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COHERENT PRESENTATIONS OF ARTIN GROUPS

STÉPHANE GAUSSENT YVES GUIRAUD PHILIPPE MALBOS

Abstract – A coherent presentation of a monoid is an extension of a presentation of this monoid by a
homotopy basis, making a natural cellular complex associated to the presentation contractible. In the
case of Artin monoids, we show that the usual presentation defined by Artin, using braid relations,
can be completed in a coherent presentation that we give in an explicit way. To be able to handle
presentations that are not confluent, we develop a homotopical completion-reduction procedure that
combines and extends methods of rewriting systems introduced by Squier and by Knuth and Bendix.
Since any Artin monoid embeds in its Artin group, the coherent presentation of the monoid gives a
coherent presentation of the group. In addition, the category of actions of a monoid on categories is
equivalent to the category of 2-functors from a coherent presentation of the monoid to Cat. In this
vein, our procedure gives also a new proof of a theorem of Deligne concerning the action of an Artin
monoid on a category in terms of a presentation based on the Garside structure.

M.S.C. 2000 – 20F36, 18D05, 68Q42.
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1. Introduction

1. INTRODUCTION

In [35], Squier introduces the notion of homotopy basis for a presentation Σ by a set Σ1 of generators and
a set Σ2 of relations of a monoid M. For this, Squier builds a combinatorial cellular object Σ> with one
0-cell, whose 1-cells are the elements of the free monoid Σ∗1 over Σ1, whose 2-cells are generated by the
relations of Σ2 and whose 3-cells correspond to independent applications of relations. More precisely,
there is a 2-cell between every pair of words wuw ′ and wvw ′ such that u = v is a relation of Σ2, and
one 3-cell for each of the following situations, where u1 = v1 and u2 = v2 are relations in Σ2:

wv1w
′u2w

′′
u2 = v2

wu1w
′u2w

′′

u1 = v1

u2 = v2

≡ wv1w
′v2w

′′

wu1w
′v2w

′′ u1 = v1

A homotopy basis of Σ is a set Σ3 of additional 3-cells that makes the complex Σ> contractible. In
this article, such a triple (Σ1, Σ2, Σ3) is called a coherent presentation of M. The aim of this work
is to construct explicit coherent presentations of monoids and groups, with a particular focus on Artin
monoids and Artin groups.

Coherent presentations of Artin monoids and groups. In [37, Proposition 4], Tits gives an implicit
coherent presentation of Artin monoids and Artin groups. Given a Coxeter group W, with generating
set S, the Artin monoid (resp. Artin group) associated to W is the monoid B+(W) (resp. the group B(W))
generated by S and subject to the braid relations

sts · · · = tst · · ·

This presentation is called Artin’s presentation of B+(W) and B(W) and we denote it by Art(W). Tits
proves that B+(W) and B(W) admit a coherent presentation built from Art(W) and an implicit homotopy
basis, formed by all the possible 3-cells over every subcomplex Art(WI)

>, for WI a finite parabolic
subgroup of rank 3 of W (see also [33, Theorem 2.17]).

In [13, 1.3.2], Deligne makes explicit this homotopy basis in the special case of the braid monoid B+
4 :

it contains exactly one 3-cell corresponding to the relations that link all the reduced expressions of the
fundamental element of B+

4 . Our main theorem generalises this explicit coherent presentation, called
Artin’s coherent presentation, for every Artin monoid and Artin group.

Theorem 2.4.5. For every Coxeter group W, the Artin monoid B+(W) and the Artin
group B(W) admit the coherent presentation, denoted by Art+(W), made of Artin’s presen-
tation and one 3-cell Zr,s,t for every pairwise distinct generators r, s and t in S such that
the parabolic subgroup W{r,s,t} is finite. Moreover, the shape of the 3-cell Zr,s,t is entirely
determined by the Coxeter type of W{r,s,t}.
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1. Introduction

Coherent presentations and actions on categories. In [13, 1.3.2], Deligne uses a formulation in terms
of actions of monoids on categories, instead of coherent presentations: an action T of a monoid M on a
category C is a family of endofunctors T(u) of C, one for every element u of M, such that T is compatible
with the product of M. This compatibility is expressed by natural isomorphisms

T(u)T(v)
Tu,v

%9 T(uv)

that, in turn, satisfy coherence conditions with respect to the associativity of the product of M:

T(uv)T(w) Tuv,w

�*
=T(u)T(v)T(w)

Tu,vT(w) )=

T(u)Tv,w
!5

T(uvw)

T(u)T(vw) Tu,vw

4H
(1)

This definition of action has an interpretation in terms of coherent presentations. Indeed, every monoid M
admits a canonical presentation Can(M) whose generators are the elements of M and whose relations
are given by the multiplication table of the monoid M. This presentation Can(M) can be extended
into a coherent presentation, denoted by Can+(M), by adjunction of the 3-cells corresponding to the
associativity of the product: the images of these 3-cells under T are exactly the coherence conditions (1).

In fact, one gets the same definition of action if one replaces the coherent presentation Can+(M) by
any other coherent presentation Σ of M. More precisely, up to equivalence, an action ofM on C is spec-
ified by an endofunctor T(x) of C for every generator x of Σ1 and a natural isomorphism between T(u)
and T(v) for every relation u = v of Σ2, such that the elements of Σ3 are mapped to commutative
diagrams by T .

Theorem 3.4.3. If Σ is a coherent presentation of a monoid M, then the category Act(M)
of actions of M on categories is equivalent to the category of 2-functors from Σ> to Cat that
send the elements of the homotopy basis to commutative diagrams.

In [13, Theorem 1.5], Deligne already observes that this equivalence holds for a specific presentation of
spherical Artin monoids. This presentation Del(W) of B+(W), based on the Garside structure of B+(W),
has the elements of W \ {1} as generators and the

u|v = uv if l(uv) = l(u) + l(v)

as relations. The notation ·|· stands for the product in the free monoid over W \ {1} and l(u) is the
length of u in W. In Deligne’s theorem on actions of B+(W), the coherence conditions correspond to
the following 3-cells of Del(W)>:

uv|w

Au,v,wu|v|w uvw

u|vw

if l(uvw) = l(u) + l(v) + l(w).

3



1. Introduction

We prove that the 3-cells Au,v,w extend Del(W) into a coherent presentation, denoted by Del+(W), so
that Deligne’s result also holds for non-spherical Artin monoids.

Theorem 5.1.4. For every Coxeter group W, the Artin monoid B+(W) admits Del+(W) as
a coherent presentation.

Rewriting methods for coherence. As initiated by Squier in [35], rewriting theory provides methods to
compute homotopy bases for specific presentations. Rewriting is a combinatorial theory of equalities in
algebraic structures that consists in replacing equalities u = v by oriented relations u⇒ v to define de-
cision procedures. In particular, a presentation Σ of a monoid M is convergent if it satisfies the following
two conditions:

− termination, i.e., there is no infinite reduction u1 ⇒ u2 ⇒ u3 ⇒ (· · · ),

− confluence, i.e., two different reductions u⇒ v and u⇒ w can always be joined by some v⇒ u ′

and w⇒ u ′.

Squier’s completion is a procedure that extends a convergent presentation Σ of a monoid M into a coher-
ent presentation S(Σ) of M. It is based on the study of the critical branchings of Σ: those are the minimal
overlaps of the left members of the relations. The coherent presentation S(Σ) is obtained from Σ by ad-
junction of all the 3-cells

v

�&
≡u

)=

 4

u ′

w

:N

where the plain part is a critical branching and the dotted part is obtained by the confluence hypothesis.
For example, the 3-cells Au,v,w of Deligne’s coherent presentation Del+(W) are obtained by this

construction if the relations of Del(W) are directed as in u|v ⇒ uv. However, in general, Squier’s
completion does not apply directly to the presentations Art(W) or Del(W) because they lack conflu-
ence. To apply the rewriting methods to the case of Artin monoids, we extend Squier’s completion to
non-confluent presentations, yielding a homotopical completion-reduction procedure. The homotopical
completion-reduction R(Σ) of a terminating presentation Σ is obtained as follows:

1. Homotopical completion combines Squier’s completion and Knuth-Bendix completion procedure,
a method from rewriting theory that adds sufficiently many relations to a terminating presentation
to achieve confluence.

2. Homotopical reduction eliminates some unnecessary generators, relations and cells of the homo-
topy basis. In particular, the critical triple branchings are used as redundancy relations between
the 3-cells.

Theorem 4.5.1. If Σ is a terminating presentation of a monoid M, then the homotopical
completion-reduction R(Σ) of Σ is a coherent presentation of M.

4



2. Coherent presentations of categories and groupoids

For every Coxeter group W, the homotopical completion-reduction of Deligne’s presentation Del(W)
of B+(W) is Artin’s coherent presentation Art+(W). This proves Theorem 2.4.5 for Artin monoids.
Moreover, the homotopical completion-reduction process also yields Deligne’s coherent presentation
Del+(W), thus proving Theorem 5.1.4. Finally, the homotopical completion-reduction procedure is also
used to adapt Art+(W) into a coherent presentation of the Artin group B(W), yielding Theorem 2.4.5
for Artin groups.

As a final remark, in [21, Theorem 4.5.3], Squier’s completion is extended in higher dimensions to
produce polygraphic resolutions of monoids, of which coherent presentations form the first three dimen-
sions. From that point of view, the present work is a first step towards the construction of polygraphic
resolutions Del∗(W) and Art∗(W) of Artin monoids and Artin groups, extending the coherent presenta-
tions Del+(W) and Art+(W). Moreover, the abelian resolutions obtained from Del∗(W) and Art∗(W)
by [21, Theorem 5.4.3] should be related to the abelian resolutions introduced in [10].

Acknowledgements. The authors wish to thank Kenji Iohara, François Métayer and Timothy Porter for
fruitful exchanges on this work.

2. COHERENT PRESENTATIONS OF CATEGORIES AND GROUPOIDS

A coherent presentation of a monoid or, more generally, of a category is a data made of generators,
generating relations and generating coherence conditions. This is formalised in terms of polygraphs,
which are presentations of higher-dimensional categories introduced by Burroni in [7] and by Street
in [36], under the name of computad. We refer the reader to [30] for more details on higher categories. In
this section, we we recall rewriting methods, initiated by Squier [35], to compute coherent presentations
and we formulate the main theorem about the coherent presentations of Artin monoids and Artin groups.

2.1. Higher-dimensional categories

If C is an n-category (we always consider strict, globular n-categories), we denote by Ck the set (and the
k-category) of k-cells of C. If f is a k-cell of C, then si(f) and ti(f) respectively denote the i-source and
i-target of f; we drop the suffix i if i = k− 1. The source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

We respectively denote by f : u → v, f : u ⇒ v, f : u V v and f : u �? v a 1-cell, a 2-cell, a 3-cell
and a 4-cell f with source u and target v. If f and g are i-composable k-cells, that is if ti(f) = si(g), we
denote by f ?i g their i-composite; we simply write fg if i = 0. The compositions satisfy the exchange
relations given, for every i 6= j and every possible cells f, g, h and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k).

If f is a k-cell, we denote by 1f its identity (k+ 1)-cell. If 1f is composed with cells of dimension k+ 1
or higher, we simply denote it by f.
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2. Coherent presentations of categories and groupoids

2.1.1. (n, p)-categories. In an n-category C, a k-cell f, with source x and target y, is invertible if there
exists a (necessarily unique) k-cell f− in C, with source y and target x in C, called the inverse of f, such
that

f ?k−1 f
− = 1x and f− ?k−1 f = 1y.

An (n, p)-category is an n-category whose k-cells are invertible for every k > p. In particular, an
(n,n)-category is an ordinary n-category and an (n, 0)-category is an n-groupoid.

2.1.2. Spheres. Let C be an n-category. A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for
1 ≤ k ≤ n, a k-sphere of C is a pair γ = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g); we call f the source of γ and g its target and we write s(γ) = f and t(γ) = g. If f is a
k-cell of C, for 1 ≤ k ≤ n, the boundary of f is the (k− 1)-sphere (s(f), t(f)).

2.1.3. Cellular extensions. Let C be an n-category. A cellular extension of C is a set Γ equipped with a
map from Γ to the set of n-spheres of C, whose value on γ is denoted by (s(γ), t(γ)). By considering all
the formal compositions of elements of Γ , seen as (n+1)-cells with source and target in C, one builds the
free (n+1)-category generated by Γ over C, denoted by C[Γ ]. The quotient of C by Γ , denoted by C/Γ , is
the n-category one gets from C by identification of the n-cells s(γ) and t(γ), for every n-sphere γ of Γ .
If C is an (n, 1)-category and Γ is a cellular extension of C, then the free (n + 1, 1)-category generated
by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) = C[Γ, Γ̌ ]
/

Inv(Γ)

where Γ̌ contains the same (n + 1)-cells as Γ , with source and target reversed, and Inv(Γ) is the cellular
extension made of two (n+ 2)-cells

γ̌ ?n γ
λγ
// 1g and γ ?n γ̌

ργ
// 1f

for each (n+ 1)-cell γ from f to g in Γ .

2.1.4. Homotopy bases. Let C be an n-category. A homotopy basis of C is a cellular extension Γ of C
such that, for every n-sphere γ of C, there exists an (n+1)-cell with boundary γ in C(Γ) or, equivalently,
if the quotient n-category C/Γ has n-spheres of shape (f, f) only. For example, the n-spheres of C form
a homotopy basis of C.

2.2. Coherent presentations of categories and groupoids

2.2.1. Polygraphs. A 1-polygraph is a pair Σ = (Σ0, Σ1) made of a set Σ0 and a cellular extension Σ1
of Σ0. The free category Σ∗ over Σ is Σ∗ = Σ0[Σ1]. A 2-polygraph is a pair Σ = (Σ1, Σ2) where Σ1 is
a 1-polygraph and Σ2 is a cellular extension of the free category Σ∗1. The free 2-category Σ∗ over Σ, the
free (2, 1)-category Σ> over Σ and the category Σ presented by Σ are respectively defined by

Σ∗ = Σ∗1[Σ2] , Σ> = Σ∗1(Σ2) and Σ = Σ∗1/Σ2.

A (3, 1)-polygraph is a pair Σ = (Σ2, Σ3) made of a 2-polygraph Σ2 and a cellular extension Σ3 of the
free (2, 1)-category Σ>2 . The free (3, 1)-category Σ> over Σ and the (2, 1)-category presented by Σ are

6



2.2. Coherent presentations of categories and groupoids

defined by
Σ> = Σ>2 (Σ3) and Σ = Σ>2 /Σ3.

The category presented by a (3, 1)-polygraph Σ is the one presented by its underlying 2-polygraph,
namely Σ2 = Σ∗1/Σ2. If Σ is a polygraph, we identify its underlying k-polygraph Σk and the set of
k-cells of the corresponding cellular extension. We say that Σ is finite if it has finitely many cells in
every dimension. A (3, 1)-polygraph Σ can be summarised by a diagram representing the cells and the
source and target maps of the free (3, 1)-category Σ> it generates:

Σ0 Σ∗1
t0

oo

s0
oo Σ>2

t1
oo

s1
oo Σ>3 .

t2
oo

s2
oo

2.2.2. Coherent presentations of categories. Let C be a category. A presentation of C is a 2-poly-
graph Σ whose presented category Σ is isomorphic to C. We usually commit the abuse to identify C
and Σ and we denote by u the image of a 1-cell u of Σ∗ through the canonical projection onto C. An
extended presentation of C is a (3, 1)-polygraph Σ whose presented category is isomorphic to C. A
coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ3 of Σ>2
is a homotopy basis. Example 2.3.8 proves that every category admits a coherent presentation.

2.2.3. Coherent presentations of groupoids. If G is a groupoid, a presentation of G is a 2-polygraph

Σ0
(
Σ1 q Σ̌1

)∗
oo
oo

(
Σ2 q Inv(Σ1)

)>
oo
oo

that is a presentation of G, seen as a category. We denote such a presentation of G by (Σ0, Σ1, Σ2). A
coherent presentation of G is a (3, 1)-polygraph

Σ0
(
Σ1 q Σ̌1

)∗
oo
oo

(
Σ2 q Inv(Σ1)

)>
oo
oo

(
Σ3 q Inv+(Σ1)

)>
oo
oo

that is a coherent presentation of G, seen as a category, where Inv+(Σ1) contains, for every 1-cell x of Σ1,
the following two 3-cells:

x̌xx̌

λxx̌

�*

x̌ρx

5IIx��
x̌ xx̌x

ρxx

�)

xλx

5IJx��
x

We denote by (Σ2, Σ3) such a coherent presentation of G. The justification of this definition is that, if
one denotes by (

Σ1 q Σ̌1
) π

// //
(
Σ1 q Σ̌1

)
/Inv(Σ1)

the canonical projection, then π(Σ3) forms a homotopy basis of the 2-groupoid((
Σ1 q Σ̌1

)
/Inv(Σ1)

)(
π(Σ2)

)
.
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2. Coherent presentations of categories and groupoids

2.3. Squier’s completion for convergent presentations

We recall notions of rewriting theory for 2-polygraphs from [20, 4.1] and [21, 4.1], together with Squier’s
completion to compute coherent presentations from convergent presentations. We detail this already-
known material because it is central in the methods we develop in Section 4. Let us fix a 2-polygraph Σ.

2.3.1. Rewriting and normal forms. A rewriting step of Σ is a 2-cell of the free 2-category Σ∗ with
shape

y
w

// x

u
##

v

<<
ϕ�� x ′

w ′
// y ′

where ϕ : u⇒ v is a 2-cell of Σ andw andw ′ are 1-cells of Σ∗. A rewriting sequence of Σ is a finite or
infinite sequence

u1
f1 %9 u2

f2 %9 (· · · )
fn−1 %9 un

fn %9 (· · · )

of rewriting steps. If Σ has a non-empty rewriting sequence from u to v, we say that u rewrites into v.
Let us note that every 2-cell f of Σ∗ decomposes into a finite rewriting sequence of Σ, this decomposition
being unique up to exchange relations. A 1-cell u of Σ∗ is a normal form if Σ has no rewriting step with
source u. A normal form of u is a 1-cell v that is a normal form and such that u rewrites into v.

2.3.2. Termination. We say that Σ terminates if it has no infinite rewriting sequence. In that case, every
1-cell has at least one normal form and Noetherian induction allows definitions and proofs of properties
of 1-cells by induction on the maximum size of the 2-cells leading to normal forms. If Σ is a 2-polygraph,
a termination order on Σ is an order relation≤ on parallel 1-cells of Σ∗ such that the following properties
are satisfied:

− the composition of 1-cells of Σ∗ is strictly monotone in both arguments,

− every decreasing family (un)n∈N of parallel 1-cells of Σ∗ is stationary,

− for every 2-cell α of Σ, the strict inequality s(α) > t(α) holds.

As a direct consequence of the definition, if Σ admits a termination order, then Σ terminates.
A useful example of termination order is the left degree-wise lexicographic order (or deglex for short)

generated by a given order on the 1-cells of Σ. It is defined by the following strict inequalities, where
each xi and yj is a 1-cell of Σ:

x1 · · · xp < y1 · · ·yq if p < q

x1 · · · xk−1xk · · · xp < x1 · · · xk−1yk · · ·yp if xk < yk.

The deglex order is total if, and only if, the original order on 1-cells of Σ is total.

8



2.3. Squier’s completion for convergent presentations

2.3.3. Branchings. A branching of Σ is a pair (f, g) of 2-cells of Σ∗ with a common source, as in the
diagram

v

u

f &:

g #7 w

The 1-cell u is the source of this branching and the pair (v,w) is its target. We do not distinguish the
branchings (f, g) and (g, f). A branching (f, g) is local if f and g are rewriting steps. Local branchings
belong to one of the three following families:

− aspherical branchings have shape
v

u

f &:

f
$8 v

where f : u⇒ v is a rewriting step of Σ,

− Peiffer branchings have shape
u ′v

uv

fv (<

ug "6 uv ′

where f : u⇒ u ′ and g : v⇒ v ′ are rewriting steps of Σ,

− overlapping branchings are the remaining local branchings.

Local branchings are compared by the order 4 generated by the relations

(f, g) 4
(
ufv, ugv)

given for any local branching (f, g) and any possible 1-cells u and v of Σ∗. An overlapping local branch-
ing that is minimal for the order 4 is called a critical branching. The terms “aspherical” and “Peiffer”
come from the corresponding notions for spherical diagrams in Cayley complexes associated to presen-
tations of groups [27]. The term “critical” comes from rewriting theory [4, 1].

2.3.4. Confluence. A branching (f, g) : u ⇒ (v,w) is confluent if there exist 2-cells f ′ : v ⇒ u ′ and
g ′ : w⇒ u ′ in Σ∗, as in the following diagram:

v f ′

�+
u

f ';

g #7

u ′

w g ′

5I

9



2. Coherent presentations of categories and groupoids

We say that Σ is confluent (resp. locally confluent) if all of its branchings (resp. local branchings) are
confluent. In a confluent 2-polygraph, every 1-cell has at most one normal form. A fundamental result
of rewriting theory states that local confluence is equivalent to confluence of critical branchings. Indeed,
any aspherical or Peiffer branching is confluent:

v 1v

�(
u

f &:

f
$8

v

v 1v

5I

u ′v u ′g

�-
uv

fv (<

ug "6

u ′v ′

uv ′ fv ′

3G

We note that, in the aspherical and Peiffer cases, the 2-cells f ′ and g ′ can be chosen in such a way that
f ?1 f

′ = g ?1 g
′ holds. Finally, in the case of an overlapping but not minimal local branching (f, g),

there exist factorisations f = uhv and g = ukv with (h, k) : w ⇒ (x, y) a critical branching of Σ. If
(h, k) is confluent, then so is (f, g):

x h ′

�,
w

h ';

k #7

w ′

y k ′

5I  

uxv uh ′v
�/

uwv

f ';

g "6

uw ′v

uyv uk ′v

1E

For terminating 2-polygraphs, Newman’s lemma, sometimes called the Diamond Lemma, ensures that
local confluence and confluence are equivalent properties [31, Theorem 3].

2.3.5. Convergent polygraphs. We say that Σ is convergent if it terminates and it is confluent. Such a Σ
is called a convergent presentation of Σ, and of any category that is isomorphic to Σ. In that case, every
1-cell u of Σ∗ has a unique normal form, denoted by û, so that we have u = v in Σ if, and only if, û = v̂
holds in Σ∗. This extends to a section Σ � Σ∗ of the canonical projection, sending a 1-cell u of Σ to
the unique normal form of its representative 1-cells in Σ∗, still denoted by û. As a consequence, a finite
and convergent 2-polygraph Σ yields generators for the 1-cells of the category Σ it presents, together
with a decision procedure for the corresponding word problem (the purpose of the finiteness condition
is to ensure that one can effectively check that a given 1-cell is a normal form). A (3, 1)-polygraph is
convergent if its underlying 2-polygraph is.

2.3.6. Squier’s completion. Let us assume that Σ is convergent. A family of generating confluences
of Σ is a cellular extension of Σ> that contains exactly one 3-cell

v f ′

�,

��
u

f ';

g #7

u ′

w g ′

3G

for every critical branching (f, g) of Σ. We note that, if Σ is confluent, it always admits a family of
generating confluences. However, such a family is not necessarily unique, since the 3-cell can be directed

10



2.3. Squier’s completion for convergent presentations

in the reverse way and, for a given branching (f, g), we can have several possible 2-cells f ′ and g ′ with
the required shape (see [21, 4.3.2] for a constructive version, based on normalisation strategies).

We call Squier’s completion of Σ the (3, 1)-polygraph denoted by S(Σ) and obtained from Σ by
adjunction of a chosen family of generating confluences of Σ. Squier proved the following result (which
was extended to n-polygraphs in [20, Proposition 4.3.4]). We recall the proof in details here, because
Theorem 2.3.7 is an essential part of the homotopical completion we introduce in Section 4.

2.3.7. Theorem ([35, Theorem 5.2]). For every convergent presentation Σ of a category C, Squier’s
completion S(Σ) of Σ is a coherent presentation of C.

Proof. We proceed in three steps.

Step 1. We prove that, for every local branching (f, g) : u⇒ (v,w) of Σ, there exist 2-cells f ′ : v⇒ u ′

and g ′ : w⇒ u ′ in Σ∗ and a 3-cell A : f ?1 f
′ V g ?1 g

′ in S(Σ)>, as in the following diagram:

v f ′

�,
A��

u

f ';

g #7

u ′

w g ′

3G

As we have seen in the study of confluence of local branchings, in the case of an aspherical or Peiffer
branching, we can choose f ′ and g ′ such that f ?1 f = g ?1 g ′: an identity 3-cell is enough to link them.
Moreover, if we have an overlapping branching (f, g) that is not critical, we have (f, g) = (uhv, ukv)
with (h, k) critical; we consider the corresponding 3-cell α : h ?1 h

′ V k ?1 k
′ of S(Σ) and we conclude

that f ′ = uh ′v, g ′ = uk ′v and A = uαv satisfy the required conditions.

Step 2. We prove that, for every parallel 2-cells f and g of Σ∗ whose common target is a normal form,
there exists a 3-cell from f to g in S(Σ)>. We proceed by Noetherian induction on the common source u
of f and g, using the termination of Σ. Let us assume that u is a normal form: then, by definition, both
2-cells f and g must be equal to the identity of u, so that 11u : 1u V 1u is a 3-cell of S(Σ)> from f to g.

Now, let us fix a 1-cell u with the following property: for any 1-cell v such that u rewrites into v
and for any parallel 2-cells f, g : v ⇒ v̂ = û of Σ∗, there exists a 3-cell from f to g in S(Σ)>. Let
us consider parallel 2-cells f, g : u ⇒ û and let us prove the result by progressively constructing the
following composite 3-cell from f to g in S(Σ)>:

u1

f ′1
�)

f2

�-
A
��

u

f

�$

g

:N

f1

/C

g1
�/

u ′ h %9 û

v1

g ′1

5I

g2

1E

=

=

B��

C��

11



2. Coherent presentations of categories and groupoids

Since u is not a normal form, we can decompose f = f1 ?1 f2 and g = g1 ?1 g2 so that f1 and g1 are
rewriting steps. They form a local branching (f1, g1) and we build the 2-cells f ′1 and g ′1, together with
the 3-cell A as in the first part of the proof. Then, we consider a 2-cell h from u ′ to û in Σ∗, that must
exist by confluence of Σ and since û is a normal form. We apply the induction hypothesis to the parallel
2-cells f2 and f ′1 ?1 h in order to get B and, symmetrically, to the parallel 2-cells g ′1 ?1 h and g2 to get C.

Step 3. We prove that every 2-sphere of Σ> is the boundary of a 3-cell of S(Σ)>. First, let us consider a
2-cell f : u⇒ v in Σ∗. Using the confluence of Σ, we choose 2-cells

σu : u ⇒ û and σv : v ⇒ v̂ = û

in Σ∗. By construction, the 2-cells f?1σv and σu are parallel and their common target û is a normal form.
Thus, there exists a 3-cell in S(Σ)> from f ?1 σv to σu or, equivalently, a 3-cell σf from f to σu ?1 σ−v in
S(Σ)>, as in the following diagram:

u

f

�.

σu  4

v

û σ−v

<Pσf
��

Moreover, the (3, 1)-category S(Σ)> contains a 3-cell σf− from f− to σv ?1 σ−u , given as the following
composite:

û σ−v


!
v
f− %9 u

f

0D

σu
+?

v
σv %9 û

σ−u %9 uσ−f��

Now, let us consider a general 2-cell f : u ⇒ v of Σ>. By construction of Σ>, the 2-cell f can be
decomposed (in general in a non-unique way) into a “zig-zag”

u
f1 %9 v1

g−1 %9 u2
f2 %9 (· · · )

g−n−1 %9 un
fn %9 vn

g−n %9 v

where each fi and gi is a 2-cell of Σ∗. We define σf as the following composite 3-cell of S(Σ)>, with
source f and target σu ?1 σ−v :

u
f1 %9

σu �2

v1
g−1 %9

σv1
�,

(· · · ) fn %9

σun
�,

vn
g−n %9

σvn
�,

v

û

σ−v1

2F

û

σ−u2

2F

(· · · ) û

σ−vn

2F

û
σ−v

:N
σf1��

σg−1��
σfn��

σg−n��= =

We proceed similarly for any other 2-cell g : u ⇒ v of Σ>, to get a 3-cell σg from g to σu ?1 σ
−
v

in S(Σ)>. Thus, the composite σf ?2 σ−g is a 3-cell of S(Σ)> from f to g, concluding the proof.
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2.3. Squier’s completion for convergent presentations

2.3.8. Example (The canonical coherent presentation). The canonical presentation of a category C
is the 2-polygraph denoted by Can(C) and defined as follows:

− the 0-cells and 1-cells of Can(C) are the ones of C, a 1-cell u of C being denoted by û when seen
as a generating 1-cell of Can(C),

− for every 1-cells u : x→ y and v : y→ z of C, one 2-cell

y
v̂

��

x

û
77

ûv

44 z

γu,v��

− for every 0-cell x of C, one 2-cell

x

1x
��

1̂x

??
xιx��

The canonical coherent presentation of C is the (3, 1)-polygraph denoted by Can+(C) and obtained by
extension of Can(C) with the homotopy basis made of the following 3-cells:

− for every 1-cells u : x→ y, v : y→ z and w : z→ t of C, one 3-cell

ûvŵ γuv,w
�.

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2Fαu,v,w
��

− for every 1-cell u : x→ y of C, two 3-cells

1̂xû
γ1x,u

�"
û

ιxû
.B

û

λu
��

û1̂y
γu,1y

�"
û

ûιy
/C

û

ρu
��

Let us prove that Can+(C) is, indeed, a coherent presentation of C. The canonical presentation Can(C)
is not terminating: indeed, for every 0-cell x of C, the 2-cell ιx creates infinite rewriting sequences

1x ⇒ 1̂x ⇒ 1̂x1̂x ⇒ 1̂x1̂x1̂x ⇒ · · ·
However, we get a convergent presentation of C by reversing all the 2-cells ιx into ι−x . Indeed, for
termination, we consider the size of the 1-cells (the number of generators they contain) and we check
that each 2-cell γu,v has source of size 2 and target of size 1, while each 2-cell ι−x has source of size 1
and target of size 0. As a consequence, for every non-identity 2-cell f : u⇒ v of the free 2-category, the
size of u is strictly greater than the size of v. For confluence, we study the critical branchings, divided
into three families:

13



2. Coherent presentations of categories and groupoids

− for every 1-cells u : x → y, v : y → z and w : z → t, one critical branching (γu,vŵ, ûγv,w),
giving the 3-cell

ûvŵ γuv,w
�.

γu,v,w
��

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2F

− for every 1-cell u : x → y of C, two critical branchings (γ1x,u, ι
−
x û) and (γu,1y , ûι

−
y ), producing

the 3-cells

1̂xû

γ1x,u

�*

ι−x û

5Iλu�� û û1̂y

γu,1y

�*

ûι−y

5Iρu�� û

Since considering the 2-cells ιx or ι−x as generators does not change the generated (2, 1)-category, we
get that those three families of 3-cells form a homotopy basis for Can(C). We replace λu by ιxû ?1 λu
and ρu by ûιy ?1 ρu to get the result.

One can reduce Can+(C) into the smaller reduced canonical coherent presentation Can ′+(C) of C.
It is obtained from Can+(C) by removing all the cells about units. This is formalised by a Tietze trans-
formation, as detailed in 4.1. This transformation coherently eliminates the following pairs of cells,
preserving the presented category C and the homotopy basis:

− the 3-cells γ1x,u,v, γu,1y,v and γu,v,1z , since they are parallel to composites of λs and ρs,

− the 2-cells γ1x,u and the 3-cells λu,

− the 2-cells γu,1x and the 3-cells ρu,

− the 1-cells 1̂x and the 2-cells ιx.

The resulting coherent presentation is detailed in [21, 4.1.6]. If M is a monoid, then Can ′+(M) gives a
notion of non-unital action of M on a category C. The fact that Can ′+(M) is also a coherent presentation
of M induces that non-unital actions of M on C are equivalent to (unital) actions of M on C. This
result was proved by Deligne in [13, 1.8] for the special case of semigroups (seen as monoids by formal
adjunction of a unit).

2.4. Coherent presentations of Artin monoids and Artin groups

We recall standard notions and results about Coxeter groups and Artin monoids and groups, mainly taken
from Bourbaki [5], Deligne [12], Brieskorn and Saito [6], Geck and Pfeiffer [19]. We formulate the main
result of the article, giving a coherent presentation of Artin monoids and Artin groups.
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2.4. Coherent presentations of Artin monoids and Artin groups

2.4.1. Coxeter groups. A Coxeter group is a group W that admits a presentation with a finite set S of
generators and with one relation

(st)mst = 1, withmst ∈ Nq {∞}, (2)

for every s and t in S, with the following requirements and conventions:

− mst =∞ means that there is, in fact, no relation between s and t,

− mst = 1 if, and only if, s = t.

The last requirement implies that s2 = 1 holds in W for every s in S. As a consequence, the group W
can also be seen as the monoid with the same presentation. Let us note that a given Coxeter group can
have several generating sets that fit the given scheme, but we always assume that such a set S has been
fixed and comes equipped with a total order.

Following [6, (1.1)], we denote by 〈st〉n the element of length n in the free monoid S∗, obtained by
multiplication of alternating copies of s and t. Formally, this element is defined by induction on n as
follows:

〈st〉0 = 1 and 〈st〉n+1 = s〈ts〉n.

When s 6= t and mst < ∞, we use this notation and the relations s2 = t2 = 1 to write (2) as a braid
relation:

〈st〉mst = 〈ts〉mst . (3)

A reduced expression of an element u of W is a representative of minimal length of u in the free
monoid S∗. The length of u is denoted by l(u) and defined as the length of any of its reduced expressions.
The Coxeter group W is finite if, and only if, it admits an element of maximal length, [6, Theorem 5.6];
in that case, this element is unique, it is called the fundamental element of W and it is denoted byw0(S).
For I ⊆ S, the subgroup of W spanned by the elements of I is denoted by WI and it is a Coxeter group
with generating set I. If WI is finite, we denote by w0(I) its fundamental element.

2.4.2. Artin monoids and groups. The Artin monoid and Artin group associated to W are the monoid
denoted by B+(W) and the group B(W), generated by S and subject to the braid relations (3). This
presentation, seen as a 2-polygraph, is denoted by Art(W) and called Artin’s presentation: this is the
same as the one of W, except for the relations s2 = 1. An Artin monoid or group is spherical if the
corresponding Coxeter group is finite. Let us note that the underlying set of W embeds canonically in
B+(W) and we abusively denote an element of W and its image in B+(W) in the same way ; moreover,
the elements of B+(W) that correspond to elements of W are exactly the ones whose representatives
in S∗ are reduced expressions (that is, they contain no s2, for any s in S).

As an example, the monoid B+
n of positive braids on n strands is the spherical Artin monoid as-

sociated to the finite Coxeter group Sn of permutations of n elements. For the latter, we consider the
standard set of generators, i.e., the n− 1 generating symmetries s1, . . . , sn−1, submitted to the relations
sisj = sjsi if i ≤ j − 2 and sisjsi = sjsisj if i = j − 1. This is the reason why Artin groups are also
called generalised braid groups.
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2. Coherent presentations of categories and groupoids

2.4.3. Classification in the spherical case. The Coxeter diagram of W is the finite non-directed graph
with one vertex for each element in S, and with one edge with label mst between s and t if mst ≥ 3
(with the convention that the labels 3 are omitted). In particular, there is no edge between two different
vertices s and t if, and only if, they commute in W. The Coxeter group W is irreducible if its Coxeter
diagram is connected, that is, if W admits no factorisation W = W1 × W2 where W1 and W2 are
non-trivial Coxeter groups.

The classification of finite and irreducible Coxeter groups is due to Coxeter, [8], who proved that a
finite Coxeter group is irreducible if, and only if, its Coxeter diagram belongs to a precise list, see [5,
Chapter VI, § 4, Theorem 1] or [19, Theorem 1.1]. In this article, we use the conventions of notation of
the second reference and we are interested in the finite Coxeter groups of rank 3, which fall in one of the
following cases (up to isomorphism):

r s t

A3

r s t4

B3

r s t5

H3

r s t

A1 ×A1 ×A1

r s tp

I2(p) 3≤p<∞
This classification extends to spherical Artin monoids and groups, using the direct observation that, for
any I ⊆ S, the submonoid of B+(W) and the subgroup of B(W) spanned by I are the Artin monoid
B+(WI) and the Artin group B(WI).

2.4.4. Artin’s coherent presentation. Let W be a Coxeter group with a fixed totally ordered set of
generators S. We call Artin’s coherent presentation the (3, 1)-polygraph Art+(W) obtained from Artin’s
presentation Art(W) by adjunction of one 3-cell Zrst for every pairwise distinct elements r, s and t of S
such that W{r,s,t} is finite. The 3-cell Zrst has a shape that depends only on the Coxeter type of W{r,s,t},
as follows. If W{r,s,t} is of type A3:

strsrt
sγrtsγ

−
rt%9 srtstr

srγstr %9

Zrst
��

srstsr γrstsr

�&
stsrst

stγrst
(<

rsrtsr

tstrst

γstrst

EY

tsγrtst
��

rstrsr

rsγrtsr

EY

tsrtst

tsrγst "6

rstsrs

rstγrs

EY

tsrsts
tγrsts

%9 trsrts
γrtsγ

−
rts
%9 rtstrs

rγstrs

8L
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2.4. Coherent presentations of Artin monoids and Artin groups

If W{r,s,t} is of type B3, with rsrs = srsr and sts = tst:

srtsrtstr
srtsγ−rtstr%9 srtstrstr

srγstrsγrt%9 srstsrsrt
srstγrst%9

Zrst
��

srstrsrst
srsγrtsrst%9 srsrtsrst γrstsrst

�&
strsrstsr

sγrtsrγ
−
str

';

rsrstsrst

stsrsrtsr

stγrstsr

EY

rsrtstrst

rsrγstrst

EY

tstrsrtsr

γstrsrtsr

EY

tsγrtsγ
−
rtsr ��

rsrtsrtst

rsrtsγ−rtst

EY

tsrtstrsr

tsrγstrsr
��

rstrsrsts

rsγrtsrγ
−
st

EY

tsrstsrsr

tsrstγrs #7

rstsrsrts

rstγrsts

EY

tsrstrsrs
tsrsγrtsrs

%9 tsrsrtsrs
tγrstsrs

%9 trsrstsrs
γrtsrγ

−
strs

%9 rtsrtstrs
rtsγ−rtstrs

%9 rtstrstrs rγstrsγrts

8L

The case of W{r,s,t} of type H3, with rsrsr = srsrs and sts = tst, is given in Figure 1. If W{r,s,t} is of
type A1 ×A1 ×A1:

str
sγrt %9 srt γrst

�"
tsr

γstr
(<

tγrs "6

rst

trs
γrts

%9 rts rγst

<PZrst
��

Finally, if W{r,s,t} is of type I2(p)×A1, for p ≥ 3, with 〈rs〉p = 〈sr〉p:

st〈rs〉p−1
sγrt〈rs〉p−2%9 (· · · ) %9

Zrst
��

〈sr〉pt γrst

�&
t〈sr〉p

γst〈rs〉p−1 ';

tγrs $8

〈rs〉pt

t〈rs〉p
γrt〈sr〉p−1

%9 rt〈sr〉p−1
rγst〈sr〉p−2

%9 (· · · )

8L

The 3-cells for the types A3, B3 and H3 are given by Williamson in “string diagrams” in [38]. The main
result of this article states that the 3-cells of Art+(W) form a homotopy basis for Artin’s presentation.
We thus recover [37, Proposition 4]: the Artin monoid B+(W) and group B(W) admit a coherent presen-
tation made of Art(W) and every 2-sphere of every (2, 1)-category Art(WI)

>, for WI a finite subgroup
of W of rank 3.
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2. Coherent presentations of categories and groupoids

srstrsrsrtsrsrt %9 srsrtsrstrsrsrt %9 srsrtsrstsrsrst %9 srsrtsrtstrsrst

�+
srstsrsrstsrsrt

(<

srsrtstrsrtsrst

��
srtstrsrtstrsrt

EY

srsrstsrsrtsrst

��
srtsrtstrsrtstr

EY

rsrsrtsrsrtsrst

srtsrstsrsrstsr

EY

rsrstrsrsrtsrst

EY

srtsrstrsrsrtsr

EY

rsrstsrsrstsrst

EY

strsrsrtsrsrtsr

EY

rsrtstrsrtstrst

EY

stsrsrstsrsrtsr

EY

rsrtsrtstrsrtst

EY

tstrsrstsrsrtsr

EY

��

rsrtsrstsrsrsts

EY

tsrtsrstsrstrsr

��

rsrtsrstrsrsrts

EY

tsrtsrtstrstrsr

��

rstrsrsrtsrsrts

EY

tsrtstrsrtstrsr

��

rstsrsrstsrsrts

EY

tsrstsrsrstsrsr

��

rtstrsrtstrsrts

EY

tsrstrsrsrtsrsr

��

rtsrtstrsrtstrs

EY

tsrsrtsrstrsrsr

��

rtsrstsrsrstsrs

EY

tsrsrtsrstsrsrs

"6

rtsrstrsrsrtsrs

EY

tsrsrtsrtstrsrs %9 tsrsrtstrsrtsrs %9 tsrsrstsrsrtsrs %9 trsrsrtsrsrtsrs

3G

Zr,s,t

��

Figure 1: The 3-cell Zr,s,t for W{r,s,t} of Coxeter type H3
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3. Coherent presentations and actions on categories

2.4.5. Theorem. For every Coxeter group W, the Artin monoid B+(W) and the Artin group B(W)
admit Art+(W) as a coherent presentation.

The proof of Theorem 2.4.5 is conducted in Sections 5 and 6. It relies on the generalisation of Squier’s
completion, called homotopical completion-reduction and introduced in Section 4: this is a procedure,
based on rewriting methods, that extends a presentation of a monoid into a relatively compact coher-
ent presentation. In Section 5, we apply homotopical completion-reduction to Deligne’s presentation
Del(W) of the Artin monoid B+(W), to get a coherent presentation Del+(W) of B+(W). As a side
result, when applied to Del+(W), Theorem 3.4.3 extends Deligne’s result on actions to every Artin
monoids [13, Theorem 1.5]. Then, in Section 6, we apply homotopical reduction to the coherent pre-
sentation Del+(W). The result is Art+(W), thus proving Theorem 2.4.5 for Artin monoids. Finally,
in 6.4, we prove that, if a monoid M embeds in the group G with the same presentation, then a coherent
presentation of M is also a coherent presentation of G. This condition is satisfied by Artin monoids and
Artin groups [32], thus concluding the proof of Theorem 2.4.5.

3. COHERENT PRESENTATIONS AND ACTIONS ON CATEGORIES

Deligne’s actions of a monoid M on categories are a special case of 2-representations of 2-categories, as
defined by Elgueta in [14]. We prove that, up to equivalence, actions of M on categories are the same as
2-functors from Σ to Cat, where Σ is any coherent presentation of M. The constructions are described in
the homotopical setting of the canonical model structure on 2-categories [24, 25].

3.1. 2-representations of 2-categories

3.1.1. 2-representations. We recall from [14] that, given 2-categories C and D, a 2-representation of C
in D is a pseudofunctor F : C→ D. This is a weakened notion of 2-functor, specified by:

− for every 0-cell x of C, a 0-cell F(x) of D,

− for every 1-cell u : x→ y of C, a 1-cell F(u) : F(x)→ F(y) of D,

− for every 2-cell f : u⇒ v of C, a 2-cell F(f) : F(u)⇒ F(v) of D.

As for 2-functors, the data are required to be compatible with vertical composition, in a strict way:

− for every 2-cells f : u⇒ v : x→ y and g : v⇒ w : x→ y of C,

F


x

u

��

v //

w

FF
y

f��

g��


= F(x)

F(u)

��

F(v) //

F(w)

DD
F(y)

F(f)��

F(g)��

− for every 1-cell u of C, we have F(1u) = 1F(u).
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3. Coherent presentations and actions on categories

The data is also compatible with horizontal composition, but only up to coherent isomorphisms:

− for every 1-cells u : x→ y and v : y→ z of C, an invertible 2-cell of D, natural in u and v,

F(y)
F(v)

��

F(x)

F(u)
77

F(uv)

22

Fu,v'
��

F(z)

− for every 0-cell x of C, an invertible 2-cell of D

F(x)

1F(x)

!!

F(1x)

==
F(x)Fx'

��

Finally, these 2-cells are required to satisfy the following monoidal coherence relations in D:

− for every 1-cells u : x→ y, v : y→ z and w : z→ t of C,

F(y)
F(v)
//

Fu,v��

F(z)
F(w)

��Fuv,w��
F(x)

F(u)
77

F(uv)

BB

F(uvw)

55 F(t)

=

F(y)
F(v)
//

F(vw)
00

Fu,vw ��

F(z)
F(w)

��

Fv,w ��

F(x)

F(u)
77

F(uvw)

55 F(t)

− for every 1-cell u : x→ y of C,

F(x)
F(u)

��

F(x)

1F(x)

++

F(1x)

EEFx
�(

F(u)

22

F1x,u��
F(y)

= F(x)

F(u)

!!

F(u)

<<
1F(u)�� F(y) =

F(y)
1F(y)



F(1y)
''

Fy
u	

F(x)

F(u)
77

F(u)

22

Fu,1y ��
F(y)

As usual with monoidal coherence relations, this implies that, for every sequence (u1, . . . , un) of pair-
wise composable 1-cells in C, there exists a unique invertible 2-cell

Fu1,...,un : F(u1) · · · F(un) =⇒ F(u1 · · ·un)

in D built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence
2-cells are identities: it can be seen as a strict 2-representation.

The notion of 2-representation has been introduced by Elgueta for 2-groups in [14]. It is also studied
by Ganter and Kapranov in [15] in the special case of groups. In [34], Rouquier considers the more gen-
eral case of 2-representations of bicategories. Among concrete target 2-categories for 2-representations,
natural choices are the 2-categories of 2-vector spaces, either from Kapranov and Voevodsky [22] or
from Baez and Crans [3], of 2-Hilbert spaces [2] or of categories [13].
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3.1. 2-representations of 2-categories

3.1.2. Morphisms of 2-representations. If F,G : C→ D are 2-representations of C into D, a morphism
of 2-representations from F toG is a pseudonatural transformation α : F⇒ G between the corresponding
pseudofunctors:

− for every 0-cell x of C, a 1-cell αx : F(x)→ G(x) of D,

− for every 1-cell u : x→ y of C, an invertible 2-cell of D

F(y) αy

��

F(x)

F(u) 33

αx ++

G(y)

G(x) G(u)

>>
' αu
��

This data must satisfy several coherence relations:

− for every 2-cell f : u⇒ v : x→ y of C,

F(y)
αy

��

F(x)

F(u) **

F(v)

AAF(f)
�#

αx ))

G(y)

G(x)
G(v)

@@
αv
��

=

F(y)
αy

��

F(x)

F(u)
55

αx ))

G(y)

G(x)

G(u)

55

G(v)

NN

G(f) �&

αu
��

− for every 1-cells u : x→ y and v : y→ z of C,

F(y)

F(v)
++
F(z)

αz

��

F(x)

F(u)

II

F(uv)

AAFu,v
�*

αx ))

G(z)

G(x)
G(uv)

@@
αuv
��

=

F(y)

F(v)
++

αy

%%

F(z)
αz

��

αv��

F(x)

F(u)

II

αx ))

αu��
G(y) G(v) // G(z)

G(x)

G(u)

OO

G(uv)

II
Gu,v
�0

− for every 0-cell x of C,

F(x)
αx

��

F(x)

1F(x) **

F(1x)

AAFx�#

αx ))

G(x)

G(x)
G(1x)

@@
α1x
��

= F(x)
αx
// G(x)

1G(x)

""

G(1x)

;;
Gx�� G(x)
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3. Coherent presentations and actions on categories

3.1.3. Categories of 2-representations. If F,G,H : C→ D are 2-representations and if α : F⇒ G and
β : G⇒ H are morphisms of 2-representations, the composition α ? β : F⇒ H is defined by:

− if x is a 0-cell of C, the 1-cell (α ? β)x : F(x)→ H(x) of D is the composition

F(x)
αx

// G(x)
βx

// H(x)

− if u : x→ y is a 1-cell of C, the invertible 2-cell (α ? β)u of D is defined by

F(y) (α?β)y

��

F(x)

F(u) 44

(α?β)x **

H(y)

H(x)
H(u)

AA
(α ? β)u
��

=

F(y) αy

��

F(x)

F(u) 44

αx ))

G(y) βy

��

G(x)

G(u)

99

βx **

αu
��

H(y)

H(x)
H(u)

AA
βu
��

One checks thatα?β satisfies the coherence conditions of a morphism of 2-representations and, then, that
the composition ? is associative and unitary. The category of 2-representations of C into D is denoted
by 2Rep(C,D). The full subcategory of 2Rep(C,D) whose objects are the 2-functors is denoted by
2Cat(C,D).

3.1.4. Actions of monoids on categories. If M is a monoid, we see it as a 2-category with exactly one
0-cell, with the elements of M as 1-cells and with identity 2-cells only. We define the category of actions
of M on categories as the category of 2-representations of M in Cat:

Act(M) = 2Rep(M,Cat).

Expanding the definition, we get that an action T of M is specified by a category C, which is the image
through T of the unique 0-cell of M, an endofunctor T(u) : C → C for every element u of M, a
natural isomorphism T(u, v) : T(u)T(v) ⇒ T(uv) for every pair (u, v) of elements of C and a natural
isomorphism T• : 1C ⇒ T(1). This data is required to satisfy the following coherence conditions:

− for every triple (u, v,w) of elements of M, the following diagram commutes:

T(uv)T(w) Tuv,w

�.
=T(u)T(v)T(w)

Tu,vT(w) (<

T(u)Tv,w "6

T(uvw)

T(u)T(vw) Tu,vw

0D

− for every element u of M, the following two diagrams commute:

T(1)T(u)
T1,u

�'
T(u)

T•T(u)
*>

T(u)
=

T(u)T(1)
Tu,1

�'
T(u)

T(u)T•
*>

T(u)
=
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3.2. Cofibrant approximations of 2-categories

This definition corresponds to the notion of unital action of M on C that Deligne considers in [13]. For
semigroups, he proves that unital actions are equivalent to non-unital actions. We have recovered this
fact, for general monoids, in Example 2.3.8.

If S is an action of M on a category C and T is an action of M on a category D, by expanding
the definition, we get that a morphism of actions α from S to T is specified by a functor F : C → D,
corresponding to the component of α at the unique 0-cell of M, and, for every element u of M, a natural
isomorphism αu : S(u)F ⇒ FT(u). This data must satisfy the coherence conditions of a pseudonatural
transformation.

Remark. Those morphisms of actions of monoids on categories differ from the ones of Deligne in [13].
Indeed, he considers morphisms between actions of M on the same category C, such that the functor F
is the identity of C, but where the natural transformation αu is not necessarily an isomorphism: those
are the icons between the corresponding pseudofunctors, as introduced by Lack in [26] as a special case
of oplax natural transformations (defined as pseudonatural transformations whose component 2-cells
are not necessarily invertible). In this article, we choose to follow Elgueta and consider pseudonatu-
ral transformations, but the results and proofs can be adapted to icons or generalised to oplax natural
transformations.

3.2. Cofibrant approximations of 2-categories

3.2.1. Elements of the canonical model category structure on 2Cat. We recall a few notions from the
model category structure on 2Cat introduced by Lack in [24] and [25]. A 2-category is cofibrant if its
underlying 1-category is free. A 2-functor F : C → D is a weak equivalence if it satisfies the following
two conditions:

− Every 0-cell y of D is equivalent to a 0-cell F(x) for x in C, i.e., there exists 1-cells u : F(x)→ y

and v : y→ F(x) and invertible 2-cells f : u ?1 v⇒ 1F(x) and g : v ?1 u⇒ 1y in D.

− For every 0-cells x and x ′ in C, the induced functor F(x, x ′) : C(x, x ′) → D(F(x), F(x ′)) is an
equivalence of categories.

In that case, we say that C and D are weakly equivalent. In particular, an equivalence of 2-categories, that
is, a 2-functor F : C→ D such that there exists a 2-functor G : D→ C and pseudonatural isomorphisms
GF ' 1C and FG ' 1D, is a weak equivalence. If C is a 2-category, a cofibrant approximation of C is a
cofibrant 2-category C̃ that is weakly equivalent to C.

Let us note that a weak equivalence F : C → D in 2Cat is exactly a 2-functor that is an equivalence
in the category 2Rep. Indeed, if F is a weak equivalence, we define a quasi-inverse G for F as follows.
For every 0-cell y of D, we choose a 0-cell G(y) in C such that FG(y) is equivalent to y, i.e., there exist
1-cells and invertible 2-cells

σy : GF(y) → y τy : y → GF(y) αy : σy ?1 τy ⇒ 1GF(y) βy : τy ?1 σy ⇒ 1y

in D. For every 0-cells y and y ′ of D, we choose a quasi-inverse G0(y, y ′) to F(F(y), F(y ′)) and we
define the functor G(y, y ′) as G0(σy, σ ′y). The isomorphisms Gv,v ′ and Gy come from the 2-cells αy
and βy, respectively. By construction, the pseudofunctor G is a quasi-inverse for F in 2Rep and, in
general, it cannot be chosen to be strict (unless F is an equivalence in 2Cat). The converse direction is
straightforward.

23



3. Coherent presentations and actions on categories

3.2.2. Example (The canonical cofibrant approximation [24]). Let C be a 2-category. We denote
by Ĉ the cofibrant 2-category with the same 0-cells as C and the following higher cells:

− the 1-cells of Ĉ are freely generated by the ones of C, with u in C denoted by û when seen as a
generator of Ĉ,

− the 2-cells from û1 · · · ûm to v̂1 · · · v̂n in Ĉ are the 2-cells from u1 · · ·um to v1 · · · vn in C, with
the same compositions as in C.

By definition, every 2-cell f : u ⇒ v of C has several copies in Ĉ. We denote by f̂ the one with
source û and target v̂. For each pair of composable 1-cells (u, v) we denote by γu,v : ûv̂ ⇒ ûv the
2-cell corresponding the identity of uv in C. This 2-cell is invertible and satisfies monoidal coherence
relations, so that there exists exactly one invertible 2-cell

γu1,...,un : û1 · · · ûn =⇒ ̂u1 · · ·un

for every family (u1, . . . , un) of composable 1-cells.
Let us consider 1-cells u, v : x → y in C such that u = u1 · · ·um and v = v1 · · · vn hold. If

f : u⇒ v is a 2-cell of C, then it has exactly one copy in Ĉ that goes from û1 · · · ûm to v̂1 · · · v̂n, which
is equal, by definition of the composition in Ĉ, to the following composite

ûm

��

x

û1
66

û
''

v̂

77

v̂1 ((

y

v̂n

FF

γu1,...,um��

f̂��

γ−v1,...,vn��

The canonical projection 2-functor Ĉ � C is the identity on 0-cells and maps each generating 1-cell û
to u and each 2-cell to itself: by construction of Ĉ and definition of π, it follows that π is a weak
equivalence and that the 2-category Ĉ is a cofibrant approximation of C, called the standard cofibrant
approximation of C.

Let us note that, if C = C is a category (a monoid, for example), seen as a 2-category with identity
2-cells only, the 2-category Ĉ has exactly one 2-cell from û1 · · · ûm to v̂1 · · · v̂n if, and only if, the
relation

u1 · · ·um = v1 · · · vn

holds in C: this 2-cell is the composite of γu1,...,um followed by γ−v1,...,vn . As a consequence, the canon-
ical cofibrant approximation Ĉ of C is exactly the (2, 1)-category presented by the canonical coherent
presentation Can(C) of C, as given in Example 2.3.8.

3.2.3. Theorem. Let C be a category and let Σ be an extended presentation of C. The following asser-
tions are equivalent:

i) The (3, 1)-polygraph Σ is a coherent presentation of C.
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3.2. Cofibrant approximations of 2-categories

ii) The 2-category Σ presented by Σ is a cofibrant approximation of C.

Proof. Let us assume that Σ3 is a homotopy basis of Σ>2 . By definition, the 2-category Σ is cofibrant. Let
us check that it is weakly equivalent to C. We consider the canonical projection π : Σ> � C that sends
every 0-cell to itself, every 1-cell to its equivalence class and every 2-cell and 3-cell to the corresponding
identity. This is well-defined since two 1-cells of Σ>2 have the same equivalence class in C if, and only if,
there exists a 2-cell between them in Σ>2 and since parallel 2-cells of Σ> are sent to the same (identity)
2-cell of C.

Since π is the identity on 0-cells, it is sufficient to check that it induces an equivalence of categories
between Σ(x, y) and C(x, y) for every 0-cells x and y in C. We define a quasi-inverse ι by choosing, for
each 1-cell u : x→ y in C, an arbitrary representative 1-cell ι(u) in Σ. By construction, we have that πι
is the identity of C(x, y) and that ιπ(u) is a 1-cell from x to y that has the same equivalence class as u:
we choose an arbitrary 2-cell αu : u ⇒ ιπ(u) in Σ. Since every parallel 2-cells of Σ are equal, we get
the following commutative diagram for every 2-cell f of Σ:

ιπ(u) ι(π(f))

u

αu )=

f #7

= ιπ(v)

v αv

1E

This proves that α is a natural isomorphism between ιπ and the identity of clΣ(x, y), yielding that π is
a weak equivalence and, as a consequence, that Σ is a cofibrant approximation of C.

Conversely, let us assume that Σ is a cofibrant approximation of C. Let F : Σ → C be a weak
equivalence and let f, g : u ⇒ v : x → y be parallel 2-cells of Σ>. Since F is a 2-functor and C has
identity 2-cells only, we must have F(u) = F(v) and F(f) = F(g) = 1F(u). By hypothesis, the 2-functor
F induces an equivalence of categories between Σ(x, y) and C(x, y): we choose a quasi-inverse G and a
natural isomorphism α between GF and the identity of Σ(x, y). We write the naturality conditions for f
and g and, using GF(f) = GF(g) = 1GF(u), we conclude that they are equal in Σ:

GF(u) GF(f)

u

αu )=

f #7

= GF(v)

v αv

0D

GF(u) GF(g)

u

αu )=

g #7

= GF(v)

v αv

0D

Thus Σ is a coherent presentation of C.

Remark. The cofibrant approximations of a category C form, in general, a strictly larger class than the
2-categories presented by coherent presentations of C. Indeed, let C be the terminal category: it contains
one 0-cell and the corresponding identity 1-cell only. Then C is cofibrant and, as a consequence, it
is a cofibrant approximation of itself: this corresponds to the coherent presentation of C given by the
(3, 1)-polygraph with one 0-cell and no higher-dimensional cells. But C also admits, as a cofibrant
approximation, the “equivalence” 2-category with two 0-cells x and y, two 1-cells u : x → y and
v : y → x and two invertible 2-cells f : uv ⇒ 1x and g : vu ⇒ 1y, and this 2-category is not presented
by a coherent presentation of C, since it does not have the same 0-cells as C.
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3. Coherent presentations and actions on categories

3.3. 2-representations of cofibrant 2-categories

Let us fix 2-categories C and D, with C cofibrant. Our objective is to define a “strictification” functor

·̂ : 2Rep(C,D) −→ 2Cat(C,D)

and to prove that it is a quasi-inverse for the canonical inclusion functor of 2Cat(C,D) into 2Rep(C,D).

3.3.1. Strictification of 2-representations. Let F : C → D be a 2-representation. Let us define the
2-functor F̂ : C → D, dimension after dimension. On 0-cells, F̂ takes the same values as F. Since C is
cofibrant, its underlying 1-category is free: on generating 1-cells, F̂ is equal to F and, then, it is extended
by functoriality on every 1-cell. Hence, if u = a1 · · ·an is a 1-cell of C, where the ais are generating
1-cells, we have:

F̂(u) = F(a1) · · · F(an).

From the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell in D

F̂(u) = F(a1) · · · F(an)
Fa1,...,an %9 F(a1 · · ·an) = F(u)

from F̂(u) to F(u), built from the coherence 2-cells of F. Since the decomposition of u in generators is
unique, we simply denote this 2-cell by Fu. Let f : u⇒ v : x→ y be a 2-cell of C. We define F̂(f) as the
following composite 2-cell of D, where the double arrows, which always go from top to bottom, have
been omitted for readability:

F(x)

F̂(u)

��

F̂(v)

>>
F̂(f) F(y) = F(x)

F̂(u)

��

F(u)
$$

F(v)

99

F̂(v)

HH

Fu

F(f)

F−v

F(y)

As a direct consequence, we get that F̂ is compatible with vertical composition and identities of 1-cells.
Hence, we have defined a 2-functor F̂ from C to D. We note that the monoidal coherence relations
satisfied by F imply that the 2-cells Fu : F̂(u) ⇒ F(u) satisfy the following relations with respect to
composition and identities. If u : x→ y and v : y→ z are 1-cells of C, we have:

F(x)

F̂(uv)

��

F(uv)

>>
Fuv F(z) = F(x)

F̂(u)

��

F(u) //

Fu

F(uv)

;;
F(y)

F̂(v)

��

F(v) //

Fv

Fu,v

F(z)

Moreover, if x is a 0-cell of C, we have F1x = Fx.
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3.3. 2-representations of cofibrant 2-categories

3.3.2. Strictification of morphisms of 2-representations. Let F,G : C → D be 2-representations and
let α : F ⇒ G be a morphism between them. Let us define a pseudonatural transformation α̂ : F̂ ⇒ Ĝ.
For a 0-cell x of C, we take α̂x = αx. If u : x → y is a 1-cell of C, we define α̂u as the following
invertible 2-cell of D:

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)
Ĝ(u)

DD
α̂u =

F(y)
αy

��

F(x)

F̂(u)
++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
77

Ĝ(u)

PP

G−
u

αu

Then α̂ : F̂⇒ Ĝ is a pseudonatural transformation. Indeed, if x is a 0-cell of C, we have:

F(x)
αx

��

F(x)

1F(x)
66

αx
''

G(x)

G(x)
1G(x)

DD
α̂1x =

F(x)
αx

��

F(x)

1F(x) ++

F(1x)

DD
Fx

αx
''

G(x)

G(x)

G(1x)
77

1G(x)

PP

G−
x

α1x = F(x)

αx

��

αx

@@
1αx G(x)

Then, if u : x→ y and v : y→ z are 1-cells of C, we get:

F(z)
αz

��

F(x)

F̂(uv)
66

αx
''

G(z)

G(x)
Ĝ(uv)

DD
α̂uv =

F(y)

F̂(v)

��

F(v) //

Fv
F(z)

αz

��

F(x)F̂(u)

55

F(u)

OO

Fu
F(uv)

DD

Fu,v

αx
''

G(z)

G(x)

G(uv)
77

G−
u,v

G(u) //

Ĝ(u)

HH

G−
u

G(y)

G(v)
OO

Ĝ(v)ii

G−
v

αuv

=

F(y)

F̂(v)

��

F(v) 44

Fv

αy

""

F(z)
αz

��

F(x)F̂(u)

55

F(u)

UU

Fu

αx
''

G(z)

G(x)
G(u) ++

Ĝ(u)

HH
G−
u

G(y)

G(v)
II

Ĝ(v)ii

G−
v

αu

αv
=

F(y)
F̂(v)
//

αy

""

F(z)
αz

��

F(x)

F̂(u)

OO

αx
''

G(z)

G(x)
Ĝ(u)

// G(y)

Ĝ(v)

OO
α̂u

α̂v
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3. Coherent presentations and actions on categories

Finally, if f : u⇒ v : x→ y is a 2-cell of C:

F(y)
αy

��

F(x)

F̂(u)
++

F̂(v)

DD

F̂(f)

αx
''

G(y)

G(x)
Ĝ(v)

DD
α̂v =

F(y)
αy

��

F(x)

F̂(u) &&

F(u)

00

F(v)

LL

Fu

F(f)

αx
''

G(y)

G(x)

G(v)
77

Ĝ(v)

PP

G−
v

αv

=

F(y)
αy

��

F(x)

F̂(u)
++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
00

G(v)

KK

Ĝ(v)

TT

G(f)

G−
v

αu
=

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)

Ĝ(u)
77

Ĝ(v)

PP

Ĝ(f)

α̂u

With similar computations, we check that strictification is compatible with the composition of morphisms
of 2-representations and with identities, so that it is a functor from 2Rep(C,D) to 2Cat(C,D).

3.3.3. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion

2Cat(C,D) −→ 2Rep(C,D)

is an equivalence of categories, with quasi-inverse given by the strictification functor.

Proof. It is sufficient to check that, for every 2-representation F : C → D, there exists a pseudonatural
isomorphism ϕF : F̂⇒ F that is itself natural in F. We define ϕF as follows:

− if x is a 0-cell of C, then F̂(x) = F(x) and we take (ϕF)x = 1x,

− if u : x → y is a 1-cell of C, then (ϕF)u : F̂(u) ⇒ F(u) is defined as the invertible coherence
2-cell Fu : F̂(u)⇒ F(u).

This data satisfies the required coherence properties: the compatibility with the 2-cells of C is exactly the
definition of F̂ and the compatibility with horizontal composition and identities comes from the monoidal
coherence relations of F, as already checked. Moreover, if α : F⇒ G is a morphism of 2-representations,
the naturality condition

F α

�)
F̂

ϕF (<

α̂ "6

= G

Ĝ ϕG

7K

corresponds, on each 1-cell u of C, to the definition of α̂.
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3.4. 2-representations and cofibrant approximations

3.4. 2-representations and cofibrant approximations

Let us recall that, for a 2-category C, we denote by Ĉ its standard cofibrant replacement. We note that
the definition of a 2-functor from Ĉ to a 2-category D is exactly the same as the one of a pseudofunctor
from C to D, yielding the following isomorphism of categories:

2Rep(C,D) ' 2Cat(Ĉ,D).

In particular, for every monoid M, we get an isomorphism of categories:

Act(M) ' 2Cat(M̂,Cat).

In what follows, we prove that weak versions of these isomorphisms exist for all cofibrant approxima-
tions. More precisely, the category of 2-representations of a 2-category C into a 2-category D is equiva-
lent to the one of 2-functors from any cofibrant approximation C̃ of C into D. This result specialises to
the actions of a monoid on categories.

3.4.1. Lemma. Let C and D be 2-categories. The following assertions are equivalent:

i) The 2-categories C and D are equivalent in 2Rep.

ii) For every 2-category E, there is an equivalence of categories

2Rep(C,E) ≈ 2Rep(D,E)

that is natural in E.

Proof. Let us assume that C and D are equivalent in 2Rep, i.e., that there exist pseudofunctors F : C→ D

and G : D→ C such that
GF ' 1C and FG ' 1D.

As a consequence, for every pseudofunctors H : C→ E and K : D→ E, we have:

HGF ' H and KFG ' K.

Thus the functors 2Rep(F,E) and 2Rep(G,E), respectively sending a pseudofunctor K : D → E to KF
and a pseudofunctor H : C→ E to HG, form the required equivalence of categories.

Conversely, let us assume that, for every 2-category E, we have 2Rep(C,E) ≈ 2Rep(D,E) natural
in E. We denote by

ΦE : 2Rep(C,E) → 2Rep(D,E) and ΨE : 2Rep(D,E) → 2Rep(C,E)

the functors that constitute the equivalence. The naturality of the equivalence means, in particular, that
for every pseudofunctors H : C→ E and K : D→ E, we have the following isomorphisms:

ΨEΦE(H) ' H and ΦEΨE(K) ' K.

Let us define the pseudofunctors F : C→ D and G : D→ C as follows:

F = ΨD(1D) and G = ΦC(1C).
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4. Homotopical completion and homotopical reduction

Thus we have, using the properties ofΦ and Ψ:

GF = ΦC(1C) ◦ ΨD(1D) = ΨCΦC(1C) ' 1C.

We get FG ' 1D in a symmetric way to conclude that F and G form an equivalence in 2Rep.

A combination of Proposition 3.3.3 and of Lemma 3.4.1 gives the following result.

3.4.2. Proposition. Let C and C̃ be 2-categories. The following assertions are equivalent:

i) The 2-category C̃ is a cofibrant approximation of C.

ii) For every 2-category D, there is an equivalence of categories

2Rep(C,D) ≈ 2Cat(C̃,D)

that is natural in D.

In particular, if M is a monoid and M̃ is a cofibrant approximation of M, then we have an equivalence
of categories

Act(M) ≈ 2Cat(M̃,Cat).

Finally, an application of Theorem 3.2.3 gives the following result, relating the coherent presentations of
a category to its 2-representations. In particular, when applied to Deligne’s coherent presentation of an
Artin monoid B+(W), as obtained in 5.1.4, Theorem 3.4.3 extends Deligne’s Theorem 1.5 of [13] to the
non-spherical case.

3.4.3. Theorem. Let C be a category, let Σ be an extended presentation of C. The following assertions
are equivalent:

i) The (3, 1)-polygraph Σ is a coherent presentation of C.

ii) For every 2-category C, there is an equivalence of categories

2Rep(C,C) ≈ 2Cat(Σ,C)

that is natural in C.

In particular, if M is a monoid and if Σ is a coherent presentation of M, we have an equivalence of
categories

Act(M) ≈ 2Cat(Σ,Cat).

4. HOMOTOPICAL COMPLETION AND HOMOTOPICAL REDUCTION

In this section, we introduce the homotopical completion-reduction procedure: an algorithmic method to
extend a presentation Σ into a coherent presentation, by computing a homotopy basis of Σ>. It is based
on rewriting techniques, mainly Squier’s completion and Knuth-Bendix’s completion, adapted to the
setting of coherent presentations and formulated in terms of Tietze transformations of (3, 1)-polygraphs.
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4.1. Tietze transformations of (3, 1)-polygraphs

4.1. Tietze transformations of (3, 1)-polygraphs

We adapt the notion of Tietze transformations of presentations of groups [27] to (3, 1)-polygraphs: they
consist in coherent adjunctions or eliminations of 1-cells, 2-cells and 3-cells that preserve the presented
2-category, up to equivalence. In particular, we get that two (3, 1)-polygraphs are coherent presentations
of the same category if, and only if, they are related by a Tietze transformation.

4.1.1. Tietze equivalence. An equivalence of 2-categories F : C → D is a Tietze equivalence if the
quotient categories C1/C2 and D1/D2 are isomorphic. Two (3, 1)-polygraphs are Tietze-equivalent if
the 2-categories they present are Tietze-equivalent. In that case, they have the same 0-cells (up to a
bijection). Moreover, two coherent presentations of the same category are Tietze-equivalent.

4.1.2. Tietze transformations. Let Σ be a (3, 1)-polygraph. An elementary Tietze transformation on Σ
is a 3-functor with source Σ> that belongs to one of the six families pictured as follows and formally
described afterwards:

• u
// •

ιu
//

πα
oo •

u
##

x

;;α�� •

•
��

CCf
��

•
ιf
//

πγ
oo •

��

CCf
��

α
��

γ %9 •

•
��

CC�� ��
A %9 •

ιA
//

π(A,γ)
oo •

��

CC�� ��

A %9

γ
%9 •

The coherent adjunctions

ιu : Σ> � Σ>(x)(α) ιf : Σ> � Σ>(α)(γ) ιA : Σ> � Σ>(γ)

are the canonical inclusions. Conversely, the coherent eliminations

πα : Σ> � Σ>/α πγ : Σ> � Σ>/γ π(A,γ) : Σ> � Σ>/(A,γ)

are the canonical projections defined as follows. If α : u⇒ x is a 2-cell of Σ, with x a 1-cell of Σ and u
a 1-cell of (Σ \ {x})∗, the projection πα maps x to u and α to 1u, leaving the other cells unchanged. The
(3, 1)-category Σ>/α is freely generated by the following (3, 1)-polygraph Σ/α:

Σ0 (Σ1 \ {x})
∗

t0
oo

s0
oo (Σ2 \ {α})

>

πα ◦ t1
oo

πα ◦ s1
oo Σ>3 .

πα ◦ t2
oo

πα ◦ s2
oo
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4. Homotopical completion and homotopical reduction

If γ : fV α is a 3-cell of Σ, with α a 2-cell of Σ and f a 2-cell of (Σ \ {α})>, the projection πγ maps α
to f and γ to 1f, leaving the other cells unchanged. The (3, 1)-category Σ>/γ is freely generated by the
following (3, 1)-polygraph Σ/γ:

Σ0 Σ∗1
t0

oo

s0
oo (Σ2 \ {α})

>

t1
oo

s1
oo (Σ3 \ {γ})

>.
πγ ◦ t2
oo

πγ ◦ s2
oo

Finally, if γ is a 3-cell of Σ and A is a 3-cell of (Σ \ {γ})>, the projection π(A,γ) maps γ to A. The
(3, 1)-category Σ>/(A,γ) is freely generated by the following (3, 1)-polygraph Σ/(A,γ):

Σ0 Σ∗1
t0

oo

s0
oo Σ>2

t1
oo

s1
oo (Σ3 \ {γ})

>.
t2

oo

s2
oo

If Σ and Υ are (3, 1)-polygraphs, a (finite) Tietze transformation from Σ to Υ is a (finite) composition of
elementary Tietze transformations.

4.1.3. Theorem. Two (finite) (3, 1)-polygraphs are Tietze equivalent if, and only if, there exists a (finite)
Tietze transformation between them. In particular, two (finite) (3, 1)-polygraphs are coherent presenta-
tions of the same category if, and only if, there exists a (finite) Tietze transformation between them.

Proof. Let us prove that, if two (3, 1)-polygraphs are related by a Tietze transformation, then they are
Tietze-equivalent. Since isomorphisms of categories and equivalence of 2-categories compose, it is
sufficient to check the result for each one of the six types of elementary Tietze transformations on a
fixed (3, 1)-polygraph Σ. By definition, the 3-functors π ◦ ι are all equal to the identity of Σ> and
the 3-functors ι ◦ π induce identities on the presented category Σ∗1/Σ2. Moreover, the latter induce the
following 2-functors on the presented 2-category Σ:

ιu ◦ πα ' 1Σ ιf ◦ πA = 1Σ ιA ◦ π(A,γ) = 1Σ.

Indeed, the first isomorphism is the identity on every cell, except on x which is mapped to α. The second
and third isomorphisms are, in fact, identities since they do not change the equivalence classes of 2-cells
modulo 3-cells.

Conversely, let Σ and Υ be Tietze-equivalent (3, 1)-polygraphs. We fix an equivalence F : Σ → Υ

of 2-categories that induce an isomorphism on the presented categories. We choose a weak inverse
G : Υ → Σ and pseudonatural isomorphisms σ : GF ⇒ 1Σ and τ : FG ⇒ 1Υ, in such a way that the
quadruple (F,G, σ, τ) is an adjoint equivalence, which is always feasible [28, Chap. IV, § 4, Theorem 1].
This means that the following “triangle identities” hold:

FGF

Fσ
�,

τF

2F F= GFG

Gτ
�-

σG

1EG=

Let us lift the 2-functor F to a 3-functor F̂ : Σ> → Υ>, defined as F on the 0-cells and 1-cells. For every
2-cell α : u ⇒ v of Σ, we choose a representative F̂(α) : F(u) ⇒ F(v) of F(α) in Υ> and, then, we
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4.1. Tietze transformations of (3, 1)-polygraphs

extend F̂ by functoriality to every 2-cell of Σ>. For a 3-cell γ : fV g of Σ, we have f = g by definition
of Σ, so that F(f) = F(g) holds in Υ, meaning that there exists a 3-cell in Υ> from F̂(f) to F̂(g): we take
it as a value for F̂(γ) and we extend F̂ to every 3-cell of Σ> by functoriality. We proceed similarly withG
to get a 3-functor Ĝ : Υ> → Σ>.

Then, for a 1-cell x of Σ, we choose a representative σ̂x : GF(x) ⇒ x of σx in Σ> and we extend it
to every 1-cell by functoriality. If α : u⇒ v is a 2-cell of Σ, the naturality condition satisfied by σ on α
lifts to an arbitrarily chosen 3-cell of Σ

GF(v) σ̂v

�*
σ̂α
��

GF(u)

ĜF̂(α) *>

σ̂u
#7

v

u α

2F

We proceed similarly with τ. The conditions for the adjoint equivalence also lift to a 3-cell λx of Υ> for
every 1-cell x of Σ and to a 3-cell ρy of Σ> for every 1-cell y of Υ:

FGF(x)

F̂(σ̂x)

�,

τ̂F(x)

2F
F(x)λx��

GFG(y)

Ĝ(τ̂y)

�,

σ̂G(y)

2F
G(y)ρy

��

Now, let us build a Tietze transformation from Σ to Υ. We start by constructing a (3, 1)-polygraph Ξ
that contains both Σ and Υ, together with coherence cells that correspond to the Tietze-equivalence. The
(3, 1)-polygraph Ξ has the same 0-cells as Σ (and as Υ) and it contains the 1-cells, 2-cells and 3-cells
of Σ and Υ, plus the following cells:

− two 2-cells ϕx : F(x)⇒ x and ψy : G(y)⇒ y, for every 1-cells x of Σ and y of Υ,

− two 3-cells ϕα and ψβ, for every 2-cells α : u⇒ u ′ and β : v⇒ v ′, with shapes

F(u)
F̂(α)

%9 F(u ′)
ϕu ′

�'
u

ϕ−
u

,@

α
';

ϕα
��

u ′

G(v)
Ĝ(β)

%9 G(v ′)
ψv ′

�'
v

ψ−
v

,@

β

';

ψβ
��

v ′

− two 3-cells ξx and ηy, for every 1-cells x of Σ and y of Υ, with shapes

GF(x)
σ̂x

�)
ξx
��

F(x)

ψ−
F(x)

+?

ϕx

(< x

FG(y)
τ̂y

�(
ηy
��

G(y)

ϕ−
G(y)

+?

ψy

(< y
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4. Homotopical completion and homotopical reduction

We construct a Tietze-transformationΦ from Σ to Ξ step-by-step, as follows.

− Adjunction of the cells of Υ. For every 1-cell y of Υ, we apply ιG(y) to coherently add y and
ψy : G(y) ⇒ y. Then, for every 2-cell β : v ⇒ v ′ of Υ, we apply ι

ψ−
v ?1Ĝ(β)?1ψv ′

to coherently
add β and ψβ. Then, we add every 3-cell δ : gV g ′ of Υ with ιB, where B is the following 3-cell:

v

g

�'
ψ−
v

%9

g ′

7KG(v)

G(g)
�+

G(g ′)

4H
G(v ′) ψv ′ %9 v ′

ψ−
g��

G(δ)
��

ψg ′
��

− Adjunction of the coherence cells for Σ. For every 1-cell x, we apply ιψ−
F(x)

?1σ̂x
to coherently add

the 2-cell ϕx and the 3-cell ξx. Then, for every 2-cell α : u ⇒ u ′ of Σ, we add the 3-cell ϕα
with ιA, whereA is the following 3-cell (where the triple arrows have been omitted for readability):

F(u)
F̂(α)

%9

ψ
F̂(α)

F(u ′) ϕu ′

�#

ψ−
F(u ′)

��
u

ϕ−
u

';

σ̂−u
%9

α

1EGF(u)

ψF(u)

EY

ĜF̂(α) %9 GF(u
′) σ̂u ′ %9 u ′

ξu ξu ′

σ̂α

− Adjunction of the last coherence cells for Υ. For every 1-cell y of Υ, we add the 3-cell ηy by ιC,
where C is the following 3-cell:

FG(y) τ̂y

�#
G(y)

ϕ−
G(y)

';

σ̂−
G(y)

%9 GFG(y)

ψFG(y)

EY

Ĝ(τ̂y)
��

ψτ̂y y

G(y) ψy

:N

ξG(y)

ρy
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4.2. Homotopical completion

As a result, we get a Tietze transformation Φ : Σ> → Ξ>. Since the construction and the result are
totally symmetric in Σ and Υ, and since the Tietze transformationΦ contains coherent adjunctions only,
we also get a Tietze transformation Ψ : Ξ> → Υ>. By composition, we get a Tietze transformation
from Σ> to Υ>. To conclude, we note that bothΦ and Ψ are finite when both Σ and Υ are.

4.2. Homotopical completion

On the one hand, Squier’s completion extends a convergent 2-polygraph Σ into a coherent convergent
presentation S(Σ) of Σ. On the other hand, Knuth-Bendix’s completion procedure [23] transforms a
terminating 2-polygraph Σ into a convergent presentation of Σ. The homotopical completion procedure
interleaves both completion procedures to extend Squier’s completion to terminating but not necessarily
confluent 2-polygraphs.

4.2.1. Homotopical completion. Let Σ be a terminating 2-polygraph, equipped with a total termination
order ≤. The homotopical completion of Σ is the (3, 1)-polygraph

S(Σ) =
(
Σ̌, Γ q ∆

)
where Σ̌ is the 2-polygraph and Γ and ∆ are the cellular extensions of Σ̌> obtained by the following
procedure. It starts with Σ̌ equal to Σ, with B equal to the set of critical branchings of Σ and with Γ and ∆
equal to the empty cellular extension of Σ>. If B is empty, then the procedure stops. Otherwise, it picks
a branching

v

u

f &:

g #7 w

in B and it performs the following operations:

1. It computes 2-cells f ′ : v ⇒ v̂ and g ′ : w ⇒ ŵ of Σ̌∗, where v̂ and ŵ are normal forms for v
and w, respectively, as in the following diagram:

v
f ′ %9 v̂

u

f ';

g #7 w
g ′

%9 ŵ

2. It tests which (in)equality v̂ = ŵ or v̂ > ŵ or v̂ < ŵ holds, corresponding to the following three
situations, respectively:

v f ′

�.
γ
��

u

f ';

g #7

v̂ = ŵ

w g ′

1E

v
f ′ %9

δ��

v̂

α

��
u

f ';

g #7 w
g ′

%9 ŵ

v
f ′ %9

δ��

v̂

u

f ';

g #7 w
g ′

%9 ŵ

α

EY
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4. Homotopical completion and homotopical reduction

If û = v̂, then the procedure adds the dotted 3-cell γ of the leftmost diagram to Γ . Otherwise,
it adds the dotted 2-cell α and 3-cell δ of the corresponding situation to Σ̌ and ∆, respectively;
moreover, it adds all the new critical branchings created by δ to B.

3. It removes (f, g) from B and restarts from the beginning.

If the procedure stops, it returns the 2-polygraph Σ̌ and the cellular extensions Γ and ∆ of Σ̌>. Other-
wise, it builds increasing sequences of 2-polygraphs and of cellular extensions, whose limits are denoted
by Σ̌, Γ and ∆. Note that, if the starting 2-polygraph Σ is already convergent, then the homotopical com-
pletion of Σ coincides with Squier’s completion S(Σ), making notations consistent. By construction, the
underlying 2-polygraph Σ̌ of S(Σ) is convergent: it is the result of Knuth-Bendix’s completion procedure.
Theorem 2.3.7 yields the following theorem.

4.2.2. Theorem. Let Σ be a terminating 2-polygraph.

i) The (3, 1)-polygraph (Σ̌, ∆) is Tietze-equivalent to (Σ, ∅).

ii) The homotopical completion S(Σ̌) of Σ is a coherent convergent presentation of Σ.

iii) The (3, 1)-polygraph (Σ, π∆(Γ)) is a coherent presentation of Σ.

4.2.3. Example. Let us consider the monoid M presented by the 2-polygraph

Σ =
(
x, y ; xyx

α %9 yy
)
.

We prove that Σ terminates with the deglex order generated by x < y. Let us apply the homotopical
completion procedure to Σ, which has one, non confluent critical branching (αyx, xyα). The proce-
dure coherently adds the 2-cell β and the 3-cell A as follows, where the direction of β is given by the
inequality yyyx > xyyy:

yyyx

β

��

xyxyx

αyx )=

xyα !5

A
��

xyyy

The 2-cell β creates a new, confluent critical branching, resulting in the adjunction of the 3-cell B:

xyyyyx xyβ

�,
B
��

yyyxyx

βyx *>

yyyα !5

xyxyyy

αyyyi}
yyyyy

No 2-cell was added, so that the homotopical completion of Σ is

S(Σ̌) = (x, y ; α,β ; A,B).
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4.3. Homotopical reduction in dimensions 1 and 2

and it gives a coherent convergent presentation of M. By application of the Tietze transformation πB, we
coherently remove the 2-cell β and the 3-cell A to get the coherent presentation (x, y ; α ; πA(B)) of M.
By definition, the 3-cell πA(B) is obtained from B by replacing all the occurrences of β in the boundary
of B by the rest of the boundary of A, namely xyα− ?1 αyx. One can prove that the source and the
target of πA(B) are both equal to yyyα, so that πA(B) is parallel to 1yyyα and, as a consequence, can be
coherently eliminated by a Tietze transformation: the monoid M admits (Σ, ∅) as coherent presentation.

The homotopical reduction procedure proposes a more systematic way to eliminate unnecessary 3-
cells from a coherent convergent presentation.

4.3. Homotopical reduction in dimensions 1 and 2

The homotopical completion S(Σ) of a 2-polygraph Σ is a coherent convergent presentation of Σ. How-
ever, the (3, 1)-polygraph S(Σ) has usually more cells than one could expect for a coherent presentation
of Σ: for example, the pairs of extra 2-cells and 3-cells added during homotopical completion for non-
confluent critical branchings can be coherently removed from S(Σ). In this paragraph, we present the
homotopical reduction procedures in dimension 1 and dimension 2, as a systematic way to coherently
eliminate 1-cells and 2-cells from a (3, 1)-polygraph.

4.3.1. Homotopical 1-reduction. Let Σ be a (3, 1)-polygraph. The homotopical 1-reduction of Σ is the
(3, 1)-polygraph denoted by R1(Σ) and obtained by the following procedure. It starts with Σ̃ = Σ and
Γ = Σ2. If Γ is empty, then the procedure stops. Otherwise, it picks a 2-cell α in Γ and determines if α
has one of the two shapes

(1) u
α %9 x (2) x

α %9 u

where x is a 1-cell of Σ and u is a 1-cell of (Σ \ {x})∗. If so, the procedure performs the following
operations, depending on the case:

(1) The procedure coherently eliminates x and α from Σ̃ by the Tietze transformation πα. Then, it
restarts with Γ replaced by πα(Γ \ {α}).

(2) The procedure replaces α with a 2-cell α̃ : u ⇒ x in Σ̃, corresponding to α−, by the following
sequence of Tietze transformations:

− the coherent adjunction of the 2-cell α̃ : u⇒ x and a 3-cell γ : α− V α̃ by ια− ,

− the coherent adjunction of a 3-cell γ̃ : α̃− V α by ια?1A−?1α
− ,

− the coherent elimination of the 3-cell γ by π(α̃?1γ̃−?1α−, γ),

− the coherent elimination of α and γ̃ by πγ̃.

Then, the procedure applies the same operation as in case (1), with α replaced by α̃.

IfΣ2 is finite, the procedure ends and we define R1(Σ) as the final value of Σ̃. Otherwise, we define R1(Σ)
as the limit of the decreasing sequence formed by the successive values of Σ̃. This (3, 1)-polygraph is
defined only up to Tietze equivalence, since the order of examination of the 2-cells can change the result
and since a 2-cell can fall in both cases, inducing a choice between the two possible induced Tietze
transformation. Nevertheless, by construction, the (3, 1)-polygraph R(Σ) is Tietze-equivalent to Σ.
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4. Homotopical completion and homotopical reduction

4.3.2. Homotopical 2-reduction. For a (3, 1)-polygraph Σ, the homotopical 2-reduction of Σ is the
(3, 1)-polygraph denoted by R2(Σ) and obtained by a procedure that is almost identical to the case of
dimension 1. The difference consists in the examination of the 3-cells γ of Σ that may induce a Tietze
transformation πγ. We first consider the following four shapes for γ:

(1) •

f

�)

α

5I •γ�� (3) •

f

�/

g �3

•

•
α
%9 • h

?Sγ��

(2) •

f

�)

α−

5I •γ�� (4)
•

f

�/

g �3

•

•
α−
%9 • h

?Sγ��

where α is a 2-cell of Σ and f, g and h are 2-cells of (Σ2 \ {α})>.

(1) We apply the Tietze transformation πγ.

(2) We replace γ with a 3-cell γ̃ : f− V α by the following sequence of Tietze transformations:

− the coherent adjunction of γ̃ by ιf−?1γ−?1α,

− the coherent elimination of γ by π(f?1γ̃−?1α−, γ).

Then, we go to case (1) with γ replaced by γ̃.

(3) We replace γwith a 3-cell γ̃ : g−?1f?1h
− V α by the following sequence of Tietze transformations:

− the coherent adjunction of γ̃ by ιg−?1γ?1h− ,

− the coherent elimination of γ by π(g?1γ̃?1h, γ).

Then, we go to case (1) with γ replaced by γ̃.

(4) We apply the same transformations as in case (3) to replace γ with γ̃ : g− ?1 f ?1 h− V α− and,
then, we go to case (2) with γ replaced by γ̃.

Secondly, if γ does not fall in one of the four previous cases, we check if γ− does. If so, we replace γ
with a 3-cell γ̃ : t(γ)V s(γ) by the following sequence of Tietze transformations:

− the coherent adjunction of γ̃ by ιs(γ)−?1γ?1t(γ)− ,

− the coherent elimination of γ by π(s(γ)?1γ̃?1t(γ), γ).

Then, we go to the corresponding case (1), (2), (3) or (4) with γ replaced by γ̃.
The (3, 1)-polygraph R2(Σ) is defined as the result of the procedure or as the limit of the decreasing

sequence formed by the successively built (3, 1)-polygraphs. Once again, the (3, 1)-polygraph R2(Σ) is
only defined up to Tietze equivalence but, by construction, it is Tietze-equivalent to Σ.
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4.4. Homotopical reduction in dimension 3

4.4. Homotopical reduction in dimension 3

The (3, 1)-polygraph S(Σ) obtained by homotopical completion can also contain 3-cells that are not
necessary to have a homotopy basis. One could define an abstract procedure that examines, in a similar
way to the homotopical reduction in dimensions 1 and 2, all the 3-spheres of S(Σ)> to eliminate the
redundant 3-cells. However, this induces a practical difficulty: the effective computation of the 3-spheres.
But, in the case of a coherent convergent presentation, the critical triple branchings [21] give a way
to compute some 3-spheres that, in the examples we consider here, are sufficient to eliminate all the
unnecessary 3-cells.

4.4.1. Triple branchings. A triple branching of a 2-polygraph Σ is a triple (f, g, h) of 2-cells of Σ∗2
with a common source, as in the diagram

v

u

f #7

g %9

h
';

w

x

A triple branching (f, g, h) is local when f, g and h are rewriting steps. Local branchings belong to one
of the following three families:

− aspherical triple branchings have two of their 2-cells equal,

− Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two,

− overlapping triple branchings are the remaining local triple branchings.

Local triple branchings are compared by the order 4 generated by the relations

(f, g, h) 4
(
ufv, ugv, uhv)

given for any local triple branching (f, g, h) and any possible 1-cells u and v of Σ∗. An overlapping local
triple branching that is minimal for the order 4 is called a critical triple branching.

4.4.2. Generating triple confluences. Let Σ be a coherent convergent (3, 1)-polygraph. A family of
generating triple confluences of Σ is a cellular extension of Σ> that contains exactly one 3-sphere

v

f ′1
!5

A

x ′

h ′′

� 

v

f ′1
!5

f ′2
�(

x ′

h ′′

� 
u

f

.B

g %9

h
�0

w

g ′
1

6J

g ′
2

�(

C ′ û
ω
�? u

f

.B

C

h
�0

w ′ g ′′ %9

B ′

A ′

û

x

h ′
2

)=

B

v ′
f ′′

>R

x

h ′
1

6J

h ′
2

)= v ′
f ′′

>R
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4. Homotopical completion and homotopical reduction

for every critical triple branching (f, g, h) of Σ, built as follows. First, we consider the branching (f, g):
we use confluence to get f ′1 and g ′1 and coherence to build the 3-cell A. We repeat this step with the
branchings (g, h) and (f, h). Then, we consider the branching (f ′1, f

′
2) and we use convergence to get g ′′

and h ′′ with û as common target, plus the 3-cell B ′ by coherence. We do the same operation with
(h ′1, h

′
2) to get A ′. Finally, we build the 3-cell C ′ to relate the parallel 2-cells g ′1 ?1 h

′′ and g ′2 ?1 f
′′.

4.4.3. Homotopical reduction in dimension 3. For Σ a coherent convergent (3, 1)-polygraph, the ho-
motopical 3-reductionof Σ is the (3, 1)-polygraph R3(Σ) obtained by a procedure that is similar to the
case of homotopical 2-reduction, applied by considering the 3-spheres of a family of generating triple
confluences of Σ. If such a 3-sphereω has shape

•

f

�)

α

5I •A��
ω
�? •

f

�)

α

5I •γ��

where γ is a 3-cell of Σ and A is a 3-cell of (Σ \ {γ})>, then one applies the Tietze transformation πω
directly. Otherwise, the procedure considers different possible shapes ofω, such as:

•

f

�%

α

9M•A
��

ω
�? •

�)
f %9

5I•
�'
7K • g %9 •

B��

γ
��

C��

In that case, the procedure considers the 3-sphere

ω̃ = f− ?1
(
B− ?2 ω ?2 C

−
)
?1 g

−

instead ofω and applies the Tietze transformation πω̃. Once again, by construction, the (3, 1)-polygraph
R3(Σ) is Tietze-equivalent to Σ.

4.5. Homotopical completion-reduction

If Σ is a terminating 2-polygraph, equipped with a total termination order, the homotopical completion-
reduction of Σ is the (3, 1)-polygraph defined by

R(Σ) = R1R2R3S(Σ).

4.5.1. Theorem. Let Σ be a terminating 2-polygraph.

i) The (3, 1)-polygraph R3S(Σ) is a coherent convergent presentation of Σ.

ii) The homotopical completion-reduction of Σ is a coherent presentation of Σ.
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4.5. Homotopical completion-reduction

4.5.2. Example. We have seen in Example 4.2.3 that the monoid M presented by

Σ =
(
x, y ; xyx

α %9 yy
)

admits the coherent convergent presentation

S(Σ) =
(
x, y ; xyx

α %9 yy , yyyx
β %9 xyyy ; A,B

)
where A and B are the 3-cells

yyyx

β

��

xyxyx

αyx )=

xyα !5

A
��

xyyy

xyyyyx xyβ

�,
B
��

yyyxyx

βyx *>

yyyα !5

xyxyyy

αyyyi}
yyyyy

Homotopical 3-reduction considers the 3-spheres associated to the critical triple branchings. Here, we
only need to consider

(
αyxyx, xyαyx, xyxyα

)
, with source xyxyxyx, giving the following 3-sphere:

yyyxyx

yyyα

�%
βyx

��

yyyxyx

yyyα

�%
xyxyxyx

αyxyx
(<

xyαyx %9

xyxyα "6

xyyyyx

xyβ

��

B

Ayx

xyA

yyyyy
ω
�? xyxyxyx

αyxyx
,@

1αyα

xyxyα �3

yyyyy

xyxyyy

αyyy

8L

yyyxyx

αyyy

8L

The Tietze transformation πω coherently eliminates B, proving that (x, y ; α,β ; A) is a coherent con-
vergent presentation of M. Then, homotopical 2-reduction coherently removes β and A, so that the
homotopical completion-reduction of Σ is R(Σ) = (Σ, ∅) and it is a coherent presentation of M.

4.5.3. Example. Let us consider the monoid M presented by the 2-polygraph

Σ =
(
x, y ; xy

α %9 xx , yy
β %9 xx

)
.

This 2-polygraph terminates, with a total termination order given by the deglex order generated by x < y.
It has two critical branchings, one of them being confluent and the other one requiring the coherent
adjunction of a new 2-cell γ : yxx⇒ xxx, together with the 3-cells

xxy

xα

��

xyy

αy )=

xβ !5

A��

xxx

xxy
xα

�&
B
��

yyy

βy *>

yβ  4

xxx

yxx
γ

7K
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4. Homotopical completion and homotopical reduction

The adjunction of γ generates three new critical branchings, all of them being confluent:

xyxx

αxx

�*

xγ

4HC�� xxxx

xxxx

yyxx

βxx )=

yγ !5

D��

yxxx

γx

J^ xxxy
xxα

�(
E
��

yxxy

γy *>

yxα  4

xxxx

yxxx γx

6J

Thus, the homotopical completion of Σ is S(Σ) = (x, y ; α,β, γ ; A,B,C,D, E). Let us study the critical
triple branchings of Σ. We note that, if ω is a 3-sphere associated to a critical triple branching that is
generated by γ, then all the 1-cells occurring in the boundary ofω have size 5 or more: as a consequence,
this ω cannot be used to eliminate any 3-cell. There remain two critical triple branchings to consider.
The first one gives the following 3-sphere:

xxyy

xαy

�+

xxβ

��

xxyy

xxβ

�"
xyyy

αyy
-A

xβy %9
Ay

xyβ �1

xxxy

xxα

�+

xA
ω1
�? xyyy

αyy
-A

1αβ

xyβ �1

xxxx

xyxx

xγ

(<

xB

xxxx xyxx

αxx

3G

xγ

H\

C

Thus, the Tietze transformation πω1
coherently eliminates C. The other critical triple branching gener-

ates the following 3-sphere:

xxyy

xαy
"6

By

xxxy

xxα

� 

xxyy

xxβ

� 
yyyy

βyy
/C

yβy %9

yyβ �1

yxxy

γy

5I

yxα

�)

E xxxx

ω2
�? yyyy

βyy
/C

yyβ �1

1ββ xxxx

yyxx

yγ

(<

yB

yxxx

γx

=Q

yyxx

βxx

5I

yγ

(<
D

yxxx

γx
[o

The 4-cell ω2 generates two possible different Tietze transformations, eliminating D or E: we choose
to keep D. As a consequence, homotopical 3-reduction yields the coherent convergent presentation
(x, y ; α,β, γ ; A,B,D). Then, homotopical 2-reduction coherently removes B and γ, so that the homo-
topical completion-reduction of Σ is

R(Σ) =
(
x, y ; α,β ; A,πB(D)

)
where πB(D) is D with both occurrences of γ replaced by yβ− ?1 βy ?1 xα.
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5. Deligne’s coherent presentation

5. DELIGNE’S COHERENT PRESENTATION

In this section, we apply the homotopical completion procedure and a part of the homotopical reduction
procedure to Deligne’s presentation of Artin monoids, given in [13, 1.4.5] in the spherical case and in [29,
Proposition 1.1] in the general case. We get a coherent presentation that generalises Deligne’s result [13,
Theorem 1.5] on the actions of spherical Artin monoids to general Artin monoids. We fix a Coxeter
group W with a totally ordered set of generators S.

5.1. Preliminaries on Artin monoids

We introduce notations for products in W that preserve or not the length and, then, we recall some
arithmetic properties on Artin monoids, observed by Garside for braid monoids [16] and generalised by
Brieskorn and Saito [6].

5.1.1. Length notations. We recall that the length l(u) of an element u of W is the one of its reduced
expressions, that is, its representatives in S∗ of minimal length. Hence, for every u and v in W, we have
l(uv) ≤ l(u) + l(v) and we use distinct graphical notations depending on whether the equality holds or
not:

u v ⇔ l(uv) = l(u) + l(v),

u v
× ⇔ l(uv) < l(u) + l(v).

When w = uv holds in W with u v , we write w .
= uv. We generalise these notations for a greater

number of elements of W. For example, in the case of three elements u, v andw of W, we write u v w

when both equalities l(uv) = l(u)+l(v) and l(vw) = l(v)+l(w) hold. This case splits in the following
two mutually exclusive subcases:

u v w ⇔ {
u v w

l(uvw) = l(u) + l(v) + l(w),

u v w
× ⇔ {

u v w

l(uvw) < l(u) + l(v) + l(w).

5.1.2. Arithmetic properties of Artin monoids. If u and v are two elements of B+(W), we say that u
is a divisor of v and that v is a multiple of u if there exists an element u ′ in B+(W) such that uu ′ = v.
In that case, the element u ′ is uniquely defined and called the complement of u in v [6, Proposition 2.3].
Moreover, if v is in W, seen as an element of B+(W) by the canonical embedding, then we also have u
and u ′ in W and v .

= uu ′. A common multiple of a family (x1, . . . , xn) of elements of B+(W) is an
element y in B+(W) such that each xi is a divisor of y. A least common multiple (lcm for short) is a
common multiple that is a divisor of every common multiple.

If a family of elements of B+(W) has a common multiple, then it has a lcm [6, Proposition 4.1].
However, in general, any family of elements does not admit a common multiple: indeed, we have the
existence of common multiples for any family if, and only if, the Coxeter group W is finite [6, Propo-
sition 5.5]. In particular, if I is a subset of S, then the family of elements (si)i∈I has a common right-
multiple if, and only if, the Coxeter group WI is finite. In that case, the lcm of the family (si)i∈I is the
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5. Deligne’s coherent presentation

fundamental element w0(I) of WI. This implies that, if an element u of W admits reduced expressions
s1u1, . . . , snun where s1, . . . , sn are in S, then the subgroupW{s1,...,sn} is finite and its fundamental ele-
mentw0(s1, . . . , sn) is a divisor of u. As a consequence, the element u has a unique reduced expression
of the shape w0(s1, . . . , sn)u ′, which is a slight generalisation of [37, Lemma 4].

5.1.3. Deligne’s presentation. The braid monoid B+(W) admits a presentation, built from Artin’s pre-
sentation by adjunction of redundant generators and relations, that is considered in the spherical case
in [13, (1.4.5)] and in the general case in [29, Proposition 1.1] and [19, Proposition 4.1.3]. Deligne’s
presentation of B+(W) is the 2-polygraph Del(W) whose set of 1-cells is W \ {1} and with a 2-cell

αu,v : u|v ⇒ uv

whenever u v holds, where ·|· denotes the product in the free monoid over W \ {1}, to avoid confusion
with the product in W.

For example, Deligne’s presentation of the braid monoid B+
3 has five 1-cells

s t st ts sts

and six 2-cells

s|t
αs,t %9 st s|ts

αs,ts%9 sts st|s
αst,s%9 sts

t|s
αt,s %9 ts t|st

αt,st%9 sts ts|t
αts,t%9 sts.

We denote by Del+(W) the extended presentation of B+(W) obtained from Del(W) by adjunction of
one 3-cell

uv|w
αuv,w

�(
Au,v,w��

u|v|w

αu,v|w +?

u|αv,w �3

uvw

u|vw
αu,vw

6J

for every u, v andw of W \ {1} with u v w . After the main theorem of this section, we call Deligne’s
coherent presentation the (3, 1)-polygraph Del+(W).

5.1.4. Theorem. For every Coxeter group W, the Artin monoid B+(W) admits Del+(W) as a coherent
presentation.

Proof. The proof of Theorem 5.1.4 is conducted in two parts: in 5.2, we compute the homotopical
completion of Del(W) to get a coherent convergent presentation of B+(W) and, then, we apply a part of
homotopical 3-reduction in 5.3 to get the result.

In the spherical case, this result is a consequence of Theorem 1.5 and Remark 2.6 of [13]. There, Deligne
proves that, if W is finite, then the category Act(B+(W)) of 2-representations of B+(W) in a 2-category C

is equivalent to the category of 2-functors from a Del+(W) into D. Moreover, the given proof makes this
equivalence natural in C: by Theorem 3.4.3, we get that Del+(W) is a coherent presentation of B+(W).
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5.2. Homotopical completion of Deligne’s presentation

5.2. Homotopical completion of Deligne’s presentation

We compute the homotopical completion of Del(W) to get a coherent convergent presentation of B+(W).

5.2.1. Termination of Del(W). We equip the 1-cells of Del(W)∗ with the order given by the interpreta-
tion mapping u1|u2| · · · |un to the family (l(u1), . . . , l(un)) of natural numbers, compared by the right
deglex order generated by the natural order. Let us note that this order is not total, but we will not en-
counter pairs of incomparable 1-cells during homotopical completion. For every 2-cell αu,v of Del(W),
the strict inequality s(αu,v) > t(αu,v) holds since, for the considered order, the pair (l(u), l(v)) is
strictly greater than the singleton l(uv). Hence we get that Del(W) terminates.

5.2.2. The critical branchings of Del(W). The 2-polygraph Del(W) has exactly one critical branching
for every u, v and w of W \ {1} with u v w :

uv|w

u|v|w

αu,v|w $8

u|αv,w
&: u|vw

Then, given such a critical branching, there are two cases, depending on the length of uvw with respect
to the sum of the lengths of u, v and w.

− If u v w , the critical branching is confluent, resulting in the adjunction of the following 3-cell:

uv|w
αuv,w

�(
Au,v,w��

u|v|w

αu,v|w +?

u|αv,w �3

uvw

u|vw
αu,vw

6J

− Otherwise, if u v w
×

, then both uv|w and u|vw are normal forms. Since l(vw) > l(w), we
have u|vw > uv|w. Thus, homotopical completion coherently adds the new 2-cell

u|vw
βu,v,w

%9 uv|w,

together with the following 3-cell:

u|v|w

αu,v|w

�3

u|αv,w �1

uv|w

u|vw
βu,v,w

7KBu,v,w
��
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5. Deligne’s coherent presentation

After this first part of homotopical completion, we get a terminating (3, 1)-polygraph that is Tietze-
equivalent to (Del(W), ∅). However, the adjunction of the family β of 2-cells creates new critical
branchings that we need to consider.

5.2.3. The new critical branchings. The sources of all the 2-cells α and β have size 2 in the free
monoid over W \ {1}. This leaves two main cases for the critical branchings that involve at least one
2-cell β.

The first case occurs when the sources of the 2-cells of Del(W) that generate the branching overlap
on one element of W \ {1}. The source of such a branching has size 3, with one 2-cell of the branching
reducing the leftmost two generating 1-cells and the other one reducing the rightmost two. That case
subdivides as follows, depending on the type α or β of the involved 2-cells.

− One critical branching when u v w x
×

:

uv|wx

u|v|wx

αu,v|w|x %9

u|βv,w,x
%9 u|vw|x

This case splits in the following two disjoint subcases:

u v w x
×

u v w x
× ×

.

− One critical branching when u v w x
×

:

uv|w|x

u|vw|x

βu,v,w|x %9

u|αvw,x
%9 u|vwx

− One critical branching when u v w x y
×

:

uv|w|xy

u|vw|xy

βu,v,w|xy %9

u|βvw,x,y
%9 u|vwx|y

This case splits in the following two disjoint subcases:

u v w x y
× ×

and u v w x y
× ×

.
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5.2. Homotopical completion of Deligne’s presentation

The second main case occurs when the 2-cells of Del(W) that generate the branching totally overlap,
i.e., they have the same source. Since one of those 2-cells must be a β, the source has shape u|vw with

u v w
×

, preventing the other 2-cell to be an α. The only remaining possibility is to have a different

decomposition vw = v ′w ′, with u v ′ w ′
×

, so that the branching is:

uv|w

u|vw
=

u|v ′w ′

βu,v,w %9

βu,v ′,w ′
%9 uv ′|w ′

5.2.4. Confluence of the new critical branchings. We now proceed to the examination of each indi-
vidual case, proving that the corresponding critical branching is confluent, which induces the adjunction
of 3-cells to produce a homotopy basis.

− Case u v w x
×

:
uv|wx βuv,w,x

�+
Cu,v,w,x��

u|v|wx

αu,v|wx *>

u|βv,w,x �3

uvw|x

u|vw|x αu,vw|x

3G

− Case u v w x
× ×

:

u|v|wx

αu,v|wx

!5

u|βv,w,x �3

uv|wx

u|vw|x
βu,v,w|x

%9 uv|w|x
uv|αw,x

3G
Du,v,w,x
��

− Case u v w x
×

:
uv|w|x uv|αw,x

�+
Eu,v,w,x��

u|vw|x

βu,v,w|x +?

u|αvw,x  4

uv|wx

u|vwx βu,v,wx

3G
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5. Deligne’s coherent presentation

− Case u v w x y
× ×

:

uv|w|xy uv|αw,xy

�1
u|vw|xy

βu,v,w|xy (<

u|βvw,x,y �2

uv|wxy

u|vwx|y
βu,v,wx|y

%9 uv|wx|y
uv|αvw,x

5I
Fu,v,w,x,y��

− Case u v w x y
× ×

:

uv|w|xy uv|βw,x,y

�,
Gu,v,w,x,y��

u|vw|xy

βu,v,w|xy *>

u|βvw,x,y  4

uv|wx|y

u|vwx|y βu,v,wx|y

2F

− Case u v w
×

and u v ′ w ′
×

, with vw = v ′w ′. Here we use the properties satisfied by Artin
monoids, seen in 5.1.2, to get the following relations in B+(W):

·
w

$$
x
��

=

·

v
77

v ′ ''

= · y // ·

·

x ′
AA

w ′

::

=

Indeed, we note that the elements v and v ′ have a common multiple since vw = v ′w ′. Hence, they
admit a lcm. The elements x and x ′ are respectively defined as the complements of v and v ′ in their
lcm. The element y is the complement of the lcm vx = v ′x ′ of v and v ′ in their common multiple
vw = v ′w ′. By uniqueness of the complements of v and v ′ in vw = v ′w ′, we get w = xy and
w ′ = x ′y. Moreover, we have:

v x y and v ′ x ′ y.

Finally, from the hypothesis u v w
×

, we get that y 6= 1.

Then, there are two possible subcases for the confluence diagram, depending on x and x ′. The first
subcase is when we have either x = 1 or x ′ = 1. We note that both cannot happen at the same
time, otherwise v = v ′ and w = w ′, so that the branching would be aspherical and not critical.
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5.3. Homotopical reduction of Deligne’s presentation

For example, let us assume that x ′ = 1, inducing v ′ = vx, w = xy and w ′ = y:

uv|xy
βuv,x,y

�'
u|vxy

βu,v,xy
-A

βu,vx,y

+? uvx|y
Hu,v,x,y
��

In the second subcase, when x 6= 1 and x ′ 6= 1, we have:

uv|w = uv|xy βuv,x,y

�(

Iu,v,w,v ′,w ′
��

u|vw
=

u|v ′w ′

βu,v,w *>

βu,v ′,w ′ �2

uvx|y
=

uv ′x ′|y

uv ′|w ′ = uv ′|x ′y
βuv ′,x ′,y

6J

Since all the critical branchings are confluent, the homotopical completion procedure ends. As an in-
stance of Theorem 4.2.2, we get the following result.

5.2.5. Proposition. For every Coxeter group W, the Artin monoid B+(W) admits, as a coherent con-
vergent presentation, the (3, 1)-polygraph S(Del(W)) with one 0-cell, one 1-cell for every element of
W \ {1}, one 2-cell

u|v
αu,v

%9 uv,

for every u and v of W \ {1} with u v , one 2-cell

u|vw
βu,v,w

%9 uv|w,

for every u, v and w of W \ {1} with u v w
×

and the nine families of 3-cells A, B, C, D, E, F, G, H
and I previously listed.

5.3. Homotopical reduction of Deligne’s presentation

We obtain the coherent presentation Del+(W) by application of coherent eliminations on the coherent
presentation S(Del(W)) of Proposition 5.2.5.

5.3.1. The triple critical branchings of S(Del(W)). We examine the possible overlaps of the sources
of three 2-cells of S(Del(W)), in a similar way to the study of its critical branchings. There are four
different cases, depending on the generating 2-cells forming the triple branching, and, then, different
subcases depending on the 2-cells that close it. We only list the subcases used in the next paragraph.
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5. Deligne’s coherent presentation

− One critical triple branching when u v w x :

uv|w|x

u|v|w|x

αu,v|w|x
&:

u|αv,w|x %9

u|v|αw,x $8

u|vw|x

u|v|wx

This case splits into the five subcases:

u v w x u v w x

×

u v w x
×

u v w x
×

u v w x
× ×

.

− One critical triple branching when u v w x y
×

:

uv|w|xy

u|v|w|xy

αu,v|w|xy
&:

u|αv,w|xy %9

u|v|βw,x,y #7

u|vw|xy

u|v|wx|y

We only consider the subcase u v w x y
× ×

.

− One critical triple branching when u v w x y
×

:

uv|w|x|y

u|vw|x|y

βu,v,w|x|y
';

u|αvw,x|y %9

u|vw|αx,y $8

u|vwx|y

u|vw|xy

We only consider the subcase u v w x y
× ×

.
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5.3. Homotopical reduction of Deligne’s presentation

− One critical triple branching when u v w
×

, u v ′ w ′
×

and u v ′′w ′′
×

with vw = v ′w ′ = v ′′w ′′:

uv|w

u|vw
=

u|v ′w ′

=
u|v ′′w ′′

βu,v,w ';

βu,v ′,w ′
%9

βu,v ′′,w ′′ "6

uv ′|w ′

uv ′′|w ′′

The subcases are determined by the value of the lcm of v, v ′ and v ′′, and it is sufficient to examine
the situation where v ′′ is the lcm of v and v ′.

5.3.2. A family of generating triple confluences of S(Del(W)). We now proceed to the examination
of all the cases we have noted in the previous paragraph.

− In the case u v w x , we get the 3-sphereωAu,v,w,x:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

αuvw,x


!
Au,vw,xu|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x

�*
u|Av,w,x

uvwx

u|v|wx

u|αv,wx

(< u|vwx
αu,vwx

<P �?

uv|w|x

αuv,w|x
"6

uv|αw,x

�*
=

uvw|x

αuvw,x


!
Auv,w,x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx αuv,wx %9

Au,v,wx

uvwx

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx
αu,vwx

<P

− In the case u v w x

×

, we get the 3-sphereωHu,v,w,x:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x

�*
u|Av,w,x

u|v|wx

u|αv,wx

(< u|vwx

βu,vw,x

Xl

Bu,vw,x �?

uv|w|x

αuv,w|x
"6

uv|αw,x

�*
=

uvw|x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

βuv,w,x

4H

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx

βu,v,wx

Vj

βu,vw,x

XlBuv,w,x

Bu,v,wx

Hu,v,w,x
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− In the case u v w x
×

, we get the 3-sphereωEu,v,w,x:

uv|w|x uv|αw,x

�,
u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

Bu,v,w|x
u|vw|x

βu,v,w|x

Vj

u|αvw,x

�*
u|Av,w,x

Eu,v,w,x
uv|wx

u|v|wx

u|αv,wx

(< u|vwx
βu,v,wx

<P
�?

uv|w|x

uv|αw,x

�"
=u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

u|v|wx

αu,v|wx

4H

u|αv,wx

(<Bu,v,wx u|vwx

βu,v,wx

\p

− In the case u v w x
×

, we get the 3-sphereωCu,v,w,x:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

<P

u|v|wx

u|βv,w,x

<P
u|Bv,w,x

�?

uv|w|x

uv|αw,x

�*

αuv,w|x

�,
=u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx βuv,w,x
%9

Cu,v,w,x

uvw|x

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
αu,vw|x

<P

Buv,w,x

− In the case u v w x
× ×

, we get the 3-sphereωDu,v,w,x:

uv|w|x

uv|αw,x
"6
uv|wx

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

βu,v,w|x

[o

u|v|wx

u|βv,w,x

<P

Bu,v,w|x

u|Bv,w,x

�?

uv|w|x

uv|αw,x


!
=u|v|w|x

αu,v|w|x
/C

u|v|αw,x �/

uv|wx

Du,v,w,x

uv|w|x

uv|αw,x
h|

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
βu,v,w|x

<P

− In the case u v w x y
× ×

, we get the 3-sphereωGu,v,w,x,y:

uv|w|xy

uv|βw,x,y
"6
uv|wx|y

u|v|w|xy

αu,v|w|xy
.B

u|αv,w|xy %9

u|v|βw,x,y �0

u|vw|xy

βu,v,w|xy
Xl

u|βvw,x,y

�,
u|Cv,w,x,y

Gu,v,w,x,y

u|v|wx|y

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y

I]

Bu,v,w|xy
�?

uv|w|xy

uv|βw,x,y

�#
=u|v|w|xy

αu,v|w|xy
.B

u|v|βw,x,y �0

uv|wx|y

u|v|wx|y

αu,v|wx|y

2F

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y
\p

Bu,v,wx|y
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− In the case u v w x y
× ×

, we get the 3-sphereωFu,v,w,x,y:

uv|w|x|y

uv|αw,x|y
"6

Eu,v,w,x|y

uv|wx|y

uv|αwx,y

��
u|vw|x|y

βu,v,w|x|y
.B

u|αvw,x|y %9

u|vw|αx,y �0

u|vwx|y

βu,v,wx|y

2F

uv|wxy

u|vw|xy

u|βvw,x,y

:N
u|Bvw,x,y

�?

uv|w|x|y

uv|αw,x|y
"6

uv|w|αx,y

�,

uv|wx|yuv|αwx,y

�#
uv|Aw,x,y

u|vw|x|y

βu,v,w|x|y
.B

u|vw|αx,y �0

= uv|w|xy uv|αw,xy
%9 uv|wxy

u|vw|xy

βu,v,w|xy

2F

u|βvw,x,y �0
u|vwx|y

βu,v,wx|y

(< uv|wx|y

uv|αwx,y

EY

Fu,v,w,x,y

− Finally, let us consider the case u v w
×

, u v ′ w ′
×

and u v ′′w ′′
×

with vw = v ′w ′ = v ′′w ′′.
We proceed in the same way as for the critical branching inducing the 3-cells H and I, obtaining
the unique elements x, x ′, x ′′ and y of W such that:

w = xy, w ′ = x ′y, w ′′ = x ′′y, vx = v ′x ′ = v ′′x ′′, y 6= 1.

Moreover, at most one of x, x ′ and x ′′ can be equal to 1: indeed, otherwise, the triple branching
would be aspherical and not critical. In the case where x ′′ = 1, corresponding to v ′′ being the lcm
of v and v ′, we get the 3-sphereωIu,v,w,v ′,w ′ :

uv|w
βuv,x,y

�-
Iu,v,w,v ′,w ′

u|vw

βu,v,w

)=

βu,v ′,w ′ %9

βu,vx,y

4Huv ′|w ′ βuv ′,x ′,y %9

Hu,v ′,x ′,y

uvx|y. �?

uv|w
βuv,x,y

�,
u|vw

βu,v,w

*>

βu,vx,y

4Huvx|yHu,v,x,y

5.3.3. Homotopical reduction of S(Del(W)). We get Theorem 5.1.4 by successive application of two
Tietze transformations:

− a homotopical 3-reduction that considers in sequence the 3-spheres of type ωI, ωH, . . . , ωC and
coherently eliminates the corresponding 3-cell of type I, H, . . . , C, respectively.

− a homotopical 2-reduction that coherently eliminates every 3-cell of type B and the corresponding
2-cell of type β.

This results in the (3, 1)-polygraph Del+(W), proving that it is a coherent presentation of B+(W).

53



5. Deligne’s coherent presentation

5.4. Deligne’s coherent presentation for Garside monoids

Garside monoids have been introduced as a generalisation of spherical Artin monoids by Dehornoy and
Paris [11, 9] to absract the arithmetic properties observed by Garside on braid monoids [16] and by
Brieskorn-Saito and Deligne on spherical Artin monoids [6, 12]. We fix a Garside monoid M and we
follow [17] for most of the terminology and notations.

5.4.1. Recollections on Garside monoids. In the monoid M, every pair (u, v) of elements admits a
lcm u ∧ v. Moreover, M has a fundamental element, denoted by w0, such that the set W of its divisors
generates M. The complement of an element u of W inw0 is denoted by ∂(u). A pair (u, v) of elements
of W is left-weighted if we have ∂(u) ∧ v = 1. There exists a unique left-weighted pair (u ′, v ′) of
elements of W such that uv = u ′v ′ holds in M: we take u ′ = u(∂(u)∧ v) and v ′ to be the complement
of ∂(u) ∧ v in v. The operation transforming (u, v) into (u ′, v ′) is called local sliding. It induces
a computational process that transforms any element u of W∗ into its (left) normal form by a finite
sequence of local slidings, thereafter represented by dashed arrows:

u // (· · · ) // û.

Moreover, two elements u and v of W∗ represent the same element of M if, and only if, they have the
same normal form, so that they are linked by a finite sequence of local slidings and their inverses:

u // û v.oo

5.4.2. Deligne’s presentation for Garside monoids. First, let us note that, since the set W of divisors
of the fundamental elementw0 generates M, then so does W\{1}. Given two elements u and v of W\{1},
we use the notations u v and u v

× to mean

u v ⇔ ∂(u)∧ v = 1,

u v
× ⇔ ∂(u)∧ v 6= 1.

We define Deligne’s presentation of M as the 2-polygraph Del(M) with one 0-cell, one 1-cells for every
element of W \ {1} and one 2-cell

u|v
αu,v %9 uv

for every u and v in W \ {1} such that u v holds.
Let us check that Deligne’s presentation is, indeed, a presentation of the monoid M. If u v holds,

transforming u|v into uv is a local sliding since uv is the normal form of u|v, so that each 2-cell αu,v is
an instance of local sliding. Conversely, if u|vw is transformed into uv|w by local sliding, this implies,
in particular, that both u v and v w hold. Thus, the composite 2-cell

u|v|w
u|αv,w

�)
u|vw

α−
u,v|w

,@

// uv|w

corresponds to the local sliding transformation applied to u|vw.
The proof of Theorem 5.1.4 adapts in a straightforward way to the case of Del(M), yielding a coher-

ent presentation Del+(M) of M.
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6. Artin’s coherent presentation

6. ARTIN’S COHERENT PRESENTATION

Let W be a Coxeter group with a totally ordered set S of generators. In this section, we continue the
homotopical reduction of S(Del(W)), to get that the homotopical completion-reduction of Del(W) is
Artin’s coherent presentation Art+(W) of B+(W). This gives Theorem 2.4.5 for Artin monoids. Then,
we use the fact that Artin monoids embed in the corresponding Artin group to get Theorem 2.4.5 for
Artin groups.

6.1. Example: the case of B+
3

Deligne’s coherent presentation Del+(A2) of B+
3 = B+(A2) has five 1-cells

s t st ts sts

six 2-cells

s|t
αs,t %9 st s|ts

αs,ts %9 sts st|s
αst,s %9 sts

t|s
αt,s %9 ts t|st

αt,st %9 sts ts|t
αts,t %9 sts

and two 3-cells

st|s αst,s

�&
As,t,s��

s|t|s

αs,t|s +?

s|αt,s �3

sts

s|ts
αs,ts

8L

ts|t αts,t

�&
At,s,t��

t|s|t

αt,s|t +?

t|αs,t �3

sts

t|st
αt,st

8L

Let us prove that the homotopical reduction of Del+(A2) is Artin’s coherent presentation Art+(A2), i.e.,
the (3, 1)-polygraph (

s, t ; tst
γst %9 sts ; ∅

)
.

The homotopical 3-reduction procedure, applied to Del+(A2), can coherently eliminate each 3-cell with
one of two different 2-cells: αs,ts or αst,s forAs,t,s and αt,st or αts,t forAt,s,t. Similarly, the homotopical
2-reduction procedure can coherently eliminate the 1-cell stswith any one of the 2-cells αs,ts, αt,st, αst,s
and αts,t. In order to make those choices systematic, we use the fixed order s < t on S and proceed as
follows:

− a 1-cell u .
= siu

′, with si the smallest divisor of u in S, is coherently eliminated with the 2-cell
αsi,u ′ : si|u

′ ⇒ u,

− a 2-cell αu,v, such that u .
= siu

′ with si the smallest divisor of u in S, is coherently eliminated
with the 3-cell Asi,u ′,v.
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6. Artin’s coherent presentation

Using those choices, we get that the monoid B+
3 admits the coherent presentation(

s, t ; π(αt,st) ; ∅
)

where π is the Tietze-transformation induced by homotopical reduction. This transformation is defined
by induction on the 1-cells by π(s) = s if s ∈ S and π(u) = siπ(u

′) if u .
= siu

′ with si the smallest
divisor of u ′ in S.

There remains to compute the source π(t|st) and the target π(sts) of π(αt,st) to conclude. Let us
note that the product in (W \ {1})∗ is denoted by ·|· and the product in S∗ is denoted by concatenation, so
that we have π(u|v) = π(u)π(v). For the source of π(αt,st), we have

π(t|st) = π(t)π(st) = tsπ(t) = tst

and, for its target, we get
π(sts) = sπ(ts) = stπ(s) = sts.

Thus, the 2-cell π(αt,st) is, up to isomorphism, the unique 2-cell γst of Art(A2): we recover the fact,
predicted by Tits [37, Proposition 4], that Art+(A2) = (Art(A2), ∅) is a coherent presentation of B+

3 .

6.2. Classification of the cells of Del+(W)

We consider Deligne’s coherent presentation Del+(W) of B+(W). The proof of Theorem 5.1.4 has
removed all the 3-spheres coming from the critical triple branchings of S(Del(W), except for the ones
of type ωA, thereafter simply denoted by ω and collectively forming the cellular extension Ω(W) of
Del+(W)>. We start with a classification of the cells of Del+(W) and the 3-spheres of Ω(W), that
produces pairs of cells that can be coherently eliminated to get the homotopical reduction of Del+(W).

6.2.1. Smallest divisors. If u is an element of W \ {1}, the smallest divisor of u is denoted by du and
defined as the smallest element of S that is a divisor of u. Let (u1, . . . , un) be a family of elements of
W \ {1} such that

l(u1 · · ·un) = l(u1) + · · ·+ l(un).

For every k ∈ {1, . . . , n}, we write sk = du1···uk . We note that s1 ≥ s2 ≥ · · · ≥ sn since each sk divides
u1 · · ·ul for l ≥ k. Moreover, the family (s1, . . . , sk) has u1 · · ·uk as common multiple, so that their
lcmw0(s1, . . . , sk) exists and divides u1 · · ·uk, and each subgroup Ws1,...,sk is finite. Thus, we have the
following diagram, where each arrow u→ v means that u is a divisor of v:

w0(s1) //

��

w0(s1, s2) //

��

(· · · ) // w0(s1, . . . , sn−1) //

��

w0(s1, . . . , sn)

��

u1 // u1u2 // (· · · ) // u1 · · ·un−1 // u1 · · ·un

If every vertical arrow is an equality, we say that (u1, . . . , un) is of type I. Since each uk is differ-
ent from 1, this implies no horizontal arrow is an equality, so that s1 > · · · > sn holds. Moreover,
we have u1 = s1 and, by uniqueness of the complement, we get that each uk+1 is the complement
of w0(s1, . . . , sk) in w0(s1, . . . , sk+1). Thus, the family (u1, . . . , un) is uniquely determined by the
elements s1, . . . , sn of S such that s1 > · · · > sn.
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Otherwise, there exists a maximal k in {0, . . . , n− 1} such that (u1, . . . , uk) is a family of type I,
i.e., such that u1 · · ·uk = w0(s1, . . . , sk). Then there are two possibilities, depending if the equality
w0(s1, . . . , sk) = w0(s1, . . . , sk+1) holds or not, which is equivalent to the equality sk = sk+1 since
s1 > · · · > sk ≥ sk+1. If sk = sk+1, we say that (u1, . . . , un) is of type II. Otherwise, we have
uk+1

.
= vw, with v and w in W \ {1}, such that (u1, . . . , uk, v) is of type I: we say that (u1, . . . , un) is

of type III.
Finally, we define a mapping

Φ(u1, . . . , un) =
(
l(u1 · · ·un), du1 , l(u1), du1u2 , l(u1u2), . . . , du1···un−1

, l(u1 · · ·un−1)
)

into N× (S×N)n−1, equipped with the well-founded lexicographic order generated by the natural order
on N and the fixed order on S. We use the mapping Φ and the lexicographic order to compare families
(u1, . . . , un) of elements of W \ {1} such that l(u1 · · ·un) = l(u1) + · · ·+ l(un).

6.2.2. The classification. Each 1-cellu, each 2-cellαu,v and each 3-cellAu,v,w of Del+(W) is classified
according to the type of the family of elements that indexes it. For the 1-cells of Del+(W), we get:

− Type I: s in S,

− Type III: su with s = dsu.

For the 2-cells of Del+(W), we get:

− Type I: αs,u with s > dsu and su = w0(s, dsu),

− Type II: αs,u with s = dsu,

− Type III:

{
(a) αsu,v with s = dsu,
(b) αs,uv with s > dsu = dsuv and su = w0(s, dsu).

For the 3-cells of Del+(W), we get:

− Type I: As,u,v with s > dsu > dsuv and suv = w0(s, dsu, dsuv),

− Type II:

{
(a) As,u,v with s = dsu,
(b) As,u,v with s > dsu = dsuv and su = w0(s, dsu),

− Type III:


(a) Asu,v,w with s = dsu,
(b) As,uv,w with s > dsu = dsuv and su = w0(s, dsu),
(c) As,u,vw with s > dsu > dsuv = dsuvw and suv = w0(s, dsu, dsuv).

We also consider the following type of 3-sphereωu,v,w,x ofΩ(W):

− Type II:


(a) ωs,u,v,w with s = dsu,
(b) ωs,u,v,w with s > dsu = dsuv and su = w0(s, dsu),
(c) ωs,u,v,w with s > dsu > dsuv = dsuvw and suv = w0(s, dsu, dsuv).

We observe that there exist bijections between the 1-cells of type III and the 2-cells of type II, between
the 2-cells of type III and the 3-cells of type II, and between the 3-cells of type III and the 3-spheres of
type II. In what follows, we compare the cells of Del+(W) according to the well-founded order defined
on their indices.
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6. Artin’s coherent presentation

6.3. Homotopical reduction of Del+(W)

Using the classification of the cells of Del+(W), we compute the chain of Tietze transformations

Del+(W)>
π3
// // R3(Del+(W))>

π2
// // R2R3(Del+(W))>

π1
// // R1R2R3(Del+(W))>

and we prove that π3 coherently eliminates the 3-cells of type III and the corresponding 3-spheres of
type II, that π2 coherently eliminates the 2-cells of type III and the corresponding 3-cells of type II and,
finally, that π1 eliminates the 1-cells of type III and the corresponding 2-cells of type II. We begin with
homotopical 3-reduction, proving that the homotopy basis of Theorem 5.1.4 can be further reduced.

6.3.1. Homotopical 3-reduction. For each 3-sphereωs,u,v,w of type II

su|v|w

αsu,v|w
"6

As,u,v|w

suv|w

αsuv,w

� 
As,uv,ws|u|v|w

αs,u|v|w
0D

s|αu,v|w %9

s|u|αv,w �/

s|uv|w

αs,uv|w

5I

s|αuv,w

�)
s|Au,v,w

suvw

s|u|vw

s|αu,vw

(< s|uvw

αs,uvw

=Q �?

su|v|w

αsu,v|w
"6

su|αv,w

�)
=

suv|w

αsuv,w

� 
Asu,v,w

s|u|v|w

αs,u|v|w
0D

s|u|αv,w �/

su|vw αsu,vw %9

As,u,vw

suvw

s|u|vw

αs,u|vw

5I

s|αu,vw

(< s|uvw

αs,uvw

=Q

we consider the 3-sphere ω ′s,u,v,w obtained from ωs,u,v,w by composition with 2-cells and 3-cells of
Del+(W)>, so thatω ′s,u,v,w has the following shape, depending on the subcase of type II:

(a) ω ′s,u,v,w : Asu,v,w �? Asu,v,w,

(b) ω ′s,u,v,w : As,uv,w �? As,uv,w,

(c) ω ′s,u,v,w : As,u,vw �? As,u,vw.

By construction, the homotopical 3-reduction of Del+(W) yields the same result if we replace the
3-spheresωs,u,v,w of type II by the 3-spheresω ′s,u,v,w.

Let us prove that each Au,v,w of type III is strictly greater than every 3-cell of Del+(W) that appears
inAu,v,w. We observe thatAsu,v,w,As,uv,w andAs,u,vw are always strictly greater thanAs,u,v andAu,v,w
since l(suvw) > l(suv) and l(suvw) > l(uvw). Then, we proceed by case analysis:

(a) Asu,v,w > As,uv,w and Asu,v,w > As,u,vw since s = dsu and l(su) > l(s).

(b) As,uv,w > Asu,v,w since s > dsu and As,uv,w > As,u,vw since dsuv = dsu and l(suv) > l(su).

(c) As,u,vw > Asu,v,w since s > dsu and As,u,vw > As,uv,w since dsu > dsuv.

As a consequence, we can define a 3-functor

Del+(W)>
π3
// // Del+(W)>
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by induction on the well-founded order on 3-cells of Del+(W) by

π3(Au,v,w) =

{
π3(Au,v,w) if Au,v,w is of type III,
Au,v,w otherwise.

For each 3-sphereω ′s,u,v,w, we define the following 3-sphere of Del+(W)>:

ω ′′s,u,v,w : π3(s(ω
′
s,u,v,w)) �? t(ω ′s,u,v,w).

By construction, the homotopical 3-reduction gives the same result if we replace the 3-spheres ω ′s,u,v,w
by the 3-spheresω ′′s,u,v,w.

Each 3-sphere ω ′′s,u,v,w generates a Tietze transformation that coherently eliminates its target 3-cell
of type III. Moreover, this Tietze transformation leaves the boundary of every other 3-sphere of typeω ′′

unchanged. Since there is exactly one 3-sphere for every 3-cell of type III, the homotopical 3-reduction
procedure coherently eliminates every 3-cell of type III from Del+(W).

At the end, by definition of π3, we have R3(Del+(W)) = π3(Del+(W) and the Tietze transformation
generated by homotopical 3-reduction is the corresponding factorisation of π3:

Del+(W)>
π3
// // R3(Del+(W))>.

6.3.2. Homotopical 2-reduction. We proceed in a similar way to homotopical 3-reduction. Firstly, we
replace by a Tietze transformation every 3-cell As,u,v of type II

su|v
αsu,v

�'
As,u,v��

s|u|v

αs,u|v +?

s|αu,v �3

suv

s|uv
αs,uv

7K

with the following 3-cell A ′s,u,v, depending on the subcase:

(a)
su|v

αsu,v

 4

α−
s,u|v

�3

suv

s|u|v
s|αu,v

%9 s|uv
αs,uv

7K
A ′s,u,v�� (b)

s|uv

αs,uv

 4

s|α−
u,v

�3

suv

s|u|v
αs,u|v

%9 su|v
αsu,v

7K
A ′s,u,v��

For αu,v of type III, we denote by αu,v the target of the corresponding 3-cell A ′ of type II. Then, we
define by induction a 3-functor

R3(Del+(W))>
π2
// // R3(Del+(W))>

by

π2(αu,v) =

{
π2(αu,v) if αu,v is of type III,
αu,v otherwise.
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6. Artin’s coherent presentation

To ensure that π2 is well-defined, we check that each αu,v of type III is strictly greater than every 2-cell
that appears in αu,v. We observe that αsu,v and αs,uv are always strictly greater than αs,u and αu,v since
l(suv) > l(su) and l(suv) > l(uv). Then, we proceed by case analysis:

(a) αsu,v > αs,uv since s = dsu and l(su) > l(s).

(b) αs,uv > αsu,v since s > dsu.

We conclude the proof with the same arguments as for homotopical 3-reduction. We get that the coherent
presentation R2R3(Del+(W)) is π2(Del+(W)), obtained from R3(Del+(W)) by coherent elimination of
the 2-cells of type III and the 3-cells of type II. We also get that π2 factors through a Tietze transformation

R3(Del+(W))>
π2
// // R2R3(Del+(W))>.

6.3.3. Homotopical 1-reduction. Finally, the homotopical 1-reduction procedure coherently eliminates
each 2-cell of type II

s|u
αs,u%9 su

with the 1-cell su of type III, inducing the Tietze transformation

R2R3(Del+(W))>
π1
// // R1R2R3(Del+(W))>

where R1R2R3(Del+(W)) only contains the cells of Del+(W) of type I. The 3-functor π1 is defined
on 1-cells by induction on their length by π1(s) = s if s ∈ S and by π1(su) = s|π1(u) if s = dsu.
Moreover, it sends the 2-cells of type II to identities and it projects the boundaries of the 2-cells and
3-cells of type I accordingly.

6.3.4. The resulting coherent presentation. After homotopical reduction, we get a coherent presen-
tation of B+(W) that contains exactly the cells of type I of Del+(W), with boundary modified by the
3-functor π = π1π2π3. There remains to compute the values of π to obtain Theorem 2.4.5 for Artin
monoids.

The 1-cells of type I of Del+(W) are the elements of S. A 1-cell u of Del+(W) is mapped through π
to the element

π(u) = s1 · · · sn
of S∗, such that u .

= s1 · · · sn and si = dsi···sn .
The 2-cells of type I of Del+(W) are the αs,u such that s > dsu and su = w0(s, dsu). Hence, there

is one such 2-cell for every t > s in S such that W{s,t} is finite, i.e., such that mst is finite, and its image
through π is precisely

γst : 〈ts〉mst ⇒ 〈st〉mst .

The image of a 2-cell αu,v of Del+(W) through π is given by induction as follows:

π(αs,u) = γrs if u = 〈rs〉mrs−1 for r < s
π(αs,u) = 1su if s = dsu
π(αs,u) = sπ(α−

v,w) ?1 γrsw ?1 π(αsv,w) if u .
= vw and v = 〈rs〉mrs−1 for r = dsu < s

π(αsu,v) = sπ(αu,v) ?1 π(αs,uv) if s = dsu.
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6.3. Homotopical reduction of Del+(W)

Finally, the 3-cells of type I of Del+(W) are the As,u,v such that s > dsu > dsuv, su = w0(s, dsu)
and suv = w0(s, dsu, dsuv). Hence, there is exactly one such 3-cell for every t > s > r in S such that
the subgroup W{r,s,t} is finite.

There remains to compute the image of each of those 3-cells through π, depending on the type of
the finite Coxeter group W{r,s,t}: A3, B3, H3, A1 × A1 × A1 and I2(p) × A1. The main technical
difficulty is to manipulate elements of W and, in particular, the different reduced expressions of the
longest element w0(r, s, t). For that, we have used the PyCox package of Geck [18]. Let us detail some
of the computations.

For t > s > r in S such that W{r,s,t} is of type A1 × A1 × A1, the corresponding 3-cell of type I of
Del+(W) is

st|r αst,r

�&
At,s,r��

t|s|r

αt,s|r +?

t|αs,r �3

rst

t|rs
αt,rs

8L

The image of At,s,r through π is given by the inductive application of π to the 2-cells of its boundary.
For the source of π(At,s,r), we get π(αt,s|r) = γstr and

π(αst,r) = sπ(αt,r) ?1 π(αs,rt)

= sγr,t ?1 γs,rt ?1 π(αrs,t)

= sγr,t ?1 γs,rt.

For the target of π(At,s,r), we get π(t|αs,r) = tγrs and

π(αt,rs) = γrts ?1 π(αrt,s)

= γrts ?1 rγst ?1 π(αr,st)

= γrts ?1 rγst.

Thus, the image of At,s,r through π is

str
sγrt %9 srt γrst

�&
tsr

γstr *>

tγrs  4

rst

trs
γrts

%9 rts rγst

9MZr,s,t��

In the case where W{r,s,t} is of type A3, the corresponding 3-cell of type I of Del+(W) is

sts|rst
αsts,rst

�+
At,st,rst��

t|st|rst

αt,st|rst *>

t|αst,rst  4

rst

t|rsrts
αt,rsrts

4H
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6. Artin’s coherent presentation

To get π(At,st,rst), we compute the image of its source through π. We get π(αt,st|rst) = γstrst and

π(αsts,rst) = stπ(αs,rst) ?1 sπ(αt,rsrt) ?1 π(αs,rstsr).

Then, we have stπ(αs,rst) = stγrst and π(αs,rstsr) = γrstsr, together with

sπ(αt,rsrt) = sγrtsrt ?1 srπ(αt,srt) ?1 sπ(αr,stsr).

Finally, we get sπ(αr,stsr) = 1srstsr and

srπ(αt,srt) = srtπ(αst,r)
− ?1 srγstr ?1 srπ(αsts,r) = srtsγ−rt ?1 srγstr.

A similar sequence of computations for the target of At,st,rst gives that π(At,st,rst) is precisely the 3-cell

strsrt
sγrtsγ

−
rt%9 srtstr

srγstr %9

Zrst
��

srstsr γrstsr

�&
stsrst

stγrst
(<

rsrtsr

tstrst

γstrst

EY

tsγrtst
��

rstrsr

rsγrtsr

EY

tsrtst

tsrγst "6

rstsrs

rstγrs

EY

tsrsts
tγrsts

%9 trsrts
γrtsγ

−
rts
%9 rtstrs

rγstrs

8L

Similar computations for the other types I2(p)×A1, B3 and H3 gives that the homotopical completion-
reduction of Del(W) is Artin’s coherent presentation Art+(W). This ends the proof of Theorem 2.4.5
for Artin monoids: Art+(W) is, indeed, a coherent presentation of B+(W).

6.4. Artin’s coherent presentation of Artin groups

We conclude the proof of Theorem 2.4.5 for Artin groups thanks to the following result proved by Paris
in [32]: every Artin monoid B+(W) embeds in the Artin group B(W). Thus, Theorem 6.4.2 applies to
Artin monoids to transfer their coherent presentation to Artin groups.

6.4.1. Notations. If Σ is a 2-polygraph, the groupoid G presented by Σ admits, as a category, the pre-
sentation Gpd(Σ), obtained from Σ by adjunction, for every 1-cell s : x → y of Σ, of the following
cells:

− a 1-cell š : y→ x,

− two 2-cells λs : šs⇒ 1y and ρs : sš⇒ 1x.
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6.4. Artin’s coherent presentation of Artin groups

If Σ is a (3, 1)-polygraph, we denote by Gpd+(Σ) the extended presentation of the groupoid G presented
by Σ that is obtained from Σ by adjunction, for every 1-cell s : x→ y of Σ, of the following cells:

− the same 1-cell š and 2-cells λs and ρs as for Gpd(Σ),

− two 3-cells

šsš

λsš

�)

šρs

6JIs��
š sšs

ρss

�(

sλs

6JJs��
s

By definition of a coherent presentation of a groupoid, we have that Σ is a coherent presentation of the
groupoid G if Gpd(Σ) is a coherent presentation of G, seen as a category.

6.4.2. Theorem. Let Σ be a (3, 1)-polygraph, let C be the category presented by Σ and let G be the
groupoid presented by Σ. If C embeds in G and if Σ is a coherent presentation of C, then Σ is a coherent
presentation of G.

The proof of Theorem 6.4.2 is conducted throughout the rest of the section, by homotopical completion-
reduction of a specific presentation of G, seen as a category. Before this, we give a counterexample that
shows that Theorem 6.4.2 does not hold if M does not embeds in G.

6.4.3. A counterexample. Let us consider the monoid M presented by

Σ =
(
a, b, c, d ; α : ac⇒ ad, β : bc⇒ bd

)
.

This 2-polygraph is convergent with no critical branching, so that (Σ, ∅) is a coherent presentation of M.
But M does not embed in the group G presented by Σ, since c = d holds in G. Moreover, the two
different ways to prove this equality in G generate the following 3-sphere γ in Gpd(Σ)>:

ǎac
ǎα %9 ǎad λad

�*
c

λ−a c (<

λ−b c
!5

d

b̌bc
b̌β
%9 b̌bd λbd

Ui

This 3-sphere cannot be the boundary of a composite of 3-cells of types I or J. Indeed, neither of those
3-cells contain the 2-cells α or β. As a consequence, all their composites have the same number of α
and β in their source and target, which is not the case for γ. Thus, the group G does not admit (Σ, ∅) as
a coherent presentation.

6.4.4. The presentation G̃pd(Σ). In the following, we use the same notations as in Theorem 6.4.2. We
denote by S the set of 1-cells of Σ and we consider the canonical presentation Can(C), with the unit cells
ιx : 1̂x ⇒ 1x going in the terminating direction. We consider the alternative presentation G̃pd(Σ) of G,
obtained from Can(C) by adjunction of the following cells:
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6. Artin’s coherent presentation

− a 1-cell š : y→ x for every s : x→ y in S,

− a 2-cell λs,u : šŝu⇒ û for every s : x→ y in S and u : y→ z in C,

− a 2-cell ρu,s : ûsš⇒ û for every u : x→ y in S and s : y→ z in S.

We observe that G̃pd(Σ) terminates by considering the length of the 1-cells as termination order.

6.4.5. Homotopical completion of G̃pd(Σ). We check that G̃pd(Σ) is confluent and we get the 3-cells
of the coherent presentation S(G̃pd(Σ)) of G. First, we have the three families of the canonical coherent
presentation Can+(C)

ûvŵ αuv,w
�+

Au,v,w
��

ûv̂ŵ

αu,vŵ )=

ûαv,w
!5

ûvw

ûv̂w αu,vw

5I 1̂û

α1,u

�+

ιû

4HLu��
û û1̂

αu,1

�+

ûι

4HRu��
û

for every possible 1-cells, with the indices of identities omitted. Then, we have the 3-cells induced by
the 2-cells of types λ and ρ

ûv̂ αu,v
�+

Bs,u,v
��

šŝuv̂

λs,uv̂ (<

šαsu,v
!5

ûv

šŝuv λs,uv

5I

ûvsš ρuv,s
�+

Cu,v,s
��

ûv̂sš

αu,vsš )=

ûρv,s
"6

ûv

ûv̂ αu,v

5I

ûtť ρu,t

�*
Ds,u,t
��

šŝutť

λs,utť )=

šρu,t "6

û

šŝu λs,u

3G

ûŝv αu,sv
�,

Eu,s,v
��

ûsšŝv

ρu,sŝv (<

ûsλs,v
"6

ûsv

ûsv̂ αus,v

3G

1̂š ιš

�'
Fs
��

šŝš

λs,1š )=

šρ1,s !5

š

š1̂ šι

8L

for every possible 1-cells, also with the indices of units omitted. Let us note that G̃pd(Σ) has no critical
branching of shape (λs,u, λs,v) with source šŝu = šŝv because, by hypothesis, the category C embeds
into the groupoid G: as a consequence, an equality su = sv in C implies u = v. For the same reason,
there are no critical branching of shape (ρu,s, ρv,s).

6.4.6. Homotopical reduction of S(G̃pd(Σ)). Among the critical triple branchings of S(G̃pd(Σ)), we
consider the following ones:

1̂ûv̂

α1,uv̂
!5

Bs,1,uv̂

ûv̂
αu,v

� 
Bs,u,všŝûv̂

λs,1ûv̂
/C

šαu,vv̂ %9

šŝαu,v �/

šŝuv̂

λs,uv̂

7K

šαsu,v

�(
šAs,u,v

ûv

šŝûv

šαs,uv

)= šŝuv
λs,uv

>R

ωB
s,u,v
�?

1̂ûv̂

α1,uv̂
!5

1̂αu,v

�'
=

ûv̂
αu,v

��
A1,u,v

šŝûv̂

λs,1ûv̂
/C

šŝαu,v �.

1̂ûv α1,uv %9

Bs,1,uv

ûv

šŝûv

λs,1ûv

7K

šαs,uv

)= šŝuv
λs,uv

>R
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6.4. Artin’s coherent presentation of Artin groups

ûvŝš

αuv,sš
!5

Au,v,sš

ûvsš

ρuv,s

� 
Cu,v,sûv̂ŝš

αu,vŝš
/C

ûαv,sš %9

ûv̂ρ1,s �/

ûv̂sš

αu,vsš

6J

ûρv,s
�'

ûCv,1,s

ûv

ûv̂1̂

ûαv,1

)= ûv̂
αu,v

>R
ωC

u,v,s
�?

ûvŝš

αuv,sš
!5

ûvρ1,s
�'

=

ûvsš

ρuv,s

� 
Cuv,1,s

ûv̂ŝš

λs,1ûv̂
0D

šŝαu,v �/

ûv1̂ αuv,1 %9

Au,v,1

ûv

ûv̂1̂

αu,v1̂

7K

ûαv,1

)= ûv̂
αu,v

?S

ût̂ť

αu,tť
!5

Bs,u,tť

ûtť
ρu,t

� 
Ds,u,tšŝut̂ť

λs,ut̂ť
.B

šαsu,tť
%9

šŝuρ1,t �/

šŝutť

λs,utť

6J

šρsu,t

�(
šCsu,1,t

û

šŝu1̂

šαsu,1

)= šŝu
λs,u

>R

ωD
s,u,t
�?

ût̂ť

αu,tť
!5

ûρ1,t
�(

=

ûtť
ρu,t

� 
Cu,1,t

šŝut̂ť

λs,ut̂ť
.B

šŝuρ1,t �/

û1̂ û1̂
%9

Bs,u,1

û

šŝu1̂

λs,u1̂

6J

šŝu

)= šŝu
λs,u

>R

ûsšŝv

ρu,sŝv
!5

Cu,1,sŝv

ûŝv
αu,sv


!
Au,1,svûŝšŝv

αu,sšŝv
.B

ûρ1,sŝv %9

ûŝλs,v �0

û1̂ŝv

αu,1ŝv

5I

ûα1,sv

�)
ûE1,s,v

ûsv

ûŝv̂

ûαs,v

)= ûŝv
αu,sv

>R
ω

E1
u,s,v
�?

ûsšŝv

ρu,sŝv
!5

ûsλs,v
�)

=

ûŝv
αu,sv


!
Eu,s,v

ûŝšŝv

αu,sšŝv
/C

ûŝλs,v �1

ûsv̂ αus,v %9

Au,s,v

ûsv

ûŝv̂

αu,sv̂

5I

ûαs,v

)= ûŝv
αu,sv

=Q

1̂ŝû

α1,sû
 4

E1,s,1û

ŝû
αs,u

��
As,1,uŝšŝû

ρ1,sŝû
/C

ŝλs,1û %9

ŝšαs,u �.

ŝ1̂û

αs,1û

7K

ŝα1,u

�'
ŝBs,1,u

ŝu

ŝšŝu

ŝBs,1,u

*> ŝû
αs,u

?S

ω
E2
s,u
�?

1̂ŝû

α1,sû
 4

1̂αs,u

�'
=

ŝû
αs,u

��
A1,s,u

ŝšŝû

ρ1,sŝû
/C

ŝšαs,u �.

1̂ŝu α1,su %9

E1,s,u

ŝu

ŝšŝu

ρ1,sŝu

7K

ŝλs,u

*> ŝû
αs,u

?S

Those 3-spheres generate a Tietze transformation of S(G̃pd(Σ)) that coherently eliminates every Bs,u,v
for u 6= 1, every Cu,v,s for v 6= 1, every Ds,u,t, and every Eu,s,v for u 6= 1 or v 6= 1. Thus, we get a
homotopy basis of G̃pd(Σ) made of the 3-cells of Can+(C), plus the following 3-cells:

1̂û α1,u

�(
Bs,1,u
��

šŝv̂

λs,1û )=

šαs,u
!5

û

šŝu λs,u

7K

ûsš ρu,s
�(

Cu,1,s
��

ûŝš

αu,sš )=

ûρ1,s
!5

û

û1̂ αu,1

7K
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1̂ŝ α1,s

�'
E1,s,1
��

ŝšŝ

ρ1,sŝ )=

ŝλs,1
!5

ŝ

ŝ1̂ αs,1

8L

1̂š ιš

�'
Fs
��

šŝš

λs,1š )=

šρ1,s !5

š

š1̂ šι

8L

The 3-cells Bs,1,u and Cu,1,s generate a Tietze transformation that coherently eliminates them with the
2-cells λs,u and ρu,s for u 6= 1. Then, we consider the Tietze transformation from Can+(C) and to the
reduced canonical coherent presentation Can ′+(C) of C. This yields a coherent presentation of G, seen
as a category, made of Can ′+(C) extended with the 3-cells

ŝšŝ

ρ1,sŝ

�)

ŝλs,1

6JE1,s,1��
š šŝš

λs,1š

�)

šρ1,s

6JFs��
š

Finally, we consider a Tietze transformation π from the Can ′+(C) to Σ and, then, we identify λs,1
to λs, ρ1,s to ρs, E1,s,1 to Js and Fs to Is. We obtain exactly Gpd+(Σ), thus proving that it forms a
coherent presentation of G, seen as a category. This concludes the proof of Theorem 6.4.2 and, as a
consequence, of Theorem 2.4.5.
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