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COHERENT PRESENTATIONS OF ARTIN MONOIDS

STEPHANE GAUSSENT YVES GUIRAUD PHILIPPE MALBOS

Abstract — We compute coherent presentations of Artin monoids, that is presentations
by generators, relations, and relations between the relations. For that, we use methods
of higher-dimensional rewriting that extend Squier’s and Knuth-Bendix’s completions
into a homotopical completion-reduction, applied to Artin’s and Garside’s presenta-
tions. The main result of the paper states that the so-called Tits-Zamolodchikov 3-cells
extend Artin’s presentation into a coherent presentation. As a byproduct, we give a
new constructive proof of a theorem of Deligne on the actions of an Artin monoid on
a category.

M.S.C. 2000 - 20F36, 18D05, 68Q42.
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INTRODUCTION

A Coxeter system (W,S) is a group W together with a presentation by a finite set of involutions S
satisfying some (generalised) braid relations that we recall in Section [3] Forgetting about the involutive
character of the generators and keeping only the braid relations, one gets Artin’s presentation of the Artin
monoid B (W). For example, if W = Sy, the group of permutations of {1, 2, 3,4}, then S consists of the
elementary transpositions r = (1 2), s = (2 3) and t = (3 4), and the associated Artin monoid is the
monoid Bj{ of positive braids on four strands, with generators 1, s, t satisfying the relations

ST =srs, Tt=1tr and sts = tst.

The aim of this article is to push further Artin’s presentation and study the relations between the braid
relations. A coherent presentation of a monoid (or more generally of a category) consists of a set of
generators, a set of generating relations and some coherence conditions. These coherence conditions
can be thought of as elements of a homotopy basis of a 2-dimensional CW-complex associated to the
presentation. In the case of the braid monoid BI on 4 strands, Deligne [[13]] notes that the homotopy basis
associated to Artin’s presentation contains only one element whose boundary consists of the reduced
expressions graph of the element of maximal length in Sy (this graph can be seen in Subsection {.3).

Such a graph can be considered for any element w in W. The vertices are the reduced expressions
of w and two such are linked by an edge if one is obtained from the other by a braid relation. In [39],
Tits proves that the fundamental group of the reduced expressions graph is generated by two types of
loops in the graph, the most interesting ones are associated to finite parabolic subgroups of rank 3 of W.
Actually, for the purpose of finding generators for the homotopy basis of B™ (W) associated to Artin’s
presentation, the generators of the first type are degenerate and part of the generators of the second
type are superfluous. The main result of our paper, Theorem states that there exists exactly one
nondegenerate generator of the homotopy basis for every finite parabolic subgroup of rank 3 of W.

We now give some more details on the techniques we are using. The notion of coherent presentation
is formalised in terms of polygraphs, which are presentations of higher-dimensional categories intro-
duced by Burroni in [7], and by Street in [37]] under the name of computad. A 2-polygraph corresponds
to a presentation of a monoid by a rewriting system, that is a presentation by generators (1-cells) and
oriented relations (2-cells). For example, Artin’s presentation of BI has three generating 1-cells r,s,t
and three generating 2-cells

TST = srs, Tt = tr and sts = tst.

In [22], the last two authors have introduced the notion of (3, 1)-polygraph as a presentation extended by
3-cells on the 2-category defined by the congruence generated by the presentation. A coherent presenta-
tion is then a (3, 1)-polygraph such that the extension is a homotopy basis. We recall all these notions in
Section

To obtain coherent presentations for monoids, in Section [2] we develop a homotopical completion-
reduction method that is based on Squier’s and Knuth-Bendix’s completions. The completion-reduction
is given in terms of Tietze transformations, known for presentations of groups [38, 31]], here defined for
(3, 1)-polygraphs. More precisely, we extend Squier’s completion to terminating 2-polygraphs thanks
to Knuth-Bendix’s completion [27]]. This is a classical construction of rewriting theory, similar to



Buchberger’s algorithm for computing Grobner bases [6]. The procedure transforms a terminating 2-
polygraph ¥ into a convergent one by adding to X a potentially infinite number of 2-cells so that every
critical branching is confluent. Confluence of a 2-polygraph means that every time two 2-cells share the
same source but two different targets, there exist two 2-cells having those different 1-cells as source and
the same target. So, we end up with a (3, 1)-polygraph S(X) where every critical branching has given
a 3-cell in the homotopy basis. Since the 2-polygraph we started with presents the monoid, §(Z) is a
coherent presentation of this monoid. Next, we introduce homotopical reduction as a general construc-
tion to coherently eliminate unnecessary cells in a coherent presentation. The (3, 1)-polygraph $(X) has
usually more cells than one could expect. For example, one can eliminate the pairs of redundant 2-cells
and collapsible 3-cells adjoined by homotopical completion for nonconfluent critical branchings. Some
of the remaining 3-cells may also be redundant: one way to detect them is to compute the 3-spheres as-
sociated to the triple critical branchings of the presentation. Let us mention that the two last authors and
Mimram have applied those methods to compute coherent presentations of plactic and Chinese monoids
in [24].

In Section [3] we use the homotopical completion-reduction method to get a coherent presentation
Gar3 (W) of the Artin monoid B™ (W). The starting presentation is Garside’s presentation, denoted by
Gar; (W). It has the elements of W \ {1} as generators and the relations are

upy = uv if  T(uv) = 1(u) + L(v).

The notation -|- stands for the product in the free monoid over W \ {1} and 1(u) is the length of u
in W. The resulting coherent presentation Garz(W), that we obtain in Theorem corresponds to
the coherence data given by Deligne in [13, Theorem 1.5]. We generalise our construction to Garside
monoids, so that we are able to associate to every Garside monoid M a coherent presentation Garz (M)
(see Theorem [3.3.3).

In Section we homotopically reduce Garside’s coherent presentation Gars (W) into the smaller co-
herent presentation Art3(W) associated with Artin’s presentation of the monoid B™ (W). The homotopy
basis of Gar3(W) boils down to one 3-cell Z; s for all elements t > s > v of S such that the subgroup
of W they span is finite. To sum up, Theorem says that the coherent presentation Art3(W) has
exactly one k-cell, 0 < k < 3, for every subset I of S of rank k such that the subgroup Wi is finite. The
precise shape of the 3-cells is given in

As an application, in Theorem we prove that if  is a coherent presentation of a monoid M,
then the category Act(M) of actions of M on categories is equivalent to the category of 2-functors from
the associated (2, 1)-category £ " to Cat that send the elements of the homotopy basis to commutative
diagrams. In [[13, Theorem 1.5], Deligne already observes that this equivalence holds for Garside’s
presentation of spherical Artin monoids. The constructions are described in the homotopical setting of
the canonical model structure on 2-categories given by Lack [28] 29]. In this spirit, as a byproduct of
our main theorem, to determine the action of an Artin monoid on a category, it suffices to attach to any
generating 1-cell s € S an endofunctor T(s) and to any generating 2-cell a natural isomorphism, such
that these satisfy coherence relations given by the Tits-Zamolodchikov 3-cells.

Finally, let us remark that, in [22, Theorem 4.5.3], Squier’s completion is extended in higher di-
mensions to produce polygraphic resolutions of monoids, of which coherent presentations form the first
three dimensions. From that point of view, the present work is a first step towards the construction of
polygraphic resolutions Gar, (W) and Art, (W) of Artin monoids, extending the coherent presentations
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Gar3(W) and Art3(W). Moreover, the relationship between those resolutions and the higher categorical
constructions in [33]] should be explored. Further, the abelian resolutions obtained from Gar,(W) and
Art, (W) by [22, Theorem 5.4.3] should be related to the abelian resolutions introduced in [10].

Acknowledgments. The authors wish to thank Pierre-Louis Curien, Kenji Iohara, Francois Métayer,
Samuel Mimram, Timothy Porter and the anonymous referee for fruitful exchanges and meaningful
suggestions. This work has been partially supported by the project Cathre, ANR-13-BS02-0005-02.

1. COHERENT PRESENTATIONS OF CATEGORIES
1.1. Higher-dimensional categories

If € is an n-category (we always consider strict, globular n-categories), we denote by Cy the set (and the
k-category) of k-cells of C. If f is a k-cell of C, then s;(f) and t;(f) respectively denote the i-source and
i-target of f; we drop the suffix iif i = k — 1. The source and target maps satisfy the globular relations:

$108it1 = Siotiy and tiosipr = tiotiy.

We respectively denote by f : u — v, f:u=v, f:u=v and f:u = v al-cell, a2-cell, a3-cell
and a 4-cell f with source u and target v. If f and g are i-composable k-cells, that is if t;(f) = si(g), we
denote by f *; g their i-composite; we simply write fg if i = 0. The compositions satisfy the exchange
relations given, for every 1 ## j and all possible cells f, g, h and k, by

(fxig)xj (hxik) = (fxh)*i(g=*5Kk).

If f is a k-cell, we denote by 1y its identity (k + 1)-cell. If T¢ is composed with cells of dimension k + 1
or higher, we simply denote it by f; for example, we write ufv and ufvgw instead of 1, %o f %o 1, and
Ty x0 T xo Ty %0 g *o 14y for T-cells u, v and w and 2-cells f and g.

1.1.1. (n,p)-categories. In an n-category C, a k-cell f, with source x and target y, is invertible if there
exists a k-cell f~ in C, with source y and target x in C, called the inverse of f, such that

fxr = 14 and f e f = ]y.

An (n,p)-category is an n-category whose k-cells are invertible for every k > p. In particular, an
(n, n)-category is an ordinary n-category and an (n, 0)-category is an n-groupoid.

1.1.2. Spheres. Let C be an n-category. A O-sphere of C is a pair y = (f, g) of O-cells of C and, for
1 < k < n, a k-sphere of C is a pair y = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g). We call f the source of y and g its target and we write s(y) = fand t(y) = g. If fisa
k-cell of €, for 1 < k < m, the boundary of f is the (k — 1)-sphere (s(f), t(f)).

1.1.3. Cellular extensions. Let C be an n-category. A cellular extension of C is a set I' equipped with a
map from T to the set of n-spheres of €, whose value on 7y is denoted by (s(y), t(y)). By considering all
the formal compositions of elements of ', seen as (n+ 1)-cells with source and target in C, one builds the
free (n+1)-category generated by T over C, denoted by C[I']. The quotient of C by T', denoted by C/T, is
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the n-category one gets from € by identification of the n-cells s(y) and t(y), for every n-sphere y of T".
If € is an (n, 1)-category and T is a cellular extension of C, then the free (n + 1, 1)-category generated
by T over € is denoted by C(I") and defined as follows:

C(T") = €Iy T/ Inv(T)

where I" contains the same (n+ 1)-cells as ', with source and target reversed, and Inv(I") is the cellular
extension of C[I; I'] made of two (n + 2)-cells

y Ax y
Xonx — Ty and XX — gy
for each (n + 1)-cell x of T.

1.1.4. Homotopy bases. Let C be an n-category. A homotopy basis of C is a cellular extension I" of €
such that, for every n-sphere y of C, there exists an (n+ 1)-cell with boundary y in C(T") or, equivalently,
if the quotient n-category C/I" has n-spheres of shape (f, f) only. For example, the n-spheres of € form
a homotopy basis of C.

1.2. Coherent presentations of categories

1.2.1. Polygraphs. A 1-polygraph is a pair L = (Xy, ;) made of a set £, and a cellular extension X,
of Xy. The free category X* over L is L* = XLy[Zq]. A 2-polygraph is a triple £ = (X, L1, X;) where
(Z0,Z1) is a 1-polygraph and X, is a cellular extension of the free category Xj. The free 2-category L*
over I, the free (2, 1)-category ' over L and the category Z presented by I are respectively defined by

I = 53[5, T =13(Z,) and I = I}/%,.

A (3,1)-polygraph is a pair L = (X,, £3) made of a 2-polygraph X, and a cellular extension X3 of the
free (2, 1)-category Z;. The free (3, 1)-category £ over I and the (2, 1)-category presented by I are
defined by

yT =3)(%3) and I =Z)/%;.

The category presented by a (3, 1)-polygraph L is the one presented by its underlying 2-polygraph,
namely Z,. If I is a polygraph, we identify its underlying k-polygraph Z; and the set of k-cells of the
corresponding cellular extension. We say that X is finite if it has finitely many cells in every dimension.
A (3, 1)-polygraph X~ can be summarised by a diagram representing the cells and the source and target
maps of the free (3, 1)-category L it generates:
%o ¢ L ¢ L ) 2 ri.
to 4 1%

1.2.2. Coherent presentations of categories. Let C be a category. A presentation of C is a 2-poly-
graph £ whose presented category X is isomorphic to C. We usually commit the abuse to identify C
and I and we denote by 1 the image of a 1-cell u of Z* through the canonical projection onto C. An
extended presentation of C is a (3, 1)-polygraph ~ whose presented category is isomorphic to C. A
coherent presentation of C is an extended presentation £ of C such that the cellular extension X3 of ZZT
is a homotopy basis.
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1.2.3. Example (The standard coherent presentation). The standard presentation Std;(C) of a cate-
gory C is the 2-polygraph whose cells are

— the 0-cells of C and a 1-cell i : x — y for every T-cell u: x — y of C,
— a2-cell yy, : UV = v for all composable 1-cells u and v of C,
—a2celly: 1, = TX for every O-cell x of C.

The standard coherent presentation Stdz(C) of C is Std;(C) extended with the following 3-cells

D s T s
PR Lxu Yiu Ly Yu,ly
uvw (xu,v wo uvwW M M
u
\. / U
w v,w

$:>

\

where w: x — y,v:y — zand w : z — t range over the 1-cells of C. It is well known that those
3-cells form a homotopy basis of Stdz(C)T, see [32, Chap. VII, § 2, Corollary].

1.3. Cofibrant approximations of 2-categories

Let us recall the model structure for 2-categories given by Lack in [28] and [29]. A 2-category is cofibrant
if its underlying 1-category is free. A 2-functor F : € — D is a weak equivalence if it satisfies the
following two conditions:

— every O-cell y of D is equivalent to a O-cell F(x) for x in C, i.e., there exist 1-cells u: F(x) — y
and v :y — F(x) and invertible 2-cells f : wx; v = Ty and g : vxj u = 1y in D;

— for all 0-cells x and x’ in €, the induced functor F(x,x’) : C(x,x’) — D(F(x),F(x’)) is an
equivalence of categories.

In particular, an equivalence of 2-categories is a weak equivalence. More generally, a 2-functor is a weak
equivalence F : C — D if, and only if, there exists a pseudofunctor G : D — €, see Section[3} that is a
quasi-inverse for F, i.e., such that GF ~ Te and FG ~ 1. B

If € is a 2-category, a cofibrant approximation of € is a cofibrant 2-category C that is weakly equiva-
lent to C.

1.3.1. Theorem. Let C be a category and let L be an extended presentation of C. The following asser-
tions are equivalent:

i) the (3,1)-polygraph L is a coherent presentation of C;
ii) the (2,1)-category L presented by L is a cofibrant approximation of C.

Proof. Letus assume that X3 is a homotopy basis of Z;. By definition, the 2-category Z is cofibrant. Let
us check that it is weakly equivalent to C. We consider the canonical projection 7t : LT — C that sends
every O-cell to itself, every 1-cell to its equivalence class and every 2-cell and 3-cell to the corresponding
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identity. This is well defined since two 1-cells of Z; have the same equivalence class in C if, and only if,
there exists a 2-cell between them in ZZT and since parallel 2-cells of £ are sent to the same (identity)
2-cell of C.

Since 7t is the identity on O-cells, it is sufficient to check that it induces an equivalence of categories
between Z(x,y) and C(x,y) for all O-cells x and y in C. We define a quasi-inverse t by choosing, for
each 1-cell u : x — y of C, an arbitrary representative 1-cell t(u) in £. By construction, we have that 7t
is the identity of C(x,y). Moreover, for every 1-cell u : x — y of Z, the 1-cell trr(u) is a 1-cell of £
from x to y that has the same equivalence class as 1: we choose an arbitrary 2-cell o, : u = () in Z.
Since all the parallel 2-cells of X are equal, we get the following commutative diagram for every 2-cell
of I:

f)

/ &(
This proves that o is a natural isomorphism between (7t and the identity of Z(x,y), yielding that 7t is a
weak equivalence and, as a consequence, that X is a cofibrant approximation of C.

Conversely, let us assume that £ is a cofibrant approximation of C. Let F : £ — C be a weak
equivalence and let f,g : W = v : x — Yy be parallel 2-cells of Z'. Since F is a 2-functor and C has
identity 2-cells only, we must have F(u) = F(v) and F(f) = F(g) = T§(,). By hypothesis, the 2-functor F
induces an equivalence of categories between Z(x,y) and C(x,y): we choose a quasi-inverse G and a

natural isomorphism o between GF and the identity of Z(x,y). We write the naturality conditions for f
and g and, using GF(f) = GF(g) = TgF), we conclude that f and g are equal in X:

f)

D R i
N S \/

Thus X is a coherent presentation of C. O

o

1.3.2. Remark. The cofibrant approximations of a category C form, in general, a strictly larger class
than the 2-categories presented by coherent presentations of C. Indeed, let C be the terminal category: it
contains one 0-cell and the corresponding identity 1-cell only. Then C is cofibrant and, as a consequence,
it is a cofibrant approximation of itself: this corresponds to the coherent presentation of C given by the
(3, 1)-polygraph with one O-cell and no higher-dimensional cells. But C also admits, as a cofibrant
approximation, the “equivalence” 2-category with two O-cells x and y, two 1-cells u : x — y and
v :y — x and two invertible 2-cells f : uv = 1y and g : vu = 1y, and this 2-category is not presented
by a coherent presentation of C, since it does not have the same O-cells as C.

1.3.3. Example (The standard cofibrant approximation [28]). For any 2-category €, we denote by ¢
the cofibrant 2-category with the same O-cells as € and the following higher cells:

— the T-cells of € are freely generated by the ones of C, with u in € denoted by U when seen as a
generator of C;
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— the 2-cells from Uy - - - Uy, to V7 - - -V, in € are the 2-cells from U - - - Uy, t0 V7 - - - vy in C, with
the same compositions as in C.

The canonical projection € — Cis the identity on 0-cells and maps each generating 1-cell U to u and
each 2-cell to itself: this is a weak equivalence whose quasi-inverse lifts a 2-cell f : u = v to its
distinguished representative f:1 = 9. Hence, the 2-category C is a cofibrant approximation of C, called
the standard cofibrant approximation of C.

When € = C is a category, the 2-category C has exactly one 2-cell from Uy - - - U t0 V7 - - - Yy, if, and
only if, the relation u; - - - Uy, = vy - - - vy holds in C: this is a representative of an identity and, thus, it is
invertible. As a consequence, the standard cofibrant approximation Cof Cis exactly the (2, 1)-category
presented by the standard coherent presentation Std;(C) of C.

2. HOMOTOPICAL COMPLETION AND HOMOTOPICAL REDUCTION

2.1. Tietze transformations of (3, 1)-polygraphs

An equivalence of 2-categories F : € — D is a Tietze equivalence if the quotient categories C;/C; and
D1/D; are isomorphic. Two (3, 1)-polygraphs are Tietze-equivalent if the 2-categories they present are
Tietze-equivalent. In that case, they have the same O-cells (up to a bijection). In particular, two coherent
presentations of the same category are Tietze-equivalent.

2.1.1. Tietze transformations. Let X be a (3, 1)-polygraph. Following the terminology of [5], a 2-cell
(resp. 3-cell, resp. 3-sphere) y of L is called collapsible if it satisfies the following:

— the target of 'y is a 1-cell (resp. 2-cell, resp. 3-cell) of the (3, 1)-polygraph X,
— the source of y is a 1-cell (resp. 2-cell, resp. 3-cell) of the free (3, 1)-category over X \ {t(y)}.

If v is collapsible, then its target is called a redundant cell. A collapsible cell and its redundant target can
be coherently adjoined or removed from a (3, 1)-polygraph, without changing the presented 2-category,
up to Tietze equivalence. These operations are formalised by Tietze transformations.

An elementary Tietze transformation of a (3,1)-polygraph L is a 3-functor with domain LT that
belongs to one of the following six operations:

1. Coherent adjunction or elimination of a redundant 1-cell with its collapsible 2-cell:

u
lu /\
° #o ° Yo °
<7
Ty ~_
X

The coherent adjunction t,, : £ ~— £ (x)(ex) is the canonical inclusion. The coherent elimination
Te : L — LT/ maps x tow and « to 1, leaving the other cells unchanged. The (3, 1)-category
T /o is freely generated by the following (3, 1)-polygraph £ /a:

S0 Ty © $1 Tly © S2
Sob———— () \{x))'Ee/——— (&, \{oc})T —— )__.3T.
tO 7-[(x()t] Tl Otz
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2.

Coherent adjunction or elimination of a redundant 2-cell with its collapsible 3-cell:

/@Lm
N4

ol T e f\H/S\H/OLo

NG

The coherent adjunction ¢ : T — X T (a)(y) is the canonical inclusion. The coherent elimination
Ty 2T — £T/y maps ccto f and y to 1y, leaving the other cells unchanged. The (3, 1)-category
3T /vy is freely generated by the following (3, 1)-polygraph Z/v:

S0 . $1 T Ty 082 T
Iof Iy (I \{a}) E—— (&\{v}) .
to 19| Ty © t

. Coherent adjunction or elimination of a redundant 3-cell:

.@. L4A) [ ]
\/ (AY)

The coherent adjunction ta : £ — ZT () is the canonical inclusion. The coherent elimination
TAy) - T — ZT/(A,vy) maps v to A, leaving the other cells unchanged. The (3, 1)-category
X T/(A,v) is freely generated by the following (3, 1)-polygraph Z/(A,y):

P
@9
e—

S0 $1 S2
o e o (Z\y) T
to tH t;

If £ and Y are (3, 1)-polygraphs, a (finite) Tietze transformation from X to Y is a 3-functor F: £7 — YT
that decomposes into a (finite) sequence of elementary Tietze transformations.

2.1.2.

Example (The reduced standard coherent presentation). Let C be a category. One can reduce

the standard coherent presentation Std3(C) of C, given in Example into the smaller reduced stan-
dard coherent presentation Std;(C) of C. It is obtained from Std3(C) by a Tietze transformation that
performs the following coherent eliminations, the resulting coherent presentation of the category C being
detailed in [22, 4.1.6]:

the 3-cells o1, 1 vs o, 1y,v and oy 1, since they are parallel to composites of As and ps,
the 2-cells y1,,, and the 3-cells Ay,
the 2-cells vy, 1, and the 3-cells py,

the 1-cells Tx and the 2-cells ,.
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2.1.3. Theorem. Two (finite) (3, 1)-polygraphs £ and Y are Tietze equivalent if, and only if, there exists
a (finite) Tietze transformation between them. As a consequence, if X is a coherent presentation of a
category C and if there exists a Tietze transformation from X to Y, then Y is a coherent presentation

of C.

Proof. Let us prove that, if two (3, 1)-polygraphs are related by a Tietze transformation, then they are
Tietze-equivalent. Since isomorphisms of categories and equivalence of 2-categories compose, it is
sufficient to check the result for each one of the six types of elementary Tietze transformations on a
fixed (3, 1)-polygraph L. By definition, the 3-functors 7t o 1 are all equal to the identity of Z' and the
3-functors t o 7t induce identities on the presented category. Moreover, the latter induce the following
2-functors on the presented 2-category X:

Ty 0Ty =~ ]f’ LfoTipA = ]f, IAOﬁ(A,y) = ]f.

Indeed, the first isomorphism is the identity on every cell, except on x which is mapped to &. The second
and third isomorphisms are, in fact, identities since they do not change the equivalence classes of 2-cells
modulo 3-cells.

Conversely, let £ and Y be Tietze-equivalent (3, 1)-polygraphs. We fix an equivalence F : £ — Y
of 2-categories that induces an isomorphism on the presented categories. We choose a weak inverse
G : Y — X and pseudonatural isomorphisms o : GF = Iz and T : FG = 15, in such a way that the
quadruple (F, G, 0, 1) is an adjoint equivalence, which is always feasible [32, Chap. IV, § 4, Theorem 1].
This means that the following “triangle identities” hold:

- pcay
FGF = F GFG = G
v v
TF oG

Let us lift the 2-functor F to a 3-functor F : 7 — YT, defined as F on the O-cells and 1-cells. For every
2-cell o : u = v of £, we choose a representative /F\( ) : F(u) = F(v) of F(&) in Y and, then, we
extend F by functoriality to every 2-cell of ZT. For a 3-cell y : f = g of £, we have f= g by definition
of Z, so that F(f) = F(g) holds in Y, , meaning that there exists a 3-cell in YT from F(f) to F(g) we take
it as a value for F( ) and we extend F to every 3-cell of £ by functoriality. We proceed similarly with G
to get a 3-functor G:YT >z,

Then, for a 1-cell x of £, we choose a representative 0, : GF(x) = x of 0y in T and we extend it
to every 1-cell by functoriality. If o« : u = v is a 2-cell of X, the naturality condition satisfied by ¢ on «
lifts to an arbitrarily chosen 3-cell of X

A~

%GF(\) \

GF(u) O

—.

10



2.1. Tietze transformations of (3, 1)-polygraphs

We proceed similarly with T. The conditions for the adjoint equivalence also lift to a 3-cell A, of YT for
every 1-cell x of X and to a 3-cell py of 2T for every 1-cell y of Y:

F(Gy) G(7y)
/_\ /_\
FGF(x) MAX F(x) GFG(y) Mpy Gly)
N NS
TF(x) 0G(y)

Now, let us build a Tietze transformation from X to Y. We start by constructing a (3, 1)-polygraph =
that contains both £ and Y, together with coherence cells that correspond to the Tietze equivalence. The
(3, 1)-polygraph = has the same O-cells as £ (and as Y) and it contains the 1-cells, 2-cells and 3-cells
of £ and Y, plus the following cells:

— Two 2-cells @y : F(x) = x and Py : G(y) = y, for all 1-cells x of X and y of Y. Using the fact
that F is a functor that preserves the O-cells, we extend @ to every 1-cell u of £ by functoriality,
ie. by @1, =11, and @uu/ = @u@y, to get a 2-cell @y : F(u) = u for every 1-cell u of b
We proceed similarly with 1 to define a 2-cell P, : G(v) = v of =T for every 1-cell v of Y.

— Two 3-cells @« and g, for all 2-cells « : uw = u’ and 3 : v = V’, with the following shapes:

o " rw) Pur vy S =2 6w by
/ (O \ / mwﬁ \
u u’ v v/
x B

We use the 2-functoriality of the sources and targets of @ and g to extend ¢ and | to every
2-cells f of ZT and g of YT, respectively.

— Two 3-cells &x and 1y, for all 1-cells x of £ and y of Y, with the following shapes:

2N 2R

X

F

by
We then extend ¢ and 1) to all 1-cells w of 7 and v of YT, respectively.
We construct a Tietze transformation © from X to = step-by-step, as follows.

— Adjunction of the cells of Y. For every 1-cell y of V', we apply tg(y) to coherently add y and

Py : G(y) = y. Then, for every 2-cell § : v = v/ of ¥, we apply by 41 G(B)x1,s O coherently

11



2. Homotopical completion and homotopical reduction

add B and \g. Then, we add every 3-cell & : g = g’ of ¥ with 1, where B is the 3-cell of =T
defined by

B = Wy %2 (3 %1 G(8) %1 byr) *2 By

and pictured as follows:

— Adjunction of the coherence cells for X. For every 1-cell x, we apply LlpF—( 18 to coherently add

the 2-cell @y and the 3-cell &,. Then, for every 2-cell o : u = u’ of £, we add the 3-cell @4
with ta, where A is the 3-cell of & defined by

A = (g %1 Eux1 O %1 Wy *1 Wpi ™1 &) *2 (0 %1 0x)

and pictured as follows, where we abusively simplify the labels of 3-cells for readability:

~

o F(u) % F(u) o
Eu 11’gu) W) ll)i(&u,) £
u 6, — GF(u) =GF(a)> GF(u') =6, —— 1/
Ou
x

— Adjunction of the last coherence cells for Y. For every 1-cell y of Y, we add the 3-cell ny with c,
where C is the 3-cell of =" defined by

C = (Pgy) *1 Ealy) *1 Og(y) *1 VrG(y) *1 11)59) *2 (Ggy) *1 Py *1 by)
and pictured, in a simplified way, as follows

PGy FG(y) T
Loy |Wrew)
G(y) ==0¢y,= GFG(y) ¥z, y
N “ Py @(?y)
S Gly) — Wy

12



2.2. Homotopical completion

As aresult, we get a Tietze transformation @ from X to =. Since the construction and the result are totally
symmetric in X and Y, and since the Tietze transformation @ contains coherent adjunctions only, we also
get a Tietze transformation ¥ from = to Y. By composition, we get a Tietze transformation from X to Y.
To conclude, we note that both @ and V¥ are finite when both X~ and Y are.

Finally, if £ is a coherent presentation of a category C, then the 2-category it presents is a cofibrant
approximation of C by Theorem Moreover, if there exists a Tietze transformation from X to Y,
they are Tietze-equivalent by the first part of the proof. Thus, the categories presented by X and Y are
isomorphic (to C), and the 2-categories they present are equivalent, hence weakly equivalent. As a conse-
quence, the 2-category presented by Y is also a cofibrant approximation of C so that, by Theorem [I.3.1]
we conclude that Y is a coherent presentation of C. O

2.1.4. Higher Nielsen transformations. We introduce higher-dimensional analogues of Nielsen trans-
formations to perform replacement of cells in (3, 1)-polygraphs. The elementary Nielsen transformations
on a (3, 1)-polygraph I are the following operations:

1. The replacement of a 2-cell by a formal inverse (including in the source and target of every 3-cell).
2. The replacement of a 3-cell by a formal inverse.

3. The replacement of a 3-cell y : f = g by a3-cell y : h*; fx1 k = h*; g x1 k, where h and k are
2-cellsof 7.

Each one of those three elementary Nielsen transformations is a Tietze transformation. For example, the
last one is the composition of the following elementary Tietze transformations:

— the coherent adjunction th,,y«,k of the 3-cell Y : hoxj fx1 k= hxj g+ K,

— the coherent elimination 7t 7, of .
The replacement of a 2-cell & : u = v by a formal inverse & : v = u is the composition of:

— the coherent adjunction t,— of the 2-cell x : v = uwanda3-cell y: &~ = «,

— the Nielsen transformation that replaces y with y : &~ = « by composition with o« on one side
and by o~ on the other side,

— the coherent elimination 7ty of o and .

In what follows, we perform coherent eliminations of cells that are collapsible only up to a Nielsen
transformation (a composition of elementary ones). If f is Nielsen-equivalent to a collapsible cell f, we
abusively denote by 71 the corresponding coherent elimination, with a precision about the eliminated
cell t(F) when it is not clear from the context. In a similar way, if (A, B) is a noncollapsible 3-sphere
of ZT, we denote by 7((A,B) the potential coherent elimination corresponding to a collapsible 3-sphere bl
obtained from (A, B) by composition with 2-cells and 3-cells of .

2.2. Homotopical completion

In this section, we recall notions of rewriting theory for 2-polygraphs from [21, 4.1] and [22} 4.1], to-
gether with Squier’s completion to compute coherent presentations from convergent presentations. Then
we extend Squier’s completion to terminating 2-polygraphs thanks to Knuth-Bendix’s completion [27]].

13



2. Homotopical completion and homotopical reduction

2.2.1. Rewriting properties of 2-polygraphs. A rewriting step of a 2-polygraph X is a 2-cell of the
free 2-category X* with shape

w R w’
y———X Ja x'———y’
\/\

v

where & : u = v is a 2-cell of £ and w and w’ are 1-cells of Z*. A normal form is a 1-cell that is the
source of no rewriting step.

We say that X ferminates if it has no infinite rewriting sequence (no infinite sequence of composable
rewriting steps). In that case, the relations s(f) > t(f) for f a rewriting step define a termination order:
this is a well-founded order relation on the 1-cells that is compatible with the composition. Another
example of termination order is the deglex order that first compares the length and, then, uses a lexico-
graphic order on the words of same length. In fact, the existence of a termination order is sufficient to
prove termination.

A branching of * is a (non-ordered) pair (f, g) of 2-cells of Z* with a common source, also called
the source of the branching. We say that X is confluent if all of its branchings are confluent, that is, for
every branching (f, g), there exist 2-cells f and g’ in £*, as in the following diagram:

f/“’\f'\ |
Nt

A branching (f, g) is local if f and g are rewriting steps. The local branchings are classified as follows:
— aspherical branchings have shape (f, f),
— Peiffer branchings have shape (fv,ug), where u = s(f) and v = s(g),
— overlap branchings are all the other cases.

Local branchings are ordered by inclusion of their sources, and a minimal overlap branching is called
critical. Under the termination hypothesis, confluence is equivalent to confluence of critical branchings.

We say that X is convergent if it terminates and is confluent. Such a X is called a convergent presen-
tation of the category Z, and of any category that is isomorphic to Z. In that case, every T-cell u of Z*
has a unique normal form, denoted by 1, so that we have i = v in X if, and only if, 1L = V holds in Z*.
This extends to a section £ ~ X* of the canonical projection, sending a 1-cell u of £ to the unique
normal form of its representative 1-cells in £*, still denoted by u. A (3, 1)-polygraph is convergent if its
underlying 2-polygraph is.

14



2.2. Homotopical completion

2.2.2. Squier’s completion for convergent polygraphs. Let us assume that ¥ is convergent. A family
of generating confluences of £ is a cellular extension of £ that contains exactly one 3-cell
/> v f/

\) w g’

for every critical branching (f, g) of £. Such a family always exists by confluence but it is not necessarily
unique. Indeed, the 3-cell can be directed in the reverse way and, for a given branching (f, g), one can
have several possible 2-cells f’ and g’ with the required shape (see [22], 4.3.2] for a constructive ver-
sion, based on normalisation strategies). We call Squier’s completion of ~ the (3, 1)-polygraph obtained

from X by adjunction of a chosen family of generating confluences of £. The following result is due to
Squier, we refer to [23, Theorem 4.4.2] for a proof in our language.

2.2.3. Theorem ([36, Theorem 5.2]). For every convergent presentation X of a category C, Squier’s
completion of X is a coherent presentation of C.

2.2.4. Homotopical completion. Let X be a terminating 2-polygraph, equipped with a total termination
order <. The homotopical completion of ¥ is the (3, 1)-polygraph S(X) obtained from X by successive
application of Knuth-Bendix’s and Squier’s completions. In fact, both constructions can be interleaved
to compute 8(X), as we describe here.

One considers each critical branching (f, g) of . There are two possible situations, shown below,
depending on whether (f, g) is confluent or not:

s

f/m\f f/v:>v
AN
w u Y o

N N
'
N SO
g

If (f, g) is confluent, the left case occurs and one adds the dotted 3-cell y to X. Otherwise, one performs a
Tietze transformation on X to coherently add the 2-cell « and the 3-cell y. To preserve termination, the 2-
cell « is directed from v to w if vV > W and in the reverse direction otherwise. To be formal, the coherent
adjunction would add a 3-cell y with target «, but we implicitly perform a Nielsen transformation for
convenience.

The potential adjunction of additional 2-cells « can create new critical branchings, whose confluence
must also be examined, possibly generating the adjunction of additional 2-cells and 3-cells. This de-
fines an increasing sequence of (3, 1)-polygraphs, where Z™*! is obtained by completion of the critical
branchings of X™:

(L0) = clCc...cm ™ C

The (3, 1)-polygraph $(X) is defined as the union of this increasing sequence. If the 2-polygraph Z is
already confluent, the homotopical completion is exactly Squier’s completion. As a consequence of The-
orem [2.2.3] we get that the potentially infinite (3, 1)-polygraph 8(X) satisfies the following properties.

15



2. Homotopical completion and homotopical reduction

2.2.5. Theorem. For every terminating presentation X of a category C, the homotopical completion
8(X) of L is a coherent convergent presentation of C.

2.2.6. Example. From [26l], we consider the presentation ¥ = (s,t, a; ta SN as, st i> a) of

B;r = B"(S3), obtained from Artin’s presentation by coherent adjunction of the Coxeter element st and
the 2-cell 3. The deglex order generated by t > s > a proves the termination of X. The homotopical
completion of X is the (3, 1)-polygraph

$(£) = (s,t,a; ta X as, st :B> a, sas N aa, saa :6> aat; A,B,C,D)

where A, B, C and D are the following 3-cells, induced by completion of critical pairs (fa, sa) and
(vt,sap):

aaaf
/ / aat % aaas oc % aaaa < aaast
MA Y sast B sasas MC aata sasaa MD aaxt

\ sas SGX saa \ saaa 4\ MI\F& saaatﬁaatat
a

2.3. Homotopical reduction

2.3.1. Generic homotopical reduction. Let X be a (3, 1)-polygraph. A collapsible part of X is a triple
' = (T, T3, ;) made of a family I of 2-cells of X, a family I3 of 3-cells of X and a family Iy of 3-spheres
of £, such that the following conditions are satisfied:

— every 'y of every [y is collapsible (potentially up to a Nielsen transformation),
— no y of any [y is redundant for some element of I} 1,

— there exists well-founded order relations on the T-cells, 2-cells and 3-cells of X such that, for
every 7y in every [y, the target of y is strictly greater than every generating (k — 1)-cell that occurs
in the source of .

In that case, the recursive assignment

mr(s(y)) ifx =t(y)foryinTl
7'[]“(7() = ]ﬂr(s(y)) ifx = Y isinT

X otherwise

defines a Tietze transformation 7ty : &7 — ZT /T by well-founded induction, called the homotopical re-
duction of L with respect to I'. The target (3, 1)-category is freely generated by the (3, 1)-polygraph /T’
obtained from X by removing the cells of I and of the corresponding redundant cells, and by replace-
ment of the source and target maps of X by their compositions with 7tr. Moreover, by construction, the
(3, 1)-polygraph L /T is Tietze-equivalent to X.
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2.3. Homotopical reduction

2.3.2. Generating triple confluences. The coherent elimination of 3-cells of a (3, 1)-polygraph X by
homotopical reduction requires a collapsible set of 3-spheres of £ . When X is convergent and coherent,
its triple critical branchings generate a convenient way to build such a set.

We recall from [22]] that a local triple branching is a triple (f, g, h) of rewriting steps with a common
source. Like branchings, local triple branchings are classified into three families:

— aspherical triple branchings have two of their 2-cells equal,

— Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two,

— overlap triple branchings are the remaining local triple branchings.

Local triple branchings are ordered by inclusion of their sources and a minimal overlap triple branching
is called critical.
If X is a coherent and convergent (3, 1)-polygraph, a triple generating confluence of X is a 3-sphere

f]/ f{
Vﬁx/ Vﬁxl
f Vi h” f \ ) h
A g1 f B’
Y4 w K\i
u g——w C’ u = u C w’ 79”:>ﬁ
N\ 7
B 93 hy ’
h N f” h / f”
e Y=V
h) hj

where (f, g,h) is a triple critical branching of X and the other cells are obtained as follows. First, we
consider the branching (f, g): we use confluence to get f; and g} and coherence to get the 3-cell A. We
proceed similarly with the branchings (g, h) and (f,h). Then, we consider the branching (f7, f}) and
we use convergence to get g” and h” with U as common target, plus the 3-cell B’ by coherence. We do
the same operation with (h{,h}) to get A’. Finally, we build the 3-cell C’ to relate the parallel 2-cells
g;*1 h” and g »1 f”.

2.3.3. Homotopical completion-reduction. In the applications we consider, homotopical reduction is
applied to the homotopical completion 8(X) of a terminating 2-polygraph X. This induces a collapsible
part " of §(Z) made of

— some of the generating triple confluences of §(Z),
— the 3-cells coherently adjoined with a 2-cell by homotopical completion to reach confluence,
— some collapsible 2-cells or 3-cells already present in the initial presentation X.

If £ is a terminating 2-polygraph, the homotopical completion-reduction of L is the (3, 1)-polygraph

R(Z) = mr(8(2))
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3. Garside’s coherent presentation of Artin monoids

obtained from the homotopical completion of X by homotopical reduction with respect to some collapsi-
ble part " of S(X). The definition and the notation should depend on I', and we make them precise in
each application we consider.

2.3.4. Theorem. For every terminating presentation ¥ of a category C, the homotopical completion-
reduction R(X) of L is a coherent presentation of C.

2.3.5. Example. In Example , we have obtained a coherent convergent presentation §(X) of B;r
by homotopical completion. We consider the collapsible part I of §(X) consisting of the two generating
triple confluences

Yt(l aata % aaas ‘}/t‘% aata Y

UBa da w sasta l aaas aax
1
sasta :SCl[3 a> saaa — X )a? \
sas sasas MC aata

\K%{USQA /))Say \ /
sasx sasas say saaa da
aaa ast t . aaa
vast aaast :ﬁ> aaaa Y/ aaes \B
N aaaf

and

Ctl aaot sasast I aaaa &= aaast
O(\ w32 W
sasast =SAY1t>» saaat =——= aatat = yYaa
dat sasa sasaa MJD aact
UsaB ||sad \ T
SCLSCI[?) sasaa sad saaat ﬁ aatat

together with the 3-cells A and B coherently adjoined with the 2-cell y and & during homotopical com-
pletion and the 2-cell 3 : st = a that defines the redundant generator a. We have that wi, w;, A, B
and 3 are collapsible (up to a Nielsen transformation), with respective redundant cells C, D, vy,  and a.
We conclude that I' is collapsible with the orders

D>C>B>A, d>v>p >« a>t>s.
Thus the homotopical reduction of §(X) with respect to I is the (3, 1)-polygraph
R(Z) = (s,t; tst = sts; 0).

By Theorem , we recover that the monoid B;r admits a coherent presentation made of Artin’s pre-
sentation and no 3-cell.

3. GARSIDE’S COHERENT PRESENTATION OF ARTIN MONOIDS

Recall that a Coxeter group is a group W that admits a presentation with a finite set S of generators and
with one relation
(st)™st =1, with mg € N1I {o0}, ()

for every s and t in S, with the following requirements and conventions:
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3.1. Garside’s presentation of Artin monoids

— Mgt = oo means that there is, in fact, no relation between s and t,
— mg = 1if, and only if, s = t.

The last requirement implies that s> = 1 holds in W for every s in S. As a consequence, the group W
can also be seen as the monoid with the same presentation. Let us note that a given Coxeter group can
have several generating sets that fit the given scheme, but we always assume that such a set S has been
fixed and comes equipped with a total order.

Following [4} (1.1)], we denote by (st)™ the element of length n in the free monoid S*, obtained by
multiplication of alternating copies of s and t. Formally, this element is defined by induction on n as
follows:

(st) =1 and (sty™1 = s(ts)™

When s # t and mg; < oo, we use this notation and the relations s2 = t2 =1 to write (1) as a braid
relation:

(st)Mst = (ts)™st, 2)

A reduced expression of an element u of W is a representative of minimal length of u in the free
monoid S*. The length of u is denoted by 1(u) and defined as the length of any of its reduced expressions.
The Coxeter group W is finite if, and only if, it admits an element of maximal length, [4, Theorem 5.6];
in that case, this element is unique, it is called the longest element of W and is denoted by wy(S). For
[ C S, the subgroup of W spanned by the elements of I is denoted by Wy. It is a Coxeter group with
generating set I. If Wy is finite, we denote by wy(I) its longest element.

We recall that the Artin monoid associated to W is the monoid denoted by B (W), generated by S
and subject to the braid relations (2). This presentation, seen as a 2-polygraph, is denoted by Art, (W)
and called Artin’s presentation: this is the same as the one of W, except for the relations s? = 1.

In this section, we fix a Coxeter group W and we apply the homotopical completion-reduction
method to get a coherent presentation for the Artin monoid BT (W).

3.1. Garside’s presentation of Artin monoids

We recall some arithmetic properties on Artin monoids, observed by Garside for braid monoids in [17]
and generalised by Brieskorn and Saito in [4]. Garside’s presentation is explicitly given in [13} 1.4.5] for
spherical Artin monoids and in [34] Proposition 1.1] for any Artin monoid. We refer to [20] for proofs.

3.1.1. Length notation and divisibility. For every u and v in W, we have l(uv) < 1(u) + 1(v) and we
use distinct graphical notations depending on whether the equality holds or not:

PN

Uy & (w)=1u)+1v),

wv e Luw) < Lu) +1(v).

When w = uv holds in W with 1{ v, we write w = uv. We generalise the notation for a greater number
of elements of W. For example, in the case of three elements u, v and w of W, we write WV W when
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3. Garside’s coherent presentation of Artin monoids

both equalities L(uv) = 1(u) 4+ 1(v) and 1(vw) = 1(v) + 1(w) hold. This case splits in the following two
mutually exclusive subcases:

PN
VS

u v w
/\/\
w(:){

u v
Huwww) = 1L{u) + L(v) + L(w),
PN {u/\v/\w
u v w
Luwww) < (u) + L(v) + L(w).

If u and v are two elements of BT (W), we say that u is a divisor of v and that v is a multiple of w if
there exists an element 1" in BT (W) such that uu’ = v. In that case, the element u’ is uniquely defined
and called the complement of u in v [4, Proposition 2.3]. Moreover, if v is in W, seen as an element of
B (W) by the canonical embedding (given by Matsumoto’s theorem, see [20, Theorem 1.2.2]), then we
also have uwand 1/ in W and uu’ = v. If two elements u and v of BT (W) have a common multiple, then
they have a least common multiple, lcm for short [4, Proposition 4.1].

3.1.2. Garside’s coherent presentation. Let W be a Coxeter group. We call Garside’s presentation of
B (W) the 2-polygraph Gar; (W) whose 1-cells are the elements of W \ {1} and with one 2-cell

Oyy t Uy = uv

whenever 1(uv) = 1(u) + 1(v) holds. Here, we write uv for the product in W and ulv for the product
in the free monoid over W. We denote by Gar3(W) the extended presentation of BT (W) obtained from
Gar; (W) by adjunction of one 3-cell

uwjw
L &‘w
ulviw MAu,v,w uvw
u|% /u»:w

upyw
/\/\/\

for every u, vand w of W\ {1} with i V" w.

3.1.3. Theorem. For every Coxeter group W, the Artin monoid BT (W) admits Gar3(W) as a coherent

presentation.

The (3, 1)-polygraph Gar3 (W) is called the Garside’s coherent presentation of the Artin monoid B (W).
Theorem is proved in the following section by homotopical completion-reduction of Gar, (W).

3.2. Homotopical completion-reduction of Garside’s presentation

Let us define a termination order on the 2-polygraph Gar;(W). Let < denote the strict order on the
elements of the free monoid W* that first compares their length as elements of W*, and then the length
of their components, starting from the right. For example, we have that u;[u; < vi|v,|vs (first condition)
and uvw < ulvw if 1@ VW (second condition). The order relation < generated by < by adding
reflexivity is a termination order on Gar,(W): for every 2-cell x,, of Gar(W), we have ulv > uv.
Hence the 2-polygraph Gar, (W) terminates, so that its homotopical completion is defined.
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3.2. Homotopical completion-reduction of Garside’s presentation

3.2.1. Proposition. For every Coxeter group W, the Artin monoid BT (W) admits, as a coherent con-
vergent presentation, the (3,1)-polygraph 8(Gar,(W)) with one 0-cell, one 1-cell for every element of
W\ {1}, the 2-cells

BLLVW

[O4TRY
uy —=uv and uhw ——= uvlw,

respectively for every u, v of W\ {1} with \{ Vv and every u, v, w of W \ {1} with u/\\xz/\w, and the nine
families of 3-cells A, B, C, D, E, F, G, H, I given in Figure

O(u,v%’ uviw Nw A\ oy, v|/ uvjwx w x
ulviw uviw
ulvlw MAWW uvw y uv\wx MCuvw « uvwlx
tAS)
(Xu,vw uIOX Bu V,W /

u Kyw upw ul ﬁ)v WX ylywlx (Xu,vw‘x
Xy W uviwlx

m Bu’v’w |X LLV| (XW,X
uviwx uvjwx \

\ mDu,v,w,x / U|VW|X mEu,v,w,x UV|WX
u ﬁ'v,w,x LL\)|(XW)X | \ /
U Xy, x

‘LL|VW|X Twiuwwbc ulvwx Bu,v,wx
A
X wvlwixy Uv| o uviw|x
% | WXy Bu,\y wlxy %\;,x,y
upjywixy mFu,v,w,x,y uvjwxy ujywixy mGu,v,w,x,y uvwxly
ul \ 4 o \ %
va,x,y ulvwxly ﬁ} LL\)|WX‘y wx,y ulﬁvw,x, ulvwxly u,v,wx|y
uviiw] = uvi|xX
uvlxy Buyviwy 1wy ey Buvix,y
Bu Vv, XY BUV Yy
uvywy uvixily
Hu VXY = MIHM W1,V2,W2 =
ulvxy uvxly ufvaw, uvrxaly
Buvvxvy B‘U, V2, Wo B'LLVZ X2,y
V2 uvalwy = uvsxay *2s

Figure 1: The 3-cells of the homotopical completion of Garside’s presentation

The 3-cells of Figure |1|are families indexed by all the possible elements of W \ {1}, deduced by the
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3. Garside’s coherent presentation of Artin monoids

S
NN

involved 2-cells. For example, there is one 3-cell Ay, for every u, v, w with 1ii V' W, and one 3-cell
A

. AR KON
Fuvwyxy forevery u, v, w, x,y with i’ v.- w X y.

Proof. The 2-polygraph Gar,(W) has exactly one critical branching for every u, v and w of W\ {1} such
that iV w:

oW uviw
ulviw
\ upyw
ufoty,

S
Then there are two possibilities. If 1V W, the branching is confluent, adjoining the 3-cell A

Otherwise, we have u/\\x)/\w and the branching is not confluent, thus homotopical completion coherently
adjoins the 2-cell 3,y and the 3-cell By, .. The family 3 of 2-cells creates new critical branchings,
each one being confluent and conducting to the adjunction of one or several 3-cells. The sources of all
the 2-cells « and 3 have size 2 in the free monoid over W \ {1}. As a consequence, there are two main
cases for the critical branchings that involve at least one 2-cell f3.

The first case occurs when the sources of the 2-cells of Gar; (W) that generate the branching overlap
on one element of W \ {1}. The source of such a branching has size 3, with one 2-cell of the branching
reducing the leftmost two generating 1-cells and the other one reducing the rightmost two. This leaves
three main cases of branchings:

%’ wvwx Byl = 1y Buuins MU= vy

ulvlwx ulywix uywixy
\uvwx \)uvwx \uvwx
ul Bv,w,x [vw] ul Oyw,x | ul va,x, | |y

X X
The first branching occurs when 1 VW X, splitting into the two disjoint possibilities 1 V W X

AEAXA . . .
and U V W X, respectively corresponding to the 3-cells Cyywx and Dy wx. The second branching

NS

appears when 1 V" W X and corresponds to the 3-cell Ewvwyx. The third branching happens when

X N
1V W Xy, with the extra condition that L(vwxy) < L(vw) + 1(xy) since vw]|xy is the source of the

.. . .. ... i aqens /\X/\/\/X\/\/\ PRGN

2-cell Byw,x,y: this situation splits into the two disjoint possibilities i V W X Y and U V W X Y,
respectively corresponding to the 3-cells Fy v xy and Guywx,y-

The second main case occurs when the 2-cells of Gar;(W) that generate the branching have the
same source. Since one of those 2-cells must be a {3, the source must have shape ufv;w; with u/}q/?w

preventing the other 2-cell to be an o.. The only remaining possibility is to have a different decomposition
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3.2. Homotopical completion-reduction of Garside’s presentation

. AEA ..
viw) = vow;, with U v Wy, so that the branching is as follows:

ﬁu,w W
/IZ} uviwy

ufviwy

ulvaw,
uvzw;
BUNZ yW2

The properties of Artin monoids ensure that we have the following relations in B™ (W):

Indeed, we note that the elements v; and v, have a common multiple since viw; = v,w;. Hence, they
admit an Ilcm. The elements x; and x; are respectively defined as the complements of v; and v; in their
lcm. The element y is the complement of the lcm vix; = vx, of vi and v; in their common multiple
viwi = vy;w;. By uniqueness of the complements of v and v, in viw; = v,w;, we get wi = x1y and

PSS PSS
wy = X2y. Moreover, we have vf?q/\y and vz/\xz/\y. Finally, from the hypothesis u/\vf?\n we get
that y # 1. Then, there are two possible subcases for the confluence diagram, depending on x; and x;.
The first subcase is when we have either x; = 1 or x, = 1. We note that both cannot happen at the same
time, otherwise vi = v, and w1 = w;, so that the branching would be aspherical and not critical. We
get the 3-cell Hy,yxy if X = 1, inducing v; = vix1, Wy = x1y and w; =y, with v = vy and x = x;.
The second subcase, when x1 # 1 and x # 1 gives the 3-cell Ly, wy,vy,w;- L]

3.2.2. Homotopical reduction of S(Gar,(W)). We consider the following generating triple conflu-
ences, associated to some of the triple critical branchings of 8(Gar,(W)):

S X
C . AN
inthecase U V- W X:

U,V W,x

— The 3-sphere w

(Xuv,wlx
wiwix Q wwlx (Xu,v‘W‘X
O(u,V‘W‘X
Au,v,w|X
uviwlx = Wwx ==Puv,w,x==> Uvw|x
(Xu,vw‘x §>

upvwix =uloty whx=p uywlx

oy vwx  Cyywix
XHBV’W’/\ u|VOCWX / R o, vwlx
U—‘Vl‘xw,x u‘ﬁv,w,x

ulvwx _ ulyw|x

ujvjwx ulﬁv,w,x
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3. Garside’s coherent presentation of Artin monoids

X X
. ) D . NN
The 3-sphere wy,,,, « in the case U V- W x:
uvlotw,x
ot v[Ww
uviw|x uvjwx
- WX
uv Wl -

Bu,v,w|X ulviwlx

upwlix =y wix=p upwix

u|Bv,w,/\
U‘V‘OCW‘X ul v, Wix

ulvwx

A~
X AN

— The 3-sphere wt in the case i V' W X:

u,v,w,x

UV, x

uvjwix

C’(U.,vl"\’lX

BuywlX N\ \

)
upvwix =ulay wix=> uyw|x uvlwx =)
u|AV’W’x ufoy X
upvlot,x &
ulvjwx - ulywx

ul‘xv,wx

Eu,v,w,x

Bu,v,wx

X AEA
XN

— The 3-sphere w!, in the case W V' W X y:

W,V,W, X,y

uvlow, x|y

uvlwlx|y uv\wxly

Eu,v,w,th Buvwx\y \))uvlcx‘,v,mJ

upwixly =ulotvw,xly=> u\vwx\y

u| BVW,X,U
U‘leax,y ul ﬁvw,x,y

uywixy

ﬁu,v,wlx‘y

uvlwxy

PRGN
thecase U V w X y:
uvwxyln y:

— The 3-sphere w

u\’lﬁw,x,y

uviwlxy uviwxly

o, v Wiy B, wlxy
BU,V,W |XU GUyVaW»XaU

U‘VIWIXU 7“‘“V‘W‘Xy:> uIVW\Xy Bu,v,wxly
N
LL| C\;)W,X’y ulBvw X,y
UM B,y N
upvwxly - upwxly

u‘“v,wxly
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O‘u,V‘ X Du,v,w,x
u‘V‘(X / Bu,v,wlX

\

ulvjwx - ulyw|x
U‘Bv,w,x
uviwlx
Ku, vlw/ \U\’/l“w,x
uvjwix uvlwx
/{ Bu,v,wx
viwx
uvloow, x /u
uviwx $ ulywx
ul(xv,wx
uv|otw x|y
wlwlxly :> wvlwxly

ﬁu,v,wlx‘y \ \
u\)lWl“XN’y uv|Aw,x’y uv (Xw%;

uywlxly =

A
§> Bu v,wlx
uvwm& 7 ’

wwlxy =uv|aw, xy=> uvjwxy

ufywlixy Fuvwx,y uv|oyx,y
U—|f5VW,w
whwxly =—— uwvjwxly
Bu,v,wxl
uvlwlxy
ot vw / N]Bw,x)y
ufvlw uvIWX\y
ﬁu,v,wx‘y
Ky v‘ley
u‘vlﬁ’w X, |y
ulv\wx u VWX ulvwxly
u‘fxv,wxly



3.3. Garside’s coherent presentation for Garside monoids

/\X/\

NN N
— The 3-sphere wuvwxmthecaseu VoW Xx:

O(uv,w‘X (Xuv,wlx
uviwlx uvw\x uvw|x uvwlx

Q
B
o, v wix o v Wix N y. \
Auvw|X x ,vw‘x uvfa \X B VWX
u VW, X & ) Bu,vw,x

uwlx =uloty, whx=> ulvw\x By Wyw,x ulviwlx uv\wx H., WV,
u|Av WX u‘O‘V Oy v‘WX Bu VWX
upvlotw,x ufvlonw,x / &
ulv\wx u\vwx u\vlwx u VWX ujywx
LL|(XV WX U‘(Xv wx

AEA AEA .
— The 3-sphere w! in the case W vi Wy and U v Wy with viw; = vow;:

uw,vi,W1,v2,Wo

[Su‘\,] w1 uvywy uvy, B, vi,Wq wvifwi |3uv1 X1,y
/w,whvzwz\‘ \

ulviwg :Bu,vz wr=> uvalwy —Buvz,xz y= uvixg ly §> ufviwy u V1.X1,Y wixly
W v
BU,V]X]‘\J Bu ViX1,y

We consider the collapsible part ' of §(Gar;(W)) made of each of those 3-spheres and all the 3-cells
Bu,v,w, With the order I > H > - -- > C. The homotopical reduction of 8(Gar,(W)) with respect to I' is
exactly Garside’s coherent presentation Gar3(W), ending the proof of Theoremm

3.3. Garside’s coherent presentation for Garside monoids

Garside monoids have been introduced as a generalisation of spherical Artin monoids by Dehornoy and
Paris [[11} 8] to abstract the arithmetic properties observed by Garside on braid monoids [17] and by
Brieskorn-Saito and Deligne on spherical Artin monoids [4, [12]. We refer the reader to [9] for a unified
treatment of Garside structure.

We fix a Garside monoid M and we follow [[18]] for most of the terminology and notation.

3.3.1. Recollections on Garside monoids. In the monoid M, all elements u and v admit a greatest
common divisor u /A v. Moreover, the monoid M has a Garside element, denoted by wy, such that the
set W of its divisors generates M. The complement of an element u of W in wy is denoted by d(u). A
pair (u,Vv) of elements of W is left-weighted if we have d(u) /A v = 1. For each pair (u,v) of elements
of W, there exists a unique left-weighted pair (1, v’) of elements of W such that uv = u’v’ holds in M:
we take W' = u(9(u)/\v) and v’ to be the complement of d(u)/\v inv. The operation transforming (i, v)
into (u’,v’) is called local sliding. Tt induces a computational process that transforms any element u
of W* into its (left) normal form by a finite sequence of local slidings, thereafter represented by dashed
arrows:
u-——->(--)---1.
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4. Artin’s coherent presentation of Artin monoids

Moreover, two elements 1 and v of W* represent the same element of M if, and only if, they have the
same normal form, so that they are linked by a finite sequence of local slidings and their inverses:

U-——-Ue— -,

3.3.2. Garside’s presentation. First, let us note that, since the set W of divisors of wy generates M,

then so does W \ {1}. Given two elements 1 and v of W \ {1}, we use the notations 1 v and u*v to
mean
vy & d(wAv=1,

v & duAv#T

We define Garside’s presentation of M as the 2-polygraph Gar, (M) with one 0-cell, one 1-cells for every
element of W \ {1} and one 2-cell

Ky
u|v —= uv

for every wand v in W \ {1} such that 1 v holds.

Let us check that Garside’s presentation is, indeed, a presentation of the monoid M. If Y holds,
transforming ufv into uv is a local sliding since wv is the normal form of ufv, so that each 2-cell «,,, is
an instance of local sliding. Conversely, if ulvw is transformed into wv|w by local sliding, this implies,
in particular, that both 10 v and v~ W hold. Thus, the composite 2-cell

uly &,\JW

corresponds to the local sliding transformation applied to ulvw. We define Garside’s coherent presenta-
tion Garz(M) as done in for Artin monoids. The proof of Theorem adapts in a straightforward
way to this case.

ulvjw

3.3.3. Theorem. Every Garside monoid M admits Gar3(M) as a coherent presentation.

4. ARTIN’S COHERENT PRESENTATION OF ARTIN MONOIDS

Let W be a Coxeter group with a totally ordered set S of generators. In this section, we use the homotopi-
cal reduction method on Garside’s coherent presentation Gars(W) to contract it into a smaller coherent
presentation associated to Artin’s presentation.

4.1. Artin’s coherent presentation

We call Artin’s presentation of the Artin monoid BT (W) the 2-polygraph Art;(W) with one 0-cell, the
elements of S as 1-cell and one 2-cell

Vs o (ts)™st = (st)™st
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4.2. Homotopical reduction of Garside’s coherent presentation

for every t > s in S such that my; is finite.
We recall that, if [ is a subset of S, then I has an lecm if, and only if, the subgroup Wi of W spanned
by I is finite. In that case, the lcm of I is the longest element wy(I) of Wy. This implies that, if

an element u of W admits reduced expressions siuq, ..., SyUy where sq, ..., sy are in S, then the
subgroup W(,, ¢ 1 is finite and its longest element wy(s1, ..., sy) is a divisor of u. As a consequence,
the element u has a unique reduced expression of the shape wo(s1,...,sn)u’.

The main theorem of this section extends Art,(W) into Artin’s coherent presentation of the Artin
monoid BT (W).

4.1.1. Theorem. For every Coxeter group W, the Artin monoid BT (W) admits the coherent presenta-
tion Art3(W) made of Artin’s presentation Arty(W) and one 3-cell Z s« for all elements t > s > 1 of S
such that the subgroup Wy, g ) is finite.

We note that Artin’s coherent presentation has exactly one k-cell, 0 < k < 3, for every subset I of S
of rank k such that the subgroup W is finite. In[4.2] we use homotopical reduction on Garside’s coherent
presentation Gar;(W) to get a homotopy basis of Artin’s presentation. The precise shape of the 3-cells

is given in[4.3]
4.2. Homotopical reduction of Garside’s coherent presentation

We consider Garside’s coherent presentation Gar3(W) of BT (W). The homotopical reduction in the
proof of Theorem has coherently eliminated some redundant 3-cells, thanks to generating triple
confluences of 8(Gar;(W)). This convergent (3, 1)-polygraph has other triple critical branchings. In

particular, the critical triple branchings created by three 2-cells &, whose sources are the ujvjw|x with

S
SRS
1V W X, generate the following family Gars (W) of 4-spheres Wy vwx Of Gars(W)T:

Ouv,wlx Oy, wlx
uwvjwlx e uvwlx uvlwlx = uvwlx
[24TIRY) [wix i{ Kuvw,x K, viwlx Xuvw,x
Au,v,w|X “//H»VW‘X uVlewa Auv,w,x
uvwlx =ulotv, wx=> ujywlx Au,vw,x uvwx ulvlw|x UVWX =—=0uw, wx==p Uvwx
U|Av,w,x oy, x x V‘Wx Au,v,wx o
U‘Vlocw,x V& U, VWX u\v\ocw x U, VWX
LL‘VlWX M U‘VWX U‘VlW M UlVWX
u\cxvywx U—‘(Xv,wx

To construct a collapsible part of Gar; (W), we use the indexing families of the cells of Gar;(W) and the
3-spheres of Gary (W) to classify and compare them.

4.2.1. The classification. If u is an element of W \ {1}, the smallest divisor of u is denoted by d,, and

defined as the smallest element of S that is a divisor of u. Let (ug,...,u,) be a family of elements of
W \ {1} such that
Hw - -un) = U w) + -+ Uug).

For every k € {1,...,n}, we write sy = dy, ..., . We note that s; > s, > --- > s, since each sy divides
up - - -y for 1 > k. Moreover, the elements st,..., Sk have 1y - - - U, as common multiple, so that their
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4. Artin’s coherent presentation of Artin monoids

lem wy (s, ..., sk) exists and divides u - - - uy, and each subgroup Wy, ¢, is finite. Thus, we have the
following diagram, where each arrow u — v means that u is a divisor of v:

wo(s1) ——— wo(s1,52) (--+) Wo(S1y.eySna1) ———Wo(81,...,5n)

I J J

uy uuy () U Up] —————— Uy - Uy

If every vertical arrow is an equality, we say that (uj,...,uy) is essential. Since each uy is different
from 1, this implies that no horizontal arrow is an equality, so that s; > --- > s, holds. Moreover,
we have u; = s7 and, by uniqueness of the complement, we get that each w7 is the complement
of Wo(s1y...,8K) in Wo(s1,...,8ks1). Thus, the family (uy,...,uy) is uniquely determined by the
elements sq, ..., s, of Ssuch that s; > --- > s,.

Otherwise, there exists a minimal k in {1, ..., n}such that (uy,...,uy) is not essential, i.e., such that
Uy - U # wolsty...,sk). If k > 2, there are two possibilities, depending on whether wy(s1, ..., Sk_1)
and woy(s1,...,sk) are equal or not, which is equivalent to the equality s, 1 = sy since s7 > -+ >
Sx_1 > Sk. If sy = sy, we say that (uy, ..., uy) is collapsible. If sy, _1 > sy, then we have w, = vw
(i.e., . = vw and VW), with v and w in W \ {1} such that (1. .., ux_1,V) is essential: we say that
(wyy...,un) is redundant.

Finally, if k = 1 and (u;) is not essential, we have u; = syw with w in W \ {1} and we say that ()
is redundant.

By construction, the family (uy,...,uy) is either essential, collapsible or redundant. This induces a
partition of the cells of Gar;(W) and the spheres of Gars(W) in three parts.

4.2.2. The well-founded order. Finally, we define a mapping
CD(LL], oo )un) = (I(U] te 'un)) duw l(LL] )» du1u2) l(U]LLz), ey du1---un,1 ) l(u1 cUn— ))

of every family (ug,...,u,) of elements of W \ {1} such that 1(uy - - - w,) = Luy) + - - - + Yuy) into
N x (S x N)™'. We equip the target set with the well-founded lexicographic order generated by the
natural order on N and the fixed order on S. We compare families (w1, ...,u,) of elements of W \ {1}
such that L(uw; - - - un) = L(uwg) + - - - 4+ L(uy,) by ordering to their images through @.

The cells of Gar;(W) are then compared according to their indices.

4.2.3. The collapsible part of Gar;(W). We define I' as the collection of all the 2-cells and 3-cells of
Gar3 (W) and all the 3-spheres of Gar4(W) whose indexing family is collapsible. Let us check that I is
a collapsible part of Gar3(W).

The 2-cells of T are the ., : slu = su with s = dg,. Each one is collapsible, the corresponding
redundant T-cell is su and we have su > s and su > u because 1(su) > 1(s) and 1(su) > u.

The 3-cells of T are the
OCS,LL|/ SLL|V Nv
suv

slulv mAs,u,v

S|Ok sluwv /S’uv
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4.2. Homotopical reduction of Garside’s coherent presentation

with either (a) s = dg, or (b) s > dsy = dsuv and su = wy(s, dg,). Those 3-cells are collapsible
up to a Nielsen transformation, and the corresponding redundant 2-cells are: (a) otsyy; or (b) &gy By
hypothesis, the indexing pairs (su,v) and (s,uv) are redundant, so that none of those 2-cells is in T".
We check that each redundant 2-cell is strictly greater than the other 2-cells appearing in the source and
target of As . . For both cases (a) and (b), we observe that o, and s, are always strictly greater
than o, and &y, since 1(suv) > 1(su) and [(suv) > l(uv). Then, we proceed by case analysis:

(@) Xguy > 0ty since s = dgy and 1(su) > 1(s)
(b) sy > Xgy,y since s > dgy.
Finally, the 3-spheres of I are the w; . vw

Ksu,v [w fxsu‘v‘w

Q
sulviw suviw sulvjw suviw
s, ulviw /‘ Xsuv,w s ulviw \ AKsuv,w
As,u,v|w "?UV‘W Su “‘%V Asu,v,w
slulviw =slow,vIw=> sluvjw As,uv,w suvw =) slufvlw = sujyw =—=%su,yw=—p suvw
S|Au\;w s|otun,w os, u[vw AS UWVW
Sulfxv,w\ tAS] & XKs,uvw 5‘U|06v,w / » Xs, uvw
slufyw - sluvw slupjyw - sluvw
Sl(xu,vw Sl‘xu,vw

with one of the following:

(@) s = dsu,

(b) s > dsu = dsyv and su = WO(S) dsu)s

(©) s > dgy > dsuy = dsuww and suv = wy(s, dsy, dsuy)-
Those 3-cells are collapsible up to a Nielsen transformation, and the corresponding redundant 3-cells
are (a) Asuvws (b) Aguvw Or (€) Aguww. By hypothesis, the indexing triples (su,v,w), (s, uv,w)
and (s, u,vw) are redundant, so that none of those 3-cells is in . We observe that Ag,yw, Asuvw

and A vw are always strictly greater than A ., and Ay, since [(suvw) > 1(suv) and I(suvw) >
L(uwvw). Then, we proceed by case analysis:

(@) Agupw > Asuvw and Agyyw > Ag v since s = dgy and L(su) > 1(s).
(b) Asvw > Aguyw since s > dgy and Ag oy > Ag i since dgyy = dgy and L(suv) > 1(su).
(©) Asuww > Asupw since s > dgy and Ag v > A v since dgy > dsuy.

4.2.4. The homotopical reduction. The homotopical reduction of Garz(W) with respect to I is the Ti-
etze transformation 7t = 7t that coherently eliminates all the collapsible cells of I with their correspond-
ing redundant cell. According to the partition of the cells of Garz (W), this only leaves the essential cells,
i.e., those whose indexing family is essential, with source and target replaced by their image through 7.

In particular, the essential 1-cells are the elements of S. By definition of T, the 3-functor 7t maps a
1-cell u of Gar3(W) to the element s7t(v) of S* if u = sv and s = d,,. This gives, by induction,

m(w) = $1---Sn
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4. Artin’s coherent presentation of Artin monoids

for s, ..., sp in S such that u = s7---sy and s; = ds,...s,,. This is sufficient to conclude that the
underlying 2-polygraph of Gar3(W)/T is (isomorphic to) Artin’s presentation of BT (W).

The essential 2-cells are the o, such that s > dg, and su = wy(s, dsy). Hence, there is one such
2-cell for every t > s in S such that Wy 4, is finite, i.e., such that mg, is finite, and its image through 7t
has shape

(ts)Mst = (st)™Mst.

Finally, the essential 3-cells are the A, such that s > dg, > dsuy, SU = Wo(s, ds,) and suv =
Wo(s, dsu, dsuv). Hence, there is one such 3-cell for every t > s > 7in § such that Wy, ¢ 4, is finite. If
we denote by Z; s the image of the corresponding 3-cell A ., through 7, this concludes the proof of

Theorem d.1.11

4.3. The 3-cells of Artin’s coherent presentation

Let us compute the sources and targets of the 3-cells Z; s of Artin’s coherent presentation. The 3-cell
Z; s is the image through the Tietze transformation 7t of the corresponding essential 3-cell Ay, with
u the complement of t in wy(s,t) and v the complement of wy(s,t) in wy(r,s,t). Since the 3-cell
Aty is entirely determined by its source, the shape of the 3-cell Z; s ; is determined by the Coxeter type
of the parabolic subgroup Wy, ; 1. According to the classification of finite Coxeter groups [3, Chap. VI,
§ 4, Theorem 1], there are five cases, shown below:

T S t T 4 S t r 5 S t
o —o—0 o —o—o o —o—0
A3 Bs F@

T S t T P S t
[ ] [ ] [ ] *———0 [ J
Al X A1 X A4 L(p) x Ay 3<p<oco

Note that we use the numbering conventions of [20, Theorem 1.1]. The resulting 3-cells are given in
Figures 2] and 3] The rest of this section explains their computation, mainly based on the images of
the 2-cells of Gar3(W) through 7t. We detail the cases of the Coxeter types A; x A; x Aj and Az. A
Python script, based on the PyCox library [19], can be used to compute Garside’s and Artin’s coherent
presentations for spherical Artin monoidﬂ The 3-cells Z; s are also given, in “string diagrams”, in [13,
Definition 4.3].

4.3.1. Projection of the 2-cells of Garside’s presentation. By construction, the image of a 2-cell o,
of Garz (W) through 7t is given by induction, depending on whether it is essential, collapsible or redun-
dant.

The essential 2-cells are the x,, such that t > s and u is the complement of t in wy(s,t), where
s = dtyu. The image of oy, is the corresponding braid relation:

ﬂ(“ﬁu):: Vs,t-

'"http://www.pps.univ-paris—-diderot.fr/~guiraud/cox/cox.zip

30


http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip

4.3. The 3-cells of Artin’s coherent presentation

S'Yrts’yi[ STYstT
styrst strsrt % srtstr :S> srstsr VrstsT

stsrst TsTtsr
yst‘rstﬂ Wrsyrtsr
tstrst Lrst rstrsr
tsyrtstﬂ W"‘StYTs
tsrtst rstsrs

tsr stTS
Vst tsrsts ﬁ trsrts =——= rtstrs Y
YrslS YrtSYS
srtsy str STYstTSYrt sTstyrst STSYrtSTst
s%t% srtsrtstr :r> sTtstrstr = srstsrsrt srstrsrst = srsrtsrst K‘mst
strsrstsr Tsrstsrst
styrstsr/H\ ﬂ\rswstrst
stsrsrtsr rsrtstrst
‘YstT‘STtST/H\ /H\rsrtsy;st
tstrsrtst Lyt TsTtsTtst
tsyrtsv;srﬂ WTSY“ST“Y;
tsrtstrsr rstrsrsts
tsrystrsr\H/ ﬂ\rstyrsts
tsrstsrsr rstsrsrts
tSTStX} tsrstrsrs :> tsrsrtsrs :> trsrstsrs :> rtsrtstrs :> rtstrstrs %TSV”S
tsTsyrisTs tyrstsrs YrtSTY 3¢ TS Ttsy strs
SYrt
% str=——— s1t Yrst
tsr MZW rst
& trs == rts TVst
Tt

Figure 2: The 3-cells Z; s ; for Coxeter types A3z, Bz and Aj x Ay X Aq
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4¢§§§§§¢;;:? STStrsTSTESTSTEt == sTsTtsrTstrsTsTt ==y srsrtsrstsrsrst == srsrtsrtstrsrst ::::::§§§§§ﬂ

srstsrsrstsrsrt

srtstrsrtstrsrt

=

srtsrtstrsristr

=

srtsrstsrsrstsr

=

sTtsrstrsrsrisr

=

strsrsrtsrsrtsr

=

stsrsrstsrsrisr

=

tstrsrstsrsrisr

—

tsrtsrstsrstrsr

—

tsrtsrtstrstrsr

—

tsrtstrsrtstrsr

—

tsrstsrsrstsrsr

—

tsrstrsrsrtsrsr

—

Zr,s,t

tsrsrtsrstrsrsr
tsrsrtsrstsrsrs
tsrsrtsrtstrsrs :::§> tsrsrtstrsrtsrs ::::> tsrsrstsrsrtsrs ::::> trsrsrtsrsrtsrs
p—2
o 1 SYre(TS)
Yst(rs)? 5t<r5>p 1 —_— () —mr <ST>pt
t<ST>p mzr,s,t

t(rs)P =—= rt(s7)P"! — ()

Yre(st)P! Vst (sT)P

Figure 3: The 3-cells Z, ¢ for Coxeter type Hz and I;(p) x A1, p >3

srsristrsrtsrst

srsrstsrsrisrst

=

rsrsrisrsrtsrst

=

rsrstrsrsrtsrst

=

rsrstsrsrstsrst

=

rsrtstrsristrst

=

rsrtsrtstrsrist

=

rsrtsrstsrsrsts

=

rsrtsrstrsrsris

=

rstrsrsrisrsrts

=

rstsrsrstsrsrts

—

rtstrsrtstrsrts
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4.3. The 3-cells of Artin’s coherent presentation

The collapsible 2-cells are the s, such that s = d,,, mapped to the identity of 7t(su). Finally, there are
two disjoint cases of redundant 2-cells : (a) otsy,y With s = dgy and (b) oy With s > dg = dgyy. They
are mapped through 7t to the source of the 3-cell As ., after the appropriate Nielsen transformation,
giving the following inductive formulas:

7'[( (Xsu,v)

7t(su)7r(v) /ﬁ/\} (suv)

(a) s = dsy =

(b) s> dsu = dsuv =

ﬂ(s)ﬂ(o‘u»") ﬂ(s)ﬂ(u)ﬂ(\))ﬁn(su)n(\)) T suy)
o )TT(V

4.3.2. The Coxeter type A; x A; X Aj. Fort > s > rin S such that Wy, ¢ 1 is of type Aq X A1 X Ay,
the corresponding essential 3-cell of Garz(W) is as follows:

Sl g

tls|r Aisr Tst

ths)

/‘[,rs

The image Z; ;s of At through 7t is given by the inductive application of 7t to the 2-cells of its source
and target. For the source of Z, s ¢, we get 7t( oy s[T) = ys¢7 and

ﬂ(o‘st,r) = Sﬁ(at,r) *1 W(as,rt)
= SVrt *1 Yrst *1 7T(ocrs,t)

= SVt *1 Vrst.

For the target of Z, s ¢, we get 7(t|as ) = ty,s and

7T((Xt;rs) = YrtS *1 7T((Xrt,s)
= YrtS X1 TYst *1 7T((Xr,st)

= YrtS *1 T¥st.

Hence Z, 1 is the permutohedron, displayed as the third 3-cell of Figure 2]
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5. Coherent presentations and actions on categories

4.3.3. The Coxeter type Az. If Wy, ;) is of type Az with t > s > 1, the corresponding essential 3-cell
of Gar3(W) is as follows:

stsirst
(XtaSthSt | Ksts, st

tlst|rst MAt,Smst Tst

t|°‘st,¥‘

For the source of Z; s = 7t(Ast,rst), We have 7t( o srst) = ysrst and

(Xt,rsrts
tlrsrts

T &sts,rst) = SETT( 0t pst) 1 STU( g rsrt) *1 T0( s rstsr)-
Then, we have st7t( o rst) = styrst and (ot rstsr) = YrstsT, together with
sT(otrsrt) = SYrSTEx1 STTT( 0 57¢) *1 ST Cr stsr )
Finally, we get s7t( oty stsr) = Tsrstsr and
STTC(Ote,srt) = STETU( g r) ™ *1 STYstT 1 STTU(Ksts,r) = STESY . *1 STYsiT.

Wrapping up all those computations, we get the source of Z,. ; as displayed at the top of Figure[2] where
an exchange relation has been applied to contract sy,¢STt x1 sTtsy,, into sy;1sy,. The target of Z s 1 is
obtained by similar computations.

Let us note that we can have Wy, ¢ 1 of type A3, but with another ordering on the elements r, s, t.
For example, if s > 1 > t, the 3-cell Z; ; is the image of Ay, through 7, obtained, up to a Nielsen
equivalence, as follows: one considers the 3-cell of the case v > s > t with r and s exchanged, then one
replaces every occurrence of the 2-cell v, s, that is not in Art;(W) since s < 1, by Vs

5. COHERENT PRESENTATIONS AND ACTIONS ON CATEGORIES

In this section, we establish the relationship between our results on coherent presentations of monoids
and Deligne’s notion of an action on a category. In particular, we obtain that Deligne’s Theorem [13|
Theorem 1.5] is equivalent to Theorem[3.1.3] We prove that, up to equivalence, the actions of a monoid M
on categories are the same as the 2-functors from X to Cat, where I is any coherent presentation of M.

5.1. 2-representations of 2-categories

5.1.1. 2-representations. We recall from [[14]] that, given 2-categories C and D, a 2-representation of C
in D is a pseudofunctor F : € — D. This is a weakened notion of 2-functor, specified by:

— for every O-cell x of €, a O-cell F(x) of D,
— forevery 1-cell uw: x — y of C, a 1-cell F(u) : F(x) — F(y) of D,
— for every 2-cell f : u = v of G, a 2-cell F(f) : F(u) = F(v) of D.
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5.1. 2-representations of 2-categories

As for 2-functors, the data are required to be compatible with vertical composition, in a strict way:
— forall 2-cellsf:u=v:x > yand g:v = w:x —yof C, we have F(f x; g) = F(f) x; F(g),
— for every 1-cell u of C, we have F(1y) = Tg(y).

The data are also compatible with horizontal composition, but only up to coherent isomorphisms:

— forall T-cellsu:x — yandv:y — zof C, an invertible 2-cell F,,, : F(u)F(v) = F(uv) of D,
natural in u and v,

— for every 0-cell x of €, an invertible 2-cell Fy : Ty = F(1x) of D.
Finally, these 2-cells are required to satisfy the following monoidal coherence relations in D:

— forall T-cellsu:x —-y,v:y =2 zandw:z — tof C,

Flw) F(u) Fw)
lLF uy \ / \Fvwll \

\_/'

Fluvw) Fluww)

— forevery 1-cellu:x — y of C,

TE(x) Fx 1) F(u) F(u) F(u) ) Fy Try)
N / N ’ \\ 174
F(1) ﬂFu,u = "y e Fy = u@ﬂ Fliy),
F) 4 Fy) ~_ F) SF@)
F(w) F(u) F(u)
As usual with monoidal coherence relations, this implies that, for every sequence (u1,...,u,) of pair-

wise composable 1-cells in C, there exists a unique invertible 2-cell
Furaun © F) - Flun) = Flur---up)

in D built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence
2-cells are identities: it can be seen as a strict 2-representation.

The notion of 2-representation has been introduced by Elgueta for 2-groups in [[14]]. It is also studied
by Ganter and Kapranov in [16] in the special case of groups. In [35]], Rouquier considers the more gen-
eral case of 2-representations of bicategories. Among concrete target 2-categories for 2-representations,
natural choices are the 2-categories of 2-vector spaces, either from Kapranov and Voevodsky [25] or
from Baez and Crans [2]], of 2-Hilbert spaces [[1]] or of categories [[13]].
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5. Coherent presentations and actions on categories

5.1.2. Morphisms of 2-representations. If F, G : € — D are 2-representations of C into D, a morphism
of 2-representations from F to G is a pseudonatural transformation « : F = G between the corresponding
pseudofunctors:

— for every O-cell x of €, a 1-cell o : F(x) — G(x) of D,

— for every 1-cell u: x — y of C, an invertible 2-cell of D as follows

These data must satisfy several coherence relations:

— forevery 2-cell f:u = v:x — yof C,

G(x) G(v)

F F(x)
&/X / & ]G(x)
F(1x)
F(x)/ ﬂmx G(x) = Flx) — 2 G(x) \@G/ G(x)
G(1x)
x G(1x)
G(x)
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5.1. 2-representations of 2-categories

5.1.3. Categories of 2-representations. If F; G,H : ¢ — D are 2-representations and if « : F = G and
3 : G = H are morphisms of 2-representations, the composite morphism o+ 3 : F = H is defined by:

— if x is a O0-cell of C, the T-cell (- x )y : F(x) — H(x) of D is the composite

Bx

H(x)

— if u:x — yisa l-cell of C, the invertible 2-cell (o x 3)y, of D is defined by

TN O b \ B
b (Oc*Hﬁ)u N =L
G( X)

iL u
e Py

The category of 2-representations of € into D is denoted by 2Rep(C, D) and its full subcategory whose
objects are the 2-functors is denoted by 2Cat(C, D).

5.1.4. Actions of monoids on categories. If M is a monoid, we see it as a 2-category with exactly
one O-cell o, with the elements of M as 1-cells and with identity 2-cells only. We define the category
of actions of M on categories as the category Act(M) = 2Rep(M, Cat) of 2-representations of M
in Cat. Expanding the definition, an action T of M is specified by a category C = T(e), an endofunctor
T(u) : C — C for every element u of M, a natural isomorphism T, : T(u)T(v) = T(uv) for every
pair (u,v) of elements of M and a natural isomorphism T, : T¢c = T(1) such that:

— for every triple (u, v, w) of elements of M, the following diagram commutes:

uv//)/r LL\) N

T TM)T(w) T(uvw)
T% T(vw) /

— for every element u of M, the following two diagrams commute:

TeT(u) \TN; T(u)T//,'

T(u) T(u )

T(WT(1)

e

This definition corresponds to the notion of unital action of M on C that Deligne considers in [13]]. For
semigroups, he proves that unital actions are equivalent to nonunital actions. For any monoid M, this
fact is a consequence of the Tietze equivalence of the standard coherent presentation Std3(M) and the
reduced standard coherent presentation Std;(M), given in Example together with Theorem
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5. Coherent presentations and actions on categories

5.1.5. Remark. If S is an action of M on a category C and T is an action of M on a category D, by
expanding the definition, we get that a morphism of actions & from S to T is specified by a functor
F : C — D, corresponding to the component of « at the unique 0-cell of M, and, for every element u
of M, a natural isomorphism o, : S(W)F = FT(u). These data must satisfy the coherence conditions of
a pseudonatural transformation. Those morphisms of actions of monoids on categories differ from the
ones of Deligne in [13]]. Indeed, he considers morphisms between actions of M on the same category
C, such that the functor F is the identity of C, but where the natural transformation o, is not necessar-
ily an isomorphism: those are the icons between the corresponding pseudofunctors, as introduced by
Lack in [30] as a special case of oplax natural transformations (defined as pseudonatural transformations
whose component 2-cells are not necessarily invertible). Here we follow Elgueta and consider pseudo-
natural transformations, but the results and proofs can be adapted to icons or generalised to oplax natural
transformations.

The main theorem of this section relates the coherent presentations and the 2-representations of a
category. It is a direct consequence of Theorem [1.3.1] and of Proposition whose proof is the
objective of the rest of this section.

5.1.6. Theorem. Let C be a category, let L be an extended presentation of C. The following assertions
are equivalent:

i) the (3,1)-polygraph ¥ is a coherent presentation of C;
ii) for every 2-category C, there is an equivalence of categories
2Rep(C, @) ~ 2Cat(%,C)

that is natural in C.

5.2. 2-representations of cofibrant 2-categories

Let us fix 2-categories C and D, with € cofibrant. Our objective is to define a “strictification” functor
~: 2Rep(€,D) — 2Cat(C,D)
and to prove that it is a quasi-inverse for the canonical inclusion functor of 2Cat(C, D) into 2Rep(C, D).

5.2.1. Strictification of 2-representations. Let F : € — D be a 2-representation. Let us define the
2-functor F: € — D, dimension after dimension. On O-cells, T takes the same values as F. Since € is
cofibrant, its underlying 1-category is free: on generating 1-cells, Fis equal to F and, then, it is extended
by functoriality on every 1-cell. Hence, if u = a; - - a, is a 1-cell of C, where the a;s are generating
1-cells, we have

F(u) = F(ay)---Flan).

From the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell in D

Fa1,...,an

F(u) = Fla1)---Flan) —222% Flaj---an) = F(u)
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5.2. 2-representations of cofibrant 2-categories

from ?(u) to F(u), built from the coherence 2-cells of F. Since the decomposition of u in generators is
unique, we simply denote this 2-cell by F,. Let f : u = v : x — y be a 2-cell of C. We define f(f ) as the
following composite 2-cell of D, where the double arrows, which always go from top to bottom, have
been omitted for readability:

R Flw)
F(u) Fu
F
/A\ RN
Fx) F(f)  F) = Fx)  F(f) Ry
\_/ \F(v)/
?(v) F; /.
Fv)

As a direct consequence, we get that Eis compatible with vertical composition and identities of 1-cells.
Hence, we have defined a 2-functor F from € to D. We note that the monoidal coherence relations
satisfied by F imply that, if u:x — y and v : y — z are 1-cells of C, we have

F(uv)

and, if x is a O-cell of €, we have F; = F,.

5.2.2. Strictification of morphisms of 2-representations. Let F, G : ¢ — D be 2-representations and
let o : F = G be a morphism between them. Let us define a pseudonatural transformation & : F= G.
For a O-cell x of G, we take &y = . If u: x — yis a 1-cell of €, we define &, as the following
invertible 2-cell of D:

F(u) Fy)
/ v X
/F(u
F(x) = F(x) o G(y)
G(uf
N A E)
G(x) Gw)

This defines a pseudonatural transformation & : F = é Indeed, if x is a O-cell of C, we have:

/“\ Ez:/F \ S
A

F(x)

N

G(x)
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5. Coherent presentations and actions on categories

Then, if u:x — yandv:y — zare I-cells of C, we get:

/® N\

F(v)
F(y) —F(v)= F(z)

/ \ <“/ ~

F(x) Ry Flu) " F(x) g Kuw 562 G
G(uv) G?v)Gf
uv & /GII»V ‘ v
G(x) -G(u)* G(y)
G(u)
Fv)
F
F(

) F(y)
Fu

Y
“Fv)= F(z) “ Flz
A< u\‘ h \
= Fu "Fx y G(z) . Gv) = F(x)
x )G> \ \
v
o “G(u)

G(x) G(y) G(x) — G(y)
G- G(u)

%

«
u:

-

~2

=

Z

e
%
—F

Finally, if f:u = v:x — yisa2-cell of C:

F(f
i

(W) F(y) Fw( F F
)/ N T YN
o iyl
F(x) QA G(y) F) T Cly)
\ / \ s
Kx A - ~
6~ o G(X@ Gv)
- Fy)
Fu) [, / &
_ R Gw G
G(f) (e
& / __Sw) \ /Ej
6t Gy Jam) (x) Giv)

With similar computations, we check that strictification is compatible with the composition of morphisms
of 2-representations and with identities, so that it is a functor from 2Rep(C, D) to 2Cat(C, D).

40



5.3. 2-representations and cofibrant approximations

5.2.3. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion
2Cat(C, D) — 2Rep(C, D)
is an equivalence of categories that is natural in ‘D, with quasi-inverse given by the strictification functor.

Proof. 1t is sufficient to check that, for every 2-representation F : € — D, there exists a pseudonatural
isomorphism @r : F = F that is itself natural in F. We define @ as follows:

— if x is a O-cell of C, then ?(x) = F(x) and we take (@f)x = 14,

— ifu:x — yisal-cell of C, then (@F)y : f(u) = F(u) is defined as the invertible coherence
2-cell F, : F(u) = F(u).

These data satisfy the required coherence properties: the compatibility with the 2-cells of € is exactly the
definition of F and the compatibility with horizontal composition and identities comes from the monoidal
coherence relations of F, as already checked. Moreover, if & : F = G is a morphism of 2-representations,

the naturality condition
% F \oc{

F = G
a\‘ G %
corresponds, on each 1-cell u of C, to the definition of &. OJ

5.3. 2-representations and cofibrant approximations

Let us recall that, for a 2-category €, we denote by @ its standard cofibrant replacement. We note that
the definition of a 2-functor from C to a 2-category D is exactly the same as the one of a pseudofunctor
from € to D, yielding the following isomorphism of categories:

2Rep(C, D) ~ 2Cat(C, D).
In particular, for every monoid M, we get an isomorphism of categories:
Act(M) ~ 2Cat(M, Cat).

In what follows, we prove that weak versions of these isomorphisms exist for all cofibrant approxi-
mations. More precisely, the category of 2-representations of a 2-category C into a 2-category D is
equivalent to the one of 2-functors from any cofibrant approximation € of € into D.

5.3.1. Lemma. Let C and D be 2-categories. The following assertions are equivalent:

i) the 2-categories C and D are pseudoequivalent, i.e., there exist pseudofunctors F : ¢ — D and
G :D — C such that
GF ~ 1e and FG ~ 19p;
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5. Coherent presentations and actions on categories

ii) for every 2-category &, there is an equivalence of categories
2Rep(C, &) =~ 2Rep(D, &)
that is natural in €.

Proof. Let us assume that € and D are pseudoequivalent. As a consequence, for all pseudofunctors
H:C— and K: D — &, we have:

HGF ~ H and KFG ~ K.

Thus the functors 2Rep(F, €) and 2Rep(G, &), respectively sending a pseudofunctor K : D — € to KF
and a pseudofunctor H : € — &€ to HG, form the required equivalence of categories.

Conversely, let us assume that, for every 2-category &, we have 2Rep(C, £) ~ 2Rep(D, £) natural
in €. We denote by

@ : 2Rep(C, &) — 2Rep(D, &) and Ye : 2Rep(D, E) — 2Rep(C, &)

the functors that constitute the equivalence. This means that, for all pseudofunctors H : € — & and
K:D — &, we have the following isomorphisms:

\ygq)g(H) ~ H and (Dg\yg(K) ~ K.

The naturality of the equivalence means that, for all 2-categories & and &’ and every pseudofunctor
H: & — &/, the following diagrams commute:

JRep(€, &) — 2t 2Rep(D, &) JRep(D, &) — & 2Rep(©, &)
ZRep(G,H)J _ PRep(@,H) ZRep(D,H)J _ JZRep(G,H)
2Rep(€, &) ——— 2Rep(D, & 2Rep(D, &) ——+ 2Rep(€, £).

&’ &’

We define the pseudofunctors F: € — D and G : D — € as follows:
F =WYp(lp) and G = De(1e).
We consider the naturality condition on ® with & = €, &’ = D and H = F. This gives an equality
Fo ®e(K) = Op(FoK)
for every pseudofunctor K : € — C. Thus, in the special case K = 1¢, we get
FG = Op(F) = OpoV¥p(lp) ~ Tp.
In a symmetric way, the naturality condition on ¥ gives GF ~ T¢, thus concluding the proof. O

A combination of Proposition[5.2.3|and of Lemma[5.3.1] gives the following result.
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5.3.2. Proposition. Let C and C be 2-categories, with e cofibrant. The following assertions are equiva-

lent:

i) the 2-category Cisa cofibrant approximation of C;

ii) for every 2-category D, there is an equivalence of categories

2Rep(€, D) ~ 2Cat(C, D)

that is natural in D.

Finally, an application of Theorem [1.3.1| concludes the proof of Theorem In the particular case
of Artin monoids, we thus get Deligne’s Theorem 1.5 of [[13]] for any Artin monoid as a consequence of
Theorem [3.1.3] Moreover, Theorem[d.1.1| gives a similar result in terms of Artin’s coherent presentation,
formalising the paragraph 1.3 of [13]] on the actions of Bj.
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