N

N

Coherent presentations of Artin groups
Stéphane Gaussent, Yves Guiraud, Philippe Malbos

» To cite this version:

Stéphane Gaussent, Yves Guiraud, Philippe Malbos. Coherent presentations of Artin groups. 2013.
hal-00682233v2

HAL Id: hal-00682233
https://hal.science /hal-00682233v2

Preprint submitted on 14 Mar 2013 (v2), last revised 22 May 2015 (v4)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00682233v2
https://hal.archives-ouvertes.fr

COHERENT PRESENTATIONS OF ARTIN GROUPS

STEPHANE GAUSSENT YVES GUIRAUD PHILIPPE MALBOS

Abstract — A coherent presentation of a monoid is an extension of a presentation of this monoid by a
homotopy basis, making a natural cellular complex associated to the presentation contractible. In the
case of Artin monoids, we show that the usual presentation defined by Artin, using braid relations,
can be completed in a coherent presentation that we give in an explicit way. To be able to handle
presentations that are not confluent, we develop a homotopical completion-reduction procedure that
combines and extends methods of rewriting systems introduced by Squier and by Knuth and Bendix.
Since any Artin monoid embeds in its Artin group, the coherent presentation of the monoid gives a
coherent presentation of the group. In addition, the category of actions of a monoid on categories is
equivalent to the category of 2-functors from a coherent presentation of the monoid to Cat. In this
vein, our procedure gives also a new proof of a theorem of Deligne concerning the action of an Artin
monoid on a category in terms of a presentation based on the Garside structure.

M.S.C. 2000 - 20F36, 18D05, 68Q42.
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1. Introduction

1. INTRODUCTION

In [35]], Squier introduces the notion of homotopy basis for a presentation X by a set X of generators and
a set I, of relations of a monoid M. For this, Squier builds a combinatorial cellular object £ with one
O-cell, whose 1-cells are the elements of the free monoid X7 over X, whose 2-cells are generated by the
relations of X, and whose 3-cells correspond to independent applications of relations. More precisely,
there is a 2-cell between every pair of words wuw’ and wvw’ such that u = v is a relation of X, and
one 3-cell for each of the following situations, where u; = vy and u; = v; are relations in Xp:

wviwuw”

u; =wv Uy =vy

\
/

wuiw/uw” wviw'vow”

’
\

u 2 up =W

wuww'vaw”

A homotopy basis of L is a set Z3 of additional 3-cells that makes the complex L' contractible. In
this article, such a triple (X, X, %3) is called a coherent presentation of M. The aim of this work
is to construct explicit coherent presentations of monoids and groups, with a particular focus on Artin
monoids and Artin groups.

Coherent presentations of Artin monoids and groups. In [37, Proposition 4], Tits gives an implicit
coherent presentation of Artin monoids and Artin groups. Given a Coxeter group W, with generating
set S, the Artin monoid (resp. Artin group) associated to W is the monoid BT (W) (resp. the group B(W))
generated by S and subject to the braid relations

sts--- =1tst---

This presentation is called Artin’s presentation of B (W) and B(W) and we denote it by Art(W). Tits
proves that Bt (W) and B(W) admit a coherent presentation built from Art(W) and an implicit homotopy
basis, formed by all the possible 3-cells over every subcomplex Art(W1)', for Wy a finite parabolic
subgroup of rank 3 of W (see also [33], Theorem 2.17]).

In [13} 1.3.2], Deligne makes explicit this homotopy basis in the special case of the braid monoid BI:
it contains exactly one 3-cell corresponding to the relations that link all the reduced expressions of the
fundamental element of BI. Our main theorem generalises this explicit coherent presentation, called
Artin’s coherent presentation, for every Artin monoid and Artin group.

Theorem For every Coxeter group W, the Artin monoid B (W) and the Artin
group B(W) admit the coherent presentation, denoted by Art, (W), made of Artin’s presen-
tation and one 3-cell Z, s for every pairwise distinct generators v, s and t in S such that
the parabolic subgroup W, ¢, is finite. Moreover, the shape of the 3-cell Z; s+ is entirely
determined by the Coxeter type of Wi s 4.
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Coherent presentations and actions on categories. In [[13] 1.3.2], Deligne uses a formulation in terms
of actions of monoids on categories, instead of coherent presentations: an action T of a monoid M on a
category C is a family of endofunctors T (u) of C, one for every element u of M, such that T is compatible
with the product of M. This compatibility is expressed by natural isomorphisms

Tuv
T(WT(V) = T(w)

that, in turn, satisfy coherence conditions with respect to the associativity of the product of M:

- % e Tuv "

T(uvw) (1)

T(V)T(w)
X Tu,vw

This definition of action has an interpretation in terms of coherent presentations. Indeed, every monoid M
admits a canonical presentation Can(M) whose generators are the elements of M and whose relations
are given by the multiplication table of the monoid M. This presentation Can(M) can be extended
into a coherent presentation, denoted by Can, (M), by adjunction of the 3-cells corresponding to the
associativity of the product: the images of these 3-cells under T are exactly the coherence conditions (T).

In fact, one gets the same definition of action if one replaces the coherent presentation Can (M) by
any other coherent presentation X of M. More precisely, up to equivalence, an action of M on C is spec-
ified by an endofunctor T(x) of C for every generator x of £; and a natural isomorphism between T (1)
and T(v) for every relation u = v of X,, such that the elements of £3 are mapped to commutative
diagrams by T.

Theorem If L is a coherent presentation of a monoid M, then the category Act(M)
of actions of M on categories is equivalent to the category of 2-functors from £ to Cat that
send the elements of the homotopy basis to commutative diagrams.

n [13| Theorem 1.5], Deligne already observes that this equivalence holds for a specific presentation of
spherical Artin monoids. This presentation Del(W) of BT (W), based on the Garside structure of B (W),
has the elements of W \ {1} as generators and the

uly = uv if L(uv) = L(u) + 1(v)

as relations. The notation -|- stands for the product in the free monoid over W \ {1} and l(u) is the
length of 1 in W. In Deligne’s theorem on actions of B* (W), the coherence conditions correspond to
the following 3-cells of Del(W):

uviw

/

ulv| AWAYY if L{luvw) = 1(u) + 1(v) + 1(w).

Au,v,w

/N
\

uyw
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We prove that the 3-cells A, extend Del(W) into a coherent presentation, denoted by Del, (W), so
that Deligne’s result also holds for non-spherical Artin monoids.

Theorem For every Coxeter group W, the Artin monoid BT (W) admits Del . (W) as
a coherent presentation.

Rewriting methods for coherence. As initiated by Squier in [35]], rewriting theory provides methods to
compute homotopy bases for specific presentations. Rewriting is a combinatorial theory of equalities in
algebraic structures that consists in replacing equalities u = v by oriented relations u = v to define de-
cision procedures. In particular, a presentation X of a monoid M is convergent if it satisfies the following
two conditions:

— termination, i.e., there is no infinite reduction u; = w, => uz = (--- ),

— confluence, i.e., two different reductions uw = v and u = w can always be joined by some v = u’
and w = u/.

Squier’s completion is a procedure that extends a convergent presentation X of a monoid M into a coher-
ent presentation $(X) of M. It is based on the study of the critical branchings of L: those are the minimal
overlaps of the left members of the relations. The coherent presentation S(X) is obtained from X by ad-

junction of all the 3-cells
u /

= u

where the plain part is a critical branching and the dotted part is obtained by the confluence hypothesis.
For example, the 3-cells A, of Deligne’s coherent presentation Del (W) are obtained by this
construction if the relations of Del(W) are directed as in ul[v = uv. However, in general, Squier’s
completion does not apply directly to the presentations Art(W) or Del(W) because they lack conflu-
ence. To apply the rewriting methods to the case of Artin monoids, we extend Squier’s completion to
non-confluent presentations, yielding a homotopical completion-reduction procedure. The homotopical
completion-reduction R(X) of a terminating presentation L is obtained as follows:

1. Homotopical completion combines Squier’s completion and Knuth-Bendix completion procedure,
a method from rewriting theory that adds sufficiently many relations to a terminating presentation
to achieve confluence.

2. Homotopical reduction eliminates some unnecessary generators, relations and cells of the homo-
topy basis. In particular, the critical triple branchings are used as redundancy relations between
the 3-cells.

Theorem If X is a terminating presentation of a monoid M, then the homotopical
completion-reduction R(X) of L is a coherent presentation of M.
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For every Coxeter group W, the homotopical completion-reduction of Deligne’s presentation Del(W)
of B"(W) is Artin’s coherent presentation Art, (W). This proves Theorem for Artin monoids.
Moreover, the homotopical completion-reduction process also yields Deligne’s coherent presentation
Del, (W), thus proving Theorem Finally, the homotopical completion-reduction procedure is also
used to adapt Art, (W) into a coherent presentation of the Artin group B(W), yielding Theorem m
for Artin groups.

As a final remark, in [21, Theorem 4.5.3], Squier’s completion is extended in higher dimensions to
produce polygraphic resolutions of monoids, of which coherent presentations form the first three dimen-
sions. From that point of view, the present work is a first step towards the construction of polygraphic
resolutions Del, (W) and Art, (W) of Artin monoids and Artin groups, extending the coherent presenta-
tions Del (W) and Art, (W). Moreover, the abelian resolutions obtained from Del, (W) and Art, (W)
by [21, Theorem 5.4.3] should be related to the abelian resolutions introduced in [[10]].

Acknowledgements. The authors wish to thank Kenji Iohara, Frangois Métayer and Timothy Porter for
fruitful exchanges on this work.

2. COHERENT PRESENTATIONS OF CATEGORIES AND GROUPOIDS

A coherent presentation of a monoid or, more generally, of a category is a data made of generators,
generating relations and generating coherence conditions. This is formalised in terms of polygraphs,
which are presentations of higher-dimensional categories introduced by Burroni in [7] and by Street
in [36], under the name of computad. We refer the reader to [30] for more details on higher categories. In
this section, we we recall rewriting methods, initiated by Squier [35]], to compute coherent presentations
and we formulate the main theorem about the coherent presentations of Artin monoids and Artin groups.

2.1. Higher-dimensional categories

If € is an n-category (we always consider strict, globular n-categories), we denote by Cy the set (and the
k-category) of k-cells of C. If f is a k-cell of C, then s;(f) and t;(f) respectively denote the i-source and
i-target of f; we drop the suffix iif i = k — 1. The source and target maps satisfy the globular relations:

810 8it1 = $i oty and  tiosiy = tiotiq.
We respectively denote by f : u — v, f:u=v, f:u=v and f:u = v al-cell, a2-cell, a 3-cell
and a 4-cell f with source u and target v. If f and g are i-composable k-cells, that is if t;(f) = si(g), we
denote by f %; g their i-composite; we simply write fg if i = 0. The compositions satisfy the exchange
relations given, for every 1 = j and every possible cells f, g, h and k, by:

(fxig) x5 (hxi k) = (fx5h) % (g* k).

If f is a k-cell, we denote by 1y its identity (k 4+ 1)-cell. If 1¢ is composed with cells of dimension k + 1
or higher, we simply denote it by f.
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2.1.1. (n,p)-categories. In an n-category C, a k-cell f, with source x and target y, is invertible if there
exists a (necessarily unique) k-cell f~ in €, with source y and target x in C, called the inverse of f, such
that

fxe1 ™ = 1y and foxe =1y

An (n,p)-category is an n-category whose k-cells are invertible for every k > p. In particular, an
(n, n)-category is an ordinary n-category and an (n, 0)-category is an n-groupoid.

2.1.2. Spheres. Let C be an n-category. A O-sphere of C is a pair y = (f, g) of O-cells of € and, for
1 < k < n, a k-sphere of C is a pair y = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g); we call f the source of y and g its target and we write s(y) = fand t(y) = g. If fisa
k-cell of €, for 1 < k < n, the boundary of f is the (k — 1)-sphere (s(f), t(f)).

2.1.3. Cellular extensions. Let C be an n-category. A cellular extension of C is a set I" equipped with a
map from T to the set of n-spheres of €, whose value on 7y is denoted by (s(y), t(y)). By considering all
the formal compositions of elements of I', seen as (n+ 1)-cells with source and target in C, one builds the
free (n+1)-category generated by " over C, denoted by C[I']. The quotient of C by T', denoted by C/T, is
the n-category one gets from € by identification of the n-cells s(y) and t(vy), for every n-sphere y of T".
If Cis an (n, 1)-category and I" is a cellular extension of C, then the free (n + 1, 1)-category generated
by T over C is denoted by C(T") and defined as follows:

e(r) = €[, I/ Inv(T)

where I" contains the same (n + 1)-cells as T, with source and target reversed, and Inv(TI") is the cellular
extension made of two (n + 2)-cells

y Ay O
Yoy — Iy and YrnY — I

for each (n + 1)-cell y from fto gin T.

2.1.4. Homotopy bases. Let C be an n-category. A homotopy basis of C is a cellular extension I" of €
such that, for every n-sphere y of C, there exists an (n+ 1)-cell with boundary vy in C(T") or, equivalently,
if the quotient n-category C/T" has n-spheres of shape (f, f) only. For example, the n-spheres of € form
a homotopy basis of C.

2.2. Coherent presentations of categories and groupoids

2.2.1. Polygraphs. A 1-polygraph is a pair L = (X9, 1) made of a set £y and a cellular extension X,
of Ly. The free category L* over X is Z* = Xy[X1]. A 2-polygraph is a pair L = (£, X;) where X is
a 1-polygraph and X, is a cellular extension of the free category 27. The free 2-category L* over X, the
free (2, 1)-category £ " over L and the category X presented by I are respectively defined by

I = 53[5, T =153(%,) and I = I}/%,.

A (3,1)-polygraph is a pair L = (Z;, X3) made of a 2-polygraph X, and a cellular extension X3 of the
free (2,1)-category £, . The free (3,1)-category £ over L and the (2, 1)-category presented by X are
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defined by B
yT =35)(%3) and I =Z)/%s.

The category presented by a (3, 1)-polygraph L is the one presented by its underlying 2-polygraph,
namely ¥, = X}/Z,. If L is a polygraph, we identify its underlying k-polygraph Ly and the set of
k-cells of the corresponding cellular extension. We say that X is finite if it has finitely many cells in
every dimension. A (3, 1)-polygraph £ can be summarised by a diagram representing the cells and the
source and target maps of the free (3, 1)-category £ it generates:

So S1 S2
DA ¢ bl I,
to t t

2.2.2. Coherent presentations of categories. Let C be a category. A presentation of C is a 2-poly-
graph £ whose presented category L is isomorphic to C. We usually commit the abuse to identify C
and £ and we denote by U the image of a 1-cell u of £* through the canonical projection onto C. An
extended presentation of C is a (3, 1)-polygraph ¥ whose presented category is isomorphic to C. A
coherent presentation of C is an extended presentation X of C such that the cellular extension X3 of ZZT
is a homotopy basis. Example [2.3.8] proves that every category admits a coherent presentation.

2.2.3. Coherent presentations of groupoids. If G is a groupoid, a presentation of G is a 2-polygraph

Sof— (Z] I i])* pE— (Zz HIHV(Z1))T

that is a presentation of G, seen as a category. We denote such a presentation of G by (Zo, X1,%Z7). A
coherent presentation of G is a (3, 1)-polygraph

ot (L5 & (L TInv(Zy)) T £ (531 Inv, (1))

that is a coherent presentation of G, seen as a category, where Inv_ (X) contains, for every 1-cell x of X,
the following two 3-cells:

v

AcX PxX
. /\ ) ] //‘\1
XXX MIX X XXX MJX X
v v
XPx XAx

We denote by (Z,, X3) such a coherent presentation of G. The justification of this definition is that, if
one denotes by

(Z] Hi]) l» (Z] Hi])/lﬂV(Z])

the canonical projection, then 71(X3) forms a homotopy basis of the 2-groupoid

<(Z] I ):)/Inv():] )) (ﬂ(Zz)).
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2.3. Squier’s completion for convergent presentations

We recall notions of rewriting theory for 2-polygraphs from [20} 4.1] and [21}, 4.1], together with Squier’s
completion to compute coherent presentations from convergent presentations. We detail this already-
known material because it is central in the methods we develop in Section 4] Let us fix a 2-polygraph X.

2.3.1. Rewriting and normal forms. A rewriting step of L is a 2-cell of the free 2-category X* with
shape

u
w / W/ /
y——x  Jo xX'———y
\/\
A%

where @ : u = vis a 2-cell of £ and w and w' are 1-cells of X*. A rewriting sequence of X is a finite or
infinite sequence

f._
SR IR - SO 1.5 NSPRLL SN

of rewriting steps. If ¥ has a non-empty rewriting sequence from u to v, we say that u rewrites into v.
Let us note that every 2-cell f of £* decomposes into a finite rewriting sequence of X, this decomposition
being unique up to exchange relations. A T-cell u of X* is a normal form if X has no rewriting step with
source W. A normal form of wis a T-cell v that is a normal form and such that u rewrites into v.

2.3.2. Termination. We say that X ferminates if it has no infinite rewriting sequence. In that case, every
1-cell has at least one normal form and Noetherian induction allows definitions and proofs of properties
of 1-cells by induction on the maximum size of the 2-cells leading to normal forms. If X is a 2-polygraph,
a termination order on X is an order relation < on parallel 1-cells of Z* such that the following properties
are satisfied:

— the composition of 1-cells of Z* is strictly monotone in both arguments,
— every decreasing family (un )nen of parallel 1-cells of Z* is stationary,
— for every 2-cell « of Z, the strict inequality s(c) > t() holds.

As a direct consequence of the definition, if X~ admits a termination order, then X terminates.

A useful example of termination order is the left degree-wise lexicographic order (or deglex for short)
generated by a given order on the 1-cells of Z. It is defined by the following strict inequalities, where
each x; and yj is a 1-cell of X:

X]"'Xp<y1"'yq 1fp<q

X1 Xk 1Xk e Xp < XT ot Xk1Yk -t Yp if xi < yx.

The deglex order is total if, and only if, the original order on 1-cells of X is total.
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2.3.3. Branchings. A branching of £ is a pair (f, g) of 2-cells of £* with a common source, as in the

diagram
f/ v
u
g\ w

The T-cell u is the source of this branching and the pair (v, w) is its target. We do not distinguish the
branchings (f, g) and (g, f). A branching (f, g) is local if f and g are rewriting steps. Local branchings
belong to one of the three following families:

— aspherical branchings have shape

where f : U = Vv is a rewriting step of X,

— Peiffer branchings have shape
Y

S
u
S
uv
k uv’
where f:u = u’and g : v = Vv’ are rewriting steps of Z,

— overlapping branchings are the remaining local branchings.

Local branchings are compared by the order < generated by the relations
(f,9) < (ufv,ugv)

given for any local branching (f, g) and any possible 1-cells uw and v of Z*. An overlapping local branch-
ing that is minimal for the order < is called a critical branching. The terms “aspherical” and “Peiffer”
come from the corresponding notions for spherical diagrams in Cayley complexes associated to presen-
tations of groups [27]]. The term “critical” comes from rewriting theory [4, [1].

2.3.4. Confluence. A branching (f,g) : uw = (v, w) is confluent if there exist 2-cells f' : v = u’ and
g’ :w = u'in I*, as in the following diagram:

%v\f/ﬁ
u u’
g\ /

—

g
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We say that ¥ is confluent (resp. locally confluent) if all of its branchings (resp. local branchings) are
confluent. In a confluent 2-polygraph, every 1-cell has at most one normal form. A fundamental result
of rewriting theory states that local confluence is equivalent to confluence of critical branchings. Indeed,
any aspherical or Peiffer branching is confluent:

== fv/w"’&/g\
u A% u//
Nt

We note that, in the aspherical and Peiffer cases, the 2-cells ' and g’ can be chosen in such a way that
fx1 ' = g %1 g’ holds. Finally, in the case of an overlapping but not minimal local branching (f, g),
there exist factorisations f = whv and g = ukv with (h,k) : w = (x,y) a critical branching of X. If
(h, k) is confluent, then so is (f, g):

h x=_h' f uxv —uh'v
/ \ | / \ |
uwv\>

w w uw’v
k\y%

For terminating 2-polygraphs, Newman’s lemma, sometimes called the Diamond Lemma, ensures that
local confluence and confluence are equivalent properties [31, Theorem 3].

2.3.5. Convergent polygraphs. We say that X is convergent if it terminates and it is confluent. Such a £
is called a convergent presentation of Z, and of any category that is isomorphic to . In that case, every
1-cell w of £* has a unique normal form, denoted by 1, so that we have T = v in  if, and only if, T =V
holds in £*. This extends to a section £ ~— X* of the canonical projection, sending a 1-cell u of Z to
the unique normal form of its representative 1-cells in £*, still denoted by U. As a consequence, a finite
and convergent 2-polygraph L yields generators for the 1-cells of the category X it presents, together
with a decision procedure for the corresponding word problem (the purpose of the finiteness condition
is to ensure that one can effectively check that a given 1-cell is a normal form). A (3, 1)-polygraph is
convergent if its underlying 2-polygraph is.

2.3.6. Squier’s completion. Let us assume that X is convergent. A family of generating confluences
of L is a cellular extension of ' that contains exactly one 3-cell

D
\Wg

for every critical branching (f, g) of X. We note that, if X is confluent, it always admits a family of
generating confluences. However, such a family is not necessarily unique, since the 3-cell can be directed

10
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in the reverse way and, for a given branching (f, g), we can have several possible 2-cells f’ and g’ with
the required shape (see [21, 4.3.2] for a constructive version, based on normalisation strategies).

We call Squier’s completion of L the (3, 1)-polygraph denoted by S(X) and obtained from X by
adjunction of a chosen family of generating confluences of £. Squier proved the following result (which
was extended to n-polygraphs in [20, Proposition 4.3.4]). We recall the proof in details here, because
Theorem [2.3.7)is an essential part of the homotopical completion we introduce in Section {4

2.3.7. Theorem ([35, Theorem 5.2]). For every convergent presentation X of a category C, Squier’s
completion 8(X) of X is a coherent presentation of C.

Proof. We proceed in three steps.

Step 1. We prove that, for every local branching (f, g) : u = (v, w) of X, there exist 2-cells f' : v = u’
and g’ :w=u'inZ*anda3-cell A: fx1 f' = g« ¢g’in8(Z) ", as in the following diagram:

/> v f,
A
\\ w
As we have seen in the study of confluence of local branchings, in the case of an aspherical or Peiffer
branching, we can choose f’ and g’ such that f x; f = g %1 g’: an identity 3-cell is enough to link them.
Moreover, if we have an overlapping branching (f, g) that is not critical, we have (f,g) = (uhv, ukv)

with (h, k) critical; we consider the corresponding 3-cell & : hx; h/ = k*1 k/ of §(Z) and we conclude
that f = uh'v, g’ = uk’v and A = uow satisfy the required conditions.

Step 2. We prove that, for every parallel 2-cells f and g of X* whose common target is a normal form,
there exists a 3-cell from f to g in §(X) . We proceed by Noetherian induction on the common source 1t
of f and g, using the termination of X. Let us assume that u is a normal form: then, by definition, both
2-cells f and g must be equal to the identity of u, so that 17, : 1, = 1, is a 3-cell of §(X) T from f to g.

Now, let us fix a T-cell u with the following property: for any T-cell v such that u rewrites into v
and for any parallel 2-cells f,g : v = Vv = 1l of L*, there exists a 3-cell from f to g in §(X)'. Let
us consider parallel 2-cells f,g : u = U and let us prove the result by progressively constructing the
following composite 3-cell from f to g in §(X) ':

11



2. Coherent presentations of categories and groupoids

Since u is not a normal form, we can decompose f = f1 %1 f; and g = g7 %7 g2 so that f; and g7 are
rewriting steps. They form a local branching (f1, g1) and we build the 2-cells f; and g7, together with
the 3-cell A as in the first part of the proof. Then, we consider a 2-cell h from u’ to U in *, that must
exist by confluence of X and since U is a normal form. We apply the induction hypothesis to the parallel
2-cells f; and f{ x1 hin order to get B and, symmetrically, to the parallel 2-cells g; =1 h and g; to get C.

Step 3. We prove that every 2-sphere of £ is the boundary of a 3-cell of $(X) . First, let us consider a
2-cell f: u = vin X*. Using the confluence of X, we choose 2-cells

oy iU =1U and Oy 1 V=>V=1Uu

in £*. By construction, the 2-cells f%; 0y, and oy, are parallel and their common target U is a normal form.
Thus, there exists a 3-cell in 8§(£) " from f %1 o, to o, or, equivalently, a 3-cell oy from f to o7, * o, in
8(X)T, as in the following diagram:

f

/—_\

of v

o) =
V4
e)
Q\

|

Moreover, the (3, 1)-category 8(X)" contains a 3-cell o from f~ to o, 7 0, given as the following
composite:

Now, let us consider a general 2-cell f : u = v of Z'. By construction of LT, the 2-cell f can be
decomposed (in general in a non-unique way) into a “zig-zag”

f1 g7 f) In1 fn In
u Vi uy () Un Vn \

where each f; and g; is a 2-cell of Z*. We define oy as the following composite 3-cell of $(Z) T, with
source f and target oy, %1 0, :

f] g? fn In
u Vi () Vn v
A\ AN\,
llon o2 = ov % oy O oy = W |
o 2 1 V1 - T O, u\/\/ Vn V\A o
u (- u u

We proceed similarly for any other 2-cell g : u = v of L', to get a 3-cell 04 from g to oy * 0,

in $(X) . Thus, the composite o x> oy is a 3-cell of 8(X)" from f to g, concluding the proof. O

12



2.3. Squier’s completion for convergent presentations

2.3.8. Example (The canonical coherent presentation). The canonical presentation of a category C
is the 2-polygraph denoted by Can(C) and defined as follows:

— the O-cells and 1-cells of Can(C) are the ones of C, a 1-cell u of C being denoted by 1 when seen
as a generating 1-cell of Can(C),

— forevery T-cellsu:x — yandv:y — z of C, one 2-cell
- Yy ~
u Y
7N
X N 4

uv
— for every O-cell x of C, one 2-cell
Tx
/\
\M/Lx X

~

Tx
The canonical coherent presentation of C is the (3, 1)-polygraph denoted by Can (C) and obtained by
extension of Can(C) with the homotopy basis made of the following 3-cells:

— forevery 1-cellsu:x = y,v:y = zandw:z — t of C, one 3-cell

'LLVW (Xu,v W 'LLVW
% uvw %,vw,

— forevery 1-cell u: x — y of C, two 3-cells

S R
Lu Yiu Ly Yu,1y
[ m .
u \L_d////ﬁ _

Let us prove that Can (C) is, indeed, a coherent presentation of C. The canonical presentation Can(C)
is not terminating: indeed, for every O-cell x of C, the 2-cell 1, creates infinite rewriting sequences

L= 1= L0, = 1,00, =
However, we get a convergent presentation of C by reversing all the 2-cells 1 into v . Indeed, for
termination, we consider the size of the 1-cells (the number of generators they contain) and we check
that each 2-cell vy, has source of size 2 and target of size 1, while each 2-cell 1/ has source of size 1
and target of size 0. As a consequence, for every non-identity 2-cell f : uw = v of the free 2-category, the

size of u is strictly greater than the size of v. For confluence, we study the critical branchings, divided
into three families:

13



2. Coherent presentations of categories and groupoids

— forevery 1-cellsu:x — y,v:y — zand w : z — t, one critical branching (yu,\,vAv, ﬁyvyw),
giving the 3-cell

Yuy uvw Yuv,w
ww Yu,v,w uvw
DYoo oW =T uyw

— for every 1-cell u : x — y of C, two critical branchings (1, v, 1y U) and (Ya,1y5 Uty ), producing

the 3-cells
/Y]X&A Yu,1y
IS TR [ ity e 1
\/ V
U Uy,

Since considering the 2-cells t, or  as generators does not change the generated (2, 1)-category, we
get that those three families of 3-cells form a homotopy basis for Can(C). We replace A, by L, U *1 Ay,
and p,, by UL, *1 py to get the result.

One can reduce Can.(C) into the smaller reduced canonical coherent presentation Can’,(C) of C.
It is obtained from Can, (C) by removing all the cells about units. This is formalised by a Tietze trans-
formation, as detailed in 4.1 This transformation coherently eliminates the following pairs of cells,
preserving the presented category C and the homotopy basis:

the 3-cells v1, uv Yu,lyv and Yy v,1,, since they are parallel to composites of As and ps,

— the 2-cells y1, ., and the 3-cells Ay,

the 2-cells vy, 1, and the 3-cells py,
— the T-cells TX and the 2-cells ,.

The resulting coherent presentation is detailed in [21] 4.1.6]. If M is a monoid, then Can’, (M) gives a
notion of non-unital action of M on a category C. The fact that Can/_ (M) is also a coherent presentation
of M induces that non-unital actions of M on C are equivalent to (unital) actions of M on C. This
result was proved by Deligne in [13] 1.8] for the special case of semigroups (seen as monoids by formal
adjunction of a unit).

2.4. Coherent presentations of Artin monoids and Artin groups

We recall standard notions and results about Coxeter groups and Artin monoids and groups, mainly taken
from Bourbaki [5]], Deligne [[12], Brieskorn and Saito [6]], Geck and Pfeiffer [[19]. We formulate the main
result of the article, giving a coherent presentation of Artin monoids and Artin groups.

14



2.4. Coherent presentations of Artin monoids and Artin groups

2.4.1. Coxeter groups. A Coxeter group is a group W that admits a presentation with a finite set S of
generators and with one relation

(st)™st =1, with mg; € N IT {co}, 2
for every s and t in S, with the following requirements and conventions:
— Mg = oo means that there is, in fact, no relation between s and t,
— mg = 1if, and only if, s = t.

The last requirement implies that s = 1 holds in W for every s in S. As a consequence, the group W
can also be seen as the monoid with the same presentation. Let us note that a given Coxeter group can
have several generating sets that fit the given scheme, but we always assume that such a set S has been
fixed and comes equipped with a total order.

Following [6 (1.1)], we denote by (st)™ the element of length n in the free monoid S*, obtained by
multiplication of alternating copies of s and t. Formally, this element is defined by induction on n as
follows:

(st) =1 and  (st)™! = s(ts)™

When s # t and mg < oo, we use this notation and the relations s2 = t2 =1 to write @) as a braid

relation:
(st)y™st = (gs)™st, 3)

A reduced expression of an element u of W is a representative of minimal length of u in the free
monoid S*. The length of w is denoted by 1(u) and defined as the length of any of its reduced expressions.
The Coxeter group W is finite if, and only if, it admits an element of maximal length, [6, Theorem 5.6];
in that case, this element is unique, it is called the fundamental element of W and it is denoted by wy(S).
For I C §, the subgroup of W spanned by the elements of I is denoted by Wi and it is a Coxeter group
with generating set I. If W is finite, we denote by wy(I) its fundamental element.

2.4.2. Artin monoids and groups. The Artin monoid and Artin group associated to W are the monoid
denoted by BT(W) and the group B(W), generated by S and subject to the braid relations (3). This
presentation, seen as a 2-polygraph, is denoted by Art(W) and called Artin’s presentation: this is the
same as the one of W, except for the relations s> = 1. An Artin monoid or group is spherical if the
corresponding Coxeter group is finite. Let us note that the underlying set of W embeds canonically in
Bt (W) and we abusively denote an element of W and its image in B™ (W) in the same way ; moreover,
the elements of BT(W) that correspond to elements of W are exactly the ones whose representatives
in S* are reduced expressions (that is, they contain no s?, for any s in S).

As an example, the monoid B} of positive braids on 1 strands is the spherical Artin monoid as-
sociated to the finite Coxeter group S;, of permutations of n elements. For the latter, we consider the
standard set of generators, i.e., the n — 1 generating symmetries s1, ..., Sp_1, submitted to the relations
sisj = sjsi if 1 < j — 2 and s;sjs; = sjsisj if i = j — 1. This is the reason why Artin groups are also
called generalised braid groups.
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2. Coherent presentations of categories and groupoids

2.4.3. Classification in the spherical case. The Coxeter diagram of W is the finite non-directed graph
with one vertex for each element in S, and with one edge with label my; between s and t if mg > 3
(with the convention that the labels 3 are omitted). In particular, there is no edge between two different
vertices s and t if, and only if, they commute in W. The Coxeter group W is irreducible if its Coxeter
diagram is connected, that is, if W admits no factorisation W = W; x W, where W; and W, are
non-trivial Coxeter groups.

The classification of finite and irreducible Coxeter groups is due to Coxeter, [8]], who proved that a
finite Coxeter group is irreducible if, and only if, its Coxeter diagram belongs to a precise list, see [3,
Chapter VI, § 4, Theorem 1] or [19, Theorem 1.1]. In this article, we use the conventions of notation of
the second reference and we are interested in the finite Coxeter groups of rank 3, which fall in one of the
following cases (up to isomorphism):

T S t T 4 S t T 5 S t
o —o—o o —eo—o o —o—o
A3 B3 H;

T s t TP s t
® o [ ] *——o o
Aq X Ag x Ay L (p) 3<p<oo

This classification extends to spherical Artin monoids and groups, using the direct observation that, for
any I C S, the submonoid of BT (W) and the subgroup of B(W) spanned by I are the Artin monoid
Bt (W) and the Artin group B(Wp).

2.4.4. Artin’s coherent presentation. Let W be a Coxeter group with a fixed totally ordered set of
generators S. We call Artin’s coherent presentation the (3, 1)-polygraph Art, (W) obtained from Artin’s
presentation Art(W) by adjunction of one 3-cell Z,; for every pairwise distinct elements r, s and t of S
such that Wy, ¢ 4, is finite. The 3-cell Z has a shape that depends only on the Coxeter type of Wy, ¢ 4,
as follows. If Wy, ¢ 4 is of type Aj:

S’Yrts’yit STYstT
SV strsrt % srtstr :S> srstsr \tsr

stsrst rsrisr
VTS tﬂ Wrsyrt ST
tstrst MZm rstrsr
tsyrtstﬂ Wmty“
tsrist rstsrs
/rs
t& tsrsts =——= trsrts =——= rtstrs TYst
tyrsts YrtSYpiS
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2.4. Coherent presentations of Artin monoids and Artin groups

If W, 5 1) is of type B3, with rsts = srsr and sts = tst:

srtsy str STYstTSYrt sTstyrst STSYrtSrst

S'Yrt% sTtsrtstr = srtstrstr = srstsrsrt sTstrsTst = srsrisrst N’mst
strsrstsr Tsrstsrst
styrstsr/H\ /H\rsrystrst
stsrsrisr rsrtstrst
‘YStTSTtST/H\ /H\rsrtsy:tst
tstrsrtsr Lrst TsTtsTtst
tSVTtSV:tsr\H/ /H\rsyrtsry;t
tsrtstrsr Tstrsrsts
tsrystrsr\H/ /H\rstyrsts
tsrstsrsr Tstsrsrts
tSTSW&) tsrstrsrs :> tsrsrisrs :> trsrstsrs :> rtsrtstrs :> rtstrstrs %TSV”S
tSTSYrisTS tyrstsrs YrtSTY TS rtsystrs

The case of Wy, sy of type H3, with rsTst = srsrs and sts = tst, is given in Figure If Wi, g1y is of

type A1 X Ay X Ay:
SYrt
% str——— srt \Yrst

tsr MZN Tst

& trs =——= rts %
YrtS

Finally, if W, s 4 is of type I2(p) x Aq, for p > 3, with (rs)P = (s1)P:

p—2
valrsP s strspp U S pe eyt

t(s7)P MZM (rs)Pt

i
tyrs t<T‘S>p Y:Wp— Tt(ST)p W:>st<sr>p_ ( .. )

The 3-cells for the types A3, B3 and Hj3 are given by Williamson in “string diagrams” in [38]]. The main
result of this article states that the 3-cells of Art, (W) form a homotopy basis for Artin’s presentation.
We thus recover [37), Proposition 4]: the Artin monoid B (W) and group B(W) admit a coherent presen-
tation made of Art(W) and every 2-sphere of every (2, 1)-category Art(Wy) T, for Wy a finite subgroup
of W of rank 3.
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2. Coherent presentations of categories and groupoids

18

srstsrsrstsrsrt

N

srtstrsrtstrsrt

srtsrtstrsristr

M

srtsrstsrsrstsr

=

srtsrstrsrsrisr

—

strsrsrtsrsrtsr

—

stsrsrstsrsrisr

—

tstrsrstsrsrtsr

é:::

tsrtsrstsrstrsr

é:::

tsrtsrtstrstrsr

é:::

tsrtstrsrtstrsr

é:::

tsrstsrsrstsrsr

é:::

tsrstrsrsrisrsr

é:::

tsrsrtsrstrsrsr

tsrsrtsrstsrsrs

STStrsTSTtSTSTt == STSTtsTStrsTsSTt == srsrtsrstsrsrst == srsrtsrtstrsrst ::::§Q§§§§§i

ZT,S,t

tsTsTtsTtstrsrs == tsrsristrsrtsrs == tsrsrstsrsrtsrs == trsrsrtsrsrisrs

Figure 1: The 3-cell Z; s for Wy, ¢ 1, of Coxeter type H3
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=
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=
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=
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=
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—

rstsrsrstsrsris

—

rtstrsrtstrsrts

—

rtsrtstrsristrs
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3. Coherent presentations and actions on categories

2.4.5. Theorem. For every Coxeter group W, the Artin monoid BT (W) and the Artin group B(W)
admit Art, (W) as a coherent presentation.

The proof of Theorem [2.4.5]is conducted in Sections [5|and [6] It relies on the generalisation of Squier’s
completion, called homotopical completion-reduction and introduced in Section 4f this is a procedure,
based on rewriting methods, that extends a presentation of a monoid into a relatively compact coher-
ent presentation. In Section [5] we apply homotopical completion-reduction to Deligne’s presentation
Del(W) of the Artin monoid BT (W), to get a coherent presentation Del, (W) of BT (W). As a side
result, when applied to Del (W), Theorem extends Deligne’s result on actions to every Artin
monoids [13| Theorem 1.5]. Then, in Section [6] we apply homotopical reduction to the coherent pre-
sentation Del, (W). The result is Art, (W), thus proving Theorem for Artin monoids. Finally,
in[6.4) we prove that, if a monoid M embeds in the group G with the same presentation, then a coherent
presentation of M is also a coherent presentation of G. This condition is satisfied by Artin monoids and
Artin groups [32], thus concluding the proof of Theorem [2.4.

3. COHERENT PRESENTATIONS AND ACTIONS ON CATEGORIES

Deligne’s actions of a monoid M on categories are a special case of 2-representations of 2-categories, as
defined by Elgueta in [14]. We prove that, up to equivalence, actions of M on categories are the same as
2-functors from X to Cat, where L is any coherent presentation of M. The constructions are described in
the homotopical setting of the canonical model structure on 2-categories [24], 23]

3.1. 2-representations of 2-categories

3.1.1. 2-representations. We recall from [14] that, given 2-categories C and D, a 2-representation of C
in D is a pseudofunctor F : € — D. This is a weakened notion of 2-functor, specified by:

— for every O-cell x of €, a 0-cell F(x) of D,
— forevery 1-cell uw: x — y of C, a 1-cell F(u) : F(x) — F(y) of D,
— for every 2-cell f : u = v of C, a 2-cell F(f) : F(u) = F(v) of D.
As for 2-functors, the data are required to be compatible with vertical composition, in a strict way:

— forevery 2-cellsf:u=v:x -yandg:v=w:x — yof C,

u F(u)
VDN UF(r)
F| x v——y = F(x) —F(v)— F(y)
W IF(9)
w F(w)

— for every 1-cell u of C, we have F(1y) = Tg(y).
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3. Coherent presentations and actions on categories

The data is also compatible with horizontal composition, but only up to coherent isomorphisms:

— forevery T-cellsu:x — yandv:y — z of C, an invertible 2-cell of D, natural in u and v,
F
F(u)/ W k)
:ﬂFuN
F)— ¥z
Fluv)

— for every O-cell x of C, an invertible 2-cell of D

Finally, these 2-cells are required to satisfy the following monoidal coherence relations in D:

— forevery]—cellsu:x—>y,v:y—>zandw:z%t0f€,

/ iLF " ﬂFN) _ F%WJL Fy WiL \
\_)

\_/v

Fluvw) Fluww)

— forevery 1-cellu:x — y of C,

FO1) ﬂﬁ\ = " [Trw Fy) = /ulyﬂ F(ly)
. 7 ) 3F)
Flu)

X)) sFy)
F(u) F(u)

As usual with monoidal coherence relations, this implies that, for every sequence (u1,...,u,) of pair-
wise composable 1-cells in C, there exists a unique invertible 2-cell

FU] yeelUn * F(u1) T F(un) — F(LL] . 'un)

in D built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence
2-cells are identities: it can be seen as a strict 2-representation.

The notion of 2-representation has been introduced by Elgueta for 2-groups in [[14]]. It is also studied
by Ganter and Kapranov in [15]] in the special case of groups. In [34]], Rouquier considers the more gen-
eral case of 2-representations of bicategories. Among concrete target 2-categories for 2-representations,
natural choices are the 2-categories of 2-vector spaces, either from Kapranov and Voevodsky [22] or
from Baez and Crans [3]], of 2-Hilbert spaces [2] or of categories [[13]].
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3.1. 2-representations of 2-categories

3.1.2. Morphisms of 2-representations. If F, G : € — D are 2-representations of C into D, a morphism
of 2-representations from F to G is a pseudonatural transformation « : F = G between the corresponding

pseudofunctors:

— for every O-cell x of €, a 1-cell o : F(x) — G(x) of D,

— for every 1-cell u: x — y of C, an invertible 2-cell of D

i&»ﬂm
F(x)
n

This data must satisfy several coherence relations:

G(x)

— forevery 2-cellf:u=v:x = yof C,

F(u)
F(f) 1~
&/ Yy
e
F) ﬂ% Gly) =
Gl G(v)
— forevery 1-cellsu:x - yandv:y — zof C,
F(v)
ngE;”Hm N
F(u) <\ F(LI.V)/\ \ _
F(x) - ﬂ/(xuv G(z) o
X It
— for every O-cell x of C,
TE(x)
F, F(x) o
N \
F(1x)
o ﬂmx G(x) =
N "

zﬂocu
X

~

Gly)

G(u)

)

&/
G(y)
G(uﬁ
o

G(v)

F(x) (xu\u
X
G(

F(v)

Fly)~ CFQ)

F(uw) (\ \O‘y\ \H/(Xv
F(x) ﬂ%LQMAGMHGm

\ G@) \Gy
o
G(uv)

G(x)

Xz

T6(x)

Fx) —>—6(x) UGy Gk
A
G(1x)
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3. Coherent presentations and actions on categories

3.1.3. Categories of 2-representations. If F; G,H : ¢ — D are 2-representations and if « : F = G and
3 : G = H are morphisms of 2-representations, the composition & x 3 : F = H is defined by:

— if x is a O-cell of C, the T-cell ( x B)x : F(x) — H(x) of D is the composition

One checks that ook 3 satisfies the coherence conditions of a morphism of 2-representations and, then, that
the composition x is associative and unitary. The category of 2-representations of C into D is denoted
by 2Rep(C, D). The full subcategory of 2Rep(C, D) whose objects are the 2-functors is denoted by
2Cat(e, D).

3.1.4. Actions of monoids on categories. If M is a monoid, we see it as a 2-category with exactly one
0-cell, with the elements of M as 1-cells and with identity 2-cells only. We define the category of actions
of M on categories as the category of 2-representations of M in Cat:

Act(M) = 2Rep(M, Cat).

Expanding the definition, we get that an action T of M is specified by a category C, which is the image
through T of the unique O-cell of M, an endofunctor T(u) : C — C for every element u of M, a
natural isomorphism T(u,v) : T(w)T(v) = T(uv) for every pair (u,v) of elements of C and a natural
isomorphism T, : T¢ = T(1). This data is required to satisfy the following coherence conditions:

— for every triple (u, v, w) of elements of M, the following diagram commutes:

T(u) T(uvw)

R

— for every element u of M, the following two diagrams commute:

T.T(% T()T(w N T(u)/ T(WT() N
_ s _

T(u) T(u)
_ 22—
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3.2. Cofibrant approximations of 2-categories

This definition corresponds to the notion of unital action of M on C that Deligne considers in [[13]]. For
semigroups, he proves that unital actions are equivalent to non-unital actions. We have recovered this
fact, for general monoids, in Example [2.3.8

If S is an action of M on a category C and T is an action of M on a category D, by expanding
the definition, we get that a morphism of actions « from S to T is specified by a functor F : C — D,
corresponding to the component of « at the unique 0-cell of M, and, for every element u of M, a natural
isomorphism o, : S(w)F = FT(u). This data must satisfy the coherence conditions of a pseudonatural
transformation.

Remark. Those morphisms of actions of monoids on categories differ from the ones of Deligne in [[13]].
Indeed, he considers morphisms between actions of M on the same category C, such that the functor F
is the identity of C, but where the natural transformation oy, is not necessarily an isomorphism: those
are the icons between the corresponding pseudofunctors, as introduced by Lack in [26]] as a special case
of oplax natural transformations (defined as pseudonatural transformations whose component 2-cells
are not necessarily invertible). In this article, we choose to follow Elgueta and consider pseudonatu-
ral transformations, but the results and proofs can be adapted to icons or generalised to oplax natural
transformations.

3.2. Cofibrant approximations of 2-categories

3.2.1. Elements of the canonical model category structure on 2Cat. We recall a few notions from the
model category structure on 2Cat introduced by Lack in [24] and [25]. A 2-category is cofibrant if its
underlying 1-category is free. A 2-functor F : € — D is a weak equivalence if it satisfies the following
two conditions:

— Every O-cell y of D is equivalent to a O-cell F(x) for x in C, i.e., there exists T-cells u: F(x) — y
and v :y — F(x) and invertible 2-cells f : wx1 v = Tryand g: vy u = Ty in D.

— For every 0-cells x and x’ in €, the induced functor F(x,x’) : C(x,x’) — D(F(x),F(x’)) is an
equivalence of categories.

In that case, we say that C and D are weakly equivalent. In particular, an equivalence of 2-categories, that
is, a 2-functor F : € — D such that there exists a 2-functor G : D — € and pseudonatural isomorphisms
GF >~ 1¢ and FG =~ 19, is a weak equivalence. If C is a 2-category, a cofibrant approximation of C is a
cofibrant 2-category € that is weakly equivalent to C.

Let us note that a weak equivalence F : ¢ — D in 2Cat is exactly a 2-functor that is an equivalence
in the category 2Rep. Indeed, if F is a weak equivalence, we define a quasi-inverse G for F as follows.
For every O-cell y of D, we choose a O-cell G(y) in € such that FG(y) is equivalent to y, i.e., there exist
1-cells and invertible 2-cells

oy : GF(y) =y 1y:y — GFy) oy : oy« 1Ty = Igry) By : Tyx oy = 1y

in D. For every O-cells y and y’ of D, we choose a quasi-inverse Go(y,y’) to F(F(y), F(y’)) and we
define the functor G(y,y’) as Go(oy, Gé). The isomorphisms G,,,/ and Gy come from the 2-cells o,
and 3, respectively. By construction, the pseudofunctor G is a quasi-inverse for F in 2Rep and, in
general, it cannot be chosen to be strict (unless F is an equivalence in 2Cat). The converse direction is
straightforward.
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3. Coherent presentations and actions on categories

3.2.A2. Example (The canonical cofibrant approximation [24]). Let C be a 2-category. We denote
by € the cofibrant 2-category with the same O-cells as € and the following higher cells:

— the 1-cells of € are freely generated by the ones of C, with u in € denoted by U when seen as a
generator of C,

— the 2-cells from Uy - - - Uy, to V7 - - -V, in € are the 2-cells from 1 - - - Uy, t0 V7 - - - vy in C, with
the same compositions as in C.

By definition, every 2-cell f : u = v of C has several copies in €. We denote by f the one with
source U and target V. For each pair of composable 1-cells (u,v) we denote by vy, : UV = Uv the
2-cell corresponding the identity of uv in C. This 2-cell is invertible and satisfies monoidal coherence
relations, so that there exists exactly one invertible 2-cell

~ ~ —_—
Yuryun W Un == Up- - Up

for every family (w1, ..., u,) of composable 1-cells.

Let us consider 1-cells u,v : x — y in € such that u = u;---uy and v = vy ---v, hold. If
f:u = visa2-cell of C, then it has exactly one copy in C that goes from U - - - Uy to V7 - - - Vyy, which
is equal, by definition of the composition in C, to the following composite

The canonical projection 2-functor € — Cis the identity on O-cells and maps each generating 1-cell u
to uw and each 2-cell to itself: by construction of € and definition of 7, it follows that 7t is a weak
equivalence and that the 2-category € is a cofibrant approximation of €, called the standard cofibrant
approximation of C.

Let us note that, if ¢ = C is a category (a monoid, for example), seen as a 2-category with identity
2-cells only, the 2-category C has exactly one 2-cell from U - - - Um to V; - - -V if, and only if, the
relation

u]...um — V]"'Vn

holds in C: this 2-cell is the composite of Y, .. u,, followed by vy, ., . Asa consequence, the canon-

ical cofibrant approximation Cof Cis exactly the (2, 1)-category presented by the canonical coherent
presentation Can(C) of C, as given in Example

3.2.3. Theorem. Let C be a category and let £ be an extended presentation of C. The following asser-
tions are equivalent:

i) The (3,1)-polygraph L is a coherent presentation of C.
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3.2. Cofibrant approximations of 2-categories

ii) The 2-category ¥ presented by L is a cofibrant approximation of C.

Proof. Letus assume that X3 is a homotopy basis of ZZT. By definition, the 2-category X is cofibrant. Let
us check that it is weakly equivalent to C. We consider the canonical projection 7t : £T — C that sends
every O-cell to itself, every 1-cell to its equivalence class and every 2-cell and 3-cell to the corresponding
identity. This is well-defined since two 1-cells of Z; have the same equivalence class in C if, and only if,
there exists a 2-cell between them in ZZT and since parallel 2-cells of £ are sent to the same (identity)
2-cell of C.

Since 7t is the identity on O-cells, it is sufficient to check that it induces an equivalence of categories
between Z(x,y) and C(x,y) for every O-cells x and y in C. We define a quasi-inverse t by choosing, for
each 1-cellu : x — y in C, an arbitrary representative 1-cell t(u) in . By construction, we have that 7t
is the identity of C(x,y) and that t7t(u) is a 1-cell from x to y that has the same equivalence class as u:
we choose an arbitrary 2-cell o, : u = urr(u) in . Since every parallel 2-cells of T are equal, we get
the following commutative diagram for every 2-cell f of L:

f))

/ %
This proves that o is a natural isomorphism between t7r and the identity of clX(x,y), yielding that 7t is
a weak equivalence and, as a consequence, that T is a cofibrant approximation of C.

Conversely, let us assume that £ is a cofibrant approximation of C. Let F : £ — C be a weak
equivalence and let f,g : W = v : x — y be parallel 2-cells of Z'. Since F is a 2-functor and C has
identity 2-cells only, we must have F(u) = F(v) and F(f) = F(g) = 1§(,). By hypothesis, the 2-functor
F induces an equivalence of categories between Z(x,y) and C(x,y): we choose a quasi-inverse G and a

natural isomorphism o between GF and the identity of Z(x,y). We write the naturality conditions for f
and g and, using GF(f) = GF(g) = TgF), we conclude that they are equal in X:

GF(u)  GF(f) GF(u) - GF(g)
\ /G F(v \ /G F(v
Thus X is a coherent presentation of C. O

Remark. The cofibrant approximations of a category C form, in general, a strictly larger class than the
2-categories presented by coherent presentations of C. Indeed, let C be the terminal category: it contains
one O-cell and the corresponding identity T-cell only. Then C is cofibrant and, as a consequence, it
is a cofibrant approximation of itself: this corresponds to the coherent presentation of C given by the
(3, 1)-polygraph with one O-cell and no higher-dimensional cells. But C also admits, as a cofibrant
approximation, the “equivalence” 2-category with two O-cells x and y, two 1-cells u : x — y and
v :y — x and two invertible 2-cells f : uv = 1y and g : vu = 1y, and this 2-category is not presented
by a coherent presentation of C, since it does not have the same 0-cells as C.
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3. Coherent presentations and actions on categories

3.3. 2-representations of cofibrant 2-categories

Let us fix 2-categories € and D, with € cofibrant. Our objective is to define a “strictification” functor
~: 2Rep(C,D) — 2Cat(C,D)
and to prove that it is a quasi-inverse for the canonical inclusion functor of 2Cat(C, D) into 2Rep(C, D).

3.3.1. Strictification of 2-representations. Let F : € — D be a 2-representation. Let us define the

2-functor F : € — D, dimension after dimension. On O-cells, F tAakes the same values as F. Since C is
cofibrant, its underlying 1-category is free: on generating 1-cells, F is equal to F and, then, it is extended
by functoriality on every 1-cell. Hence, if u = aj--- a, is a 1-cell of C, where the a;s are generating
1-cells, we have:

~

F(u) = Flar)---Flan).
From the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell in D

Fa1,...,an

F(u) = F(aj)---Flap) —=2% F(ap---an) = F(uw)

from ?(u) to F(u), built from the coherence 2-cells of F. Since the decomposition of w in generators is
unique, we simply denote this 2-cell by F,. Let f : u = v : x — y be a 2-cell of C. We define f(f ) as the
following composite 2-cell of D, where the double arrows, which always go from top to bottom, have
been omitted for readability:

Fw)
?(u) Fu
F
/A\ " (u)\
Fx) F(f)  F) = Fx)  F(f) Ry
\_/ \F(v)/
F(v) -
F(v)

As a direct consequence, we get that Fis compatible with vertical composition and identities of 1-cells.
Hence, we have defined a 2-functor F from € to D. We note that the monoidal coherence relations

satisfied by F imply that the 2-cells F,, : F(u) = F(u) satisfy the following relations with respect to
composition and identities. If u:x — y and v:y — z are 1-cells of C, we have:

F(x) Fuv F(z) = F(x) F(u) Fly) F(v) F(z)
F(uv)
Fluv)

Moreover, if x is a O-cell of €, we have F1 = F.
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3.3. 2-representations of cofibrant 2-categories

3.3.2. Strictification of morphisms of 2-representations. Let F,G : € — D be 2-representations and
let « : F = G be a morphism between them. Let us define a pseudonatural transformation o : F=G.
For a 0-cell x of C, we take oty = ay. If u: x — yis a I-cell of C, we define &, as the following
invertible 2-cell of D:

_ F(y) F(w) F(y)
F(u) 0y Fu oy
Fu)
F(x) Xy Gy) = F(x) Oy Gly)
/ G
& B Otx /Gj
G(x) G(x) G(u)
Then & : T = Gisa pseudonatural transformation. Indeed, if x is a O-cell of C, we have:
TE(x
1 Fix) T Fix)
i) X 4 X o
~ BN TN
F(x) ar, Gx) = F(x) o, , 6k = Fx) lg G
G(1x) \/
O Ta(x) k Gy o
G(X) G(X] 1
G(x)

F(v)
/RN
F(un) F(z) F(y) —F(v)= F(z)
uv o o
z T F z
/ \/ UF(‘LL) ]1?1:\))
F(x) Xy Gz) = Huw "Fx Ky 562 GW)
G(uv) G?:f) B
/ / G- ‘ G,
x G(w) Ox u,v
G(x) G(x) -G(u)» G(y)

Xy o o N
\(i(v) G> u TG("]
™ G o
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3. Coherent presentations and actions on categories

Finally, if f : u = v :x — yisa2-cell of C:
Flw) Flu)

(fo >
e

NN

With similar computations, we check that strictification is compatible with the composition of morphisms
of 2-representations and with identities, so that it is a functor from 2Rep(C, D) to 2Cat(C, D).

N,
G(x) Gv)
F(y)
Fu / X
Flu oy
G~ SW)
G(f)
G
o

3.3.3. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion
2Cat(C, D) — 2Rep(C,D)
is an equivalence of categories, with quasi-inverse given by the strictification functor.

Proof. 1t is sufficient to check that, for every 2-representation F : € — D, there exists a pseudonatural
isomorphism @r : F = F that is itself natural in F. We define @r as follows:

— if x is a O-cell of C, then f(x) = F(x) and we take (@f)x = 14,

— ifu:x — yisal-cell of C, then (@F)y : /lz(u) = F(u) is defined as the invertible coherence
2-cell Fy, : F(u) = F(u).

This data satisfies the required coherence properties: the compatibility with the 2-cells of € is exactly the

definition of F and the compatibility with horizontal composition and identities comes from the monoidal
coherence relations of F, as already checked. Moreover, if & : F = G is a morphism of 2-representations,

the naturality condition
% F \cx{

F = G
corresponds, on each 1-cell u of C, to the definition of &. ]
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3.4. 2-representations and cofibrant approximations

3.4. 2-representations and cofibrant approximations

Let us recall that, for a 2-category €, we denote by @ its standard cofibrant replacement. We note that
the definition of a 2-functor from C to a 2-category D is exactly the same as the one of a pseudofunctor
from € to D, yielding the following isomorphism of categories:

2Rep(C, D) ~ 2Cat(C, D).
In particular, for every monoid M, we get an isomorphism of categories:
Act(M) ~ 2Cat(M, Cat).

In what follows, we prove that weak versions of these isomorphisms exist for all cofibrant approxima-
tions. More precisely, the category of 2-representations of a 2-category C into a 2-category D is equiva-
lent to the one of 2-functors from any cofibrant approximation € of € into D. This result specialises to
the actions of a monoid on categories.

3.4.1. Lemma. Let C and D be 2-categories. The following assertions are equivalent:
i) The 2-categories C and D are equivalent in 2Rep.
ii) For every 2-category &, there is an equivalence of categories
2Rep(C, &) =~ 2Rep(D, &)
that is natural in €.

Proof. Letus assume that € and D are equivalent in 2Rep, i.e., that there exist pseudofunctors F : ¢ — D
and G : D — C such that
GF ~ ]@ and FG ~ 1@.

As a consequence, for every pseudofunctors H: € — € and K: D — &, we have:

HGF ~ H and KFG ~ K.

Thus the functors 2Rep(F, £) and 2Rep(G, £), respectively sending a pseudofunctor K : D — & to KF
and a pseudofunctor H : ¢ — € to HG, form the required equivalence of categories.

Conversely, let us assume that, for every 2-category &, we have 2Rep(C, £) ~ 2Rep(D, €) natural
in €. We denote by

D¢ : 2Rep(C, &) — 2Rep(D,E) and Ye : 2Rep(D,E) — 2Rep(C, &)

the functors that constitute the equivalence. The naturality of the equivalence means, in particular, that
for every pseudofunctors H: € — € and K: D — €&, we have the following isomorphisms:

q]gq)g(H) ~ H and q)g‘yg(K) ~ K.
Let us define the pseudofunctors F: € — D and G : D — C as follows:

F = q’@“@) and G = @e(]e).

29



4. Homotopical completion and homotopical reduction

Thus we have, using the properties of @ and ¥:
GF = ®¢(le) o¥n(lp) = YeDe(le) = Te.
We get FG ~ 14 in a symmetric way to conclude that F and G form an equivalence in 2Rep. O
A combination of Proposition [3.3.3]and of Lemma [3.4.1] gives the following result.
3.4.2. Proposition. Let C and € be 2-categories. The following assertions are equivalent:
i) The 2-category Cisa cofibrant approximation of C.

ii) For every 2-category D, there is an equivalence of categories
2Rep(C, D) ~ 2Cat(C, D)
that is natural in D.

In particular, if M is a monoid and M is a cofibrant approximation of M, then we have an equivalence
of categories N
Act(M) =~ 2Cat(M, Cat).

Finally, an application of Theorem [3.2.3] gives the following result, relating the coherent presentations of
a category to its 2-representations. In particular, when applied to Deligne’s coherent presentation of an
Artin monoid BT (W), as obtained in Theorem extends Deligne’s Theorem 1.5 of [13]] to the
non-spherical case.

3.4.3. Theorem. Let C be a category, let L be an extended presentation of C. The following assertions
are equivalent:

i) The (3,1)-polygraph L is a coherent presentation of C.

ii) For every 2-category C, there is an equivalence of categories
2Rep(C, ) ~ 2Cat(Z,C)
that is natural in C.

In particular, if M is a monoid and if X is a coherent presentation of M, we have an equivalence of
categories B
Act(M) =~ 2Cat(x, Cat).

4. HOMOTOPICAL COMPLETION AND HOMOTOPICAL REDUCTION

In this section, we introduce the homotopical completion-reduction procedure: an algorithmic method to
extend a presentation L into a coherent presentation, by computing a homotopy basis of £ . It is based
on rewriting techniques, mainly Squier’s completion and Knuth-Bendix’s completion, adapted to the
setting of coherent presentations and formulated in terms of Tietze transformations of (3, 1)-polygraphs.
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4.1. Tietze transformations of (3, 1)-polygraphs

4.1. Tietze transformations of (3, 1)-polygraphs

We adapt the notion of Tietze transformations of presentations of groups [27] to (3, 1)-polygraphs: they
consist in coherent adjunctions or eliminations of 1-cells, 2-cells and 3-cells that preserve the presented
2-category, up to equivalence. In particular, we get that two (3, 1)-polygraphs are coherent presentations
of the same category if, and only if, they are related by a Tietze transformation.

4.1.1. Tietze equivalence. An equivalence of 2-categories F : C — D is a Tietze equivalence if the
quotient categories C1/C, and Dq/D; are isomorphic. Two (3, 1)-polygraphs are Tietze-equivalent if
the 2-categories they present are Tietze-equivalent. In that case, they have the same O-cells (up to a
bijection). Moreover, two coherent presentations of the same category are Tietze-equivalent.

4.1.2. Tietze transformations. Let X be a (3, 1)-polygraph. An elementary Tietze transformation on X
is a 3-functor with source £ ' that belongs to one of the six families pictured as follows and formally
described afterwards:

u
u lu /\
e———— e [ \U,(X °
(_
Tl

The coherent adjunctions

W X o— ZT(x)(w) gL o— () (y) a2 — ZT(y)

—

are the canonical inclusions. Conversely, the coherent eliminations
Ty t L = I/ Ty T 2Ty TAy) * T 2T/(AY)

are the canonical projections defined as follows. If o« : uw = x is a 2-cell of X, with x a T-cell of X and u
a T-cell of (X \ {x})*, the projection 7, maps x to u and « to 1, leaving the other cells unchanged. The
(3,1)-category L' /o is freely generated by the following (3, 1)-polygraph Z/a:

S0 Tly O S Ty © S2
DA el O TANR ' ) M m— O 2 \{oc})T  — Z;.
tO 7Tocot1 T[(Xotz
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4. Homotopical completion and homotopical reduction

Ify:f= aisa3-cell of £, with & a 2-cell of £ and f a 2-cell of (X \ {o}) T, the projection 7T, Maps
to f and y to 1, leaving the other cells unchanged. The (3, 1)-category L' /v is freely generated by the
following (3, 1)-polygraph X /y:

S0 . S1 T+, ™wes T
Lo PR (D2 \{o}) E——=(5\{v}) .
to tH Ty oty

Finally, if v is a 3-cell of £ and A is a 3-cell of (£ \ {y})T, the projection T(A,y) Maps y to A. The
(3,1)-category LT /(A,7) is freely generated by the following (3, 1)-polygraph X /(A,v):
S0 S1

S2
Lo It 2R (Z\ )
to 4 t

If £ and Y are (3, 1)-polygraphs, a (finite) Tietze transformation from X to Y is a (finite) composition of
elementary Tietze transformations.

4.1.3. Theorem. Two (finite) (3, 1)-polygraphs are Tietze equivalent if, and only if, there exists a (finite)
Tietze transformation between them. In particular, two (finite) (3, 1)-polygraphs are coherent presenta-
tions of the same category if, and only if, there exists a (finite) Tietze transformation between them.

Proof. Let us prove that, if two (3, 1)-polygraphs are related by a Tietze transformation, then they are
Tietze-equivalent. Since isomorphisms of categories and equivalence of 2-categories compose, it is
sufficient to check the result for each one of the six types of elementary Tietze transformations on a
fixed (3,1)-polygraph L. By definition, the 3-functors 7t o t are all equal to the identity of T and
the 3-functors t o 7t induce identities on the presented category X7 /X;. Moreover, the latter induce the
following 2-functors on the presented 2-category L:

L OoTy =~ ]f LfoTA = 1f AOT Ay = 12.

Indeed, the first isomorphism is the identity on every cell, except on x which is mapped to &. The second
and third isomorphisms are, in fact, identities since they do not change the equivalence classes of 2-cells
modulo 3-cells.

Conversely, let £ and Y be Tietze-equivalent (3, 1)-polygraphs. We fix an equivalence F : £ — Y
of 2-categories that induce an isomorphism on the presented categories. We choose a weak inverse
G : Y — I and pseudonatural isomorphisms o : GF = Iz and T : FG = 15, in such a way that the
quadruple (F, G, 0, 1) is an adjoint equivalence, which is always feasible 28], Chap. IV, § 4, Theorem 1].
This means that the following “triangle identities” hold:

Ay Py
FGF = F GFG = G
v \/

TF oG

Let us lift the 2-functor F to a 3-functor F: £ — 'YI, defined as F on the O-cells and 1-cells. For every
2-cell & : u = v of £, we choose a representative F(a) : F(u) = F(v) of F(&) in Y'" and, then, we
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4.1. Tietze transformations of (3, 1)-polygraphs

extend F by functoriality to every 2-cell of Z . Fora 3-cell y : f = g of £, we have f = g by definition
of Z, so that F(f) = F(g) holds in Y, , meaning that there exists a 3-cell in YT from F(f) to f(g) we take
it as a value for f( ) and we extend F to every 3-cell of £ ' by functoriality. We proceed similarly with G
to get a 3-functor G : YT — 7.

Then, for a 1-cell x of X, we choose a representative G, : GF(x) = x of 0y in Z' and we extend it
to every 1-cell by functoriality. If o« : uw = v is a 2-cell of X, the naturality condition satisfied by o on &
lifts to an arbitrarily chosen 3-cell of X

/\/'\

% GF(v) \

GF(u)
S

We proceed similarly with T. The conditions for the adjoint equivalence also lift to a 3-cell A, of YT for
every T-cell x of Z and to a 3-cell p, of 2T for every 1-cell y of Y:

=)
R

F(5) G(7y)
7\ 7\
FGF(x) MAX F(x) GFG(y) Mpy Gly)
\AZ/ v
TF(x) OG(y)

Now, let us build a Tietze transformation from X to Y. We start by constructing a (3, 1)-polygraph =
that contains both X and Y, together with coherence cells that correspond to the Tietze-equivalence. The
(3, 1)-polygraph = has the same O-cells as £ (and as Y') and it contains the T-cells, 2-cells and 3-cells
of X and Y, plus the following cells:

— two 2-cells @ : F(x) = x and Py : G(y) = y, for every 1-cells x of Z and y of Y,
— two 3-cells @ and g, for every 2-cells « : u = u’ and 3 : v = v/, with shapes

oo W L o oo G S G o
/ m(poc \ / mll)ﬁ \
u u’ v v/
x B

— two 3-cells & and 0y, for every 1-cells x of 2 and y of Y, with shapes

yGF(X) X \
Ex nU
F(x) xﬂ%x G(y) §M%y

Px Py

33



4. Homotopical completion and homotopical reduction

We construct a Tietze-transformation ®@ from X to = step-by-step, as follows.

— Adjunction of the cells of Y. For every 1-cell y of Y, we apply tg(y) to coherently add y and

Py : G(y) = y. Then, for every 2-cell  : v = v’ of V', we apply by x1 G (B)*1 s to coherently

add 3 and \g. Then, we add every 3-cell 5 : g = g’ of Y with 1, where B is the following 3-cell:

g9

by

— Adjunction of the coherence cells for X. For every 1-cell x, we apply b %18x to coherently add

the 2-cell @y and the 3-cell &,. Then, for every 2-cell o : u = u’ of X, we add the 3-cell @4
with 14, where A is the following 3-cell (where the triple arrows have been omitted for readability):

o
or > Flu) ———— F(u)

l

gn Vrw o VR Ry g
e N[

6,— GF(u) =GF(«)> GF(u') =6,—=1u’

u

~

O
(0.6

— Adjunction of the last coherence cells for Y. For every 1-cell y of Y, we add the 3-cell ny by ¢,
where C is the following 3-cell:

34



4.2. Homotopical completion

As a result, we get a Tietze transformation ® : &7 — ZT. Since the construction and the result are
totally symmetric in X and Y, and since the Tietze transformation @ contains coherent adjunctions only,
we also get a Tietze transformation ¥ : =7 — Y T. By composition, we get a Tietze transformation
from ZT to YT To conclude, we note that both @ and ¥ are finite when both £ and Y are. O

4.2. Homotopical completion

On the one hand, Squier’s completion extends a convergent 2-polygraph X into a coherent convergent
presentation $(X) of £. On the other hand, Knuth-Bendix’s completion procedure [23] transforms a
terminating 2-polygraph I into a convergent presentation of £. The homotopical completion procedure
interleaves both completion procedures to extend Squier’s completion to terminating but not necessarily
confluent 2-polygraphs.

4.2.1. Homotopical completion. Let X be a terminating 2-polygraph, equipped with a total termination
order <. The homotopical completion of L is the (3, 1)-polygraph

8(2) = (£, T1A)

where ¥ is the 2-polygraph and T and A are the cellular extensions of ' obtained by the following
procedure. It starts with X equal to X, with B equal to the set of critical branchings of > and with " and A
equal to the empty cellular extension of ZT. If B is empty, then the procedure stops. Otherwise, it picks

a branching
f/> v
u
g\ w

1. It computes 2-cells f : v = Vand g’ : w = W of £*, where V and W are normal forms for v
and w, respectively, as in the following diagram:

in B and it performs the following operations:

f/

f/>v:>6
u
N
g

2. Tt tests which (in)equality V. = w or v > w or v < w holds, corresponding to the following three
situations, respectively:

f/ R f/

/ \ f/>v:>v f/\’:>?\
\ /:w u\) \1/5 \/(X u \1/6 o
CSw—w TS Sw——w

g g
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4. Homotopical completion and homotopical reduction

If W = V, then the procedure adds the dotted 3-cell 'y of the leftmost diagram to I'. Otherwise,
it adds the dotted 2-cell & and 3-cell § of the corresponding situation to X and A, respectively;
moreover, it adds all the new critical branchings created by 0 to B.

3. It removes (f, g) from B and restarts from the beginning.

If the procedure stops, it returns the 2-polygraph ¥ and the cellular extensions I' and A of 3. Other-
wise, it builds increasing sequences of 2-polygraphs and of cellular extensions, whose limits are denoted
by 3, T and A. Note that, if the starting 2-polygraph X is already convergent, then the homotopical com-
pletion of X coincides with Squier’s completion (), making notations consistent. By construction, the
underlying 2-polygraph & of (L) is convergent: it is the result of Knuth-Bendix’s completion procedure.
Theorem [2.3.7)yields the following theorem.

4.2.2. Theorem. Let X be a terminating 2-polygraph.

i) The (3,1)-polygraph (%, A) is Tietze-equivalent to (£, ).

ii) The homotopical completion S( ) of L is a coherent convergent presentation of L.
iii) The (3,1)-polygraph (L, 7A(T)) is a coherent presentation of L.

4.2.3. Example. Let us consider the monoid M presented by the 2-polygraph

= (x,y;xyx X yy).

We prove that ¥ terminates with the deglex order generated by x < y. Let us apply the homotopical
completion procedure to X, which has one, non confluent critical branching (xyx,xyax). The proce-
dure coherently adds the 2-cell 3 and the 3-cell A as follows, where the direction of 3 is given by the

inequality yyyx > xyyy:
/ N

Xyxyx A

\ Xyyy

The 2-cell {3 creates a new, confluent critical branching, resulting in the adjunction of the 3-cell B:
Byx > XYYUYX  xyp

Yyyxyx MB XYyxyyy

Yyy xyyy

Yyyyy

No 2-cell was added, so that the homotopical completion of X is

S(i) = (X»U§ (X)B; A>B)
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4.3. Homotopical reduction in dimensions 1 and 2

and it gives a coherent convergent presentation of M. By application of the Tietze transformation 715, we
coherently remove the 2-cell 3 and the 3-cell A to get the coherent presentation (x,y; «; 7ta(B)) of M.
By definition, the 3-cell 7ta (B) is obtained from B by replacing all the occurrences of 3 in the boundary
of B by the rest of the boundary of A, namely xyo™ x; ocyx. One can prove that the source and the
target of 714 (B) are both equal to yyyo, so that 7ta (B) is parallel to 1y, and, as a consequence, can be
coherently eliminated by a Tietze transformation: the monoid M admits (X, () as coherent presentation.

The homotopical reduction procedure proposes a more systematic way to eliminate unnecessary 3-
cells from a coherent convergent presentation.

4.3. Homotopical reduction in dimensions 1 and 2

The homotopical completion 8(Z) of a 2-polygraph I is a coherent convergent presentation of . How-
ever, the (3, 1)-polygraph 8(X) has usually more cells than one could expect for a coherent presentation
of L: for example, the pairs of extra 2-cells and 3-cells added during homotopical completion for non-
confluent critical branchings can be coherently removed from §(X). In this paragraph, we present the
homotopical reduction procedures in dimension 1 and dimension 2, as a systematic way to coherently
eliminate 1-cells and 2-cells from a (3, 1)-polygraph.

4.3.1. Homotopical 1-reduction. Let X be a (3, 1)-polygraph. The homotopical 1-reduction of L is the
(3, 1)-polygraph denoted by R;(X) and obtained by the following procedure. It starts with Y =% and
[' = X,. If T is empty, then the procedure stops. Otherwise, it picks a 2-cell « in I" and determines if o
has one of the two shapes

) uw =5 x @ x % u
where x is a T-cell of £ and u is a 1-cell of (£ \ {x})*. If so, the procedure performs the following
operations, depending on the case:

(1) The procedure coherently eliminates x and o from b by the Tietze transformation 7. Then, it
restarts with " replaced by 714 (" \ {ac}).

(2) The procedure replaces o« with a 2-cell x : u = x in s, corresponding to «, by the following
sequence of Tietze transformations:

— the coherent adjunction of the 2-cell @ : u = x and a 3-cell y: & = a by (4,

— the coherent adjunction of a 3-cell Y : &~ = aby o, a—s, 5>

— the coherent elimination of the 3-cell Y by 7,5 % o, v)>

— the coherent elimination of o and y by 5.

Then, the procedure applies the same operation as in case (1), with « replaced by .

If X, is finite, the procedure ends and we define R (L) as the final value of T Otherwise, we define R (Z)
as the limit of the decreasing sequence formed by the successive values of X. This (3, 1)-polygraph is
defined only up to Tietze equivalence, since the order of examination of the 2-cells can change the result
and since a 2-cell can fall in both cases, inducing a choice between the two possible induced Tietze
transformation. Nevertheless, by construction, the (3, 1)-polygraph R(X) is Tietze-equivalent to X.
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4. Homotopical completion and homotopical reduction

4.3.2. Homotopical 2-reduction. For a (3, 1)-polygraph X, the homotopical 2-reduction of L is the
(3, 1)-polygraph denoted by R,(X) and obtained by a procedure that is almost identical to the case of
dimension 1. The difference consists in the examination of the 3-cells y of X that may induce a Tietze
transformation 7t,. We first consider the following four shapes for y:

where « is a 2-cell of £ and f, g and h are 2-cells of (X, \ {oa}) .
(1) We apply the Tietze transformation 7t,.
(2) We replace y with a 3-cell y : f~ = « by the following sequence of Tietze transformations:

— the coherent adjunction of ¥ by t¢;y— 4 as

— the coherent elimination of y by 7t(f,, 54, a—,v)-
Then, we go to case (1) with 7y replaced by .
(3) Wereplacey witha 3-celly : g~ x;fxjh™ = « by the following sequence of Tietze transformations:

— the coherent adjunction of ¥ by tg—, yx h-»

— the coherent elimination of 'y by 7t(g., 74, h, v)-
Then, we go to case (1) with y replaced by 7.

(4) We apply the same transformations as in case (3) to replace y withy : g~ %1 f ¥ h— = « and,
then, we go to case (2) with y replaced by y.

Secondly, if v does not fall in one of the four previous cases, we check if Y~ does. If so, we replace y
with a 3-cell ¥ : t(y) = s(y) by the following sequence of Tietze transformations:

— the coherent adjunction of ¥ by ts(y) ;v t(y)
— the coherent elimination of 'y by 7t(s(y)x; 5% t(y), v)-

Then, we go to the corresponding case (1), (2), (3) or (4) with y replaced by .

The (3, 1)-polygraph R, (%) is defined as the result of the procedure or as the limit of the decreasing
sequence formed by the successively built (3, 1)-polygraphs. Once again, the (3, 1)-polygraph R(X) is
only defined up to Tietze equivalence but, by construction, it is Tietze-equivalent to X.
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4.4. Homotopical reduction in dimension 3

4.4. Homotopical reduction in dimension 3

The (3, 1)-polygraph 8(X) obtained by homotopical completion can also contain 3-cells that are not
necessary to have a homotopy basis. One could define an abstract procedure that examines, in a similar
way to the homotopical reduction in dimensions 1 and 2, all the 3-spheres of §(X)T to eliminate the
redundant 3-cells. However, this induces a practical difficulty: the effective computation of the 3-spheres.
But, in the case of a coherent convergent presentation, the critical triple branchings [21] give a way
to compute some 3-spheres that, in the examples we consider here, are sufficient to eliminate all the
unnecessary 3-cells.

4.4.1. Triple branchings. A triple branching of a 2-polygraph X is a triple (f, g, h) of 2-cells of ¥

with a common source, as in the diagram
ﬁ Y
g

U——Ww

N

A triple branching (f, g, h) is local when f, g and h are rewriting steps. Local branchings belong to one
of the following three families:

— aspherical triple branchings have two of their 2-cells equal,

— Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two,

— overlapping triple branchings are the remaining local triple branchings.
Local triple branchings are compared by the order < generated by the relations
(f,g,h) < (ufv,ugv,uhv)

given for any local triple branching (f, g, h) and any possible 1-cells wand v of £*. An overlapping local
triple branching that is minimal for the order < is called a critical triple branching.

4.4.2. Generating triple confluences. Let £ be a coherent convergent (3, 1)-polygraph. A family of
generating triple confluences of L is a cellular extension of £ that contains exactly one 3-sphere

fi f
vﬁ){/ vﬁ){/
f / h' f \ ) h'
A 91 f2 B’
Va w Ny
u I———w C’ i = u C w’ g'——1
N, 7
B 92 h{ A
h N £ h / £
val XVV/
h h
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4. Homotopical completion and homotopical reduction

for every critical triple branching (f, g, h) of X, built as follows. First, we consider the branching (f, g):
we use confluence to get f{ and g] and coherence to build the 3-cell A. We repeat this step with the
branchings (g, h) and (f, h). Then, we consider the branching (f7, f;) and we use convergence to get g”
and h” with U as common target, plus the 3-cell B’ by coherence. We do the same operation with
(hi,hj) to get A’. Finally, we build the 3-cell C’ to relate the parallel 2-cells g %1 h” and g} *; f".

4.4.3. Homotopical reduction in dimension 3. For X a coherent convergent (3, 1)-polygraph, the ho-
motopical 3-reductionof X is the (3, 1)-polygraph R3(L) obtained by a procedure that is similar to the
case of homotopical 2-reduction, applied by considering the 3-spheres of a family of generating triple
confluences of X. If such a 3-sphere w has shape

where v is a 3-cell of £ and A is a 3-cell of (£ \ {y})", then one applies the Tietze transformation 7T,
directly. Otherwise, the procedure considers different possible shapes of w, such as:

MB

/\ o LN
\/ v

In that case, the procedure considers the 3-sphere

O =1 % (B xwxC)xg-

instead of w and applies the Tietze transformation 7t5. Once again, by construction, the (3, 1)-polygraph
R3(X) is Tietze-equivalent to X.

4.5. Homotopical completion-reduction

If X is a terminating 2-polygraph, equipped with a total termination order, the homotopical completion-
reduction of X is the (3, 1)-polygraph defined by

R(E) = RRyR38(%).
4.5.1. Theorem. Let X be a terminating 2-polygraph.
i) The (3,1)-polygraph R38(L) is a coherent convergent presentation of L.

ii) The homotopical completion-reduction of L is a coherent presentation of L.
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4.5. Homotopical completion-reduction

4.5.2. Example. We have seen in Example that the monoid M presented by
£ = (xy;xx == yy)

admits the coherent convergent presentation

B
8(£) = (%y;xyx == yy, yyyx = xyyy; A, B)

where A and B are the 3-cells

(XyX yyyx ByX nyyyx Xy[?)
XYXUX MA B Yyyxyx MB XYXyyy
XY XYyy YIUE™ yyyyy < *YYY

Homotopical 3-reduction considers the 3-spheres associated to the critical triple branchings. Here, we
only need to consider ( xXYXyx, Xyoyx, xyxy oc) , with source xyxyxyx, giving the following 3-sphere:

Yyyxyx Yyyxyx

W I yyyo ayxyx yyyx
AyX ﬁﬂ/x \ w / \
xyxyxyx ==YoUx—= xyyyyx B  yyyyy = XYXYXyx 1 oy Yyyyyy
wA | ;
Xyxy l oyyy Xyxyoo oyyy
Xyxyyy Yyyxyx

The Tietze transformation 71, coherently eliminates B, proving that (x,y; «, 3; A) is a coherent con-
vergent presentation of M. Then, homotopical 2-reduction coherently removes 3 and A, so that the
homotopical completion-reduction of X is R(X) = (X, (}) and it is a coherent presentation of M.

4.5.3. Example. Let us consider the monoid M presented by the 2-polygraph

= (xy;xy == xx, yy i> XX).
This 2-polygraph terminates, with a total termination order given by the deglex order generated by x < y.

It has two critical branchings, one of them being confluent and the other one requiring the coherent
adjunction of a new 2-cell y : yxx = xxx, together with the 3-cells

FA oY

>

xo yyy

k XXX Uﬁ\‘ Yxx /y
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4. Homotopical completion and homotopical reduction

The adjunction of 'y generates three new critical branchings, all of them being confluent:

XX / XXXX / xxxy
yxxy m

XYXX MC XXXX Yyxx D XXXX

XY \ YXXX YXES yxxx %

Thus, the homotopical completion of Zis $(X) = (x,y; &, 3,v; A, B, C, D, E). Let us study the critical
triple branchings of X. We note that, if w is a 3-sphere associated to a critical triple branching that is
generated by 7y, then all the T-cells occurring in the boundary of w have size 5 or more: as a consequence,
this w cannot be used to eliminate any 3-cell. There remain two critical triple branchings to consider.
The first one gives the following 3-sphere:

XXYy
ayy N\
/ s e

xyyy ———=xpy——— xxxy

xB \X

Thus, the Tietze transformation 7t,, coherently eliminates C. The other critical triple branching gener-
ates the following 3-sphere:

xoy
xXxXyy = > XXXy xXxXyy
ﬁ% B ¥ / XXX / N
yyyy =——yRy—— yxxy E XXXX = yyyy xxxx

NI 4 \ 0N

yyxx M yxxx yyxx M yxxx

vy yy
The 4-cell w; generates two possible different Tietze transformations, eliminating D or E: we choose
to keep D. As a consequence, homotopical 3-reduction yields the coherent convergent presentation

(x,y; o, B,v; A, B, D). Then, homotopical 2-reduction coherently removes B and 'y, so that the homo-
topical completion-reduction of X is

R(Z) = (xy; «,B; A,m3(D))

where g (D) is D with both occurrences of y replaced by yp~ %1 By *1 xc.
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5. Deligne’s coherent presentation

5. DELIGNE’S COHERENT PRESENTATION

In this section, we apply the homotopical completion procedure and a part of the homotopical reduction
procedure to Deligne’s presentation of Artin monoids, given in [[13} 1.4.5] in the spherical case and in [29]
Proposition 1.1] in the general case. We get a coherent presentation that generalises Deligne’s result [[13]
Theorem 1.5] on the actions of spherical Artin monoids to general Artin monoids. We fix a Coxeter
group W with a totally ordered set of generators S.

5.1. Preliminaries on Artin monoids

We introduce notations for products in W that preserve or not the length and, then, we recall some
arithmetic properties on Artin monoids, observed by Garside for braid monoids [[16]] and generalised by
Brieskorn and Saito [6].

5.1.1. Length notations. We recall that the length 1(u) of an element u of W is the one of its reduced
expressions, that is, its representatives in S* of minimal length. Hence, for every u and v in W, we have
L(uw) < 1(u) + 1(v) and we use distinct graphical notations depending on whether the equality holds or
not:

Uy e Yw) =1(u) +1U(v),
Wy ooe (w) < Uu) + Lwv).

When w = uv holds in W with 1 v, we write w = uv. We generalise these notations for a greater
number of elements of W. For example, in the case of three elements u, v and w of W, we write WV w
when both equalities L(uv) = 1(u)+1(v) and L(vw) = 1(v)+1(w) hold. This case splits in the following
two mutually exclusive subcases:

PN WV w
uvw &
L(uvw) = L(u) 4+ L(v) + L(w),
PRI v w
uvw &
L(uvw) < L(u) 4+ L(v) + Lw).
5.1.2. Arithmetic properties of Artin monoids. If u and v are two elements of BT (W), we say that u
is a divisor of v and that v is a multiple of u if there exists an element 1’ in BT (W) such that uu’ = v.
In that case, the element 1’ is uniquely defined and called the complement of w in v [6, Proposition 2.3].
Moreover, if v is in W, seen as an element of B (W) by the canonical embedding, then we also have u
and u’ in W and v = uu’. A common multiple of a family (x1,...,xn) of elements of BT (W) is an
element y in BT (W) such that each x; is a divisor of y. A least common multiple (Icm for short) is a
common multiple that is a divisor of every common multiple.
If a family of elements of B™ (W) has a common multiple, then it has a Icm [6, Proposition 4.1].
However, in general, any family of elements does not admit a common multiple: indeed, we have the
existence of common multiples for any family if, and only if, the Coxeter group W is finite [6, Propo-

sition 5.5]. In particular, if I is a subset of S, then the family of elements (s;)ic; has a common right-
multiple if, and only if, the Coxeter group Wi is finite. In that case, the Ilcm of the family (s;)ic is the
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5. Deligne’s coherent presentation

fundamental element wy (1) of Wy. This implies that, if an element uw of W admits reduced expressions
S1W1, ..., SpUn Where sq, ..., sy are in S, then the subgroup W, ¢ 1 is finite and its fundamental ele-
ment Wy(S1,...,Sn) is a divisor of u. As a consequence, the element u has a unique reduced expression
of the shape wy(s1,...,sn)u’, which is a slight generalisation of [37, Lemma 4].

5.1.3. Deligne’s presentation. The braid monoid B* (W) admits a presentation, built from Artin’s pre-
sentation by adjunction of redundant generators and relations, that is considered in the spherical case
in [13 (1.4.5)] and in the general case in [29 Proposition 1.1] and [19, Proposition 4.1.3]. Deligne’s
presentation of Bt (W) is the 2-polygraph Del(W) whose set of 1-cells is W \ {1} and with a 2-cell

Ky @ Uy = uv

whenever 1 Vv holds, where -|- denotes the product in the free monoid over W \ {1}, to avoid confusion
with the product in W.
For example, Deligne’s presentation of the braid monoid B; has five 1-cells

S t st ts sts

and six 2-cells

Ks,ts Kst,s

Ks t
sjt = st s|ts sts stls == sts

Kis,t

o o
tls =28 ts tlst =% sts ts|t = sts.

We denote by Del. (W) the extended presentation of B™ (W) obtained from Del(W) by adjunction of
one 3-cell

uwjw
ulviw MAU»V:W uvw

ul%

S
for every u, v and w of W\ {1} with UV W . After the main theorem of this section, we call Deligne’s
coherent presentation the (3, 1)-polygraph Del, (W).

[OSTRYY
upyw

5.1.4. Theorem. For every Coxeter group W, the Artin monoid BT (W) admits Del, (W) as a coherent
presentation.

Proof. The proof of Theorem [5.1.4] is conducted in two parts: in[5.2] we compute the homotopical
completion of Del(W) to get a coherent convergent presentation of BY (W) and, then, we apply a part of
homotopical 3-reduction in[5.3]to get the result. O

In the spherical case, this result is a consequence of Theorem 1.5 and Remark 2.6 of [13]. There, Deligne
proves that, if W is finite, then the category Act(B™(W)) of 2-representations of B (W) in a 2-category C
is equivalent to the category of 2-functors from a Del, (W) into D. Moreover, the given proof makes this
equivalence natural in C: by Theorem we get that Del, (W) is a coherent presentation of BT (W).

44



5.2. Homotopical completion of Deligne’s presentation

5.2. Homotopical completion of Deligne’s presentation

We compute the homotopical completion of Del(W) to get a coherent convergent presentation of B* (W).

5.2.1. Termination of Del(W). We equip the 1-cells of Del(W)* with the order given by the interpreta-
tion mapping wj[uy| - - - [uyn to the family (1(ug),...,1(un)) of natural numbers, compared by the right
deglex order generated by the natural order. Let us note that this order is not total, but we will not en-
counter pairs of incomparable 1-cells during homotopical completion. For every 2-cell o, ,, of Del(W),
the strict inequality s(ot,,) > t(ow,) holds since, for the considered order, the pair (1(u),1(v)) is
strictly greater than the singleton 1(uv). Hence we get that Del(W) terminates.

5.2.2. The critical branchings of Del(W). The 2-polygraph Del(W) has exactly one critical branching

for every u, v and w of W\ {1} with iV w :

Then, given such a critical branching, there are two cases, depending on the length of uvw with respect
to the sum of the lengths of u, v and w.

S
— If WV W, the critical branching is confluent, resulting in the adjunction of the following 3-cell:

X
— Otherwise, if WV w, then both uv|w and u/vw are normal forms. Since l(vw) > L(w), we
have ulvw > uvjw. Thus, homotopical completion coherently adds the new 2-cell

Bu,v,w

ujyw —= uvjw,
together with the following 3-cell:

(OSTRY Iw

ulvjw uviw

\ MBuV
LL| Ky, w Bu,v,w
ujvw

[v

45



5. Deligne’s coherent presentation

After this first part of homotopical completion, we get a terminating (3, 1)-polygraph that is Tietze-
equivalent to (Del(W),()). However, the adjunction of the family 3 of 2-cells creates new critical
branchings that we need to consider.

5.2.3. The new critical branchings. The sources of all the 2-cells « and {3 have size 2 in the free
monoid over W \ {1}. This leaves two main cases for the critical branchings that involve at least one
2-cell 3.

The first case occurs when the sources of the 2-cells of Del(W) that generate the branching overlap
on one element of W \ {1}. The source of such a branching has size 3, with one 2-cell of the branching
reducing the leftmost two generating 1-cells and the other one reducing the rightmost two. That case
subdivides as follows, depending on the type o or 3 of the involved 2-cells.

X
— One critical branching when i V- W X :

Oy WX uvjwx

uvjwx

></\ /\X/\X/\

u v wx u v X
X N
NN AN

— One critical branching when U V' w X :

% uviwlx

upyw|x
\ ulhwx
U0y, x |
X

S
— One critical branching when W Vv w X y :

f’u,v,w|X LL\)|W|Xg
ujvwixy

Uvwx
qusw\ oy

This case splits in the following two disjoint subcases:

X

X NN X N X
NN N N NN NN
uvwixy and uvwixXy
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5.2. Homotopical completion of Deligne’s presentation

The second main case occurs when the 2-cells of Del(W) that generate the branching totally overlap,
i.e., they have the same source. Since one of those 2-cells must be a f3, the source has shape ulvw with

X

1V W , preventing the other 2-cell to be an . The only remaining possibility is to have a different

decomposition vw = v'w’, with u v’/\ !

Bu,v,w

ujyw

upv’'w’

el /)
Buv w/!

, so that the branching is:

uviw

w’w’

5.2.4. Confluence of the new critical branchings. We now proceed to the examination of each indi-
vidual case, proving that the corresponding critical branching is confluent, which induces the adjunction

of 3-cells to produce a homotopy basis.

/\X
N NN
— Case U V W X:

uv|iwx
ocu,vl/' | &vx

uviwx

u|6%

/\X/\
— Case U V W X:

upywlx

MC wywx  UVW[X

Kavw Ix

Ky, lwx

uvlwx

ulm

m

MDU.,V,W,X

Upwlx =——— uviw|x

uvjwx

/(XW,X

u,v,w
X VS
NN AN
— Case U V W X
uviwlx

Bu,v,%’

upywlx

ul%

ujywx

kaw,x

MEu»v,w,x uvjwx

Bu,v,wx
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5. Deligne’s coherent presentation

48

/\X/\ N
— Case W V w and U v

X /\X/\
NN N N

— Case U VWX y:

% iy %

LL|VW|XIJ MFu,v,w,x,y uvlwxy
u uv|o
‘va,x,y LL|VWX|y §uv\wx|y | VW, X
Bu,v,wxm
/\X/\ /\X/\
— Case U VWX y:
uviwixy

Bu,\y %,X,y

upwxy mGu,v,w,x,y uviwxly
X

ul va\ whvwly %Xm
7N

w’ , with vw = v'w’. Here we use the properties satisfied by Artin
monoids, seen in|5.1.2} to get the following relations in Bt (W):

v
X
\\ V
v/ . w
Indeed, we note that the elements v and v/ have a common multiple since vw = v/w’. Hence, they
admit a Icm. The elements x and x’ are respectively defined as the complements of v and v’ in their
Icm. The element y is the complement of the lcm vx = v'x’ of v and v’ in their common multiple

vw = v'w’. By uniqueness of the complements of v and v/ in vw = v'w’, we get w = xy and
w’ = x'y. Moreover, we have:

A~ /\/\/\
v X U and vi X' Y,

X
Finally, from the hypothesis 1V W , we get that y#1.

Then, there are two possible subcases for the confluence diagram, depending on x and x’. The first
subcase is when we have either x = 1 or x’ = 1. We note that both cannot happen at the same
time, otherwise v = v/ and w = w’, so that the branching would be aspherical and not critical.



5.3. Homotopical reduction of Deligne’s presentation

For example, let us assume that x" = 1, inducing v/ = vx, w = xy and w’ = y:

uvlxy

B, VX/’ &w
u V,X,Y
ufvxy uvxly
Bu,vx,y

In the second subcase, when x # 1 and x’ # 1, we have:

Buyay > WV = WIKY < Buvy
upyw uvxly
:/ , Mlu,v,w,v 'w’! T
ufv’'w uv’x'ly

Bu,v’,w’ LLV/|WI — uv’lx’y Buv’,x’,y
Since all the critical branchings are confluent, the homotopical completion procedure ends. As an in-
stance of Theorem{.2.2] we get the following result.

5.2.5. Proposition. For every Coxeter group W, the Artin monoid BT (W) admits, as a coherent con-
vergent presentation, the (3,1)-polygraph S(Del(W)) with one 0-cell, one 1-cell for every element of
W\ {1}, one 2-cell

Oy,
u|\) :> uv,

for every wandv of W\ {1} with \ Vv, one 2-cell

B'LLVW

upw —= uvlw,

X
for every w, v and w of W \ {1} with WV W and the nine families of 3-cells A, B, C, D, E, F, G, H
and 1 previously listed.

5.3. Homotopical reduction of Deligne’s presentation

We obtain the coherent presentation Del, (W) by application of coherent eliminations on the coherent
presentation 8(Del(W)) of Proposition m

5.3.1. The triple critical branchings of S(Del(W)). We examine the possible overlaps of the sources
of three 2-cells of §(Del(W)), in a similar way to the study of its critical branchings. There are four
different cases, depending on the generating 2-cells forming the triple branching, and, then, different
subcases depending on the 2-cells that close it. We only list the subcases used in the next paragraph.
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5. Deligne’s coherent presentation

— One critical triple branching when 1V W X :

oty WX uviwlx
ufoywlx
uppwix =——=—= ujvwlx
upvlogy x ulvjwx
This case splits into the five subcases:
S X
NN AN AN X NS

N N N NN N N NN NN

u v wx u v wx u v wx u vw

X
— One critical triple branching when W V' W X 1y :

v WX uviwlxy
ufviwixy upwixy

upy| Bw,x,y u|V|WX|1J

X > X
. NN NN
We only consider the subcase U V. w X Y .

X
— One critical triple branching when 1 V W X y :

Bu,v,w|x| uviwixly
| oy x|
upywixly % ujywxly

uhvw|ogy ufywixy

X /\X/\
NN N N

We only consider the subcase U V. w X Y .
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5.3. Homotopical reduction of Deligne’s presentation

X X X
.. . . NN AN PN .
— One critical triple branching when 1 v w, i V' W’ and W v"W” withvw =v/'w’ =v"w":
Bu,v,w LL\)‘W
upyw

:, Buv 'w’!

up’w =———=u ‘

u‘v//W//

Buyr == uvjw”

The subcases are determined by the value of the lcm of v, v/ and v
is the Icm of v and v’.

the situation where v/’

" and it is sufficient to examine

5.3.2. A family of generating triple confluences of S(Del(W)). We now proceed to the examination
of all the cases we have noted in the previous paragraph.

S
NN
NN AN

— Inthecase U Vv W X, we get the 3-sphere w

(Xuv,wlX
uvw|x uvwlx
(xu‘v‘w‘x Kuvw,x
Au,v,w|X ?Avwb‘
uviwlx =uloy, wix—=> u\vwlx\ Au,vw,x UVWX
u|Av,w,x oty x
u‘vlaw,x % X, vwx
ulvwx _ ulywx
U‘O‘v,wx
A

NN AN

— Inthe case U V W X, we get the 3-sphere w

Xuv,w [x
uviwlx uvwlx
“u,vlwlx ﬂ \
Au VW |X Ky, v [x
Bu,vw,x

ulvwlx =uloy, wix=p ujvw

u|Av,w,x
wvl ot x

ubwx s upwx

ul(xv,wx
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Bu,vw,x

e

‘(Xvw,x

A .
U, v,w,x*

Oh,uz,wlX
uvlwlx uvwlx
K, viwlx Kuvw,x
uvlocw x Ay WX
uviwlx uv\wx =0, wx==> UVWX
x ,V‘WX Au,v,wx o
U‘Vlaw x U, VWX
u\vlwx ulywx
u‘ocv,wx
H .
UV, WX
Ocuv,wlX

uviw|x uvwlx

Q
(xu,vw/ AN Buv W, X \
uvfo B VWX
‘% } Bu,vw,x

§> ufviwlx = uvjwx Hu,v,w,x

\ Oy, v ‘ﬁ( [§u‘v,wx
LL‘Vl"(w,x / B \

bt B s

LL‘o‘v,wx
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X N
NN AN

E

— Inthe case U V W X, we get the 3-sphere W yix:

uvjwix
oC\J.,\zl"le

ulvw|x 4u|(xv w|X:> ujywlx

N
u|Av,w,x
uvlotw, x

ul‘xv,wx

N X
N NN

Eu,v,w,x

u (Xv%
ufviwx M uhvwx

uvjwix
o, vwlx N’Jaw,x
uviwx ulvw|x uvlwx
Bu,v,wx
e Yvwa
Bu,v,wx ul\"o‘w x / B
UV, WX

uviwx M uhvwx

ul‘xv,wx

— Inthe case U V' W X, we get the 3-sphere wE’VYW)X:

Xuv,w [x
uvjwlx
Ku,v [wix

upwlx =y wix=p upwix

u|Bv,w,x
uvletw, x wPBv,w,x

ufvjwx

uvwlx

Ky [wix
Au,v,w|X
(Xu.,vwlX

AEAEA D
— Inthecase U V W X, we get the 3-sphere Wy x

UV, x
uviwlx

Oy vwix
u.,vl | Bu,v,w‘x

Bu,v,w |X

ulvwlx =l wix=p ujywlx

u Bv,w,x
uvlotw, x WPy w,x

ulviwx
/\X/\/\/\X/\
— Inthecase U V W X Yy

wlBw,x,y

uviwlxy

OCU-,V|W|X1J Bu‘v‘w ‘Xy
BU,V,W |Xy GUyVaW»XaU

upwixy =ulow wlxy=p upywixy

N
LL| Cv,w,x,y ulBvwx,y
uVIBw,x,y \

upvwxly - upwxly

u‘“v,wxly
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ulviw|x W,
u Vv ‘WX C‘LL,V,W,X /
u\vlocw x “u‘vwlx

u\vlwx ufyw|x

Ulﬁv W, x
uviwx uviwlx

ot vwlx uv|otw,x

U—Vlfxw,x

Q
= uviwlx vlwx uviwlx

ulvjwx - ulywlx

U‘Bv,w,x
G .
, we get the 3-sphere Wiy wixy:
wlwxly uviwlxy
OCu.,v|W|XU Nﬁw,x,y
Buvwxly é uvlwlxy = uviwxly
Bu,v,wx‘y
(o273 v‘WXhJ
uvlBw,x,y B
ulvjwxly u,v,wx|y uywxly
U—‘(Xv,wxhj



5.3. Homotopical reduction of Deligne’s presentation

X /\X/\
NN N N

— Inthecase U V W X Y , we get the 3-sphere wuvwx’y

uvlotw, x|y
uVIWIX\y WWx|yuv|owx y
wvlotw, x [y Bu,v,wixly
_— uvlwlocx y uvIAWXy
uviwlxly uvlwxly 4
B,y wixly E |y / ujvwlx| uv\w\xy —uv|otw, xy=p uvjwxy
WLV, WyX uvlocwx
Bu/v,wx‘y Y
74 u v w|XU
upwixly =ulotvw,x Y= ujvwx|y uvlwxy UVt y
u|BW,X%\ ulvw\xy Fu,v,w,x,y UV X,y
u‘vwl‘xx,y u‘ﬁvw‘x,y

ulvw\xy U«lﬁvw,x,g

uhwxly _ uvlwxly
ﬁu,v,wxly
X X
YO X

X
— Finally, let us consider the case i V w, W v/ W’ and i v/W” withvw = v'w’ = v"w”".
We proceed in the same way as for the critical branching inducing the 3-cells H and I, obtaining
the unique elements x, x’, x” and y of W such that:

w = xy, w' = x'y, w” = x"y, vx = v'x' = v'x"| y # 1.

Moreover, at most one of x, x" and x” can be equal to 1: indeed, otherwise, the triple branching
would be aspherical and not critical. In the case where x” = 1, corresponding to v” being the lcm

/ I .
of vaand v', we get the 3-sphere w,, | .,/

uvlw uviw
Bu‘v,w uv,x,y ﬁu,v,w uv,x,y
IU.,v,w,v 'w’
uhyw :Bu,vl‘W/$ w'w’ =By’ x/ y= uvxly. : UVX,Y uvxly
) )
Hu‘VIYXI)y
u,vx,y Bu ,VX,Y

5.3.3. Homotopical reduction of S(Del(W)). We get Theorem by successive application of two
Tietze transformations:

— a homotopical 3-reduction that considers in sequence the 3-spheres of type w!, w™, ..., w® and

coherently eliminates the corresponding 3-cell of type I, H, ..., C, respectively.

— ahomotopical 2-reduction that coherently eliminates every 3-cell of type B and the corresponding
2-cell of type f3.

This results in the (3, 1)-polygraph Del, (W), proving that it is a coherent presentation of B™ (W).
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5. Deligne’s coherent presentation

5.4. Deligne’s coherent presentation for Garside monoids

Garside monoids have been introduced as a generalisation of spherical Artin monoids by Dehornoy and
Paris [11) 9] to absract the arithmetic properties observed by Garside on braid monoids [[16] and by
Brieskorn-Saito and Deligne on spherical Artin monoids [6} [12]. We fix a Garside monoid M and we
follow [[17] for most of the terminology and notations.

5.4.1. Recollections on Garside monoids. In the monoid M, every pair (u,v) of elements admits a
lcm u /A v. Moreover, M has a fundamental element, denoted by wy, such that the set W of its divisors
generates M. The complement of an element u of W in wy is denoted by 9(u). A pair (u,v) of elements
of W is left-weighted if we have (1) A v = 1. There exists a unique left-weighted pair (u’,v’) of
elements of W such that uv = u’v’ holds in M: we take u’ = u(d(u) /A v) and v’ to be the complement
of a(u) A v inv. The operation transforming (w,v) into (u/,v’) is called local sliding. Tt induces
a computational process that transforms any element w of W* into its (left) normal form by a finite
sequence of local slidings, thereafter represented by dashed arrows:

u---(-)---u
Moreover, two elements u and v of W* represent the same element of M if, and only if, they have the
same normal form, so that they are linked by a finite sequence of local slidings and their inverses:
U-——-Ue——v.

5.4.2. Deligne’s presentation for Garside monoids. First, let us note that, since the set W of divisors
of the fundamental element wy generates M, then so does W\{1}. Given two elements u and v of W\{1},
we use the notations 1 v and u*v to mean

Uy & duwAv=1,
wv & du)Av#TL

We define Deligne’s presentation of M as the 2-polygraph Del(M) with one O-cell, one 1-cells for every
element of W \ {1} and one 2-cell

o
uly —25 uv

for every wand v in W \ {1} such that i v holds.

Let us check that Deligne’s presentation is, indeed, a presentation of the monoid M. If 1 v holds,
transforming ufv into uv is a local sliding since uv is the normal form of ufv, so that each 2-cell «,,, is
an instance of local sliding. Conversely, if ufvw is transformed into uvjw by local sliding, this implies,

in particular, that both 1 v and v W hold. Thus, the composite 2-cell

%,W

corresponds to the local sliding transformation applied to ujvw.
The proof of Theorem adapts in a straightforward way to the case of Del(M), yielding a coher-
ent presentation Del, (M) of M.

ulviw
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6. Artin’s coherent presentation

6. ARTIN’S COHERENT PRESENTATION

Let W be a Coxeter group with a totally ordered set S of generators. In this section, we continue the
homotopical reduction of §(Del(W)), to get that the homotopical completion-reduction of Del(W) is
Artin’s coherent presentation Art, (W) of B*(W). This gives Theorem for Artin monoids. Then,
we use the fact that Artin monoids embed in the corresponding Artin group to get Theorem for

Artin groups.

6.1. Example: the case of B
Deligne’s coherent presentation Del  (A) of Bg.L = B"(A;) has five 1-cells
S t st ts sts

six 2-cells

o o .
s|t —5b ot s|ts =518 ot stls —SbS ot

o o o
tls S ¢ tlst =258 sts ts[t =25 sts

and two 3-cells

S|t|S Asts st t|S|t Atst

S|;¥‘ slts tlocs e t|st /mt

Let us prove that the homotopical reduction of Del (A7) is Artin’s coherent presentation Arty (A3), i.e

the (3, 1)-polygraph

(syt; tst Q) sts; 0).

The homotopical 3-reduction procedure, applied to Del. (A7), can coherently eliminate each 3-cell with
one of two different 2-cells: ot 5 Or gt s for Ag ¢ s and ot st or &g ¢ for Ag s ¢. Similarly, the homotopical
2-reduction procedure can coherently eliminate the 1-cell sts with any one of the 2-cells o s, X st, Xst,s
and o . In order to make those choices systematic, we use the fixed order s < t on S and proceed as

follows:

— a T-cell u = s;yu’, with s; the smallest divisor of u in S, is coherently eliminated with the 2-cell

. /
K, t Siu =,

— a 2-cell oy, such that u = siu’ with s; the smallest divisor of w in S, is coherently eliminated

with the 3-cell Ag, /.
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6. Artin’s coherent presentation

Using those choices, we get that the monoid B;r admits the coherent presentation
(syt; (o) s 0)

where 7t is the Tietze-transformation induced by homotopical reduction. This transformation is defined
by induction on the 1-cells by 7t(s) = s if s € S and 7t(u) = sy7r(u’) if u = s;u’ with s; the smallest
divisor of u’ in S.

There remains to compute the source 7t(t|st) and the target 7t(sts) of 7(ot s¢) to conclude. Let us
note that the product in (W \ {1})* is denoted by -|- and the product in S* is denoted by concatenation, so
that we have mt(ulv) = 7t(u)mt(v). For the source of 7t( o st), we have

m(tlst) = m(t)m(st) = tsm(t) = tst

and, for its target, we get
mt(sts) = sm(ts) = strm(s) = sts.

Thus, the 2-cell 7t(ot ¢) is, up to isomorphism, the unique 2-cell v of Art(A;): we recover the fact,
predicted by Tits [37, Proposition 4], that Art, (A) = (Art(Az), () is a coherent presentation of B;F.

6.2. Classification of the cells of Del, (W)

We consider Deligne’s coherent presentation Del, (W) of BT (W). The proof of Theorem has
removed all the 3-spheres coming from the critical triple branchings of §(Del(W), except for the ones
of type w?, thereafter simply denoted by w and collectively forming the cellular extension Q (W) of
Del, (W)". We start with a classification of the cells of Del, (W) and the 3-spheres of Q(W), that
produces pairs of cells that can be coherently eliminated to get the homotopical reduction of Del , (W).

6.2.1. Smallest divisors. If u is an element of W \ {1}, the smallest divisor of u is denoted by d,, and
defined as the smallest element of S that is a divisor of u. Let (ug,...,u,) be a family of elements of
W \ {1} such that

Luwr--un) = Hw) + -+ Uun).

Forevery k € {1,...,n}, we write sy = dy;....,,. We note that s; > s, > --- > s, since each sy divides
ug - - - for 1 > k. Moreover, the family (sq,...,sx) has u; - - - u as common multiple, so that their
lem wo(s1,. .., sk) exists and divides 1 - - - uy, and each subgroup Wy, ¢ 1is finite. Thus, we have the
following diagram, where each arrow u — v means that u is a divisor of v:

wo(s1) —— Wo(s1,82) (---) Wo(S1y.-+ySn1) —— Wo(81,...,5n)
W ——uw () WU ————— U Uy
If every vertical arrow is an equality, we say that (ug,...,uy,) is of rype I. Since each wy is differ-
ent from 1, this implies no horizontal arrow is an equality, so that s; > --- > s, holds. Moreover,
we have u; = s7 and, by uniqueness of the complement, we get that each uy. is the complement
of wo(s1y...,8K) in Wo(s1,...,8ks1). Thus, the family (uy,...,uy) is uniquely determined by the
elements sq, ..., s, of Ssuch that sy > --- > s,,.
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6.2. Classification of the cells of Del, (W)

Otherwise, there exists a maximal k in {0,...,n — 1} such that (uy,...,uy) is a family of type I,
i.e., such that uy---u, = wg(s1,...,8k). Then there are two possibilities, depending if the equality
Wo(S1y..+y8k) = Wo(s1,...,Sks1) holds or not, which is equivalent to the equality sy = sy, since
ST > -+ > s > Ski1. If s = spi1, we say that (uy,...,u,) is of rype II. Otherwise, we have
U1 = vw, with v and w in W \ {1}, such that (uy,...,uy, V) is of type I: we say that (wy,...,uy) is
of type 111

Finally, we define a mapping

(D(LL], oo )un) = (l(ul c 'un)> dun 1(u1 )) du1uz» l(u1u2)) cee )y du1~~-un_1 ) l(ul s Up—1 ))

into N x (S x N)™1, equipped with the well-founded lexicographic order generated by the natural order
on N and the fixed order on S. We use the mapping @ and the lexicographic order to compare families
(uq,...,un) of elements of W\ {1} such that 1(uq -+ - un) = L) + -+ + L(uyn).

6.2.2. The classification. Each 1-cell u, each 2-cell «,,,, and each 3-cell A, ,, of Del; (W) is classified
according to the type of the family of elements that indexes it. For the 1-cells of Del (W), we get:

— Typel: sin §,

— Type HI: su with s = dg,.
For the 2-cells of Del (W), we get:

— Type I &5, with s > dg, and su = wy(s, dgyu),

— Type II: o, with s = dgy,

(@) osuy withs = dgy,
— Type III: ’ )
(b) o With s > dg, = dgyy and su = wy(s, dsy).
For the 3-cells of Del (W), we get:

— Type I: Agy with s > dg, > dguy and suv = wy(s, dsy, dsuy)s

(@) Asuyv withs = dgy,

— Type II: .
(b) Asuyv Wwith s > dg, = dgyy and su = wy(s, dsy),

(@ Asuvnw Wwiths = dg,,
— Type lIl: § (b) Asuvw With s > dgy = dgyy and su = wy(s, dgy),
(©) Asuww With s > dgy > dsyy = dsuww and suv = wo(s, dsy, dswy)-
We also consider the following type of 3-sphere Wy v w,x of Q(W):
(@) wsuyw Wwiths = dgy,
— Typell: ¢ (b) wsyvw Withs > dgy = dsyy and su = wy(s, dsy),
(©) Wsuvw With's > dgy > dguy = dsuww and suv = wy (s, dgy, dsuy).
We observe that there exist bijections between the 1-cells of type III and the 2-cells of type II, between
the 2-cells of type III and the 3-cells of type II, and between the 3-cells of type III and the 3-spheres of

type II. In what follows, we compare the cells of Del. (W) according to the well-founded order defined
on their indices.
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6. Artin’s coherent presentation

6.3. Homotopical reduction of Del (W)

Using the classification of the cells of Del, (W), we compute the chain of Tietze transformations

Del, (W) T -2 Ry (Del (W) T — 25 R,R;(Del. (W) T —s R, RyR3(Del, (W)

and we prove that 7t3 coherently eliminates the 3-cells of type III and the corresponding 3-spheres of
type II, that 7t; coherently eliminates the 2-cells of type III and the corresponding 3-cells of type II and,
finally, that 717 eliminates the 1-cells of type III and the corresponding 2-cells of type II. We begin with
homotopical 3-reduction, proving that the homotopy basis of Theorem 5.1.4]can be further reduced.

6.3.1. Homotopical 3-reduction. For each 3-sphere wy 1w of type II

(Xsu,v‘w “su,v‘W
suvlw = suvlw sulvjw = suviw
“S‘u‘v‘w ﬂ Ksuv,w O(Svuw‘w \ Xsuv,w
As,u,v|w "?uv‘w Su "‘\%\' Asu,v,w
slulviw =s|ow,vIw=> sluvjw As,uv,w suvw = slulvlw = sujvw Osi,yw=p> SUVW
S|ALLVW Sl(xuvw Ks u‘VW AS U vw
SUIOCV,W\ "Wy & Xs uvw 5‘u|0Cv,w / » Xs, uvw
slufyw _ sluvw siupjyw - sluvw
S|0(u.,vw Sl(xu,vw

we consider the 3-sphere wé)u’v’w obtained from wy . by composition with 2-cells and 3-cells of
Del, (W), so that w;,u,v,w has the following shape, depending on the subcase of type II:

>

(a) wé,u,v,w D Asuyw D Asuyws
(b) wé,u,\;’w D Aspvw 2 Asuvws
(c) wé,u,v,w D Asuvw 2 Asupws

By construction, the homotopical 3-reduction of Del; (W) yields the same result if we replace the
3-spheres wy 1, vw of type Il by the 3-spheres w ;’u‘\,’w.

Let us prove that each A, ., of type IIl is strictly greater than every 3-cell of Del, (W) that appears
in Ku,v,w- We observe that Ay yw, Asuv,w and Ag vy are always strictly greater than Ay and Ay
since 1(suvw) > 1(suv) and 1(suvw) > 1(uvw). Then, we proceed by case analysis:

(@) Aguyw > Aguvw and Agyvw > Aguvw since s = dgy and 1(su) > 1(s).

(b) Asuvw > Asuvw since s > dgy and Ag iy w > Agvw since dgyy = dgy and L(suv) > I(su).
(©) Asupw > Asuyw since s > dgy and A v > A v since dgy > dsyy.

As a consequence, we can define a 3-functor

Del, (W)T 5 Del, (W)T
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6.3. Homotopical reduction of Del , (W)

by induction on the well-founded order on 3-cells of Del. (W) by

(A ) T3 (Auww) if Ay is of type II1,
TT =
Fvw Auvw otherwise.

For each 3-sphere w;)u)v‘w, we define the following 3-sphere of Del, (W) :

7 . /
Wsuvw * 7T3(S(ws,u,v,w)) = t(wé,u,v,w)'

!/

By construction, the homotopical 3-reduction gives the same result if we replace the 3-spheres wy ,, ,+,

by the 3-spheres w(',, ,, .

Each 3-sphere w S’f wvw generates a Tietze transformation that coherently eliminates its target 3-cell
of type III. Moreover, this Tietze transformation leaves the boundary of every other 3-sphere of type w”
unchanged. Since there is exactly one 3-sphere for every 3-cell of type 11, the homotopical 3-reduction
procedure coherently eliminates every 3-cell of type III from Del, (W).

At the end, by definition of 713, we have R3(Del  (W)) = m3(Del;. (W) and the Tietze transformation
generated by homotopical 3-reduction is the corresponding factorisation of 7t3:

Del, (W)T 725 R3(Del, (W))T.

6.3.2. Homotopical 2-reduction. We proceed in a similar way to homotopical 3-reduction. Firstly, we
replace by a Tietze transformation every 3-cell A, of type II

suv

sfulv mAs,u,v
S|ok S|u\) /S,u\)

with the following 3-cell A depending on the subcase:

RIRYL

Ksu,v s uv

v ﬂ w Sy //—_\'\x w
(a) \ mAé,u,v / (b) \ M,Aé,u,v /
o Xs,uv S|(X1Iv Ksu,v

sulV 7 sluly =—= sjluv slulv :|> sulv

s| [O4TRY KsulV

For oy of type III, we denote by &y the target of the corresponding 3-cell A’ of type II. Then, we
define by induction a 3-functor

R3(Del, (W) T 2 Ry(Del, (W))T

by
T (x if oy 18 of type 111,
( ) ) { 2( u,v) I Gy 18 yp

Oy otherwise.

]
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6. Artin’s coherent presentation

To ensure that 71, is well-defined, we check that each x,,, of type IIl is strictly greater than every 2-cell
that appears in &, ,. We observe that o, and o .., are always strictly greater than o, and o, since
I(suv) > 1(su) and L(suv) > 1(uv). Then, we proceed by case analysis:

(a) &suy > Oty since s = dgy, and 1(su) > 1(s).
(b) ots v > Xsu,y since s > dgy.

We conclude the proof with the same arguments as for homotopical 3-reduction. We get that the coherent
presentation Ry R3(Del (W)) is 7 (Del  (W)), obtained from R3(Del . (W)) by coherent elimination of
the 2-cells of type III and the 3-cells of type II. We also get that 7t, factors through a Tietze transformation

R3(Del, (W) T 2 R,R3(Del, (W)

6.3.3. Homotopical 1-reduction. Finally, the homotopical 1-reduction procedure coherently eliminates
each 2-cell of type 11

slu o‘% su

with the T-cell su of type 11, inducing the Tietze transformation

RoR3(Del, (W) T —Ls Ry R, R (Del, (W)

where R1R,R3(Del; (W)) only contains the cells of Del (W) of type I. The 3-functor 77 is defined
on 1-cells by induction on their length by 7t;(s) = s if s € S and by m(su) = s|m(u) if s = dgy.
Moreover, it sends the 2-cells of type II to identities and it projects the boundaries of the 2-cells and
3-cells of type I accordingly.

6.3.4. The resulting coherent presentation. After homotopical reduction, we get a coherent presen-
tation of B*(W) that contains exactly the cells of type I of Del, (W), with boundary modified by the
3-functor T = my7p713. There remains to compute the values of 7t to obtain Theorem for Artin
monoids.
The T-cells of type I of Del (W) are the elements of S. A T-cell u of Del (W) is mapped through 7t
to the element
m(uw) = $7-+-Sp

of §*, such that u = s7--- s, and s; = ds;..5, -

The 2-cells of type I of Del, (W) are the o, such that s > dg, and su = wy(s, dsy). Hence, there
is one such 2-cell for every t > s in S such that W{S)t} is finite, i.e., such that mg is finite, and its image
through 7t is precisely

Yst @ (ts)™st = (st)™st.

The image of a 2-cell o, ,, of Del (W) through 7t is given by induction as follows:

”(O(s,u) = Yrs ifu= <TS>mTS_] forr <s

ﬂ(ocs,u) = if s = dsu

m(asu) = (%—,w) *1 YrsW *1 Tl(Xgy )  ifu=vwandv = (rs)m™rs—T forr = dg, < s
T (XSU»V) - (OC ,v) *1 ﬂ(ocs,uv) if s = dsu-
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Finally, the 3-cells of type I of Del (W) are the Ag,,, such that s > dg, > dsuy, SU = Wo(s, dsy)
and suv = wy(s, dsy, dsuv). Hence, there is exactly one such 3-cell for every t > s > rin S such that
the subgroup Wy, 1, is finite.

There remains to compute the image of each of those 3-cells through 71, depending on the type of
the finite Coxeter group Wy, ¢ 10 A3z, B3, H3, Ay x Ay x Ay and I(p) x A;y. The main technical
difficulty is to manipulate elements of W and, in particular, the different reduced expressions of the
longest element wy (T, s, t). For that, we have used the PyCox package of Geck [18]. Let us detail some
of the computations.

For t > s > rin S such that Wy, ¢ 1, is of type A; x A X A, the corresponding 3-cell of type I of
Del (W) is

The image of Ay, through 7t is given by the inductive application of 7t to the 2-cells of its boundary.
For the source of 7(Ay ), we get (o ¢[1) = ys¢r and

7T(<Xst,r) = 37T(0Ct,r) *1 7T(0(s,rt)
= SYrt*1 Vet x1 70t t)
= S¥Yrt *1 Vst
For the target of 7(A¢ s+ ), we get (t|as ) = tyrs and
T otrs) = YreS *1 (Ot s)
= YrtS *1 TVst *1 00t st)
= YrtS *1 T¥st.
Thus, the image of Ay s through 7 is

y str % stt *{;

ST MZM Tst

WX’ trs Tts /Wst

In the case where Wy, ¢ 1 is of type A3, the corresponding 3-cell of type I of Del, (W) is

y StS|TSt Xﬂst
tlst[rst At strst

%ts

totst,rst tlrsrts
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6. Artin’s coherent presentation

To get 7t( Ay st,rst), We compute the image of its source through 7. We get 7t( o s¢|rst) = ys¢rst and
Tl sts,rst) = SETT( 0t rst) *1 STU( X rsrt) *1 T0( X rstsr)-
Then, we have st7t( o rst) = styrst and (ot rstsr) = YrstsT, together with
sTt(ottrsrt) = SYrSTE*1 STTT( O s57¢) *1 STE(Cr stsr)-
Finally, we get s7t( &, stsr) = Tsrstsr and
STTC(Oty,srt) = STETU( g r) ™ *1 STYstT 1 STTU(Ksts,r) = STESY %1 STYsiT.

A similar sequence of computations for the target of Ay g rs¢ gives that 7(Ay s rst) is precisely the 3-cell

SYrtSYrt S T
strsrt%srtstr Vst

styrst —— srstsr thr
stsrst TsTtsr
YStrSt/W WTSYrtST
tstrst MZM rstrsr
tsyrtstﬂ Wrstyrs
tsrtst rstsrs

TS
tsTyst tsrsts ﬁ trsrts =—=——= rtstrs Vst
TS

Yrt S‘Y;[S

Similar computations for the other types I;(p) x Aj, B3 and Hj gives that the homotopical completion-
reduction of Del(W) is Artin’s coherent presentation Art, (W). This ends the proof of Theorem [2.4.3]
for Artin monoids: Art, (W) is, indeed, a coherent presentation of B™ (W).

6.4. Artin’s coherent presentation of Artin groups

We conclude the proof of Theorem [2.4.5]for Artin groups thanks to the following result proved by Paris
in [32]: every Artin monoid B* (W) embeds in the Artin group B(W). Thus, Theorem applies to
Artin monoids to transfer their coherent presentation to Artin groups.

6.4.1. Notations. If X is a 2-polygraph, the groupoid G presented by X admits, as a category, the pre-
sentation Gpd(X), obtained from X by adjunction, for every T-cell s : x — y of X, of the following
cells:

—alcell§:y —x,

— two 2-cells Ag : §s = 1y and ps : s§ = 1y.
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6.4. Artin’s coherent presentation of Artin groups

If Zis a (3, 1)-polygraph, we denote by Gpd__(X) the extended presentation of the groupoid G presented
by Z that is obtained from X by adjunction, for every 1-cell s : x — y of Z, of the following cells:

— the same 1-cell § and 2-cells A and p; as for Gpd(X),

— two 3-cells
AsS PsS

By definition of a coherent presentation of a groupoid, we have that X is a coherent presentation of the
groupoid G if Gpd(X) is a coherent presentation of G, seen as a category.

6.4.2. Theorem. Let X be a (3,1)-polygraph, let C be the category presented by L and let G be the
groupoid presented by X. If C embeds in G and if L is a coherent presentation of C, then L is a coherent
presentation of G.

The proof of Theorem|[6.4.2]is conducted throughout the rest of the section, by homotopical completion-
reduction of a specific presentation of G, seen as a category. Before this, we give a counterexample that
shows that Theorem [6.4.2] does not hold if M does not embeds in G.

6.4.3. A counterexample. Let us consider the monoid M presented by
r = (a,b,c,d; a:ac= ad, f:bc= bd).

This 2-polygraph is convergent with no critical branching, so that (X, ()) is a coherent presentation of M.
But M does not embed in the group G presented by X, since ¢ = d holds in G. Moreover, the two
different ways to prove this equality in G generate the following 3-sphere y in Gpd(Z)"

This 3-sphere cannot be the boundary of a composite of 3-cells of types I or ]. Indeed, neither of those
3-cells contain the 2-cells o or 3. As a consequence, all their composites have the same number of «
and 3 in their source and target, which is not the case for y. Thus, the group G does not admit (X, () as
a coherent presentation.

6.4.4. The presentation Gﬁl(}:) In the following, we use the same notations as in Theorem We
denote by S the set of 1-cells of X and we consider the canonical presentation Can(C), with the unit cells
lx 1X = 14 going in the terminating direction. We consider the alternative presentation Gpd(Z) of G,
obtained from Can(C) by adjunction of the following cells:
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6. Artin’s coherent presentation

— al-cell§:y — xforeverys:x — yin$,
— a2-cell Asy, : §su = Uforeverys:x —»yinSandu:y — zin C,
— a2-cell pys:us§ = Uforeveryu:x - yinSands:y — zinS.

We observe that (EAp;l(Z) terminates by considering the length of the 1-cells as termination order.

6.4.5. Homotopical completion of GAp/d(Z). We check that (f}ﬁi():) is confluent and we get the 3-cells

of the coherent presentation S((?p/d():)) of G. First, we have the three families of the canonical coherent
presentation Can (C)

“yf &w /o”\/_“\‘ /0‘&
i 1

T (Ao rQLu/u i \> m
ﬁ% \)W(X/u,vlv w o

for every possible 1-cells, with the indices of identities omitted. Then, we have the 3-cells induced by
the 2-cells of types A and p

S,V

for every possible 1-cells, also with the indices of units omitted. Let us note that Gpd(Z) has no critical
branching of shape (A, As,y) with source §su = §$V because, by hypothesis, the category C embeds
into the groupoid G: as a consequence, an equality su = sv in C implies u = v. For the same reason,
there are no critical branching of shape (puys, Pv,s)-

6.4.6. Homotopical reduction of S(CTpTd(Z)). Among the critical triple branchings of S(Gpvd(l)), we
consider the following ones:

X1 uVv X1,uV
v v v w
)\s‘lm ~ ﬂ Xu,v )\5,1® X\ K,y
B 1uV Asuv Toay A1 u,v
S,l,u / wB & sty
S,V
F =S V= §suv\ Bsuy w = Y = T =—% uv=—> v
— SAs,u,v s — Ag 1uv Bs,],uv
SSxXu,v )\s,uv SSXr,v } 7\s,uv
§oc5‘uv g(xs,uv
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6.4. Artin’s coherent presentation of Artin groups

otuv,s§ Ouv,s$
Uvss wvss uvss wvss
OCu.,v/S\g v . Puv,s )\5,1 uv Puv,s
Au,v,ss Oy,vs S uvp uv,1,s
/ w€
u,v,s

oy — —
Wss —lay,s§= Ws§  Cys W > Uvss uv] wv, 1= W

3
) 2)
(@)
=
g/
!
.
F
<

“u v] u w1
$Son, Ku,v

wv MU\) uvlyﬁ/\?

UKy 1 ﬁ(x\),]

SSULE —Sotgy, 1 F= Ssutt Ds ut i = $sutt = il =71
$Cou1t §\Ps t Aswl B
—— by o ) s,u,1
SSU-D]X X 7\s,u SSupPq ¢ / B )\s,u
ssul - Ssu ssul = > u
SXs,1 §§ﬁ
pu»Ss/{) pu,sﬁ)

PN N ﬁ
$
(Xu,ss ~ % X, sv O(u,sgs/@ X Xu,sv
u] ,sSV ?JSV wi]sv us?\x Eu,s,v
= USSSV =

{886y =lpy = U1V AuJ sy usv ——0tus,v—=> Usv

- N\ 7
uELSN UXT v %, sV Au,s,v
i\L/SN)\S,\) % Xu,sv ﬁ§7\5,\, / Ku,sv

usv y usvy usv v usv
ﬁocs,\, ﬁas,v
X1,sU X1,sU
Tsu s W= >
p1,:50 - 7 s, p1,s51 N s,
E],s,ﬂl }Ju £, Tots A1,s,u
74 Wi NA
S§5U ==SAs 1 U—=> 51U ASJ u su = SESU = 1?1\1 =01 su=— 5U
A~ A
~ SBS,I,U. X1 . Ssu E],s,u
SSos u AN os,u SSots,u s u
sssu w su s8su w su
SBs,1,u SAs,u

Those 3-spheres generate a Tietze transformation of S(é}il([)) that coherently eliminates every By,
for u # 1, every Cyys for v # 1, every Dg 1, and every Ey 5y for u # 1 or v # 1. Thus, we get a
homotopy basis of Gpd(X) made of the 3-cells of Can, (C), plus the following 3-cells:

S‘/ g V -
M/ - )])S
s%sﬁ Asu A\ L

) »S
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~

St

S
5% me 5 5 B &

The 3-cells B 1., and Cy 1 s generate a Tietze transformation that coherently eliminates them with the
2-cells Ay, and py s for u # 1. Then, we consider the Tietze transformation from Can  (C) and to the
reduced canonical coherent presentation Can’, (C) of C. This yields a coherent presentation of G, seen
as a category, made of Can/, (C) extended with the 3-cells

ey ST =%,

P1,sS As1$

AVA/\ ] ) )
sSs MELSJ S §sS MFS S
\Z/ \Z/

TS\)\s,l gphs

Finally, we consider a Tietze transformation 7t from the Can/ (C) to L and, then, we identify A
to As, P15 t0 Ps, E1 1 to Js and Fg to I;. We obtain exactly Gpd, (X), thus proving that it forms a
coherent presentation of G, seen as a category. This concludes the proof of Theorem [6.4.2] and, as a
consequence, of Theorem [2.4.
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