordered set S of generators. In this section, we use the homotopi-
cal reduction method on Garside’s coherent presentation Gar3(W) to contract it into a smaller coherent
presentation associated to Artin’s presentation.

4.1. Artin’s coherent presentation

We call Artin’s presentation of the Artin monoid B+(W) the 2-polygraph Art2(W) with one 0-cell, the
elements of S as 1-cell and one 2-cell

γs,t : 〈ts〉mst ⇒ 〈st〉mst
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4.2. Homotopical reduction of Garside’s coherent presentation

for every t > s in S such thatmst is finite.
We recall that, if I is a subset of S, then I has an lcm if, and only if, the subgroup WI of W spanned

by I is finite. In that case, the lcm of I is the longest element w0(I) of WI. This implies that, if
an element u of W admits reduced expressions s1u1, . . . , snun where s1, . . . , sn are in S, then the
subgroupW{s1,...,sn} is finite and its longest element w0(s1, . . . , sn) is a divisor of u. As a consequence,
the element u has a unique reduced expression of the shape w0(s1, . . . , sn)u ′.

The main theorem of this section extends Art2(W) into Artin’s coherent presentation of the Artin
monoid B+(W).

4.1.1. Theorem. For every Coxeter group W, the Artin monoid B+(W) admits the coherent presenta-
tion Art3(W) made of Artin’s presentation Art2(W) and one 3-cell Zr,s,t for all elements t > s > r of S
such that the subgroup W{r,s,t} is finite.

We note that Artin’s coherent presentation has exactly one k-cell, 0 ≤ k ≤ 3, for every subset I of S
of rank k such that the subgroup WI is finite. In 4.2, we use homotopical reduction on Garside’s coherent
presentation Gar3(W) to get a homotopy basis of Artin’s presentation. The precise shape of the 3-cells
is given in 4.3.

4.2. Homotopical reduction of Garside’s coherent presentation

We consider Garside’s coherent presentation Gar3(W) of B+(W). The homotopical reduction in the
proof of Theorem 3.1.3 has coherently eliminated some redundant 3-cells, thanks to generating triple
confluences of S(Gar2(W)). This convergent (3, 1)-polygraph has other triple critical branchings. In
particular, the critical triple branchings created by three 2-cells α, whose sources are the u|v|w|x with

u v w x , generate the following family Gar4(W) of 4-spheresωu,v,w,x of Gar3(W)>:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

αuvw,x

!
Au,vw,xu|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x
�*

u|Av,w,x

uvwx

u|v|wx

u|αv,wx

(< u|vwx
αu,vwx

<P
�?

uv|w|x

αuv,w|x
"6

uv|αw,x
�*

=

uvw|x

αuvw,x

!
Auv,w,x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx αuv,wx %9

Au,v,wx

uvwx

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx
αu,vwx

<P

To construct a collapsible part of Gar3(W), we use the indexing families of the cells of Gar3(W) and the
3-spheres of Gar4(W) to classify and compare them.

4.2.1. The classification. If u is an element of W \ {1}, the smallest divisor of u is denoted by du and
defined as the smallest element of S that is a divisor of u. Let (u1, . . . , un) be a family of elements of
W \ {1} such that

l(u1 · · ·un) = l(u1) + · · ·+ l(un).

For every k ∈ {1, . . . , n}, we write sk = du1···uk . We note that s1 ≥ s2 ≥ · · · ≥ sn since each sk divides
u1 · · ·ul for l ≥ k. Moreover, the elements s1,. . . , sk have u1 · · ·uk as common multiple, so that their
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4. Artin’s coherent presentation of Artin monoids

lcmw0(s1, . . . , sk) exists and divides u1 · · ·uk, and each subgroup Ws1,...,sk is finite. Thus, we have the
following diagram, where each arrow u→ v means that u is a divisor of v:

w0(s1) //

��

w0(s1, s2) //

��

(· · · ) // w0(s1, . . . , sn−1) //

��

w0(s1, . . . , sn)

��

u1 // u1u2 // (· · · ) // u1 · · ·un−1 // u1 · · ·un

If every vertical arrow is an equality, we say that (u1, . . . , un) is essential. Since each uk is different
from 1, this implies that no horizontal arrow is an equality, so that s1 > · · · > sn holds. Moreover,
we have u1 = s1 and, by uniqueness of the complement, we get that each uk+1 is the complement
of w0(s1, . . . , sk) in w0(s1, . . . , sk+1). Thus, the family (u1, . . . , un) is uniquely determined by the
elements s1, . . . , sn of S such that s1 > · · · > sn.

Otherwise, there exists a minimal k in {1, . . . , n} such that (u1, . . . , uk) is not essential, i.e., such that
u1 · · ·uk 6= w0(s1, . . . , sk). If k ≥ 2, there are two possibilities, depending on whetherw0(s1, . . . , sk−1)
and w0(s1, . . . , sk) are equal or not, which is equivalent to the equality sk−1 = sk since s1 > · · · >
sk−1 ≥ sk. If sk−1 = sk, we say that (u1, . . . , un) is collapsible. If sk−1 > sk, then we have uk

.
= vw

(i.e., uk = vw and v w ), with v and w in W \ {1} such that (u1, . . . , uk−1, v) is essential: we say that
(u1, . . . , un) is redundant.

Finally, if k = 1 and (u1) is not essential, we have u1 = s1w withw in W \ {1} and we say that (u1)
is redundant.

By construction, the family (u1, . . . , un) is either essential, collapsible or redundant. This induces a
partition of the cells of Gar3(W) and the spheres of Gar4(W) in three parts.

4.2.2. The well-founded order. Finally, we define a mapping

Φ(u1, . . . , un) =
(
l(u1 · · ·un), du1 , l(u1), du1u2 , l(u1u2), . . . , du1···un−1 , l(u1 · · ·un−1)

)
of every family (u1, . . . , un) of elements of W \ {1} such that l(u1 · · ·un) = l(u1) + · · · + l(un) into
N × (S × N)n−1. We equip the target set with the well-founded lexicographic order generated by the
natural order on N and the fixed order on S. We compare families (u1, . . . , un) of elements of W \ {1}

such that l(u1 · · ·un) = l(u1) + · · ·+ l(un) by ordering to their images throughΦ.
The cells of Gar3(W) are then compared according to their indices.

4.2.3. The collapsible part of Gar3(W). We define Γ as the collection of all the 2-cells and 3-cells of
Gar3(W) and all the 3-spheres of Gar4(W) whose indexing family is collapsible. Let us check that Γ is
a collapsible part of Gar3(W).

The 2-cells of Γ are the αs,u : s|u ⇒ su with s = dsu. Each one is collapsible, the corresponding
redundant 1-cell is su and we have su > s and su > u because l(su) > l(s) and l(su) > u.

The 3-cells of Γ are the
su|v

αsu,v

�'
As,u,v��

s|u|v

αs,u|v +?

s|αu,v �3

suv

s|uv
αs,uv

7K

28



4.2. Homotopical reduction of Garside’s coherent presentation

with either (a) s = dsu or (b) s > dsu = dsuv and su = w0(s, dsu). Those 3-cells are collapsible
up to a Nielsen transformation, and the corresponding redundant 2-cells are: (a) αsu,v; or (b) αs,uv. By
hypothesis, the indexing pairs (su, v) and (s, uv) are redundant, so that none of those 2-cells is in Γ .
We check that each redundant 2-cell is strictly greater than the other 2-cells appearing in the source and
target of As,u,v. For both cases (a) and (b), we observe that αsu,v and αs,uv are always strictly greater
than αs,u and αu,v since l(suv) > l(su) and l(suv) > l(uv). Then, we proceed by case analysis:

(a) αsu,v > αs,uv since s = dsu and l(su) > l(s)

(b) αs,uv > αsu,v since s > dsu.

Finally, the 3-spheres of Γ are theωs,u,v,w

su|v|w

αsu,v|w
"6

As,u,v|w

suv|w

αsuv,w

� 
As,uv,ws|u|v|w

αs,u|v|w
0D

s|αu,v|w %9

s|u|αv,w �/

s|uv|w

αs,uv|w

5I

s|αuv,w
�)

s|Au,v,w

suvw

s|u|vw

s|αu,vw

(< s|uvw

αs,uvw

=Q �?

su|v|w

αsu,v|w
"6

su|αv,w
�)

=

suv|w

αsuv,w

� 
Asu,v,w

s|u|v|w

αs,u|v|w
0D

s|u|αv,w �/

su|vw αsu,vw %9

As,u,vw

suvw

s|u|vw

αs,u|vw

5I

s|αu,vw

(< s|uvw

αs,uvw

=Q

with one of the following:
(a) s = dsu,
(b) s > dsu = dsuv and su = w0(s, dsu),
(c) s > dsu > dsuv = dsuvw and suv = w0(s, dsu, dsuv).

Those 3-cells are collapsible up to a Nielsen transformation, and the corresponding redundant 3-cells
are (a) Asu,v,w, (b) As,uv,w or (c) As,u,vw. By hypothesis, the indexing triples (su, v,w), (s, uv,w)
and (s, u, vw) are redundant, so that none of those 3-cells is in Γ . We observe that Asu,v,w, As,uv,w
and As,u,vw are always strictly greater than As,u,v and Au,v,w since l(suvw) > l(suv) and l(suvw) >
l(uvw). Then, we proceed by case analysis:

(a) Asu,v,w > As,uv,w and Asu,v,w > As,u,vw since s = dsu and l(su) > l(s).

(b) As,uv,w > Asu,v,w since s > dsu and As,uv,w > As,u,vw since dsuv = dsu and l(suv) > l(su).

(c) As,u,vw > Asu,v,w since s > dsu and As,u,vw > As,uv,w since dsu > dsuv.

4.2.4. The homotopical reduction. The homotopical reduction of Gar3(W) with respect to Γ is the Ti-
etze transformation π = πΓ that coherently eliminates all the collapsible cells of Γ with their correspond-
ing redundant cell. According to the partition of the cells of Gar3(W), this only leaves the essential cells,
i.e., those whose indexing family is essential, with source and target replaced by their image through π.

In particular, the essential 1-cells are the elements of S. By definition of Γ , the 3-functor π maps a
1-cell u of Gar3(W) to the element sπ(v) of S∗ if u .

= sv and s = du. This gives, by induction,

π(u) = s1 · · · sn
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4. Artin’s coherent presentation of Artin monoids

for s1, . . . , sn in S such that u .
= s1 · · · sn and si = dsi···sn . This is sufficient to conclude that the

underlying 2-polygraph of Gar3(W)/Γ is (isomorphic to) Artin’s presentation of B+(W).
The essential 2-cells are the αs,u such that s > dsu and su = w0(s, dsu). Hence, there is one such

2-cell for every t > s in S such that W{s,t} is finite, i.e., such that mst is finite, and its image through π
has shape

〈ts〉mst ⇒ 〈st〉mst .
Finally, the essential 3-cells are the As,u,v such that s > dsu > dsuv, su = w0(s, dsu) and suv =

w0(s, dsu, dsuv). Hence, there is one such 3-cell for every t > s > r in S such that W{r,s,t} is finite. If
we denote by Zr,s,t the image of the corresponding 3-cell As,u,v through π, this concludes the proof of
Theorem 4.1.1.

4.3. The 3-cells of Artin’s coherent presentation

Let us compute the sources and targets of the 3-cells Zr,s,t of Artin’s coherent presentation. The 3-cell
Zr,s,t is the image through the Tietze transformation π of the corresponding essential 3-cell At,u,v, with
u the complement of t in w0(s, t) and v the complement of w0(s, t) in w0(r, s, t). Since the 3-cell
At,u,v is entirely determined by its source, the shape of the 3-cell Zr,s,t is determined by the Coxeter type
of the parabolic subgroup W{r,s,t}. According to the classification of finite Coxeter groups [3, Chap. VI,
§ 4, Theorem 1], there are five cases, shown below:

r s t

A3

r s t4

B3

r s t5

H3

r s t

A1 ×A1 ×A1

r s tp

I2(p)×A1 3≤p<∞
Note that we use the numbering conventions of [20, Theorem 1.1]. The resulting 3-cells are given in
Figures 2 and 3. The rest of this section explains their computation, mainly based on the images of
the 2-cells of Gar3(W) through π. We detail the cases of the Coxeter types A1 × A1 × A1 and A3. A
Python script, based on the PyCox library [19], can be used to compute Garside’s and Artin’s coherent
presentations for spherical Artin monoids1. The 3-cells Zr,s,t are also given, in “string diagrams”, in [15,
Definition 4.3].

4.3.1. Projection of the 2-cells of Garside’s presentation. By construction, the image of a 2-cell αu,v
of Gar3(W) through π is given by induction, depending on whether it is essential, collapsible or redun-
dant.

The essential 2-cells are the αt,u such that t > s and u is the complement of t in w0(s, t), where
s = dtu. The image of αt,u is the corresponding braid relation:

π(αt,u) = γs,t.

1http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip
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Figure 2: The 3-cells Zr,s,t for Coxeter types A3, B3 and A1 ×A1 ×A1
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Figure 3: The 3-cells Zr,s,t for Coxeter type H3 and I2(p)×A1, p ≥ 3
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4.3. The 3-cells of Artin’s coherent presentation

The collapsible 2-cells are the αs,u such that s = dsu, mapped to the identity of π(su). Finally, there are
two disjoint cases of redundant 2-cells : (a) αsu,v with s = dsu and (b) αs,uv with s > dsu = dsuv. They
are mapped through π to the source of the 3-cell As,u,v after the appropriate Nielsen transformation,
giving the following inductive formulas:

(a) s = dsu
π(su)π(v)

π(αsu,v)

"6

π(α−
s,u)π(v)

 4

π(suv)

π(s)π(u)π(v)
π(s)π(αu,v)

%9 π(s)π(uv)
π(αs,uv)

0D=

(b) s > dsu = dsuv
π(s)π(uv)

π(αs,uv)

"6

π(s)π(α−
u,v)

 4

π(suv)

π(s)π(u)π(v)
π(αs,u)π(v)

%9 π(su)π(v)
π(αsu,v)

0D=

4.3.2. The Coxeter type A1 ×A1 ×A1. For t > s > r in S such that W{r,s,t} is of type A1 ×A1 ×A1,
the corresponding essential 3-cell of Gar3(W) is as follows:

st|r αst,r

�&
At,s,r��

t|s|r

αt,s|r +?

t|αs,r �3

rst

t|rs
αt,rs

8L

The image Zr,s,t of At,s,r through π is given by the inductive application of π to the 2-cells of its source
and target. For the source of Zr,s,t, we get π(αt,s|r) = γstr and

π(αst,r) = sπ(αt,r) ?1 π(αs,rt)

= sγrt ?1 γrst ?1 π(αrs,t)

= sγrt ?1 γrst.

For the target of Zr,s,t, we get π(t|αs,r) = tγrs and

π(αt,rs) = γrts ?1 π(αrt,s)

= γrts ?1 rγst ?1 π(αr,st)

= γrts ?1 rγst.

Hence Zr,s,t is the permutohedron, displayed as the third 3-cell of Figure 2.
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4.3.3. The Coxeter type A3. If W{r,s,t} is of type A3 with t > s > r, the corresponding essential 3-cell
of Gar3(W) is as follows:

sts|rst
αsts,rst

�+
At,st,rst��

t|st|rst

αt,st|rst *>

t|αst,rst  4

rst

t|rsrts
αt,rsrts

4H

For the source of Zr,s,t = π(At,st,rst), we have π(αt,st|rst) = γstrst and

π(αsts,rst) = stπ(αs,rst) ?1 sπ(αt,rsrt) ?1 π(αs,rstsr).

Then, we have stπ(αs,rst) = stγrst and π(αs,rstsr) = γrstsr, together with

sπ(αt,rsrt) = sγrtsrt ?1 srπ(αt,srt) ?1 sπ(αr,stsr).

Finally, we get sπ(αr,stsr) = 1srstsr and

srπ(αt,srt) = srtπ(αst,r)
− ?1 srγstr ?1 srπ(αsts,r) = srtsγ−rt ?1 srγstr.

Wrapping up all those computations, we get the source of Zr,s,t as displayed at the top of Figure 2, where
an exchange relation has been applied to contract sγrtsrt ?1 srtsγ−rt into sγrtsγ−rt. The target of Zr,s,t is
obtained by similar computations.

Let us note that we can have W{r,s,t} of type A3, but with another ordering on the elements r, s, t.
For example, if s > r > t, the 3-cell Zs,r,t is the image of At,rt,srt through π, obtained, up to a Nielsen
equivalence, as follows: one considers the 3-cell of the case r > s > t with r and s exchanged, then one
replaces every occurrence of the 2-cell γr,s, that is not in Art2(W) since s < r, by γ−s,r.

5. COHERENT PRESENTATIONS AND ACTIONS ON CATEGORIES

In this section, we establish the relationship between our results on coherent presentations of monoids
and Deligne’s notion of an action on a category. In particular, we obtain that Deligne’s Theorem [13,
Theorem 1.5] is equivalent to Theorem 3.1.3. We prove that, up to equivalence, the actions of a monoid M
on categories are the same as the 2-functors from Σ to Cat, where Σ is any coherent presentation of M.

5.1. 2-representations of 2-categories

5.1.1. 2-representations. We recall from [14] that, given 2-categories C and D, a 2-representation of C
in D is a pseudofunctor F : C→ D. This is a weakened notion of 2-functor, specified by:

− for every 0-cell x of C, a 0-cell F(x) of D,

− for every 1-cell u : x→ y of C, a 1-cell F(u) : F(x)→ F(y) of D,

− for every 2-cell f : u⇒ v of C, a 2-cell F(f) : F(u)⇒ F(v) of D.
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5.1. 2-representations of 2-categories

As for 2-functors, the data are required to be compatible with vertical composition, in a strict way:

− for all 2-cells f : u⇒ v : x→ y and g : v⇒ w : x→ y of C, we have F(f ?1 g) = F(f) ?1 F(g),

− for every 1-cell u of C, we have F(1u) = 1F(u).

The data are also compatible with horizontal composition, but only up to coherent isomorphisms:

− for all 1-cells u : x → y and v : y → z of C, an invertible 2-cell Fu,v : F(u)F(v) ⇒ F(uv) of D,
natural in u and v,

− for every 0-cell x of C, an invertible 2-cell Fx : 1F(x) ⇒ F(1x) of D.

Finally, these 2-cells are required to satisfy the following monoidal coherence relations in D:

− for all 1-cells u : x→ y, v : y→ z and w : z→ t of C,
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− for every 1-cell u : x→ y of C,
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As usual with monoidal coherence relations, this implies that, for every sequence (u1, . . . , un) of pair-
wise composable 1-cells in C, there exists a unique invertible 2-cell

Fu1,...,un : F(u1) · · · F(un) =⇒ F(u1 · · ·un)

in D built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence
2-cells are identities: it can be seen as a strict 2-representation.

The notion of 2-representation has been introduced by Elgueta for 2-groups in [14]. It is also studied
by Ganter and Kapranov in [16] in the special case of groups. In [35], Rouquier considers the more gen-
eral case of 2-representations of bicategories. Among concrete target 2-categories for 2-representations,
natural choices are the 2-categories of 2-vector spaces, either from Kapranov and Voevodsky [25] or
from Baez and Crans [2], of 2-Hilbert spaces [1] or of categories [13].
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5. Coherent presentations and actions on categories

5.1.2. Morphisms of 2-representations. If F,G : C→ D are 2-representations of C into D, a morphism
of 2-representations from F toG is a pseudonatural transformation α : F⇒ G between the corresponding
pseudofunctors:

− for every 0-cell x of C, a 1-cell αx : F(x)→ G(x) of D,

− for every 1-cell u : x→ y of C, an invertible 2-cell of D as follows

F(y) αy

��

F(x)

F(u) 33

αx ++

G(y)

G(x) G(u)

>>
' αu
��

These data must satisfy several coherence relations:

− for every 2-cell f : u⇒ v : x→ y of C,

F(y)
αy

��

F(x)

F(u) **

F(v)

AAF(f)
�#

αx ))

G(y)

G(x)
G(v)

@@
αv
��

=

F(y)
αy

��

F(x)

F(u)
55

αx ))

G(y)

G(x)

G(u)

55

G(v)

NN

G(f) �&

αu
��

− for all 1-cells u : x→ y and v : y→ z of C,

F(y)

F(v)
++
F(z)

αz

��

F(x)

F(u)

II

F(uv)

AAFu,v
�*

αx ))

G(z)

G(x)
G(uv)

@@
αuv
��

=

F(y)

F(v)
++

αy

%%

F(z)
αz

��

αv��

F(x)

F(u)

II

αx ))

αu��
G(y) G(v) // G(z)

G(x)

G(u)

OO

G(uv)

II
Gu,v
�0

− for every 0-cell x of C,

F(x)
αx

��

F(x)

1F(x) **

F(1x)

AAFx�#

αx ))

G(x)

G(x)
G(1x)

@@
α1x
��

= F(x)
αx
// G(x)

1G(x)

""

G(1x)

;;
Gx�� G(x)
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5.1. 2-representations of 2-categories

5.1.3. Categories of 2-representations. If F,G,H : C→ D are 2-representations and if α : F⇒ G and
β : G⇒ H are morphisms of 2-representations, the composite morphism α ? β : F⇒ H is defined by:

− if x is a 0-cell of C, the 1-cell (α ? β)x : F(x)→ H(x) of D is the composite

F(x)
αx

// G(x)
βx

// H(x)

− if u : x→ y is a 1-cell of C, the invertible 2-cell (α ? β)u of D is defined by

F(y) (α?β)y

��

F(x)

F(u) 44

(α?β)x **

H(y)

H(x)
H(u)

AA
(α ? β)u
��

=

F(y) αy

��

F(x)

F(u) 33

αx ++

G(y) βy

��

G(x)

G(u)
88

βx ++

αu��

H(y)

H(x) H(u)

>>
βu��

The category of 2-representations of C into D is denoted by 2Rep(C,D) and its full subcategory whose
objects are the 2-functors is denoted by 2Cat(C,D).

5.1.4. Actions of monoids on categories. If M is a monoid, we see it as a 2-category with exactly
one 0-cell •, with the elements of M as 1-cells and with identity 2-cells only. We define the category
of actions of M on categories as the category Act(M) = 2Rep(M,Cat) of 2-representations of M
in Cat. Expanding the definition, an action T of M is specified by a category C = T(•), an endofunctor
T(u) : C → C for every element u of M, a natural isomorphism Tu,v : T(u)T(v) ⇒ T(uv) for every
pair (u, v) of elements of M and a natural isomorphism T• : 1C ⇒ T(1) such that:

− for every triple (u, v,w) of elements of M, the following diagram commutes:

T(uv)T(w) Tuv,w

�-
=T(u)T(v)T(w)

Tu,vT(w) (<

T(u)Tv,w
"6

T(uvw)

T(u)T(vw) Tu,vw

1E

− for every element u of M, the following two diagrams commute:

T(1)T(u) T1,u

�%
T(u)

T•T(u) *>

T(u)

=

T(u)T(1) Tu,1

�%
T(u)

T(u)T• *>

T(u)

=

This definition corresponds to the notion of unital action of M on C that Deligne considers in [13]. For
semigroups, he proves that unital actions are equivalent to nonunital actions. For any monoid M, this
fact is a consequence of the Tietze equivalence of the standard coherent presentation Std3(M) and the
reduced standard coherent presentation Std ′3(M), given in Example 2.1.2, together with Theorem 5.1.6.
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5. Coherent presentations and actions on categories

5.1.5. Remark. If S is an action of M on a category C and T is an action of M on a category D, by
expanding the definition, we get that a morphism of actions α from S to T is specified by a functor
F : C → D, corresponding to the component of α at the unique 0-cell of M, and, for every element u
of M, a natural isomorphism αu : S(u)F⇒ FT(u). These data must satisfy the coherence conditions of
a pseudonatural transformation. Those morphisms of actions of monoids on categories differ from the
ones of Deligne in [13]. Indeed, he considers morphisms between actions of M on the same category
C, such that the functor F is the identity of C, but where the natural transformation αu is not necessar-
ily an isomorphism: those are the icons between the corresponding pseudofunctors, as introduced by
Lack in [30] as a special case of oplax natural transformations (defined as pseudonatural transformations
whose component 2-cells are not necessarily invertible). Here we follow Elgueta and consider pseudo-
natural transformations, but the results and proofs can be adapted to icons or generalised to oplax natural
transformations.

The main theorem of this section relates the coherent presentations and the 2-representations of a
category. It is a direct consequence of Theorem 1.3.1 and of Proposition 5.3.2, whose proof is the
objective of the rest of this section.

5.1.6. Theorem. Let C be a category, let Σ be an extended presentation of C. The following assertions
are equivalent:

i) the (3, 1)-polygraph Σ is a coherent presentation of C;

ii) for every 2-category C, there is an equivalence of categories

2Rep(C,C) ≈ 2Cat(Σ,C)

that is natural in C.

5.2. 2-representations of cofibrant 2-categories

Let us fix 2-categories C and D, with C cofibrant. Our objective is to define a “strictification” functor

·̂ : 2Rep(C,D) −→ 2Cat(C,D)

and to prove that it is a quasi-inverse for the canonical inclusion functor of 2Cat(C,D) into 2Rep(C,D).

5.2.1. Strictification of 2-representations. Let F : C → D be a 2-representation. Let us define the
2-functor F̂ : C → D, dimension after dimension. On 0-cells, F̂ takes the same values as F. Since C is
cofibrant, its underlying 1-category is free: on generating 1-cells, F̂ is equal to F and, then, it is extended
by functoriality on every 1-cell. Hence, if u = a1 · · ·an is a 1-cell of C, where the ais are generating
1-cells, we have

F̂(u) = F(a1) · · · F(an).

From the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell in D

F̂(u) = F(a1) · · · F(an)
Fa1,...,an %9 F(a1 · · ·an) = F(u)
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5.2. 2-representations of cofibrant 2-categories

from F̂(u) to F(u), built from the coherence 2-cells of F. Since the decomposition of u in generators is
unique, we simply denote this 2-cell by Fu. Let f : u⇒ v : x→ y be a 2-cell of C. We define F̂(f) as the
following composite 2-cell of D, where the double arrows, which always go from top to bottom, have
been omitted for readability:

F(x)

F̂(u)

��

F̂(v)

>>
F̂(f) F(y) = F(x)

F̂(u)

��

F(u)
$$

F(v)

99

F̂(v)

HH

Fu

F(f)

F−v

F(y)

As a direct consequence, we get that F̂ is compatible with vertical composition and identities of 1-cells.
Hence, we have defined a 2-functor F̂ from C to D. We note that the monoidal coherence relations
satisfied by F imply that, if u : x→ y and v : y→ z are 1-cells of C, we have

F(x)

F̂(uv)

��

F(uv)

>>
Fuv F(z) = F(x)

F̂(u)

��

F(u) //

Fu

F(uv)

99
F(y)

F̂(v)

��

F(v) //

Fv

Fu,v

F(z)

and, if x is a 0-cell of C, we have F1x = Fx.

5.2.2. Strictification of morphisms of 2-representations. Let F,G : C → D be 2-representations and
let α : F ⇒ G be a morphism between them. Let us define a pseudonatural transformation α̂ : F̂ ⇒ Ĝ.
For a 0-cell x of C, we take α̂x = αx. If u : x → y is a 1-cell of C, we define α̂u as the following
invertible 2-cell of D:

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)
Ĝ(u)

DD
α̂u =

F(y)
αy

��

F(x)

F̂(u)
++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
77

Ĝ(u)

PP

G−
u

αu

This defines a pseudonatural transformation α̂ : F̂⇒ Ĝ. Indeed, if x is a 0-cell of C, we have:

F(x)
αx

��

F(x)

1F(x)
66

αx
''

G(x)

G(x)
1G(x)

DD
α̂1x =

F(x)
αx

��

F(x)

1F(x)

++

F(1x)

DD
Fx

αx
''

G(x)

G(x)

G(1x)
77

1G(x)

PP

G−
x

α1x = F(x)

αx

��

αx

@@
1αx G(x)
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5. Coherent presentations and actions on categories

Then, if u : x→ y and v : y→ z are 1-cells of C, we get:

F(z)
αz

��

F(x)

F̂(uv)
66

αx
''

G(z)

G(x)
Ĝ(uv)

DD
α̂uv =

F(y)

F̂(v)

��

F(v) //

Fv
F(z)

αz

��

F(x)F̂(u)

55

F(u)

OO

Fu
F(uv)

DD

Fu,v

αx
''

G(z)

G(x)

G(uv)
77

G−
u,v

G(u) //

Ĝ(u)

HH

G−
u

G(y)

G(v)
OO

Ĝ(v)ii

G−
v

αuv

=

F(y)

F̂(v)

��

F(v) 44

Fv

αy

""

F(z)
αz

��

F(x)F̂(u)

55

F(u)

UU

Fu

αx
''

G(z)

G(x)
G(u) ++

Ĝ(u)

HH
G−
u

G(y)

G(v)
II

Ĝ(v)ii

G−
v

αu

αv
=

F(y)
F̂(v)
//

αy

""

F(z)
αz

��

F(x)

F̂(u)

OO

αx
''

G(z)

G(x)
Ĝ(u)

// G(y)

Ĝ(v)

OO
α̂u

α̂v

Finally, if f : u⇒ v : x→ y is a 2-cell of C:

F(y)
αy

��

F(x)

F̂(u)
++

F̂(v)

DD

F̂(f)

αx
''

G(y)

G(x)
Ĝ(v)

DD
α̂v =

F(y)
αy

��

F(x)

F̂(u) &&

F(u)

00

F(v)

LL

Fu

F(f)

αx
''

G(y)

G(x)

G(v)
77

Ĝ(v)

PP

G−
v

αv

=

F(y)
αy

��

F(x)

F̂(u)

++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
00

G(v)

KK

Ĝ(v)

TT

G(f)

G−
v

αu
=

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)

Ĝ(u)
77

Ĝ(v)

PP

Ĝ(f)

α̂u

With similar computations, we check that strictification is compatible with the composition of morphisms
of 2-representations and with identities, so that it is a functor from 2Rep(C,D) to 2Cat(C,D).
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5.3. 2-representations and cofibrant approximations

5.2.3. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion

2Cat(C,D) −→ 2Rep(C,D)

is an equivalence of categories that is natural in D, with quasi-inverse given by the strictification functor.

Proof. It is sufficient to check that, for every 2-representation F : C → D, there exists a pseudonatural
isomorphism ϕF : F̂⇒ F that is itself natural in F. We define ϕF as follows:

− if x is a 0-cell of C, then F̂(x) = F(x) and we take (ϕF)x = 1x,

− if u : x → y is a 1-cell of C, then (ϕF)u : F̂(u) ⇒ F(u) is defined as the invertible coherence
2-cell Fu : F̂(u)⇒ F(u).

These data satisfy the required coherence properties: the compatibility with the 2-cells of C is exactly the
definition of F̂ and the compatibility with horizontal composition and identities comes from the monoidal
coherence relations of F, as already checked. Moreover, if α : F⇒ G is a morphism of 2-representations,
the naturality condition

F α

�)
F̂

ϕF (<

α̂ "6

= G

Ĝ ϕG

7K

corresponds, on each 1-cell u of C, to the definition of α̂.

5.3. 2-representations and cofibrant approximations

Let us recall that, for a 2-category C, we denote by Ĉ its standard cofibrant replacement. We note that
the definition of a 2-functor from Ĉ to a 2-category D is exactly the same as the one of a pseudofunctor
from C to D, yielding the following isomorphism of categories:

2Rep(C,D) ' 2Cat(Ĉ,D).

In particular, for every monoid M, we get an isomorphism of categories:

Act(M) ' 2Cat(M̂,Cat).

In what follows, we prove that weak versions of these isomorphisms exist for all cofibrant approxi-
mations. More precisely, the category of 2-representations of a 2-category C into a 2-category D is
equivalent to the one of 2-functors from any cofibrant approximation C̃ of C into D.

5.3.1. Lemma. Let C and D be 2-categories. The following assertions are equivalent:

i) the 2-categories C and D are pseudoequivalent, i.e., there exist pseudofunctors F : C → D and
G : D→ C such that

GF ' 1C and FG ' 1D;
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5. Coherent presentations and actions on categories

ii) for every 2-category E, there is an equivalence of categories

2Rep(C,E) ≈ 2Rep(D,E)

that is natural in E.

Proof. Let us assume that C and D are pseudoequivalent. As a consequence, for all pseudofunctors
H : C→ E and K : D→ E, we have:

HGF ' H and KFG ' K.

Thus the functors 2Rep(F,E) and 2Rep(G,E), respectively sending a pseudofunctor K : D → E to KF
and a pseudofunctor H : C→ E to HG, form the required equivalence of categories.

Conversely, let us assume that, for every 2-category E, we have 2Rep(C,E) ≈ 2Rep(D,E) natural
in E. We denote by

ΦE : 2Rep(C,E) → 2Rep(D,E) and ΨE : 2Rep(D,E) → 2Rep(C,E)

the functors that constitute the equivalence. This means that, for all pseudofunctors H : C → E and
K : D→ E, we have the following isomorphisms:

ΨEΦE(H) ' H and ΦEΨE(K) ' K.

The naturality of the equivalence means that, for all 2-categories E and E ′ and every pseudofunctor
H : E→ E ′, the following diagrams commute:

2Rep(C,E)
ΦE

//

2Rep(C, H)
��

=

2Rep(D,E)

2Rep(D, H)
��

2Rep(C,E ′)
ΦE ′

// 2Rep(D,E ′)

2Rep(D,E)
ΨE

//

2Rep(D, H)
��

=

2Rep(C,E)

2Rep(C, H)
��

2Rep(D,E ′)
ΨE ′

// 2Rep(C,E ′).

We define the pseudofunctors F : C→ D and G : D→ C as follows:

F = ΨD(1D) and G = ΦC(1C).

We consider the naturality condition onΦ with E = C, E ′ = D and H = F. This gives an equality

F ◦ΦC(K) = ΦD(F ◦ K)

for every pseudofunctor K : C→ C. Thus, in the special case K = 1C, we get

FG = ΦD(F) = ΦD ◦ ΨD(1D) ' 1D.

In a symmetric way, the naturality condition on Ψ gives GF ' 1C, thus concluding the proof.

A combination of Proposition 5.2.3 and of Lemma 5.3.1 gives the following result.
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5.3.2. Proposition. Let C and C̃ be 2-categories, with C̃ cofibrant. The following assertions are equiva-
lent:

i) the 2-category C̃ is a cofibrant approximation of C;

ii) for every 2-category D, there is an equivalence of categories

2Rep(C,D) ≈ 2Cat(C̃,D)

that is natural in D.

Finally, an application of Theorem 1.3.1 concludes the proof of Theorem 5.1.6. In the particular case
of Artin monoids, we thus get Deligne’s Theorem 1.5 of [13] for any Artin monoid as a consequence of
Theorem 3.1.3. Moreover, Theorem 4.1.1 gives a similar result in terms of Artin’s coherent presentation,
formalising the paragraph 1.3 of [13] on the actions of B+

4 .
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