
HAL Id: hal-00682233
https://hal.science/hal-00682233v1

Preprint submitted on 23 Mar 2012 (v1), last revised 22 May 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent presentations and actions on categories
Stéphane Gaussent, Yves Guiraud, Philippe Malbos

To cite this version:
Stéphane Gaussent, Yves Guiraud, Philippe Malbos. Coherent presentations and actions on categories.
2012. �hal-00682233v1�

https://hal.science/hal-00682233v1
https://hal.archives-ouvertes.fr


COHERENT PRESENTATIONS AND ACTIONS ON CATEGORIES

STÉPHANE GAUSSENT YVES GUIRAUD PHILIPPE MALBOS

Abstract – We study Deligne’s notion of action of a monoid on a category and, in par-
ticular, the piece of data that corresponds to the coherence relations that such an action
should satisfy. We prove that actions of a monoid are equivalent to 2-functors from
a 2-categorical cofibrant replacement of the monoid into the 2-category of categories.
One way to compute such a cofibrant replacement is to consider the 2-category pre-
sented by a coherent presentation of the monoid: this is a presentation extended with
a homotopy basis, that is, a set of relations between the relations that identifies any
two proofs of the same equality in the monoid. Using higher-dimensional rewriting, in
the polygraphic setting, we combine and extend Squier’s theorem and Knuth-Bendix
completion procedure into a “reduced homotopical completion” procedure that, when
successful, transforms a given presentation into a relatively small coherent presen-
tation. In particular, when used on Deligne’s presentation of Artin-Tits groups of
spherical type, the procedure computes the coherence conditions that Deligne finds
with geometric methods.
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Introduction

INTRODUCTION

Actions of monoids on categories

Given a monoid M and a category C, an action T of M on C is a family of endofunctors T(u) of C, one
for every element u in M, such that T preserves the product of M. In a direct transposition of the notion
of action on a set or a vector space, this could mean that, for every u and v in M, we have the following
equality:

T(uv) = T(u)T(v).

However, as pointed out by Deligne in [7], one should prefer a weaker compatibility, where each equality
T(uv) = T(u)T(v) is replaced by a natural isomorphism

T(u)T(v)
Tu,v %9 T(uv).

But, then, one should ask that the action T preserves the next level of relations: the associativity of the
product of M. This is done by asking, for every elements u, v and w of M, that the following coherence
relation be satisfied:

T(uv)T(w)
Tuv,w

�1
c©T(u)T(v)T(w)

Tu,vT(w) )=

T(u)Tv,w !5

T(uvw)

T(u)T(vw) Tu,vw

-A

Such a definition requires much data to be specified, one functor for each element of M and one natural
isomorphism for each pair of elements of M, and many relations to be checked, one for every triple of
elements of M. Thus, in concrete cases, it is natural to search for equivalent but smaller definitions of
actions.

In the special case of Artin-Tits groups of spherical type, or “generalised braid groups”, Deligne gives
an answer in [7], Theorem 1.5 (more precisely, he studies the case of the monoids of positive braids and
explains the link with the actions of groups). For W a finite Coxeter group with set of generators S, in
order to specify an action of the monoid B+(W, S) of positive braids on a category C, it is sufficient to
fix

− an endofunctor T(u) : C→ C for every element u of W \ {1},

− a natural isomorphism T(u)T(v) ' T(uv) for every elements u and v in W \ {1} such that the
length of uv is the sum of the lengths of u and v,

in such a way that these data satisfy the coherence relations corresponding to the associativity, but only
for the triples (u, v,w) of elements of W \ {1} such that the length of uvw is the sum of the lengths
of u, v and w.

It turns out that, in this reduced definition of an action, the endofunctors and the natural isomorphisms
are given by an alternative presentation of the monoid B+(W, S), that we call Deligne’s presentation by
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Introduction

opposition to the classical Artin’s presentation: the generators are the elements of W \ {1} and the
relations are u|v = uv, for every elements u and v of W \ {1} such that u and v satisfy the length
condition, where ·|· denotes the product in the free monoid over W \ {1}.

In this paper, we address the following natural question that arises from this last observation: given
a presentation 〈 X | R 〉 of a monoid M, a category C and the data

− an endofunctor T(x) : C→ C for each generator x in X,

− a natural isomorphism T(u) ' T(v) for each relation u = v in R,

is it possible to determine, in an explicit way, the coherence conditions that must be satisfied so that the
given data is an action of M on C?

Cofibrant approximations of monoids

A first step in our analysis of actions of monoids on categories is to note that they are special cases of
a more general notion: the 2-representations of 2-categories, as introduced by Elgueta in [8]. Such a
2-representation of a 2-category C into a 2-category D is defined as a pseudofunctor from C to D, i.e.,
a suitably weakened 2-functor from C to D. The case of actions of monoids on categories is recovered
by seeing a monoid M as a 2-category with one 0-cell and identity 2-cells only, and by taking the target
2-category D to be Cat, the 2-category of categories.

In the setting of 2-representations, we can study actions from a homotopical point of view, thanks
to the model category structure described by Lack on 2-categories in [15] and [16]. In such a model
category, objects admit cofibrant approximations: these are cofibrant objects (informally, as free as
possible) which are weakly equivalent to the original object. In the case of a 2-category C, this is a
2-category C̃ that is free in dimension 1, together with a 2-functor C̃→ C that induces an equivalence of
homotopy.

The main result of the first section is to prove that the notion of 2-representations of 2-categories can
be “strictified”, yielding the following result for actions of monoids:

Theorem 1.5.2. Let M be a monoid and let M̃ be a 2-categorical cofibrant approximation of M. Then
the category Act(M) of actions of M on categories is equivalent to the one of 2-functors from M̃ to Cat.

As a consequence of this result, our original question can be answered by giving a procedure to compute
a cofibrant approximation of a monoid M from a given presentation of M.

Coherent presentations of monoids

Let us fix a presentation Σ = (Σ1, Σ2) of a monoid M, where Σ1 is the set of generators and Σ2 the set of
relations. This data is called a 2-polygraph, after Burroni, see [5], or a computad, after Street, see [24].
From such a 2-polygraph Σ, we can build a 2-category with one 0-cell as follows.

We consider the free category Σ∗1 generated by the elements of Σ1, seen as 1-cells with source and
target the only 0-cell. We get a surjective functor:

Σ∗1
// //M.
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The category Σ∗1 is free and, thus, it is a cofibrant 2-category, but the canonical projection is not a weak
equivalence in general. Informally, this is because two different words of Σ∗1 that represent the same
element of M are not related in Σ∗1.

To correct this, we add 2-cells to Σ∗1, that are freely generated by the relations and their inverses. For
that, a relation u = v is seen as a generating 2-cell from the 1-cell u to the 1-cell v of X∗. Then we get a
2-category, which we denote by Σ>2 , and a surjective 2-functor:

Σ>2
// //M.

Once again, we have a cofibrant 2-category Σ>2 but the projection is not a weak equivalence either.
Indeed, there may exist several 2-cells from a given word u to another word v, i.e., different computations
using the relations of Σ2 to prove that u and v are equal in M.

In order to get a weak equivalence, we have to take a quotient of Σ>2 by a sufficiently large set of
relations between the relations of Σ2 so that every pair of 2-cells of Σ>2 with the same source and the
same target are identified in the quotient. Such a set Σ3 of higher relations is called an homotopy basis
of Σ>2 and gives a cofibrant replacement of M:

Σ>2 /Σ3
∼
// //M.

Finally, we get a notion extending the one of presentation of a monoid M, called a coherent presentation.
It is defined as an acyclic (3, 1)-polygraph, i.e., a triple Σ = (Σ1, Σ2, Σ3) where (Σ1, Σ2) is a presentation
of M and Σ3 is a homotopy basis. The corresponding cofibrant replacement Σ = Σ>2 /Σ3 of M leads to
the main result of the second section:

Theorem 2.3.2. Let M be a monoid and let Σ be a coherent presentation of M. The category Act(M) is
equivalent to the category of 2-functors from Σ to Cat.

Thus one way to determine the coherence conditions that should be satisfied in a definition of action
based on a presentation is to compute a homotopy basis, i.e., to extend the presentation into a coherent
presentation.

Reduced homotopical completion

Rewriting theory gives a starting point to compute homotopy bases. Indeed, Squier has proved in [23] that
a convergent presentation of a monoid can be used to determine a homotopy basis. In such a presentation,
relations are not considered as equalities but as directed computations and convergence is a property that
ensures good computational properties:

− termination: starting from a given word, there is no way to apply directed relations indefinitely,

− confluence: choices between different directed relations that apply to a given word do not matter.

Convergent presentations are really similar to Gröbner bases. Indeed, one important consequence of
having a convergent presentation Σ = (Σ1, Σ2) of a monoid M is that every element u of M has a
canonical representative in Σ∗1: the only word û of Σ∗1 in which every representative of u can be reduced
using the directed relations and that cannot be further reduced.
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Moreover, if Σ is a convergent presentation of M, then Squier’s theorem tells us that its critical
branchings generate a homotopy basis. Such a branching is given by two possible overlapping applica-
tions of directed relations on the same word u such that u has minimal size. For example, two relations
α : xy ⇒ u and β : yz ⇒ v generate the critical branching

uz

xyz

αz (<

xβ "6 xv

Convergence of the presentation ensures that one can further reduceuz and xv into the same element x̂yz:
one says that the branching is confluent. Squier’s theorem states that, if one fills the following diagram
with a 3-cell and repeats the same process with every other critical branching, one gets a homotopy basis:

uz

�'

��
xyz

αz
*>

xβ  4

x̂yz

xv

8L

The problem is that general presentations of monoids have no reason to be convergent. But rewriting
theory gives a procedure that can, in many cases, complete a presentation into a convergent presentation
of the same monoid, due to Knuth and Bendix [14]. The idea is to consider the critical branchings of
a presentation and to formally add, for the ones that are not confluent, new relations that make them
confluent; then, one starts again with the new critical branchings generated by the new relations, until a
stable state is reached. If this happens, one gets a convergent presentation of the same monoid.

Here, we extend this computational tool into a homotopical completion procedure that, given a pre-
sentation of a monoid and when successful, generates a coherent presentation of the same monoid. How-
ever, the result is generally bigger than one could expect: more relations than the original presentation
and a homotopy basis that may contain superfluous elements. To correct this, we introduce a homotopi-
cal reduction procedure. Essentially, it uses the “critical triple branchings” to compute relations between
the elements of the homotopy basis and, potentially, eliminates some of them.

At the end, we get the reduced homotopical completion RHC(Σ) of a presentation Σ, whose proper-
ties are given in the main result of the third section:

Theorem 3.6.1. Let Σ be a terminating presentation of a monoid M. When it exists, the reduced
homotopical completion RHC(Σ) of Σ is a coherent presentation of M whose underlying presentation
is Σ.

Actions of Artin-Tits groups

In the case of an Artin-Tits group B(W, S) or monoid B+(W, S), where W is a Coxeter group and S a
set of generators of W, the classical Artin’s presentation is given by the elements of S as generators and
the braid relations

st · · · = ts · · ·
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Tits, in [25], and Ronan, in [21], prove that the fundamental group of a complex associated to the group
B(W, S) is generated by two families of loops. Once reinterpreted in the polygraphic language, the first
family is made of trivial loops, while the second one contains what we call Tits-Zamolodchikov relations.

There is one such relation Zs,t,u for each triple (s, t, u) of elements of S whose generated subgroup
W{s,t,u} of W is a finite Coxeter group of rank 3. The shape of the cell Zs,t,u is entirely determined
by the type of the Coxeter group W{s,t,u}: for example, we get the Yang-Baxter relation for the type
A1 ×A1 ×A1 and the Zamolodchikov equation for A3, i.e., for the type of the group of symmetries S4.
This is summarised in the following result of the fourth section:

Theorem 4.2.3. Artin’s presentation and the Tits-Zamolodchikov relations form a finite coherent pre-
sentation of the monoid B+(W, S) of positive braids.

In the spherical case, i.e., when W is finite, we can also consider Deligne’s presentation of B+(W, S).
His result on the actions of B+(W, S) on categories, in terms of this special presentation, leads us to
believe that the corresponding set of coherence relations comes from a homotopy basis.

This is indeed the case and we end the fourth section with an algorithmic proof of this fact. Deligne’s
presentation is not convergent, so that we cannot apply Squier’s theorem, but it is terminating. Hence
we can compute the reduced homotopical completion of Deligne’s presentation, which gives exactly the
piece of information that corresponds to the coherence relations of Deligne’s result:

Theorem 4.3.6. The monoid B+(W, S) admits a coherent presentation with a 1-cell for every element
of W \ {1}, a 2-cell

αu,v : u|v ⇒ uv,

for every u, v in W \ {1} with l(uv) = l(u) + l(v) and a 3-cell

uv|w
αuv,w

�(
Au,v,w��

u|v|w

αu,v|w +?

u|αv,w �3

uvw

u|vw
αu,vw

6J

for every u, v, w in W \ {1} with l(uvw) = l(u) + l(v) + l(w).

1. ACTIONS OF MONOIDS ON CATEGORIES

We present Deligne’s actions of a monoid M on a category C as a special case of 2-representations, a
notion introduced by Elgueta, [8]. More precisely, an action of M on C is exactly a 2-representation
(i.e., a pseudofunctor) from M, seen as a 2-category with one 0-cell and identity 2-cells only, into Cat,
sending the 0-cell to C. Here and in the following, Cat is the 2-category of categories, functors and
natural transformations (note that, for foundational correctness, we should say the large 2-category of
small categories, where sizes refer to some fixed universe, and similarly later for the 2-category of 2-
categories).

In this section, we prove that, up to equivalence, an action of a monoid M on a category is the same
as a 2-functor from a 2-category M̃ to Cat, where M̃ is any cofibrant approximation of M: informally,
this is a 2-category that is as free as possible while being “homotopically equivalent” to M.
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1.1. 2-representations of 2-categories

1.1. 2-representations of 2-categories

1.1.1. 2-representations. We recall from [8] that, given 2-categories C and D, a 2-representation of C
in D is a pseudofunctor F : C → D, which is a suitably weakened notion of 2-functor. More precisely,
such a pseudofunctor is specified by the following data:

− for every 0-cell x of C, a 0-cell F(x) of D,

− for every 1-cell u : x→ y of C, a 1-cell F(u) : F(x)→ F(y) of D,

− for every 2-cell f : u⇒ v of C, a 2-cell F(f) : F(u)⇒ F(v) of D.

As for 2-functors, the data are required to be compatible with vertical composition, in a strict way:

− for every 2-cells f : u⇒ v : x→ y and g : v⇒ w : x→ y of C,

F


x

u

��
v //

w

FF
y

f��

g��


= F(x)

F(u)

��

F(v) //

F(w)

DD
F(y)

F(f)��

F(g)��

− for every 1-cell u of C, we have F(1u) = 1F(u).

The data is compatible to horizontal composition, but only up to coherent isomorphisms, which is for-
malised by the following extra data:

− for every 1-cells u : x→ y and v : y→ z of C, an invertible 2-cell of D, natural in u and v,

F(y)
F(v)

��

F(x)

F(u)
77

F(uv)

22

Fu,v'
��

F(z)

− for every 0-cell x of C, an invertible 2-cell of D

F(x)

1F(x)

��

F(1x)

>>
F(x)Fx'

��

Finally, these 2-cells are required to satisfy the following monoidal coherence relations in D:
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1. Actions of monoids on categories

− for every 1-cells u : x→ y, v : y→ z and w : z→ t of C,

F(y)
F(v)
//

Fu,v��

F(z)
F(w)

��Fuv,w��
F(x)

F(u)
77

F(uv)

BB

F(uvw)

55 F(t)
=

F(y)
F(v)
//

F(vw)
00

Fu,vw ��

F(z)
F(w)

��

Fv,w ��

F(x)

F(u)
77

F(uvw)

55 F(t)

− for every 1-cell u : x→ y of C,

F(x)
F(u)

��

F(x)

1F(x) ++

F(1x)

EEFx
�(

F(u)

22

F1x,u��
F(y)

= 1F(u) =

F(y)
1F(y)



F(1y)
''

Fy
u	

F(x)

F(u)
77

F(u)

22

Fu,1y ��
F(y)

As usual with monoidal coherence relations, this implies that, for every sequence (u1, . . . , un) of pair-
wise composable 1-cells in C, there exists a unique invertible 2-cell

Fu1,...,un : F(u1) · · · F(un) =⇒ F(u1 · · ·un)

in D built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence
2-cells are identities, hence it can be seen as a strict 2-representation.

This notion of 2-representation has been introduced by Elgueta for 2-groups in [8] and it is also
studied by Ganter and Kapranov in [9] in the special case of groups. In [22], Rouquier studies 2-
representations of bicategories, also described as pseudofunctors.

Among concrete target 2-categories for 2-representations, one can consider the ones of 2-vector
spaces, either from Kapranov and Voevodsky, [12], or from Baez and Crans, [3], or the one of 2-Hilbert
spaces, [2]. Here we mainly use the 2-category Cat of categories, functors and natural transformations,
although any other 2-category would fit.

1.1.2. Morphisms of 2-representations. If F,G : C→ D are 2-representations of C into D, a morphism
of 2-representations from F toG is a pseudonatural transformation α : F⇒ G between the corresponding
pseudofunctors. In detail, such an α is specified by the following data:

− for every 0-cell x of C, a 1-cell αx : F(x)→ G(x) of D,

− for every 1-cell u : x→ y of C, an invertible 2-cell of D

F(y) αy

��

F(x)

F(u) 33

αx ++

G(y)

G(x) G(u)

>>
' αu
��

8



1.1. 2-representations of 2-categories

This data must satisfy several coherence relations:

− for every 2-cell f : u⇒ v : x→ y of C,

F(y)
αy

��

F(x)

F(u) ++

F(v)

DDF(f)
�(

αx
''

G(y)

G(x)
G(v)

DD
αv
��

=

F(y)
αy

��

F(x)

F(u)
77

αx
''

G(y)

G(x)

G(u)

77

G(v)

PP

G(f)
�*

αu
��

− for every 1-cells u : x→ y and v : y→ z in C,

F(y)
F(v)
// F(z)

αz

��

F(x)

F(u)

OO

F(uv)

DDFu,v�3

αx
''

G(z)

G(x)
G(uv)

DD
αuv
��

=

F(y)
F(v)
//

αy

""

F(z)
αz

��

αv��

F(x)

F(u)

OO

αx
''

αu��
G(y) G(v) // G(z)

G(x)

G(u)

OO

G(uv)

DDGu,v 4

− for every 0-cell x in C,

F(x)
αx

��

F(x)

1F(x) ++

F(1x)

DDFx
�(

αx
''

G(x)

G(x)
G(1x)

DD
α1x
��

= F(x)
αx
// G(x)

1G(x)

""

G(1x)

;;
Gx�� G(x)

1.1.3. Categories of 2-representations. If F,G,H : C → D are 2-representations and if α : F ⇒ G

and β : G ⇒ H are morphisms of 2-representations, their composition is the morphism α ? β : F ⇒ H

defined by:

− if x is a 0-cell of C, the 1-cell (α ? β)x : F(x)→ H(x) of D is defined as the composite

F(x)
αx

// G(x)
βx

// H(x)

9



1. Actions of monoids on categories

− if u : x→ y is a 1-cell of C, the invertible 2-cell (α ? β)u of D is defined by

F(y)
(α?β)y

��

F(x)

F(u)
77

(α?βx ''

H(y)

H(x)
H(u)

DD
(α ? β)u
��

=

F(y)
αy

��

F(x)

F(u)
77

αx
''

G(y)
βy

��

G(x)

G(u)

<<

βx ''

αu
��

H(y)

H(x)
H(u)

DD
βu
��

One checks that α ? β satisfies the coherence conditions that makes it a morphism of 2-representations
and, then, that the composition ? is associative and unitary.

This gives rise to a category of 2-representations of C into D, which is denoted by 2Rep(C,D). The
full subcategory of 2Rep(C,D) whose objects are the 2-functors is denoted by 2Cat(C,D). Let us note
that 2Rep(C,D) is a hom-category in the bicategory of 2-categories, pseudofunctors and pseudonatural
transformations, while 2Cat(C,D) is a hom-category in the bicategory of 2-categories, 2-functors and
pseudonatural transformations.

1.2. Actions of monoids on categories

If M is a monoid, we can see it as a 2-category with exactly one 0-cell and only identity 2-cells, hence
as a discrete 2-category. In particular, we introduce the category of actions of M on categories as the
category of 2-representations of M in Cat:

Act(M) = 2Rep(M,Cat).

1.2.1. Explicit definition of actions. Expanding the definition, we get that an action T of M is specified
by the following data:

− a category C, which is the image through T of the unique 0-cell of M,

− for every element u of M, an endofunctor T(u) : C→ C,

− for every pair (u, v) of elements of M, a natural isomorphism

C
T(v)

��

C

T(u)
77

T(uv)

33 C
Tu,v'
��

10



1.2. Actions of monoids on categories

− a natural isomorphism

C

IdC

��

T(1)

AA
CT•'

��

This data is required to satisfy the following coherence conditions:

− for every triple (u, v,w) of elements of M, the following diagram commutes:

T(uv)T(w)
Tuv,w

�1
c©T(u)T(v)T(w)

Tu,vT(w) )=

T(u)Tv,w !5

T(uvw)

T(u)T(vw) Tu,vw

-A

− for every element u of M, the following two diagrams commute:

T(1)T(u)
T1,u

�-
T(u)

T•T(u) *>

IdT(u)

-A T(u)
c©

T(u)T(1) Tu,1
�/

T(u)

T(u)T• )=

IdT(u)

-A T(u)
c©

This corresponds to the notion of unital action of M on C that Deligne considers in [7]. He proves that
unital actions are equivalent to non-unital actions, his main object of study, and we recover this fact later.

1.2.2. Explicit definition of morphisms of actions. If S is an action of M on a category C and T is an
action of M on a category D, a morphism of actions α from S to T is specified as follows:

− a functor F : C→ D, corresponding to the component of α at the 0-cell of M,

− for every element u of M, a natural isomorphism αu

C F

��

C

S(u) 22

F ,,

D

D T(u)

CC
' αu��

This data must satisfy the coherence conditions from the definition of pseudonatural transformation.
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1. Actions of monoids on categories

1.2.3. A note on Deligne’s morphisms. The notion of morphisms we consider differs from the one of
Deligne in [7]. Indeed, he only considers morphisms between actions of M on the same category C,
such that the functor F is the identity of C, but where the natural transformation αu is not necessarily an
isomorphism. This kind of morphisms are exactly icons between pseudofunctors, as introduced by Lack
in [17] as a special case of oplax natural transformations.

We choose a different notion of morphisms of actions for several reasons. Firstly, because it is a
special case of morphism of 2-representations, so that actions of monoids fit nicely in Elgueta’s setting,
being 2-representations of monoids into Cat. Secondly, because it generalises usual notions of mor-
phisms of actions of a monoid (or a group) on objects of a category, such as sets, vector spaces, Hilbert
spaces. Indeed, with Elgueta’s morphisms, if we replace Cat by Set or Vect, considered as 2-categories
with identity 2-cells only, then all the 2-cells αu must be equalities, so that each diagram gives a relation
F(S(u)) = T(F(u)), which is the usual definition of a morphism from S to T . In Deligne’s case, since F
is the identity, this gives S(u) = T(u) instead, so that the only morphism from S to T is the identity,
when S = T .

However, our results can be adapted to Deligne’s morphisms, i.e., to the case where 2Rep(C,D)
and 2Cat(C,D) have icons and not pseudonatural transformations as morphisms. Also, one could get
similar results with extensions of 2Rep(C,D) and 2Cat(C,D) with all the oplax natural transformations
as morphisms: this has the same definition as a pseudonatural natural transformation, except that the
component 2-cells αu are not required to be invertible.

1.3. Cofibrant approximations of 2-categories

In this section, we consider the category of 2-categories and 2-functors, which we denote by 2Cat.

1.3.1. Elements of the model category structure on 2Cat. We recall a few notions from the model
category structure on 2Cat introduced by Lack in [15] and [16]. A 2-category is cofibrant when its
underlying 1-category is free. A 2-functor F : C→ D is a weak equivalence when it is an equivalence in
the bicategory 2Rep, meaning that there exists a pseudofunctor G : D→ C and natural isomorphisms

GF ' 1C and FG ' 1D.

In that case, we say that C and D are weakly equivalent and that G is a quasi-inverse for F. In general,
this quasi-inverse cannot be chosen to be strict, i.e., to be a 2-functor. However, when G is a 2-functor,
we say that F is an equivalence and that C and D are equivalent.

If C is a 2-category, a cofibrant approximation of C is a cofibrant 2-category C̃ such that there exists
a weak equivalence C̃→ C.

1.3.2. Example: the standard cofibrant approximation [15]. Let C be a 2-category. We denote by Ĉ

the cofibrant 2-category with the same 0-cells as C and the following higher cells:

− the 1-cells of Ĉ are freely generated by the ones of C, with u in C denoted by û when seen as a
generator of Ĉ,

− the 2-cells from û1 · · · ûm to v̂1 · · · v̂n in Ĉ are the 2-cells from u1 · · ·um to v1 · · · vn in C, with
the same compositions as in C.

12



1.3. Cofibrant approximations of 2-categories

By definition, every 2-cell f : u ⇒ v of C has several lifts in Ĉ. We denote by f̂ the one with source û
and target v̂. For each pair of composable 1-cells (u, v) we denote by γu,v : ûv̂ ⇒ ûv the 2-cell lifting
the identity of the 1-cell uv in C. This 2-cell is invertible and satisfies monoidal coherence relations, so
that there exists exactly one invertible 2-cell

γu1,...,un : û1 · · · ûn =⇒ ̂u1 . . . un

for every family (u1, . . . , un) of composable 1-cells.
Let us consider 1-cells u, v : x → y in C such that u = u1 . . . um and v = v1 . . . vn hold. If

f : u⇒ v is a 2-cell of C, then it has exactly one copy in Ĉ that goes from û1 · · · ûm to v̂1 · · · v̂n, which
is equal, by definition of the composition in Ĉ, to the following composite

ûm

��
x

û1

66

û

''

v̂

77

v̂1 ((

y

v̂n

FF

γu1,...,um��

f̂��

γ−v1,...,vn��

where γ−v1,...,vn denotes the inverse of the 2-cell γv1,...,vn . As a consequence, if C = C is a category (a
monoid, for example), seen as a discrete 2-category (i.e., a 2-category with identity 2-cells only), the
2-category Ĉ has exactly one 2-cell from û1 · · · ûm to v̂1 · · · v̂n if, and only if, the relation

u1 . . . um = v1 . . . vn

holds in C: this 2-cell is the composite of γu1,...,um followed by γ−v1,...,vn .
Now, let π : Ĉ → C be the canonical projection 2-functor, sending each generating 1-cell û to u

and each 2-cell to itself. Let ι : C → Ĉ be the pseudofunctor sending each 1-cell u to û and each 2-cell
f : u ⇒ v to f̂ : û ⇒ v̂. One can check that π is a weak equivalence with quasi-inverse ι. Hence, the
2-category Ĉ is a cofibrant approximation of C, called the standard cofibrant approximation of C.

Actually, as noticed by Lack in [15], Proposition 4.2 and its proof, the assignment C → Ĉ is a left
adjoint to the inclusion functor 2Cat� 2Rep. On morphisms this adjunction says the following:

1.3.3. Proposition. For every 2-categories C and D, we have the following isomorphism of categories:

2Rep(C,D) ' 2Cat(Ĉ,D).

In particular, for every monoid M, we have the following isomorphism of categories:

Act(M) ' 2Cat(M̂,Cat).

In what follows, we prove that weak versions of these isomorphisms exist for all cofibrant approx-
imations. More precisely, the category of 2-representations of a 2-category C into a 2-category D is
equivalent to the one of 2-functors from any cofibrant approximation C̃ of C into D. This result spe-
cialises to the actions of a monoid on categories.
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1. Actions of monoids on categories

1.4. 2-representations of cofibrant 2-categories

Let us fix 2-categories C and D, with C cofibrant. Our objective is to define a “strictification” functor

·̂ : 2Rep(C,D) −→ 2Cat(C,D)

and to prove that it is a quasi-inverse for the canonical inclusion functor of 2Cat(C,D) into 2Rep(C,D).

1.4.1. Strictification of 2-representations. Let F : C → D be a 2-representation. Let us define the
2-functor F̂ : C→ D, dimension after dimension.

On 0-cells, F̂ takes the same values as F. Since C is cofibrant, its underlying 1-category is free: on
generating 1-cells, F̂ is equal to F and, then, it is extended by functoriality on every 1-cell. Hence, if
u = a1 . . . an is a 1-cell of C, where the ais are generating 1-cells, we have:

F̂(u) = F(a1) · · · F(an).

As noted earlier, from the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell
in D

F̂(u) = F(a1) · · · F(an)
Fa1,...,an %9 F(a1 · · ·an) = F(u)

from F̂(u) to F(u), built from the coherence 2-cells of F. Since the decomposition of u in generators is
unique, we simply denote this 2-cell by Fu.

Let f : u⇒ v : x→ y be a 2-cell of C. We define F̂(f) as the following composite 2-cell of D, where
the double arrows have been omitted for clarity:

F(x)

F̂(u)

��

F̂(v)

>>
F̂(f) F(y) = F(x)

F̂(u)

��

F(u)
$$

F(v)

99

F̂(v)

HH

Fu

F(f)

F−v

F(y)

As a direct consequence, we get that F̂ is compatible with vertical composition and identities of 1-cells.
Hence, we have defined a 2-functor F̂ from C to D.

Before moving on to morphisms of 2-representations, we note that the monoidal coherence relations
satisfied by F imply that the 2-cells Fu : F̂(u) ⇒ F(u) satisfy the following relations with respect to
composition and identities. If u : x→ y and v : y→ z are 1-cells of C, we have:

F(x)

F̂(uv)

��

F(uv)

>>
Fuv F(z) = F(x)

F̂(u)

��

F(u) //

Fu

F(uv)

;;
F(y)

F̂(v)

��

F(v) //

Fv

Fu,v

F(z)
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1.4. 2-representations of cofibrant 2-categories

Moreover, if x is a 0-cell of C, we have F1x = Fx.

1.4.2. Strictification of morphisms of 2-representations. Let F,G : C → D be 2-representations and
let α : F⇒ G be a morphism between them. Let us define a pseudonatural transformation α̂ : F̂⇒ Ĝ.

On a 0-cell x of C, we take α̂x = αx. If u : x → y is a 1-cell of C, we define α̂u as the following
invertible 2-cell of D:

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)
Ĝ(u)

DD
α̂u =

F(y)
αy

��

F(x)

F̂(u) ++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
77

Ĝ(u)

PP

G−
u

αu

Let us check that α̂ satisfies the relations that makes it a pseudonatural transformation from F̂ to Ĝ. First,
let us consider a 2-cell f : u⇒ v : x→ y in C and let us compute in D:

F(y)
αy

��

F(x)

F̂(u) ++

F̂(v)

DD

F̂(f)

αx
''

G(y)

G(x)
Ĝ(v)

DD
α̂v =

F(y)
αy

��

F(x)

F̂(u)

&&

F(u)

00

F(v)

LL

Fu

F(f)

αx
''

G(y)

G(x)

G(v)
77

Ĝ(v)

PP

G−
v

αv

=

F(y)
αy

��

F(x)

F̂(u) ++

F(u)

DD
Fu

αx
''

G(y)

G(x)

G(u)
00

G(v)

KK

Ĝ(v)

TT

G(f)

G−
v

αu

=

F(y)
αy

��

F(x)

F̂(u)
77

αx
''

G(y)

G(x)

Ĝ(u)
77

Ĝ(v)

PP

Ĝ(f)

α̂u
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1. Actions of monoids on categories

Then, if u : x→ y and v : y→ z are 1-cells in C, we get:

F(z)
αz

��

F(x)

F̂(uv)
66

αx
''

G(z)

G(x)
Ĝ(uv)

DD
α̂uv =

F(y)

F̂(v)

��

F(v) //

Fv
F(z)

αz

��

F(x)

F̂(u)

55

F(u)

OO

Fu
F(uv)

DD

Fu,v

αx
''

G(z)

G(x)

G(uv)
77

G−
u,v

G(u) //

Ĝ(u)

HH

G−
u

G(y)

G(v)
OO

Ĝ(v)

ii

G−
v

αuv

=

F(y)

F̂(v)

��

F(v) 44

Fv

αy

""

F(z)
αz

��

F(x)

F̂(u)

55

F(u)

UU

Fu

αx
''

G(z)

G(x)
G(u) ++

Ĝ(u)

HH
G−
u

G(y)

G(v)
II

Ĝ(v)

ii

G−
v

αu

αv

=

F(y)
F̂(v)
//

αy

""

F(z)
αz

��

F(x)

F̂(u)

OO

αx
''

G(z)

G(x)
Ĝ(u)

// G(y)

Ĝ(v)

OO
α̂u

α̂v

Finally, for x a 0-cell of C, we have:

F(x)
αx

��

F(x)

1F(x)
66

αx
''

G(x)

G(x)
1G(x)

DD
α̂1x =

F(x)
αx

��

F(x)

1F(x) ++

F(1x)

DD
Fx

αx
''

G(x)

G(x)

G(1x)
77

1G(x)

PP

G−
x

α1x = 1αx
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1.5. 2-representations and cofibrant approximations

With similar computations, we check that strictification is compatible with the composition of morphisms
of 2-representations and with identities, so that it is a functor from 2Rep(C,D) to 2Cat(C,D).

1.4.3. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion
functor

2Cat(C,D) −→ 2Rep(C,D)

is an equivalence of categories, with quasi-inverse given by the strictification functor.

Proof. It is sufficient to check that, for every 2-representation F : C → D, there exists a pseudonatural
isomorphism ϕF : F̂⇒ F that is itself natural in F. We define ϕF as follows:

− if x is a 0-cell of C, then F̂(x) = F(x) and we take (ϕF)x = 1x,

− if u : x → y is a 1-cell of C, then (ϕF)u : F̂(u) ⇒ F(u) is the invertible coherence 2-cell
Fu : F̂(u)⇒ F(u).

This data satisfies the required coherence properties:

− the compatibility with 2-cells of C is exactly the definition of F̂,

− the compatibility with composition and identities comes from the monoidal coherence relations of
F, as already checked.

Now, if α : F⇒ G is a morphism of 2-representations, the naturality condition

F α

�*
c©F̂

ϕF (<

α̂ "6

G

Ĝ
ϕG

5I

corresponds, on each 1-cell u of C, to the definition of α̂.

1.5. 2-representations and cofibrant approximations

1.5.1. Lemma. Let C and D be two weakly equivalent 2-categories. Then, for every 2-category E, we
have an equivalence of categories

2Rep(C,E) ≈ 2Rep(D,E).

Proof. Let F : C → D be a weak equivalence, with quasi-inverse G : D → C. We have the following
isomorphisms:

GF ' IdC and FG ' IdD .

As a consequence, for every 2-representations H : C→ E and K : D→ E, we have:

HGF ' H and KFG ' K.

This proves that the functors 2Rep(F,E) and 2Rep(G,E), respectively sending the pseudofunctor K :
D→ E to KF : C→ E and the pseudofunctor H : D→ E to HG : D→ E form the required equivalence
of categories.
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2. Actions of monoids and coherent presentations

Combining Proposition 1.4.3 and Lemma 1.5.1, we get the main result of this section.

1.5.2. Theorem. Let C be a 2-category and let C̃ be a cofibrant approximation of C. Then, for every
2-category D, we an following equivalence of categories

2Rep(C,D) ≈ 2Cat(C̃,D).

In particular, if M is a monoid and M̃ is a cofibrant approximation of M, then we have an equivalence
of categories

Act(M) ≈ 2Cat(M̃,Cat).

Remark. This result can also be proved by using the standard cofibrant approximation. We have seen
that the above equivalences are isomorphisms in the case of the standard cofibrant approximation Ĉ

of C. By definition, if C̃ is a cofibrant approximation of a 2-category C, there exists a weak equivalence
F : C̃→ C, with quasi-inverse H : C→ C̃. If we denote by G : Ĉ→ C the canonical projection 2-functor
and K : C → Ĉ its quasi-inverse, we get pseudofunctors KF : C̃ → Ĉ and HG : Ĉ → C̃ that form an
equivalence in 2Rep.

Since C̃ and Ĉ are cofibrant, we apply the strictification functor to KF and HG to get the 2-functors
K̂F : C̃ → Ĉ and ĤG : Ĉ → C̃. One can check that, since KF and HG form an equivalence in 2Rep, we
get that K̂F and ĤG form an equivalence in 2Cat between Ĉ and C̃.

Then, for any 2-category D, we apply the 2-functor 2Cat( · ,D) : 2Cat→ Cat to get the following
equivalence of categories:

2Cat(C̃,D) ≈ 2Cat(Ĉ,D).

Composed with the isomorphisms between 2Cat(Ĉ,D) and 2Rep(C,D), we get the result.

2. ACTIONS OF MONOIDS AND COHERENT PRESENTATIONS

In this section, we restrict to the case of 2-representations of categories and monoids. We study a notion
of higher-dimensional presentations of categories, called coherent presentations, that consist of gener-
ators, relations and relations between relations. We prove that, for every coherent presentation Σ of a
category C, the 2-category Σ presented by Σ is a cofibrant approximation of C.

This gives the main result of this section: for every coherent presentation Σ of C and every 2-
category C, we have an equivalence of categories

2Rep(C,C) ≈ 2Rep(Σ,C).

All this material is formulated in the language of polygraphs, a notion of presentations of higher-
dimensional categories introduced by Burroni, [5], and, under the name of computads, by Street, [24].

2.1. Higher-dimensional categories

We recall some notations about n-categories from [10] and [11]. If C is an n-category (we always
consider strict, globular n-categories), we denote by Ck the set (and the k-category) of k-cells of C. If f
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2.2. Presentations by polygraphs

is a k-cell of C, then si(f) and ti(f) respectively denote the i-source and i-target of f; we drop the suffix i
when i = k− 1. The source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

We respectively denote by f : u → v, f : u ⇒ v, f : u V v a 1-cell, a 2-cell, a 3-cell f with source u
and target v.

If f and g are i-composable k-cells, that is when ti(f) = si(g), we denote by f?ig their i-composite;
we simply use fg when i = 0. The compositions satisfy the exchange relations given, for every i 6= j

and every possible cells f, g, h and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k).

If f is a k-cell, we denote by 1f its identity (k + 1)-cell. When 1f is composed with cells of dimension
k+ 1 or higher, we simply denote it by f. An n-category is discrete when it has identity n-cells only.

2.1.1. (n, 1)-categories. In an n-category C, a k-cell f, with source x and target y, is invertible when
there exists a (necessarily unique) k-cell f− in C, with source y and target x in C, called the inverse of f,
that satisfies

f ?k−1 f
− = 1x and g ?k−1 f = 1y.

An (n, 1)-category is a category enriched in (n − 1)-groupoids, i.e., an n-category whose k-cells are
invertible for every k > 1.

2.1.2. Spheres. Let C be an n-category. A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for
1 ≤ k ≤ n, a k-sphere of C is a pair γ = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g); we call f the source of γ and g its target. If f is a k-cell of C, for 1 ≤ k ≤ n, the boundary
of f is the (k− 1)-sphere (s(f), t(f)). A k-sphere of C is degenerate when its source and target coincide.

2.2. Presentations by polygraphs

We recall the notion of (n, 1)-polygraph, introduced in [11], and use it to define coherent presentations
of categories.

2.2.1. Cellular extensions. Let C be an n-category. A cellular extension of C is a set Γ equipped with
a map ∂ from Γ to the set of n-spheres of C. By considering all the formal compositions of elements
of Γ , seen as (n + 1)-cells with source and target in C, one builds the free (n + 1)-category generated
by Γ over C, denoted by C[Γ ]. The size of an (n+ 1)-cell f of C[Γ ] is the number of (n+ 1)-cells of Γ it
contains.

The quotient of C by Γ , denoted by C/Γ , is the n-category one gets from C by identification of the
n-cells s(γ) and t(γ), for every n-sphere γ of Γ . If C is an (n, 1)-category and Γ is a cellular extension
of C, then the free (n+ 1, 1)-category generated by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) = C
[
Γ, Γ−

] /
Inv(Γ)

where Γ− contains the same (n+ 1)-cells as Γ , with source and target reversed, and Inv(Γ) is the cellular
extension made of two (n+ 2)-cells

γ ?n+1 γ
− → 1f and γ− ?n+1 γ → 1g
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2. Actions of monoids and coherent presentations

for each (n+ 1)-cell γ from f to g in Γ .

2.2.2. Contexts. Let C be an n-category. A context of C is a composition C of (partial) maps

f 7→ f ?i g and f 7→ g ?i f

on n-cells of C, where g is a j-cell of C and with 0 ≤ i < j. We denote by C[f] the image of an n-cell f
by C. Up to exchange relations, such a context can always be decomposed as follows

C[f] = gn ?n−1
(
gn−1 ?n−2 · · ·

(
g1 ?1 g0fh0 ?1 h1

)
· · · ?n−2 hn−1

)
?n−1 hn

where each gi and hi is an i-cell of C.

2.2.3. Homotopy bases. Let C be an (n, 1)-category. A homotopy basis of C is a cellular extension Γ of
C such that the (n, 1)-category C/Γ is aspherical, i.e., such that, for every n-sphere γ of C, there exists
an (n + 1)-cell with boundary γ in the (n + 1, 1)-category C(Γ). For example, the n-spheres of C form
a cellular extension which is a homotopy basis of C.

2.2.4. (n, 1)-polygraphs. Let n be a natural number. An n-polygraph is a family Σ = (Σ0, . . . , Σn)
made of a set Σ0 and, for every 0 ≤ k ≤ n− 1, a cellular extension Σk+1 of the free k-category

Σ∗k = Σ0[Σ1] · · · [Σk].

An (n, 1)-polygraph is a family Σ = (Σ0, . . . , Σn) made of a set Σ0 and, for every 0 ≤ k ≤ n − 1, a
cellular extension Σk+1 of the free (k, 1)-category

Σ>k = Σ0[Σ1](Σ2) · · · (Σk).

Let us note that 2-polygraphs and (2, 1)-polygraphs are identical notions.
For an (n, 1)-polygraph Σ, an element of Σk is a k-cell of Σ and Σ is finite when it has finitely many

cells in every dimension. An (n, 1)-polygraph Σ is acyclic when, for every 1 < k < n, the cellular
extension Σk+1 is a homotopy basis of the (k, 1)-category Σ>k .

Remark. An (n, 1)-polygraph yields a diagram which is similar to the one given in the original definition
of n-polygraphs, [5]:

Σ∗0 Σ∗1oooo Σ>2oooo Σ>3oooo (· · · )oooo Σ>n−1oooo

Σ0 Σ1

dd dd

OO

OO

Σ2

dd dd

OO

OO

Σ3

dd dd

OO

OO

(· · · )

dd dd

Σn−1

dd dd

OO

OO

Σn

dd dd

This diagram contains the source and target attachment maps of generating (k + 1)-cells on composite
k-cells, their extension to composite (k+ 1)-cells and the inclusion of generating k-cells into composite
k-cells.
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2.2. Presentations by polygraphs

2.2.5. Presentations by polygraphs. Let Σ be an (n, 1)-polygraph with n ≥ 2. We denote by Σ the
(n− 1, 1)-category it presents: if n = 2, this is the category

Σ = Σ∗1
/
Σ2

and, if n ≥ 3, this is (n− 1, 1)-category

Σ = Σ>n−1
/
Σn.

We usually denote by f the image of a k-cell f of Σ∗ or Σ> through the canonical projection onto Σ.
The category presented by Σ is the category presented by the 2-polygraph Σ2 underlying Σ. For a

category C we define:

− a presentation of C as a 2-polygraph whose presented category is isomorphic to C,

− a coherent presentation of C as an acyclic (3, 1)-polygraph whose presented category is isomorphic
to C, that is, a 2-polygraph extended with a homotopy basis,

− an n-dimensional coherent presentation of C as an acyclic (n, 1)-polygraph whose presented cat-
egory is isomorphic to C.

2.2.6. Example (The standard coherent presentation). The standard presentation of a category C is
the (2, 1)-polygraph given as follows:

− its 0-cells and 1-cells are the ones of C, a 1-cell u of C being denoted by û when seen as a
generating 1-cell of its standard coherent presentation,

− for every 1-cells u : x→ y and v : y→ z of C, one 2-cell

y
v̂

��

x

û
77

ûv

44 z

γu,v��

− for every 0-cell x of C, one 2-cell

x

1x
��

1̂x

??
xιx��

The standard coherent presentation of C is the (3, 1)-polygraph made of its standard presentation ex-
tended with the homotopy basis made of the following 3-cells:

− for every 1-cells u : x→ y, v : y→ z and w : z→ t of C, one 3-cell

ûvŵ γuv,w
�.

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2Fγu,v,w
��
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2. Actions of monoids and coherent presentations

− for every 1-cell u : x→ y of C, two 3-cells

1̂xû
γ1x,u

�"
û

ιxû
.B

1û

)= û

λu
��

û1̂y
γu,1y

�"
û

ûιy
/C

1û

)= û

ρu
��

We will see later that these 3-cells indeed form a homotopy basis and that the (2, 1)-category presented
by the standard coherent presentation of C is, as a 2-category, its standard cofibrant approximation Ĉ.

2.3. Cofibrant approximations and coherent presentations

2.3.1. Lemma. Let C be a category. If Σ is a coherent presentation of C, then the (2, 1)-category Σ
presented by Σ is a cofibrant approximation of C.

Proof. By definition, Σ is a cofibrant 2-category. Let us construct a weak equivalence π : Σ→ C.
First, using the fact that Σ2 is a presentation of C, we define π : Σ>2 → C as the canonical projection:

it is the identity on 0-cells, it sends each 1-cell u of Σ∗1 to its equivalence class u in C and each 2-cell
f : u⇒ v to the identity of u (which is also v since, by definition of the quotient Σ∗1/Σ2, we have u = v
if, and only if, there exists a 2-cell from u to v in Σ>2 ). Then, let us check that π factors through Σ,
defining a 2-functor still denoted by π from Σ to C. Since Σ3 is, by hypothesis, a homotopy basis of
Σ>2 , this amounts at checking that, for any parallel 2-cells f and g, we have π(f) = π(g). And this last
equality holds because each member is sent to the identity of u, if u denotes the common source of f and
g.

To prove that π is a weak equivalence, we define a pseudofunctor ι : C → Σ that is a quasi-inverse
for π. It is the identity on 0-cells and, for every 1-cell u in C, we arbitrarily choose a representative 1-cell
û in Σ∗1. Then, for every composable 1-cells u and v in C, we have an invertible 2-cell ιu,v : ûv̂ ⇒ ûv

in Σ: both ûv̂ and ûv represent the same 1-cell of C, namely uv, so that there is an invertible 2-cell
between them in Σ>2 , whose image in Σ we take for ιu,v. For the same reason, we have an invertible
2-cell ιx : 1x ⇒ 1̂x in Σ. Finally, the monoidal coherence conditions that ι must satisfy hold because Σ3
is a homotopy basis of Σ>2 and, as a consequence, any two parallel 2-cells of Σ are equal.

Finally, we check that both composites of π and ι are isomorphic to identities. We have πι = IdC.
Conversely, ιπ is the identity on 0-cells and, if u : x→ y is a 1-cell of Σ, then ι(π(u)) = û: this 1-cell is
in the same equivalence class as u, so that we get an invertible 2-cell αu : u⇒ û in Σ. Now, if f : u⇒ v

is a 2-cell of Σ, then ι(π(f)) = 1
û

. Since u = v by hypothesis, we get the following two parallel, hence
equal, 2-cells in Σ:

û ι(π(f))

u

αu )=

f "6

v̂

v αv

:N

This proves that α is a natural isomorphism from ιπ to the identity, thus yielding that π is a weak
equivalence and, finally, we get that Σ is a cofibrant approximation of C.
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2.4. Tietze equivalences and Tietze transformations

2.3.2. Theorem. Let C be a category and let Σ be a coherent presentation of C. Then, for every 2-
category C, we have the following equivalences of categories:

2Rep(C,C) ≈ 2Cat(Σ,C).

In particular, if M is a monoid and ifΣ is a coherent presentation of M, we have the following equivalence
of categories:

Act(M) ≈ 2Cat(Σ,Cat).

The last equivalence formalises the problem that Deligne’s formulates in [7]: how to give a definition
of an action of a monoid M on a category C in terms of a presentation by generators and relations of M?
More precisely, what coherence relations should one impose on the natural isomorphisms associated to
the relations?

The equivalence says that these relations can be given by a homotopy basis. More precisely, consid-
ering a coherent presentation Σ of M, an action of M on C is the same (“il revient au même” in Deligne’s
words) as the following data:

− An endofunctor

C
T(x)

// C

for each generating 1-cell x in Σ; from this, one computes T(u) : C→ C for every 1-cell u in Σ>

by functoriality.

− A natural isomorphism

C

T(u)

$$

T(v)

::T(ϕ)�� C

for each generating 2-cell ϕ : u⇒ v in Σ; from this, one computes T(f) : T(u)⇒ T(v) for every
2-cell f : u⇒ v in Σ> by functoriality.

This data must satisfy, for every 3-cell α : fV g : u⇒ v in Σ, the following coherence relation:

C

T(u)

$$

T(v)

::T(f)�� C = C

T(u)

$$

T(v)

::T(g)�� C

As a conclusion, the effective computation of a homotopy basis of a presentation Σ of a monoid M gives
a concrete way to determine the coherence relations of the definition of action of M corresponding to Σ.

2.4. Tietze equivalences and Tietze transformations

In order to formalise a procedure to compute a homotopy basis from a (2, 1)-polygraph, we introduce a
way to compare (n, 1)-polygraphs according to the category or the 2-category they present: the Tietze
equivalences. Then, we give elementary transformations of (n, 1)-polygraphs that correspond to Tietze
equivalences: the Tietze transformations.
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2. Actions of monoids and coherent presentations

2.4.1. Tietze equivalences. Two (n, 1)-polygraphs Σ andΥ are 1-Tietze-equivalent when the categories

Σ∗1/Σ2 and Υ∗2/Υ2

they present are isomorphic. In that case, Σ and Υ have the same 0-cells, up to a bijection.
The (n, 1)-polygraphs Σ and Υ are 2-Tietze-equivalent when they are 1-Tietze-equivalent and when

the (2, 1)-categories
Σ>2 /Σ3 and Υ>2 /Υ3

they present are equivalent when seen as 2-categories. In particular, we note that two coherent presenta-
tions of the same category are 2-Tietze-equivalent.

Tietze equivalences can be used to compare a (p, 1)-polygraph to an (n, 1)-polygraph, with p < n,
by seeing the (p, 1)-polygraph as an (n, 1)-polygraph with no k-cells for k > p. With an appropri-
ate notion of equivalence of higher-dimensional categories, one could introduce p-Tietze equivalence
of (n, 1)-polygraphs; this would be useful, for example, to study the actions of monoids on higher-
dimensional categories.

2.4.2. Elementary polygraphic transformations. We introduce the elementary polygraphic transfor-
mations on an (n, 1)-polygraph Σ, for n ≥ 2, divided into three families:

Adjunction of a k-cell, 1 ≤ k ≤ n. If f is a (k−1)-sphere of Σ, the transformationU+
f formally adds f

to Σ as a generating k-cell.

Elimination of a k-cell, 1 ≤ k ≤ n. If f is a k-cell of Σ such that f does not appear in the sources and
targets of any j-cell, for j > k, the transformation U−

f removes f from Σ.

For k ∈ {1, 2, 3}, the adjunctions and eliminations of k-cells correspond to the following maps, with U−
f

being the inverse of U+
f :

s(f) t(f)

U+
f
//

U−
f

oo s(f) f // t(f)

•

s(f)

##

t(f)

;; •
U+
f
//

U−
f

oo •

s(f)

##

t(f)

;;f�� •

•
��

CC
s(f)

��
t(f)

��
•

U+
f
//

U−
f

oo •
��

CC
s(f)

��
t(f)

��

f %9 •

Replacement of a k-cell, 2 ≤ k ≤ n. If f is a k-cell of Σ and C is an invertible context of (Σk \ {f})>

and ε is in {−,+}, the transformation Uf,C[fε] replaces f by C[fε] in Σ by performing the following
sequence of operations:
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2.4. Tietze equivalences and Tietze transformations

− adjunction of a k-cell xC[fε], parallel to C[fε],

− replacement of f with C−[xεC[fε]] in the sources and targets of every j-cell, for j > k,

− elimination of the k-cell f.

A (finite) polygraphic transformation is a (finite) composite of elementary polygraphic transforma-
tions. We note that every polygraphic transformation is invertible (up to the renaming of the generating
cells). A polygraphic transformation is positive when it only contains adjunctions and replacements, neg-
ative when it only contains eliminations and replacements, neutral when it only contains replacements.

2.4.3. Coherent polygraphic transformations. From the elementary polygraphic transformations, we
build the following two families of composite transformations:

Coherent adjunction of a k-cell, 1 ≤ k < n. If u is a k-cell of Σ>, the transformation T+u adds to Σ
the following cells:

− a generating k-cell xu that is parallel to u,

− if k < n, a generating (k+ 1)-cell δu from f to xu.

For n = 3 and k ∈ {1, 2, 3}, the coherent adjunctions of k-cells correspond to the following inclusions:

• u
// •

T+u
// •

u

##

xu

;;δu�� •

•
��

CC
u
��

•
T+u
// •

��

CC
u

��
xu

��

δu%9 •

•
��

CC

�� ��

u %9 •
T+u
// •

��

CC

�� ��

u %9

xu
%9 •

Coherent elimination of a k-cell, 1 ≤ k ≤ n. If f is a (k+1)-cell of Σ, or an n-sphere of Σ> if k = n,
with source u in Σ> and target x in Σ, the transformation T−f successively performs the following
sequence of operations:

− replacements of j-cells, for j > k, so that u is replaced by x in their sources and targets,

− replacements of j-cells, for j > k+ 1, so that f is replaced by 1u in their sources and targets,

− if k < n, elimination of the (k+ 1)-cell f,

− elimination of the k-cell x.
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2. Actions of monoids and coherent presentations

When n = 3 and k ∈ {1, 2, 3}, the coherent eliminations of k-cells correspond to the following projec-
tions:

•

u
##

x

;;f�� •
T−f
// • u

// •

•
��

CC
u

��
x

��

f %9 •
T−f
// •

��

CC
u
��

•

•
��

CC

�� ��

u %9

x
%9 •

T−f
// •

��

CC

�� ��

u %9 •

2.5. 1-Tietze transformations

A 1-Tietze transformation is a polygraphic transformation that is a composition of

− replacements of k-cells, for k ≥ 2,

− coherent adjunctions and coherent eliminations of 1-cells and 2-cells,

− adjunctions and eliminations of k-cells, for k ≥ 3.

The terminology is borrowed from combinatorial group theory, see [18], in such a way that Tietze trans-
formations of presentations of monoids correspond to 1-Tietze transformations of (2, 1)-polygraphs. As
in the original case, we get that 1-Tietze-equivalent (n, 1)-polygraphs are exactly the ones that are related
by 1-Tietze transformations.

2.5.1. Lemma. The 1-Tietze transformations preserve 1-Tietze equivalence.

Proof. First, we note that transformations that act on k-cells, for k ≥ 3, have no influence on the category
presented by an (n, 1)-polygraph. Then, replacements of 2-cells also preserve the category presented by
a (n, 1)-polygraph: they replace a generating relation by a composition of relations that are equivalent
to it.

In terms of presentations of categories, a coherent adjunction or coherent elimination of a 1-cell adds
or removes a generator, together with a relation that defines it in terms of the other generators. Thus,
these transformations induce isomorphisms between the corresponding presented categories.

Coherent adjunctions and coherent eliminations of 2-cells amount at adding or removing generating
relations that are consequences of the other generating relations. In that case, we get equalities between
the presented categories.
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2.5. 1-Tietze transformations

2.5.2. Proposition. Two (2, 1)-polygraphs are 1-Tietze-equivalent if, and only if, there exists a 1-Tietze
transformation between them. Moreover, if both (2, 1)-polygraphs are finite, then the 1-Tietze transfor-
mation can be chosen to be finite.

Proof. We have seen that 1-Tietze transformations preserve 1-Tietze equivalence. Conversely, let us
consider (2, 1)-polygraphs Σ and Υ that present the same category (up to isomorphism). We define the
(2, 1)-polygraph Ξ with the following cells:

− the same 0-cells as Σ (and Υ),

− the 1-cells of Σ plus the 1-cells of Υ,

− the 2-cells of Σ plus the 2-cells of Υ,

− for each 1-cell x of Σ, a 2-cell ϕx : vx ⇒ x, where vx is a 1-cell of Υ> such that vx = x in the
quotient,

− for each 1-cell y of Υ, a 2-cell ψy : uy ⇒ y, where uy is a 1-cell of Σ> such that uy = y in the
quotient.

Let us prove that there exists a 1-Tietze transformation from Σ to Ξ. First, we use a coherent adjunction
to add y and ψy : uy ⇒ y for each 1-cell y in Υ. We denote by T+Υ1

(Σ) the resulting (2, 1)-polygraph.
Then, we consider a 2-cell γ : v ⇒ v ′ in Υ. By definition of Υ, we have v = v ′. Thus, if

v = y1 . . . ym and v ′ = y ′1 . . . y
′
n with each yi and y ′j in Υ, we have

uy1 . . . uym = uy ′
1
. . . uy ′

n
.

As a consequence, there exists a 2-cell

f : uy1 . . . uym =⇒ uy ′
1
. . . uy ′

n

in Σ>. Hence, we get the following 2-cell in T+Υ1
(Σ)>:

ψ−
y1
. . . ψ−

ym ?1 f ?1 ψy ′
1
. . . ψy ′

n
: y1 . . . ym =⇒ y ′1 . . . y

′
n.

We use a coherent adjunction to add the 2-cell γ : v ⇒ v ′ to T+Υ1
(Σ), and repeat the same process for

every 2-cell of Υ. We denote by T+Υ (Σ) the resulting (2, 1)-polygraph.
Let x be a 1-cell of Σ. We decompose the corresponding 1-cell vx of Υ> into y1 . . . yn, with each yi

in Υ. Then we have
x = uy1 . . . uyn ,

so that, there exists a 2-cell
f : uy1 . . . uyn =⇒ x

in Σ>. Hence we have the following 2-cell in T+Υ (Σ)
>:

ψ−
y1
. . . ψ−

yn ?1 f : vx = y1 . . . yn =⇒ x.

We apply a coherent adjunction to add the 2-cell ϕx : vx ⇒ x to T+Υ (Σ), and repeat the same process
for every 1-cell of Σ. This results in Ξ and, by symmetry, we get the following 1-Tietze transformations,
which are finite whenever Σ and Υ are finite:

Σ
S−→ Ξ

T−−→ Υ.
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2. Actions of monoids and coherent presentations

2.5.3. Lemma. An (n, 1)-polygraph is 1-Tietze-equivalent to its underlying (2, 1)-polygraph, by elimi-
nations of k-cells, k ≥ 3.

Proof. Let Σ be an (n, 1)-polygraph. Starting with the n-cells of Σ, we can apply eliminations so that
we get 1-Tietze equivalence between Σ and its underlying (n − 1, 1)-polygraph. By induction, we
progressively eliminate all the k-cells of Σ, for k ≥ 3, to get the result.

2.5.4. Theorem. Two (n, 1)-polygraphs are 1-Tietze-equivalent if, and only if, there exists a 1-Tietze
transformation between them. Moreover, if both (n, 1)-polygraphs are finite, the 1-Tietze transformation
can be chosen to be finite.

2.6. 2-Tietze transformations

A 2-Tietze transformation is a polygraphic transformation that is a composition of

− replacements of k-cells, for ≥ 2,

− coherent adjunctions and coherent eliminations of 1-cells, 2-cells and 3-cells,

− adjunctions and eliminations of k-cells, for k ≥ 4.

2.6.1. Lemma. The 2-Tietze transformations preserve 2-Tietze equivalence.

Proof. First, we note that transformations that act on k-cells, for k ≥ 4, preserve the 2-category presented
by an (n, 1)-polygraph. This is also the case of replacements of 2-cells or 3-cells.

In terms of presentations of 2-categories, coherent adjunctions and coherent eliminations of 2-cells
and 3-cells correspond to adding or removing superfluous generators or relations, yielding isomorphic
presented 2-categories.

Let Σ be a (3, 1)-polygraph, let u be a 1-cell of Σ∗ and let T+u be the coherent adjunction that
adds a 1-cell x and a 2-cell ϕ : u ⇒ x to Σ. We want to prove that the resulting (3, 1)-polygraph
T+u (Σ) is 2-Tietze-equivalent to Σ. First, we note that they are 1-Tietze-equivalent since T+u is a 1-Tietze
transformation. Then, let us prove that the 2-categories presented by Σ and T+u (Σ) are equivalent. We
consider the 2-functors

Σ
//
ι

//

T+u (Σ)
π

oooo

where ι is induced by the inclusion of Σ2 into T+u (Σ) and π is induced by the canonical projection
sending x to u and ϕ to 1u, leaving the other generating cells unchanged. Let us prove that this pair
of 2-functors is an equivalence of 2-categories. First, we have πι = IdΣ. Then, let us define a natural
isomorphism σ from the composite ιπ to the identity of T+u (Σ) as follows:

− on 0-cells, σ is the identity,

− on 1-cells, we take σx = ϕ, which is invertible in T+u (Σ), and σy = 1y for every other generating
1-cell y of Σ.
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2.6. 2-Tietze transformations

The only non-trivial diagram we have to check is the one for the 2-cell ϕ, and it is commutative:

ιπ(u) = u
σu = 1u %9

ιπ(ϕ) = 1u
��

c©

u

ϕ
��

ιπ(x) = u
σx = ϕ

%9 x

For the case of coherent eliminations of 1-cells, we use the fact that, up to replacements of k-cells,
for k ≥ 2, we can consider that the 1-cell and the 2-cell removed do not appear in the sources and targets
of other cells. Then, the coherent elimination is the inverse transformation of a coherent adjunction and,
as such, it is a 2-Tietze transformation.

2.6.2. Proposition. Two (3, 1)-polygraphs are 2-Tietze-equivalent if, and only if, there exists a 2-Tietze
transformation between them. Moreover, if both (3, 1)-polygraphs are finite, then the 2-Tietze transfor-
mation can be chosen to be finite.

Proof. We have seen that 2-Tietze transformations preserve 2-Tietze equivalence. Conversely, let us
consider (3, 1)-polygraphs Σ and Υ that are 2-Tietze-equivalent. First, we define (3, 1)-polygraphs Σ ′

and Υ ′ such that Σ ′ is 2-Tietze-equivalent to Σ, Υ ′ is 2-Tietze-equivalent to Υ and Σ ′ and Υ ′ have the
same 1-cells.

Let us define Σ ′ as the (3, 1)-polygraph obtained from Σ by application of a sequence of coherent
adjunctions of 1-cells. For each 1-cell y of Υ, we choose a 1-cell uy of Σ> such that uy = y in the
quotient category Σ∗1/Σ2. Then we apply a coherent adjunction for each 1-cell y, thus adding y and a
2-cell ϕy : uy ⇒ y, and get Σ ′ as a result. We define Υ ′ from Υ in a symmetric way.

Now, we have two (3, 1)-polygraphs Σ ′ and Υ ′ that are 2-Tietze-equivalent with the same 1-cells.
As a consequence, the 2-categories Σ ′ and Υ ′ they present are not only equivalent, but isomorphic.
From them, we proceed in a similar way to the case of 1-Tietze-equivalent (2, 1)-polygraphs in order to
construct a (3, 1)-polygraph Ξ that contains all the 2-cells and 3-cells of Σ ′ and Υ ′, plus coherence 3-
cells. Then we check that Ξ can be obtained from both Σ ′ and Υ ′ by coherent adjunctions of 2-cells and
3-cells, thus proving that there exists a 2-Tietze transformation from Σ ′ to Υ ′, hence from Σ to Υ.

2.6.3. Lemma. An (n, 1)-polygraph is 2-Tietze-equivalent to its underlying (3, 1)-polygraph, by elimi-
nations of k-cells, k ≥ 4.

Proof. Let Σ be an (n, 1)-polygraph. Starting with the n-cells of Σ, we can apply eliminations so that
we get 2-Tietze equivalence between Σ and its underlying (n − 1, 1)-polygraph. By induction, we
progressively eliminate all the k-cells of Σ, for k ≥ 4, to get the result.

2.6.4. Theorem. Two (n, 1)-polygraphs are 2-Tietze equivalent if, and only if, there exists a 2-Tietze
transformation between them. Moreover, if both (n, 1)-polygraphs are finite, the 2-Tietze transformation
can be chosen to be finite.
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3. Rewriting methods for computing coherent presentations

3. REWRITING METHODS FOR COMPUTING COHERENT PRESENTATIONS

In this section, we give algorithmic methods that can extend a presentation Σ into a coherent presentation,
by computing a homotopy basis of Σ>. They rely on using rewriting techniques, mainly Squier’s theorem
and Knuth-Bendix completion procedure, adapted to the setting of coherent presentations and formulated
using Tietze transformations.

3.1. Convergent 2-polygraphs

Here we recall notions and results of rewriting theory for 2-polygraphs, already contained in [10] for the
general case of n-polygraphs. We fix a 2-polygraph Σ.

3.1.1. Rewriting and normal forms. A rewriting step of Σ is a 2-cell of the free 2-category Σ∗ with
shape

y v // x

u

""

u ′

<<
ϕ�� x ′ w // y ′

where ϕ is a 2-cell of Σ and v and v ′ are 1-cells of Σ∗.
In what follows, we could assume that, given a 1-cell u of Σ∗, the set of rewriting steps with source u

has a distinguished element. Indeed, in our examples, Σ is finite, so that there exist only finitely many
rewriting steps with source u, making such a choice possible, at least in an arbitrary way. In practice,
we often have a “leftmost” or “rightmost” rewriting step on a given u, i.e., a reduction step vϕw with v
orw of minimal size. We refer the reader to [11] for a more thorough investigation on this subject, where
canonical rewriting steps are given in terms of “normalisation strategies”.

A rewriting sequence of Σ is a finite or infinite sequence

u1
f1 %9 u2

f2 %9 (· · · )
fn−1 %9 un

fn %9 (· · · )

of rewriting steps. If Σ has a non-empty rewriting sequence from u to v, we say that u rewrites into v.
Let us note that every 2-cell f of Σ∗ decomposes into a finite rewriting sequence of Σ, this decomposition
being unique up to exchange relations.

We say that a 1-cell u of Σ∗ is a normal form when Σ has no rewriting step with source u. A normal
form of u is a 1-cell v that is a normal form and such that u rewrites into v.

3.1.2. Termination. We say that Σ terminates when it has no infinite rewriting sequence. In that case,
every 1-cell has at least one normal form. Moreover, Noetherian induction allows definitions and proofs
of properties of 1-cells by induction on the maximum size of the 2-cells leading to normal forms.

As an example of how Noetherian induction is used, let us define a canonical normal form û for
every 1-cell u of Σ∗, together with a 2-cell σu : u ⇒ û in Σ∗. If u is a normal form, then we define û
as u and σu as the identity. Let us assume that u is not a normal form and that, for every v in which u
reduces, we have built v̂ and σv. In that case, we choose a rewriting step f : u ⇒ v and we define û to
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3.1. Convergent 2-polygraphs

be v̂ and σu as the following composite:

v
σv

� 
u

f
,@

σu

*> û

c©

Such a family of 2-cells σu : u ⇒ û forms the first dimension of a normalisation strategy for Σ. As
already mentioned, this notion was introduced in [11], to which we refer the reader for a deeper study.

3.1.3. Branchings. A branching of Σ is a pair (f, g) of 2-cells of Σ∗ with a common source, as in the
diagram

v

u

f &:

g $8 w

The 1-cell u is the source of this branching and the pair (v,w) is its target. We do not distinguish the
branchings (f, g) and (g, f).

A branching (f, g) is local when f and g are rewriting steps. Local branchings belong to one of the
three following families:

− Aspherical branchings have shape
v

u

f &:

f
$8 v

with f : u⇒ v a rewriting step of Σ.

− Peiffer branchings have shape
u ′v

uv

fv ';

ug #7 uv ′

with f : u⇒ v and g : u ′ ⇒ v ′ rewriting steps of Σ.

− Overlapping branchings are the remaining local branchings.

Local branchings are compared by the order 4 generated by the relations

(f, g) 4
(
ufv, ugv)

given for any local branching (f, g) and any possible 1-cells u and v of Σ∗. An overlapping local branch-
ing that is minimal for the order 4 is called a critical branching.

The terms “aspherical” and “Peiffer” come from the corresponding notions for spherical diagrams
in Cayley complexes associated to presentations of groups, see [18]. The term “critical” comes from
rewriting theory, see [4, 1].
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3. Rewriting methods for computing coherent presentations

3.1.4. Confluence. A branching (f, g) : u ⇒ (v,w) is confluent when there exist 2-cells f ′ : v ⇒ u ′

and g ′ : w⇒ u ′ in Σ∗, as in the following diagram:

v f ′

�*
u

f &:

g #7

u ′

w g ′

4H

We say that Σ is confluent (resp. locally confluent) when all of its branchings (resp. local branchings)
are confluent.

In a confluent 2-polygraph, every 1-cell has at most one normal form. An usual result in rewrit-
ing states that local confluence is equivalent to confluence of critical branchings, [1, 10]. Indeed, any
aspherical branching is confluent:

v 1v

�'
u

f &:

f
$8

v

v 1v

5I

We also have confluence of any Peiffer local branching:

u ′v u ′g

�,
uv

fv ';

ug #7

u ′v ′

uv ′ fv ′

3G

Finally, in the case of an overlapping but not minimal local branching (f, g), there exist factorisations
f = uhv and g = ukv with (h, k) : w ⇒ (x, y) a critical branching of Σ. Moreover, if (h, k) is
confluent, then so is (f, g):

x h ′

�*
w

h &:

k
#7

w ′

y k ′

5I  

uxv uh ′v
�-

uwv

f ';

g #7

uw ′v

uyv uk ′v

2F

For terminating 2-polygraphs, Newman’s lemma, sometimes called the Diamond Lemma, ensures
that local confluence and confluence are equivalent properties, [20]. Its proof is contained in the one of
Squier’s theorem, which we recall later.

3.1.5. Convergent polygraphs. We say that Σ is convergent when it terminates and it is confluent. Such
a Σ is called a convergent presentation of Σ, and of any category that is isomorphic to Σ. In that case,
every 1-cell u of Σ∗ has a unique normal form, denoted by û, so that we have u = v in Σ if, and only
if, û = v̂ holds in Σ∗. This extends to a section Σ� Σ∗ of the canonical projection, sending a 1-cell u
of Σ to the unique normal form of its representative 1-cells in Σ∗, still denoted by û.
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3.2. Squier’s theorem

As a consequence, a finite and convergent 2-polygraph Σ yields a concrete way to describe the mor-
phisms of the category Σ it presents, as elements of a free category, together with a decision procedure
for the corresponding word problem. The purpose of the finiteness condition is to ensure that one can
effectively check that a given 1-cell is a normal form.

3.2. Squier’s theorem

Here we recall Squier’s theorem, giving a way to construct a homotopy basis for a convergent 2-
polygraph. We fix a 2-polygraph Σ.

3.2.1. Generating confluences. A family of generating confluences of Σ is a cellular extension of Σ>

that contains exactly one 3-cell
v f ′

�*
��u

f &:

g #7

u ′

w g ′

4H

for every critical branching (f, g) of Σ.
We note that, if Σ is confluent, such a family always exists. However, such a family is not unique,

since the 3-cell can be directed in the reverse way and, for a given branching (f, g), we can have several
possible 2-cells f ′ and g ′ with the required shape. One way to determine a precise family is to fix a
normalisation strategy σ and the corresponding family of generating confluences, made of one 3-cell

v σv

�)
σf,g��u

f &:

g #7

û

w σw

Ui

for every critical branching (f, g) of Σ. Either way, we still get Squier’s theorem for 2-polygraphs (a
general version for n-polygraphs is given in [10]). Its proof is decomposed in three steps.

3.2.2. Lemma. Let Σ be a convergent 2-polygraph and let Γ be a family of generating confluences of Σ.
Then, for every local branching (f, g) : u⇒ (v,w) of Σ, there exist 2-cells f ′ : v⇒ u ′ and g ′ : w⇒ u ′

in Σ∗ and a 3-cell A : f ?1 f
′ V g ?1 g

′ in Γ>, as in

v f ′

�*
A��u

f &:

g #7

u ′

w g ′

4H

Proof. As we have seen in the study of confluence of local branchings, in the case of an aspherical or
Peiffer branching, we can choose f ′ and g ′ such that f ?1 f = g ?1 g

′: an identity 3-cell is enough to
link them. Moreover, if we have an overlapping branching (f, g) that is not critical, we have (f, g) =
(uhv, ukv) with (h, k) critical; we consider the corresponding 3-cell α : h ?1 h

′ V k ?1 k
′ of Γ and

conclude that f ′ = uh ′v, g ′ = kuk ′v and A = uαv satisfy the required conditions.
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3. Rewriting methods for computing coherent presentations

3.2.3. Lemma. Let Σ be a convergent 2-polygraph and let Γ be a family of generating confluences of Σ.
Then, for every parallel 2-cells f and g of Σ∗ with target a normal form, there exists a 3-cell from f to g
in Γ>.

Proof. The proof works by Noetherian induction on the common source u of f and g, using the termina-
tion of Σ. Let us assume that u is a normal form: then, by definition, the 2-cells f and g are the identity
of u, so that 11u : 1u V 1u is a 3-cell of Γ> from f to g.

Now, let us fix a 1-cell u with the following property: for any 1-cell v in which u reduces and for any
parallel 2-cells f, g : v ⇒ v̂ = û of Σ∗, there exists a 3-cell from f to g in Γ>. Let us consider parallel
2-cells f, g : u⇒ û and prove the result by constructing the following 3-cell from f to g in Γ>:

u1

f ′1
�)

f2

�-
A
��

u

f

�$

g

;O

f1

.B

g1

�0

u ′ h %9 û

v1

g ′
1

5I

g2

1E

=

=

B��

C��

Since u is not a normal form, we can decompose f = f1 ?1 f2 and g = g1 ?1 g2 so that f1 and g1 are
rewriting steps. They form a local branching (f1, g1) and we build the 2-cells f ′1 and g ′1, together with
the 3-cell A as in the first part of the proof. Then, we consider a 2-cell h from u ′ to û in Σ∗, that must
exist by confluence of Σ and since û is a normal form. We apply the induction hypothesis to the parallel
2-cells f2 and f ′1 ?1 h in order to get B and, symmetrically, to the parallel 2-cells g ′1 ?1 h and g2 to
get C.

3.2.4. Theorem (Squier’s theorem, [23, 10]). Let Σ be a convergent 2-polygraph. Every family of
generating confluences of Σ is a homotopy basis of Σ>.

Proof. Let us consider a 2-cell f : u⇒ v in Σ>. By construction of Σ>, the 2-cell f can be decomposed
(in a general in a non-unique way) into a “zig-zag”

f = f1 ?1 g
−
1 ?1 · · · ?1 fn ?1 g−n

where each fi and gi is a 2-cell of Σ∗. For each i, we use the convergence of Σ to choose 2-cells of Σ∗

hi : s(fi) ⇒ û and ki : t(fi) ⇒ û.

We also choose a 2-cell of Σ∗

hn+1 : v ⇒ û.
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3.2. Squier’s theorem

Hence, for each i, we get parallel 2-cells of Σ∗ whose targets are normal forms, so that we can consider
3-cells of Σ> with the following shape:

Ai : fi ?1 ki V hi and Bi : gi ?1 ki V hi+1.

Thus, the 3-cells
A ′i = Ai ?1 k

−
i and B ′i = g−i ?1 B

−
i ?1 h

−
i+1,

of Σ> have the following sources and targets:

A ′i : fi V hi ?1 k
−
i and B ′i : g−i V ki ?1 hi+1.

By composing all these 3-cells, we get

A ′1 ?1 B
′
1 ?1 · · · ?1 A ′n ?1 B ′n : f V h1 ?1 hn+1.

We can proceed similarly for another 2-cell g : u⇒ v of Σ>, to get a 3-cell from h1 ?1 hn+1 to g in Σ>.
By composing the resulting 3-cells, we get a 3-cell from f to g in Γ>. We conclude that Γ is a homotopy
basis of Σ>.

3.2.5. Squier’s completion. Given a convergent 2-polygraph Σ, we denote by S(Σ) the (3, 1)-polygraph
obtained from Σ by adjunction of a chosen family of generating confluences of Σ. We note that this (3, 1)-
polygraph is only defined up to that choice but we still have the following result, so that, in particular,
two different families of generating confluences give 2-Tietze-equivalent (3, 1)-polygraphs:

3.2.6. Corollary. For every convergent presentation Σ of a category C, the (3, 1)-polygraph S(Σ) is a
coherent presentation of C.

3.2.7. Example (The standard coherent presentation). We recall that, given a category C, the stan-
dard presentation of C is the 2-polygraph with the following cells

− the same 0-cells as C,

− one 1-cell û : x→ y for every 1-cell u : x→ y of C,

− one 2-cell γu,v : ûv̂⇒ ûv for every 1-cells u : x→ y and v : y→ z of C,

− one 2-cell ιx : 1x ⇒ 1̂x for every 0-cell x of C.

This presentation is not terminating: indeed, for every 0-cell x of C, the 2-cell ιx creates infinite rewriting
sequences

1x ⇒ 1̂x ⇒ 1̂x1̂x ⇒ 1̂x1̂x1̂x ⇒ · · ·
But the standard presentation is 1-Tietze-equivalent to the 2-polygraph we get by reversing all the 2-
cells ιx, and this 2-polygraph is convergent. Indeed, for termination, one checks that each 2-cell γu,v has
source of size 2 and target of size 1, while each 2-cell ι−x has source of size 1 and target of size 0. As a
consequence, for every non-degenerate 2-cell f : u ⇒ v of the free 2-category, the size of u is strictly
greater than the size of v.

For confluence, we study the critical branchings, divided into three families:
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3. Rewriting methods for computing coherent presentations

− for every 1-cells u : x→ y, v : y→ z and w : z→ t, one critical branching(
γu,vŵ , ûγv,w

)
which is confluent and gives the 3-cell

ûvŵ γuv,w

�,
γu,v,w��

ûv̂ŵ

γu,vŵ ';

ûγv,w
#7

ûvw

ûv̂w γu,vw

2F

− for every 1-cell u : x→ y of C, one critical branching(
γ1,u , ι

−
x û
)

which is confluent and gives the following 3-cell, written with ιx instead of ι−x ,

1̂xû
γ1x,u


!
û

ιxû
.B

1û

)= û
λu��

− for every 1-cell u : x→ y of C, one critical branching(
γu,1 , ûι

−
y

)
which is confluent and gives the following 3-cell, written with ιy instead of ι−y ,

û1̂y
γu,1y


!
û

ûιy
.B

1û

)= û

ρu
��

As a consequence, we get that these three families of 3-cells form a homotopy basis of the (2, 1)-category
freely generated by the standard presentation of C. Thus, the standard coherent presentation of C is,
indeed, a coherent presentation of C.

3.2.8. Example (The reduced standard coherent presentation). Given a category C, the reduced stan-
dard presentation of C is the 2-polygraph with the following cells

− the same 0-cells as C,

− one 1-cell û : x→ y for every non-identity 1-cell u : x→ y of C,

− one 2-cell γu,v : ûv̂ ⇒ ûv for every non-identity 1-cells u : x → y and v : y → z of C such that
uv is not an identity,

36



3.2. Squier’s theorem

− one 2-cell γu,v : ûv̂ ⇒ 1x for every non-identity 1-cells u : x ⇒ y and v : y ⇒ x of C such that
uv = 1x.

This 2-polygraph is convergent. Indeed, for termination, one checks that each generating 2-cell γu,v has
source of size 2 and target of size 0 or 1. As a consequence, for every non-degenerate 2-cell f : u ⇒ v

of the free 2-category, the size of u is strictly greater than the size of v.
For confluence, we note that this 2-polygraph has one critical branching(

γu,vŵ , ûγv,w
)

for every non-identity 1-cells u : x → y, v : y → z and w : z → t. All these critical branchings are
confluent. To check this fact, we distinguish four cases, depending on whether uv and vw are identities
or not.

− if neither uv or vw is an identity:

ûvŵ γuv,w

�,
γu,v,w��

ûv̂ŵ

γu,vŵ ';

ûγv,w
#7

ûvw

ûv̂w γu,vw

2F

− if uv is an identity, but not vw:

ŵ

γu,v,w ��ûv̂ŵ

γu,vŵ &:

ûγv,w
#7 ûv̂w

γu,vw

Ui

− if uv is not an identity, but vw is:

ûvŵ

γuv,w

Ui

γu,v,w ��ûv̂ŵ

γu,vŵ ';

ûγv,w
$8 û

− if uv and vw are identities, and thus u = uvw = w:

ûv̂ŵ

γu,vŵ

�,

ûγv,w

2F̂u=ŵγu,v,w
��
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3. Rewriting methods for computing coherent presentations

The reduced standard coherent presentation of C is the (3, 1)-polygraph obtained from the reduced stan-
dard presentation of C by adjunction of all these 3-cells γu,v,w and, by 3.2.6, it is a coherent presentation
of C.

This result can also be obtained by proving that the reduced standard coherent presentation of C
is 2-Tietze-equivalent to the standard coherent presentation of C. Indeed, we can apply the following
sequence of 2-Tietze transformations to the reduced version to get the non-reduced one:

− for every 0-cell x of C, the coherent adjunction of the 1-cell 1̂x and the 2-cell ιx,

− for every 1-cell u : x→ y of C, the coherent adjunction of the 2-cell γ1x,u and the 3-cell λu,

− for every 1-cell u : x→ y of C, the coherent adjunction of the 2-cell γu,1y and the 3-cell ρu,

− for every 1-cells u : x → y and v : y → z of C, the coherent adjunctions of the 3-cells γ1x,u,v,
γu,1y,v and γu,v,1z that correspond to the associativity condition (they are parallel to 3-cells made
of λs and ρs),

− the replacements of the γu,v and γu,v,w by the adequate 3-cells when uv or vw is an identity.

As a side remark, we get that, in the case of monoids, the notions of unital and non-unital actions give
equivalent categories, as noted by Deligne in [7].

3.3. Knuth-Bendix completion procedure

Thanks to Squier’s theorem, we can extend a convergent presentation into a coherent presentation. How-
ever, when the presentation is not convergent, we cannot apply this construction directly. For that, Knuth-
Bendix completion procedure, [14], gives a way to transform some non-convergent 2-polygraphs into
convergent ones.

3.3.1. Termination orders and direction of 2-cells. Let Σ be a 2-polygraph. A reduction order for Σ
is an order relation ≤ on parallel 1-cells of Σ∗ such that the following properties are satisfied:

− The compositionof 1-cells of Σ∗ is strictly monotone in both arguments.

− Every decreasing family (un)n∈N of parallel 1-cells of Σ∗ is stationary.

A termination order for Σ is a reduction order ≤ such that, for every 2-cell ϕ of Σ, the strict inequality
s(ϕ) > t(ϕ) holds.

As a direct consequence of the definition, a 2-polygraph that admits a termination order is terminat-
ing. In fact, the converse is also true: for a terminating 2-polygraph Σ, we define, for every 1-cell u
in Σ∗, the natural number ξ(u) as the maximal size of the 2-cells of Σ∗ with source u. The order defined
by u ≤ v when ξ(u) ≤ ξ(v) is a termination order for Σ.

3.3.2. The idea of the procedure. Knuth-Bendix completion procedures considers a 2-polygraph Σ
equipped with a termination order (hence Σ must be terminating) and builds an increasing sequence of
terminating 2-polygraphs that progressively correct the obstructions to confluence:

Σ = c0(Σ) // // c1(Σ) // // c2(Σ) // // (. . . )
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3.3. Knuth-Bendix completion procedure

To build ck+1(Σ) from ck(Σ), the procedure checks the critical branchings of ck(Σ), where potential
obstructions to confluence lie. Given a critical branching (f, g) of ck(Σ) with source u, one progressively
reduce their respective targets, say v and w, for example by using a normalisation strategy. Since ck(Σ)
terminates, one will reach normal forms v̂ and ŵ. If v̂ = ŵ, then the branching is confluent (the converse
is not necessarily true since ck(Σ) is not confluent). Otherwise, the completion procedure tries to add a
generating 2-cell between v̂ and ŵ, progressively building ck+1(Σ). Let us detail this procedure.

3.3.3. The completion procedure. LetΣ be a 2-polygraph with a termination order≤. For every critical
branching

v

u

f &:

g $8 w

of Σ, we compute 2-cells f ′ : v⇒ v̂ and g ′ : w⇒ ŵ in Σ∗ , where v̂ and ŵ are some normal forms for v
and w, respectively, as in

v
f ′ %9 v̂

u

f &:

g #7 w
g ′

%9 ŵ

There are four possibilities:

− if v̂ = ŵ, then the critical branching is already confluent,

− if v̂ > ŵ, we apply a coherent adjunction to add the dotted 2-cell

v
f ′ %9 v̂

��
u

f &:

g #7 w
g ′

%9 ŵ

− if v̂ < ŵ, we apply a coherent adjunction to add the dotted 2-cell

v
f ′ %9 v̂

u

f &:

g #7 w
g ′

%9 ŵ

EY

− otherwise, the completion fails: we do not know how to make the branching (f, g) confluent while
preserving termination.
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After doing this operation for each branching of Σ, we get a terminating 2-polygraph c1(Σ). It is
equal to Σ if, and only if, Σ is confluent and finite if, and only if, Σ is finite. Moreover, c1(Σ) is obtained
from Σ by coherent adjunctions of 2-cells, so that c1(Σ) is 1-Tietze-equivalent to Σ.

If 2-cells have been added to Σ to get c1(Σ), the completion procedure repeats the operations on
the critical branchings of c1(Σ) that are generated by at least one of the new 2-cells, and so on. If no
failure occurs, the procedure either reaches a stable state, hence a confluent 2-polygraph, or can forever,
otherwise:

Σ = c0(Σ) // // c1(Σ) // // c2(Σ) // // (· · · )
In the non-failing case, the completion of Σ is the 2-polygraph

C(Σ) =

∞⋃
k=0

ck(Σ).

Remark. Let us note that C(Σ) depends on several choices. First, for a given critical branching (f, g),
the 2-cells f ′ and g ′ have no reason to be unique. In fact, it is even possible that the branching (f, g)
is confluent but that the 2-cells f ′ and g ′ we choose do not reach the same normal form, since Σ is not
necessarily confluent as a whole. To solve this problem in practice, the 2-cells f ′ and g ′ can be built
according to a normalisation strategy, as described in [11]. Also, the choice of another termination order
can lead to different outcomes of the completion procedure: even in the case of a failure, a different
choice of termination order can lead to a successful computation.

3.3.4. Proposition. Let Σ be a terminating 2-polygraph that presents a category C. The comple-
tion C(Σ) of Σ, when it exists, is a convergent presentation of C. Moreover, C(Σ) is finite if, and only
if, Σ is finite and the increasing sequence (ck(Σ))k∈N is stationary.

3.4. Homotopical completion

We extend Knuth-Bendix completion procedure to the case of (3, 1)-polygraphs. Homotopical comple-
tion functions the same way as completion, by looking to critical branchings one by one; the procedure
potentially adds 2-cells, but also 3-cells that tend towards a homotopy basis.

3.4.1. The procedure. Let Σ be a 2-polygraph, seen as a (3, 1)-polygraph with no 3-cell, equipped with
a termination order ≤. For every critical branching

v

u

f &:

g $8 w

of Σ, we compute 2-cells f ′ : v⇒ v̂ and g ′ : w⇒ ŵ in Σ∗ , where v̂ and ŵ are some normal forms for v
and w, respectively, as in

v
f ′ %9 v̂

u

f &:

g #7 w
g ′

%9 ŵ
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There are four possibilities:

− if v̂ = ŵ, we apply an adjunction to add the dotted 3-cell

v f ′

�-
��u

f &:

g $8

v̂=ŵ

w g ′

1E

− if v̂ > ŵ, we apply a coherent adjunction to add the dotted 2-cell and 3-cell

v
f ′ %9

��

v̂

��
u

f &:

g #7 w
g ′

%9 ŵ

− if v̂ < ŵ, we apply a coherent adjunction to add the dotted 2-cell and 3-cell

v
f ′ %9

��

v̂

u

f &:

g #7 w
g ′

%9 ŵ

EY

− otherwise, the completion fails: we do not know how to make the branching (f, g) confluent while
preserving termination.

After performing these operations for each branching of (f, g), we get a (3, 1)-polygraph hc1(Σ),
whose underlying 2-polygraph is c1(Σ). Homotopical completion repeats this construction (only explor-
ing the new critical branchings each time) until it reaches a stable state, which may or may not happen.
The operations can be summarised as follows:

Σ = hc0(Σ) // // hc1(Σ) // // hc2(Σ) // // (· · · )

Each arrow is made of 1-Tietze transformations (adjunctions of 3-cells for confluent critical branch-
ings) and 2-Tietze transformations (coherent adjunctions of 2-cells and 3-cells for non-confluent critical
branchings).

In the non-failing case, the homotopical completion of Σ is the (3, 1)-polygraph

HC(Σ) =

∞⋃
k=0

hck(Σ).
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Remark. We note that applying Squier’s theorem to the usual completion C(Σ) of Σ, which is the un-
derlying 2-polygraph of HC(Σ), yields a (3, 1)-polygraph that is 2-Tietze equivalent to HC(Σ): in what
follows, we consider that HC(Σ) and S(C(Σ)) are equal. But, from a computational point of view, com-
puting S(C(Σ)) would require to compute again all the critical branchings ofC(Σ), whereas homotopical
completion builds the homotopy basis in parallel to the convergent presentation.

Using the properties of the usual completion and Squier’s theorem, we get:

3.4.2. Theorem. Let Σ be a terminating 2-polygraph that presents a category C. The homotopical
completion HC(Σ) of Σ is, when it exists, a coherent presentation of C, whose underlying 2-polygraph
is a convergent presentation of C. Moreover, HC(Σ) is finite if, and only if, Σ is finite and the increasing
sequence (hck(Σ))k∈N is stationary.

3.4.3. Example. Let us consider the monoid M presented by the 2-polygraph Σ with two 1-cells, x
and y, and one 2-cell

xyx
α %9 yy.

The monoid M is a Garside group, with Garside element y3, see [13]. To prove that the 2-polygraph Σ
terminates we can consider, for example, the order given by the number of copies of x in a word.

Let us apply the homotopical completion procedure to Σ. It has one critical branching, which is not
confluent:

yyyx

xyxyx

αyx ';

xyα #7 xyyy

With the chosen order, based on the number of copies of x, the completion procedure would fail. We
extend the order by considering, as a secondary condition, the degree-wise left lexicographic order given
by x < y. Then, the completion procedure coherently adds the following 2-cell β and 3-cell A:

yyyx

β

��

xyxyx

αyx (<

xyα "6

A��

xyyy

Since we have added a new 2-cell, we must explore the critical branchings it creates. There is only one
such branching, which is confluent, yielding a new 3-cell B:

xyyyyx xyβ

�)
B
��

yyyxyx

βyx *>

yyyα !5

xyxyyy

αyyyi}
yyyyy

This time, we have added no 2-cell: the procedure stops with a coherent presentation of M with two 2-
cells α and β, which are a convergent presentation of M, and two 3-cells A and B, forming a homotopy
basis.

42



3.5. Homotopical reduction

3.5. Homotopical reduction

We have seen that the homotopical completion can be used to compute a coherent presentation of a
category from a convergent presentation. However, the resulting coherent presentation is in general
bigger than we could expect. Here we present a procedure that can be used towards that goal, homotopical
reduction, divided in two parts.

3.5.1. Homotopical reduction in dimension 2. Let Σ be a terminating 2-polygraph. When successful,
the homotopical completion procedure yields a (3, 1)-polygraph HC(Σ) built on Σ by adjunctions of
2-cells and 3-cells. All the adjunctions of 2-cells are coherent ones, made after examination of a non-
confluent critical branching. Thus, we can reverse these coherent adjunctions at the end of the procedure,
to coherently remove the extra 2-cells and 3-cells.

The resulting (3, 1)-polygraph, is still a coherent presentation of Σ, with the original presentation Σ
as underlying 2-polygraph. But we can also postpone these coherent eliminations after a simplification
of the homotopy basis we have computed, such the homotopical reduction in dimension 3.

3.5.2. The idea of homotopical reduction in dimension 3. It may happen that some 3-cells of a coher-
ent presentation Σ are superfluous, in the sense that they are not required to relate parallel 2-cells. For
example, given a 3-cell A : f V g in Σ, there might also exist a 3-cell B : f V g in (Σ \ {B})>. In
that case, removing A from Σ is a 2-Tietze transformation and, thus, this operation produces a smaller
coherent presentation of the same category. The difficulty here is to compute such a 3-cell B. Here we
describe one way to do so, by means of critical triple branchings.

3.5.3. Triple branchings. Let us recall from [11] that, for a 2-polygraph Σ, a triple branching of Σ is a
triple (f, g, h) of 2-cells of Σ∗ with a common source, as in the diagram

v

u

f &:

g %9

h
$8

w

x

The triple branchings are classified in the same way as branchings. A triple branching (f, g, h) is local
when f, g and h are rewriting steps. Local branchings belong to one of the three following families:

− Aspherical triple branchings have two of their 2-cells equal.

− Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two.

− Overlapping triple branchings are the remaining local branchings.

Local triple branchings are compared by the order 4 generated by the relations

(f, g, h) 4
(
ufv, ugv, uhv)

given for any local triple branching (f, g, h) and any possible 1-cells u and v of Σ∗. An overlapping local
triple branching that is minimal for the order 4 is called a critical triple branching.
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3.5.4. Generating triple confluences. Let Σ be a convergent 2-polygraph. A family of generating triple
confluences of Σ is a cellular extension of S(Σ)> that contains exactly one 4-cell with shape

v

f ′1
!5

A

x ′

h ′′

� 

v

f ′1
!5

f ′2
�(

x ′

h ′′

� 
u

f

.B

g %9

h
�0

w

g ′
1

6J

g ′
2

�(

C ′ û
ω �? u

f

.B

C

h
�0

w ′ g ′′ %9

B ′

A ′

û

x

h ′
2

)=

B

v ′
f ′′

>R

x

h ′
1

6J

h ′
2

)= v ′
f ′′

>R

for every critical triple branching (f, g, h) of Σ.
Such a family always exist. Indeed, we can build such a 4-cell ω as follows. First, we consider the

branching (f, g), we use the confluence of Σ to get f ′1 and g ′1 and the coherence of Σ to build the 3-cellA.
We repeat this step with the branchings (g, h) and (f, h). Then, we consider the branching (f ′1, f

′
2) and

we use the convergence of Σ to get g ′′ and h ′′ with û as common target, plus the 3-cell B ′ by coherence.
We do the same operation with (h ′1, h

′
2) to get A ′. Finally, we build C ′ to relate the parallel 2-cells

g ′1 ?1 h
′′ and g ′2 ?1 f

′′.
This construction includes many choices. In [11], we have explained how to use a higher-dimensional

normalisation strategies to make these constructions in a coherent way. In that case, constructing a 4-cell
for each critical triple branching of Σ yields a homotopy basis of the (3, 1)-category S(Σ)>. However,
we do not need this property here and we stick with arbitrary choices.

3.5.5. Homotopical reduction in dimension 3. Let Σ be a convergent 2-polygraph and let Γ be family
of generating triple confluences. For each 4-cellω of Γ , we apply the following operation.

The source and the target of a 4-cellω of Γ is made ?2-compositions of 3-cells of S(Σ)> with shape

f ?1 uA
εv ?1 g

where A is a 3-cell of S(Σ), ε is + or −, f and g are 2-cells of Σ> and u and v are 1-cells of Σ>. Then,
if there is such a 3-cell for which u and v are identities, this 3-cell appears in an invertible context in the
boundary of ω. In that case, up to composition by 2-cells and 3-cells of its boundary, we may assume
thatω has the following shape

ω : B �? A,

where B is a 3-cell of S(Σ)>.
Now, if the 3-cell A does not appear in B, then we can apply a coherent elimination of A and ω

to S(Σ), so that S(Σ) is 2-Tietze-equivalent to S(Σ) \ {B}. Let us note that there may be several possible
choices for the 3-cell A, since other ones can occur in an invertible context in the boundary of ω. Also,
the order of examination of the 4-cells can change the result.

After doing this operation once, if possible, for each 4-cell of Γ , we get a (3, 1)-polygraph, denoted
by R(Σ) and which is, by construction, 2-Tietze-equivalent to S(Σ). Again, due to the potential choices
in the procedure, this (3, 1)-polygraph is defined up to 2-Tietze equivalence only. Nevertheless, we get:

3.5.6. Proposition. If Σ is a convergent presentation of a category C, then the (3, 1)-polygraph R(Σ)
is a coherent presentation of C.
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3.6. Reduced homotopical completion

Let Σ be a terminating 2-polygraph. The reduced homotopical completion of Σ is the (3, 1)-polygraph
RHC(Σ) obtained as the result of the following successive transformations on Σ, when no failure occurs:

− homotopical completion,

− homotopical reduction in dimension 3,

− homotopical reduction in dimension 2.

3.6.1. Theorem. Let Σ be a terminating presentation of a category C. When it exists, the reduced
homotopical completion RHC(Σ) of Σ is a coherent presentation of C whose underlying 2-polygraph
is Σ.

3.6.2. Example. Thanks to homotopical completion, we have seen that the monoid M admits a coherent
presentation by the (3, 1)-polygraph with two 1-cells x and y, two 2-cells

α : xyx ⇒ yy and β : yyyx ⇒ xyyy

and two 3-cells

yyyx

β

��

xyxyx

αyx (<

xyα "6

A��

xyyy

xyyyyx xyβ

�)
B
��

yyyxyx

βyx *>

yyyα !5

xyxyyy

αyyyi}
yyyyy

To apply homotopical reduction, we compute 4-cells associated to critical triple branchings. Here, we
only need to consider the following one, with source xyxyxyx:(

αyxyx , xyαyx , xyxyα
)
.

The corresponding 4-cell is:

yyyxyx

yyyα

�%
βyx

��

yyyxyx

yyyα

�%
xyxyxyx

αyxyx
)=

xyαyx %9

xyxyα !5

xyyyyx

xyβ

��

B

Ayx

xyA

yyyyy
ω �? xyxyxyx

αyxyx
,@

1αyα

xyxyα �3

yyyyy

xyxyyy

αyyy

8L

yyyxyx

αyyy

8L

As a consequence, homotopical reduction proves that B is a superfluous 3-cell, i.e., that A alone forms
a homotopy basis. Then, we coherently eliminate β and A, which have been added by homotopical
completion.

We get that the original 2-polygraph with the 2-cell α only is, when seen as a (3, 1)-polygraph with
no 3-cell, a coherent presentation of the monoid M.
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3.6.3. Example. Let us consider the monoid M with presented by the 2-polygraph Σ with two 1-cells x
and y and two 2-cells

α : xy ⇒ xx and β : yy ⇒ xx.

This 2-polygraph terminates. To prove this fact, we can, for example, count the number of occurrences
of the 1-cell y. However, in prevision for completion, we prefer to consider the degree-wise left lexico-
graphic order generated by y > x.

Let us apply the reduced homotopical completion procedure to Σ. It has two critical branchings, one
of them being confluent and the other one requiring the coherent adjunction of a new 2-cell γ, resulting
in:

xxy

xα

��

xyy

αy (<

xβ "6

A��

xxx

xxy xα

�$
B
��

yyy

βy *>

yβ  4

xxx

yxx
γ

9M

The adjunction of γ generates three new critical branchings, all of them being confluent:

xyxx

αxx

�(

xγ

5IC�� xxxx

xxxx

yyxx

βxx (<

yγ "6

D��

yxxx

γx

K_ xxxy xxα

�&
E
��

yxxy

γy *>

yxα  4

xxxx

yxxx
γx

8L

Thus, the homotopical completion HC(Σ) of Σ is a coherent presentation of M with two 2-cells, three
2-cells and five 3-cells.

Now, let us apply the homotopical reduction procedure to this (3, 1)-polygraph. We start with the
study of the critical triple branchings of Σ. We note that, if γ is involved in a critical triple branching, then
the source of the corresponding 2-cells has size at least 5. Moreover, the three 2-cells are homogeneous:
the source and target of each one have the same size. As a consequence, the 1-cells that appear in a triple
generating confluence associated to a critical triple branching that contains γ have size at least 5. This
excludes the possibility to find one of the 3-cells ofHC(Σ) in an invertible context in the source or target
of the corresponding 4-cell.

There remains two critical triple branchings to study. The first one gives the following 4-cell:

xxyy

xαy

�+

xxβ

��

xxyy

xxβ

�"
xyyy

αyy
-A

xβy %9
Ay

xyβ �1

xxxy

xxα

�+

xA
ω1 �? xyyy

αyy
-A

1αβ

xyβ �1

xxxx

xyxx

xγ

(<

xB

xxxx xyxx

αxx

3G

xγ

H\

C

Thus, the 3-cell C appears in an invertible context in the boundary of ω1: it is a superfluous 3-cell in
the homotopy basis of HC(Σ), leaving A, B, D and E. The last critical triple branching generates the

46



3.7. Métivier-Squier reduction revisited

following 4-cell

xxyy

xαy
"6

By

xxxy

xxα

� 

xxyy

xxβ

� 
yyyy

βyy
/C

yβy %9

yyβ �1

yxxy

γy

5I

yxα

�)

E xxxx
ω2 �? yyyy

βyy
/C

yyβ �1

1ββ xxxx

yyxx

yγ

(<

yB

yxxx

γx

=Q

yyxx

βxx

5I

yγ

(<
D

yxxx

γx
[o

Here, the 4-cell ω2 can be used to coherently remove one of the 3-cells D or E, since both appear in
an invertible context in the boundary of ω2. We get a homotopy basis made of the 3-cells A, B and D
(or E).

Finally, the homotopical reduction of 2-cells coherently eliminates the 2-cell γ and the 3-cell B, that
were adjoined during homotopical completion to make the critical branching (βy, yβ) confluent. This
transformation also replaces each occurrence of γ in D (or E) by its “definition”, given by B:

γ = yβ− ?1 βy ?1 xα.

As a result, we get a coherent presentation of M with the reduced homotopical completion RHC(Σ)
made of Σ and the homotopy basis whose 3-cells are A and D (or E).

3.7. Métivier-Squier reduction revisited

In a 2-polygraph, a case of potential simplifications occurs when some 2-cells can be applied, as rewriting
rules, to other 2-cells. What follows is not used in the rest of this paper but we present it because it is
a classical result in rewriting that can be extended to coherent presentations by using the formalism of
Tietze transformations. The original version is due to Métivier for term rewriting systems, [19], and
to Squier for word rewriting systems, [23]. In fact, the proof works for any type of rewriting systems,
including n-polygraphs for any n.

3.7.1. Reduced convergent presentations. A 2-polygraph Σ is left-reduced when the source of each of
its 2-cells is only reducible by that 2-cell. It is right-reduced when the target of each of its 2-cells is a
normal form. It is reduced when it is both left-reduced and right-reduced.

Let us note that, in that case, for every 1-cell u of Σ∗, there exists finitely many 2-cells with size 1
and source u in Σ∗: indeed, we have at most one such 2-cell for every possible decomposition u = vwv ′

and the number of those decompositions is finite in a free category.

3.7.2. Lemma. Every convergent 2-polygraph Σ is 1-Tietze-equivalent to a reduced and convergent 2-
polygraph Σ̂. Moreover, if Σ is finite, then Σ̂ can be chosen to be finite.

Proof. Let Σ be a convergent 2-polygraph. We successively transform Σ as follows:
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3. Rewriting methods for computing coherent presentations

− First, we define Σ ′ as the 2-polygraph with the same 2-cells as Σ but, for each one ϕ : u⇒ v, we
replace its target v by its normal form, hence the normal form of u:

u
ϕ %9 v

��
û

7−→ u

ϕ
�0

v

��
û

This is a 1-Tietze transformation and, by construction, the 2-polygraph Σ ′ is right-reduced and
convergent, and it is finite when Σ is.

− Then, we define Σ ′′ as the 2-polygraph with exactly one 2-cell from u to û when Σ ′ has at least
one 2-cell from u to û:

u

ϕ1
�-

ϕn

1E û 7−→ u
ϕ %9 û

This is a 1-Tietze transformation and, by construction, the 2-polygraph Σ ′′ is still right-reduced
and convergent, and finite when Σ is.

− Finally, we define Σ̂ as the 2-polygraph Σ ′′ minus the 2-cells whose source can be reduced by
another 2-cell of Σ ′′:

vwv ′
ϕ %9

vψv ′ �1

v̂wv ′

vŵv ′

EY 7−→ vwv ′

vψv ′ �1

v̂wv ′

vŵv ′

EY

This is still a 1-Tietze transformation and the 2-polygraph Σ̂ has the required properties.

3.7.3. Reduction for coherent presentations. This procedure extends to the case of coherent presen-
tations. Indeed, let us consider a coherent presentation Σ of a category, whose underlying 2-polygraph
is convergent. For example, Σ can be the result of a homotopical completion. Then the three kinds of
operations we have seen lift to 2-Tietze transformations:

− The first operation is the same, but seen as a composition of 2-Tietze transformations, a coherent
adjunction followed by a coherent elimination:

u
ϕ %9 v

��
û

7−→ u

ϕ
 4

ϕ ′ !5

x�

v

~�
û

7−→ u

ϕ
�0

v

��
û

− The second operation is a composite of coherent eliminations. Indeed, in the case of parallel 2-
cells ϕ1, . . . , ϕn : u⇒ û, since Σ is a coherent presentation, we have 3-cells of Σ> between each
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pair of these 2-cells. For example, in the case n = 3, we remove ϕ2 and ϕ3 by the following
sequence of coherent eliminations:

u

ϕ1

�%
ϕ2 %9

ϕ3

9M
��

��

û 7−→ u

ϕ1
�-

ϕ2

1E�� û 7−→ u
ϕ %9 û

− The last case is a coherent elimination. Indeed, the fact that Σ is a coherent presentation ensures
that there exists a 3-cell that can be used to coherently eliminate ϕ:

vwv ′
ϕ

"6

vψv ′ !5

�,

v̂wv ′

vŵv ′

L` 7−→ vwv ′

vψv ′ �1

v̂wv ′

vŵv ′

EY

3.7.4. Proposition. Every coherent presentation Σ whose underlying 2-polygraph is convergent is 2-
Tietze equivalent to a coherent presentation Σ̂ whose underlying 2-polygraph is reduced and convergent.
Moreover, if Σ is finite, then Σ̂ can be chosen to be finite.

3.8. Homotopy bases transfer theorem

In [10], it was proved that, given an n-polygraph with a finite homotopy basis, then another n-polygraph
that presents the same (n− 1)-category admits a finite homotopy basis. The proof contained an implicit
description of a way to transfer the first homotopy basis to the second n-polygraph. Here we give an
explicit description of this construction in the case n = 2.

3.8.1. Lemma. Let C and D be categories and let F : C→ D be a functor. For every presentations Σ of
C and Υ of D, the functor F lifts to a 2-functor F̃, i.e., such that the following diagram commutes:

Σ> // //

F̃
��

c©

C

F
��

Υ> // // D

Proof. We denote by π : Σ> � C and ρ : Υ> � D the canonical projections.
On a 0-cell x, we take F̃(x) = F(x). If a : x → y is a generating 1-cell of Σ, we choose, in an

arbitrary way, a 1-cell F̃(a) : F(x) → F(y) in Υ> such that ρF̃(a) = Fπ(a); then, we extend F̃ by
functoriality to every 1-cell of Σ>.

Let ϕ : u ⇒ v be a generating 2-cell of Σ. By definition of Σ, we have π(u) = π(v), so that
ρF̃(u) = ρF̃(v). Thus, by definition of Υ, there exists a 2-cell from F̃(u) to F̃(v) in Υ>. We pick one of
these 2-cells for F̃(ϕ) and, then, we extend F̃ to every 2-cell of Σ> by functoriality.
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3.8.2. Lemma. Let Σ and Υ be two presentations of the same category C. Let F and G be liftings of the
identity of C, i.e., such that the following diagram commute:

Σ> // //

F
��

c©

C

IdC
��

Υ> // // C

Σ> // //

c©

C

Υ> // //

G

OO

C

IdC

OO

Then, for every 1-cell u in Υ>, there exists a 2-cell Λu : FG(u)⇒ u which is functorial in u, i.e., such
that the following relations are satisfied:

Λ1x = 1x and Λuv = ΛuΛv

Proof. Let a be a generating 1-cell in Υ>. By hypothesis on F and G, we have:

ρFG(a) = πG(a) = ρ(a).

Thus, by definition of Υ, there exists a 2-cell Λa : FG(a) ⇒ a in Υ>. We extend Λ to every 1-cell u
in Υ> by functoriality.

3.8.3. Theorem (Homotopy bases transfer). Let Σ andΥ be two presentations of the same category C,
let F and G be liftings of the identity of C and let Λu : FG(u) ⇒ u be functorially chosen in Υ> for
every 1-cell u of Υ>. If Γ is a homotopy basis of Σ>, then

∆ = F(Γ) q ΛΥ

is a homotopy basis of Υ>, where:

− the cellular extension F(Γ) contains one 3-cell

F(u)

F(f)

�.

F(g)

1E
F(γ)
��

F(v)

for every 3-cell γ : f⇒ g in Γ ,

− the cellular extension ΛΥ contains one 3-cell

FG(v) Λv

�-
Λϕ
��

FG(u)

FG(ϕ) (<

Λu
$8

v

u ϕ

0D

for every 2-cell ϕ in Υ.
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Proof. Let us define a 3-cell Λf of ∆>, for every 2-cell f of Υ2, with the following shape:

FG(v) Λv

�-
Λf
��

FG(u)

FG(f) (<

Λu
$8

v

u f

0D

For that, we extend the notation Λϕ in a functorial way, according to the following formulas:

Λ1u = 1Λu Λfg = ΛfΛg Λf− = FG(f)− ?1 Λ
−
f ?1 f

−

Λf?1g =
(
FG(f) ?1 Λg

)
?2
(
Λf ?1 g

)
.

One checks that this is well-defined, i.e., that the definition of Λf is compatible with the relations on
2-cells, such as the exchange relation:

Λfg?1hk = Λ(f?1h)(g?1k).

Now, let us consider parallel 2-cells f : u⇒ v and g⇒ v in Υ>. The 2-cells G(f) and G(g) are parallel
in Σ> so that, since Γ is a homotopy basis of Σ>, there exists a 3-cell

G(u)

G(f)

�.

G(g)

0DA
��

G(v)

in Γ>. An application of F to A gives the 3-cell

FG(u)

FG(f)

�.

FG(g)

0D
F(A)
��

FG(v)

which, by definition of ∆ and functoriality of F, is in ∆>. Using F(A) and the 3-cells Λf and Λg, we get
the following 3-cell from f to g in ∆>:

u

f

�(
Λ−
u

%9

g

6JFG(u)

FG(f)
�*

FG(g)

3GFG(v) Λv %9 v

Λ−
u ?1 Λ

−
f��

F(A)
��

Λ−
u ?1 Λg��
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This concludes the proof that ∆ = F(Γ)qΛΥ is a homotopy basis of the (2, 1)-category Υ>.

4. A COMPLETE EXAMPLE: ARTIN-TITS GROUPS OF SPHERICAL TYPE

In this section, we study the notion of action of the Artin-Tits groups of spherical type, also known
as “generalised braid groups”. First, we consider the case of Artin’s presentation, given in terms of
generating symmetries and braid relations: there, we use a result by Tits to deduce that a homotopy basis
is given by the Tits-Zamolodchikov relations. Then, we explore the case of Deligne’s presentation for
Artin-Tits groups of spherical type: there, we apply our machinery of reduced homotopical completion
to compute a homotopy basis and recover, and slightly improve, Deligne’s result (Theorem 1.5 of [7]).

4.1. Recollections

4.1.1. Coxeter groups. A Coxeter group is a group W that admits a presentation with a finite set S of
generators and the following relations:

(st)ms,t = 1, withms,t ∈ Nq {∞}, for every s and t in S (1)

where ms,t = ∞ means that there is, in fact, no relation between s and t and with the requirement that
ms,t = 1 if, and only if, s = t, so that s2 = 1 holds in W for every s in S. As a consequence, W can also
be seen as the monoid with the same presentation. A Coxeter group may have several presentations that
fit the given scheme and several of the following notions depend on a choice of a set of generators: we fix
such a set S for W. According to the parity of ms,t, when s 6= t and ms,t <∞, and using s2 = t2 = 1,
relation (1) can also be written as a braid relation

st · · · = ts · · · ⇔ {
(st)p = (ts)p, whenms,t = 2p

(st)ps = (ts)pt, whenms,t = 2p+ 1.
(2)

The length of an element u of W is denoted by l(u) and defined as the length of the smallest represen-
tative of u in the free monoid S∗. For every u and v in W, we have l(uv) ≤ l(u) + l(v) and we use
distinct graphical notations depending on whether the equality holds or not:

u v ⇔ l(uv) = l(u) + l(v)

u v
× ⇔ l(uv) < l(u) + l(v)

We generalise these graphical notations, such as in the case of a triple u v w :

u v w ⇔ l(uvw) = l(u) + l(v) + l(w)

u v w
× ⇔ l(uvw) < l(u) + l(v) + l(w)
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4.1.2. Artin-Tits monoids and groups. Given a Coxeter group W, with generators S, the associated
Artin-Tits monoid and Artin-Tits group are the monoid, denoted by B+(W, S), and the group, denoted
by B(W, S), generated by S and submitted to the braid relations (2): this is the same presentation as the
one of W, except for the relations s2 = 1. An Artin-Tits group is of spherical type when W is finite.
When no confusion may occur on the pair (W, S), we simply write B+ and B for B+(W, S) and B(W, S),
respectively.

For example, the braid group Bn and the positive braid monoid B+
n are the Artin-Tits group and

monoid associated to the Coxeter group Sn of symmetries: they have (n − 1) generators s1, . . . , sn−1,
submitted to the relations sisj = sjsi if i ≤ j − 2 and sisjsi = sjsisj when i = j − 1. This is the reason
why Artin-Tits groups are also called “generalised braid groups”. This presentation of B and B+ is called
Artin’s presentation.

As shown by Deligne (see [6], Proposition 1.27 and Section 4), the monoid B+ satisfies the Öre
condition (on the left and on the right), so that we have and equivalence of categories

Act(B) ≈ Act(B+)auto

where the latter is defined as the full subcategory of Act(B+) whose objects are the actions by auto-
equivalences: this is an action T on a category C such that, for each u in B+, the endofunctor T of C is
also an equivalence of categories (see [7], Proposition 1.9). Hence, it is sufficient to study actions of the
monoid B+.

4.2. Actions with Artin’s presentation

For I ⊂ S, let WI be the subgroup of W spanned by the elements in I. If w is in W, we denote by Γ(w)
the 1-dimensional complex defined as follows:

− its vertices are the words
γ = si1 · · · sir

in S∗ such that w = si1 · · · sir ,

− it has one edge between γ and γ ′ if one is obtained from the other by a braid relation.

The following result is proved by Ronan in [21], Theorem 2.17, after a result of Tits in [25], Proposition 4.

4.2.1. Theorem. The fundamental group of Γ(w) is “generated” by the loops of the following forms:

a) every loop of Γ(w) with shape

γts · · ·γ ′s ′t ′ · · ·γ ′′

((

γst · · ·γ ′s ′t ′ · · ·γ ′′

33

γts · · ·γ ′t ′s ′ · · ·γ ′′

ss

γst · · ·γ ′t ′s ′ · · ·γ ′′

hh

for s, t, s ′, and t ′ in S such thatms,t andms ′,t ′ are finite and γ, γ ′, and γ ′′ in S∗,
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b) every loop of Γ(w) with shape

γγ1γ
′

��

γγ0γ
′

33

· · ·

uu
γγkγ

′

bb

for γ0, . . . , γk in some WI, for I is a subset of S of cardinality 3 such that WI is finite.

In the theorem, “generated” means that, for any vertex δ, the fundamental group π1(Γ(w), δ) is generated
by (classes of) paths of the form pfp−1, where f has one of the two forms a) or b), p is a path from δ to
the origin of f and p−1 is the reverse path.

Set I = {s, t, u}. Among the loops of the second family, those of the form

γγ0γ
′

((

γγ1γ
′

gg

correspond to the case where, for instance, u commutes with both s and t: they actually belong to the
first case. The ones such that k > 1 are associated to reduced expressions of the longest element of WI.
We denote them by Zs,t,u and call them the Tits-Zamolodchikov loops. Since WI is a finite Coxeter
group, these loops are associated to the longest element in a group of one of the following types:

A1 ×A1 ×A1 In ×A1 A3 B3 H3

4.2.2. The corresponding coherent presentation. The monoid B+ = B+(W, S) is presented by the
2-polygraph ΣW,S with one 0-cell, with the elements of S as 1-cells and with one 2-cell

αs,t : st · · · ⇒ ts · · ·

for every braid relation (when 2 ≤ ms,t < ∞). By construction, the 2-cells of the (2, 1)-category Σ>W,S
are exactly the classes of edges of the graphs Γ(w), where w ranges over S∗, modulo the exchange
relations. As a consequence, the loops of Γ(w) can be transposed as 2-spheres of Σ>W,S.

The first family is made of degenerate 2-spheres, since they correspond to the exchange relations:

γts · · ·γ ′s ′t ′ · · ·γ ′′
γts · · ·γ ′αs ′,t ′γ ′′

�3
γst · · ·γ ′s ′t ′ · · ·γ ′′

γαs,tγ
′s ′t ′ · · ·γ ′′ (<

γst · · ·γ ′αs ′,t ′γ ′′ "6

γts · · ·γ ′t ′s ′ · · ·γ ′′

γst · · ·γ ′t ′s ′ · · ·γ ′′ γαs,t · · ·γ ′t ′s ′ · · ·γ ′′

+?

The second family is made of the Tits-Zamolodchikov relations: there is one such 3-cell Zs,t,u for every
possible subset I = {s, t, u} of cardinality 3 of S such that WI is finite. Let us give the two simplest
examples. For A1×A1×A1, i.e., when WI is isomorphic to Z3, the corresponding Tits-Zamolodchikov
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relation is the usual permutohedron also known as Yang-Baxter relation:

stu

sαt,u !5

αs,tu

y


sut
αs,ut

�%
tsu

tαs,u �2

Zs,t,u %9 ust

uαs,tl�
tus

αt,us
)= uts

And, if WI is of type A3, i.e., when it is isomorphic to the group S3 of symmetries, the corresponding
Tits-Zamolodchikov relation is:

stsuts

stαs,uts"6

αs,tuts

s�

stusts
stuαs,t

�+
tstuts

tsαt,us
��

stutst

sαt,ust
��

tsutus

tαs,utα
−
s,u
��

sutust

αs,utα
−
s,ut

��

Zs,t,u %9

tustsu

tuαs,tu
��

ustsut

uαs,tut
��

tutstu

αt,ustu �3

utstut

utsαt,uk�
utustu

utα−
s,utu
'; utsutu

The other cases are computed by considering a representative (with minimal length) of the longest ele-
ment of WI and computing all the rewriting steps one can perform on it: for example, one can start with
st · · ·u for In ×A1, ststutstu for B3 and ststsutstsutstu for H3. For the last two cases, B3 and H3,
representations in “string diagrams” of the corresponding Tits-Zamolodchikov relations can be found in
recent slides by Geordie Williamson, presenting a common work with Ben Elias on a presentation by
generators and relations of the monoidal category of Soergel bimodules, [26].

The result of Tits tells us that these two families of 3-spheres form a homotopy basis of Σ>W,S. But,
since the first family is degenerate, we get that the Tits-Zamolodchikov relations form a homotopy basis
of Σ>W,S.

4.2.3. Theorem. The (3, 1)-polygraph made of ΣW,S and the Tits-Zamolodchikov relations forms a finite
coherent presentation of the monoid B+(W, S) of positive braids.

Thus, as a consequence of Theorem 2.3.2, we get the following result.
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4. A complete example: Artin-Tits groups of spherical type

4.2.4. Corollary. An action of B+(W, S) on a category C is the same as the following data:

− for any s ∈ S, an endofunctor T(s) : C→ C,

− for any braid relation st · · · = ts · · · , a natural isomorphism T(s)T(t) · · · ' T(t)T(s) · · · ,

such that, for any subset I = {s, t, u} of cardinality 3 of Swith WI finite, the Tits-Zamolodchikov T(Zs,t,u)
relation holds.

4.3. Actions with Deligne’s presentation

Thereafter we assume that W is a finite Coxeter group, with a fixed set S of generators, i.e., that the
Artin-Tits group B(W, S) is of spherical type.

4.3.1. Deligne’s presentation. The braid monoid B+(W, S) admits another presentation, built from
Artin’s presentation by adding redundant generators and relations. This presentation turns out to be very
useful and is already used by Deligne in [7], Section 1.4, and, implicitly, in [6]. The set of generators of
Deligne’s presentation is W \ {1} and there is a relation

u|v = uv

whenever u v holds, where ·|· denotes the product in the free monoid generated by W \ {1}, to avoid
confusion with the product in W.

For example, the braid monoid B+
3 and the group B3 are presented by the five generators

s1, s2, s1s2, s2s1, s1s2s1,

submitted to the six relations

s1|s2 = s1s2, s2|s1 = s2s1, s1|s2s1 = s2|s1s2 = s1s2|s1 = s2s1|s2 = s1s2s1.

Dropping the reference to W and S, we denote by Σ the 2-polygraph, corresponding to this presenta-
tion, with one 0-cell, with the elements of W \ {1} as 1-cells and with one 2-cell

αu,v : u|v⇒ uv, for every u v .

We consider the canonical extension of the length map l to the 1-cells of Σ∗ as a morphism of monoids,
sending u1|u2| · · · |un to the family (l(u1), . . . , l(un)) of (non-zero) natural numbers. Two such families
(p1, . . . , pm) and (q1, . . . , qn) are compared by the degree-wise right lexicographic strict order, so that
we have (p1, . . . , pm) > (q1, . . . , qn) if m > n or if m = n and there exists i such that pn = qn,
. . . , pi+1 = qi+1 and pi > qi. We compare 1-cells of Σ∗ with this strict order, taken back through the
length map l. Let us note that this strict order is not total: two distinct 1-cells of the same length are not
comparable.

We have that, for every 2-cell αu,v of Σ, the strict inequality s(αu,v) > t(αu,v) holds since, for the
considered order, the pair (l(u), l(v)) is strictly greater than the singleton l(uv). Since the reflexive
closure of the considered strict order is a termination order, we get that Σ terminates.
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4.3. Actions with Deligne’s presentation

4.3.2. Homotopical completion – the first part. We compute the critical branchings of Σ. There is
exactly one for every triple u v w :

uv|w

u|v|w

αu,v|w
*>

u|αv,w  4
u|vw

Then, given such a critical branching, there are two cases, depending on the length of l(uvw).

− For u v w , the critical branching is confluent, resulting in the adjunction of a 3-cell:

uv|w
αuv,w

�&
Au,v,w
��

u|v|w

αu,v|w
-A

u|αv,w �1

uvw

u|vw
αu,vw

8L

− Otherwise, for u v w
×

, then both uv|w and u|vw are normal forms. Since l(vw) > l(w), we
have u|vw > uv|w. Thus, homotopical completion coherently adds a new 2-cell

βu,v,w : u|vw ⇒ uv|w, for every u v w
×

,

together with the following 3-cell:

u|v|w

αu,v|w

�3

u|αv,w �1

uv|w

u|vw
βu,v,w

7KBu,v,w
��

After this first part of homotopical completion, we get a finite and terminating 2-polygraph that is Tietze-
equivalent to Σ. But the adjunction of a new family of 2-cells creates new critical branchings that we
have to examine.

4.3.3. Homotopical completion – the second part. We now examine the critical branchings involving
at least one 2-cell β. We note that the sources of all the 2-cells α and β have size 2 in the free monoid
over W \ {1}. Thus, have the following possibilities:

57



4. A complete example: Artin-Tits groups of spherical type

1. The two 2-cells of Σ that generate the branching overlap on one element of W \ {1}. In that case,
the source of the branching has size 3, with one 2-cell of the branching reducing the leftmost two
generating 1-cells and the other one reducing the rightmost two. That case subdivises as follows,
depending on the type α or β of the involved 2-cells:

− The source is u|v|wx with u|v reduced by αu,v and v|wx reduced by βv,w,x. This implies

u v and v w x
×

, which happen in two distinct cases:

u v w x
×

and u v w x
× ×

− The source is u|vw|x with u|vw reduced by βu,v,w and vw|x reduced by αvw,x. This implies

u v w
×

and v w x , which happens in one case only:

u v w x
×

− The source is u|vw|xy with u|vw reduced by βu,v,w and vw|xy reduced by βvw,x,y. This

implies u v w
×

and either v w x y
×

or v w x y
×

, which happens in two distinct
cases:

u v w x y
× ×

and u v w x y
× ×

2. The two 2-cells of Σ that generate the branching totally overlap, i.e., they have the same source.

Since one of those 2-cells must be a β, the source has shape u|vw with u v w
×

, preventing
the other 2-cell to be an α. The only remaining possibility is to have another decomposition

vw = v ′w ′, with u v ′ w ′
×

, so that the branching is formed by βu,v,w and βu,v ′,w ′ .

We now proceed to the examination of each individual case:

− Case u v w x
×

:
uv|wx

βuv,w,x

�(
Cu,v,w,x
��

u|v|wx

αu,v|wx
,@

u|βv,w,x �2

uvw|x

u|vw|x
αu,vw|x

6J

− Case u v w x
× ×

:

u|v|wx

αu,v|wx

!5

u|βv,w,x �2

uv|wx

u|vw|x
βu,v,w|x

%9 uv|w|x
uv|αw,x

6J
Du,v,w,x
��
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4.3. Actions with Deligne’s presentation

− Case u v w x
×

:
uv|w|x

uv|αw,x

�(
Eu,v,w,x
��

u|vw|x

βu,v,w|x
,@

u|αvw,x �2

uv|wx

u|vwx
βu,v,wx

6J

− Case u v w x y
× ×

:

uv|w|xy
uv|αw,xy

�2
u|vw|xy

βu,v,w|xy
(<

u|βvw,x,y �2

uv|wxy

u|vwx|y
βu,v,wx|y

%9 uv|wx|y
uv|αvw,x

4H
Fu,v,w,x,y
��

− Case u v w x y
× ×

:

uv|w|xy
uv|βw,x,y

�*
Gu,v,w,x,y
��

u|vw|xy

βu,v,w|xy
,@

u|βvw,x,y �2

uv|wx|y

u|vwx|y
βu,v,wx|y

4H

− For every u, v, w, v ′, w ′ with vw = v ′w ′, u v w
×

and u v ′ w ′
×

, we have a critical branching

uv|w

u|vw
=

u|v ′w ′

βu,v,w
+?

βu,v ′,w ′ �2
uv ′|w ′

By classical properties of Artin-Tits groups of spherical type, mainly the fact that they are Garside
groups, there must exist elements x, x ′ and y in W such that

w = xy, w ′ = x ′y, vx = v ′x ′, y 6= 1.
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4. A complete example: Artin-Tits groups of spherical type

Then, we have two possible cases for the confluence diagram, depending on x and x ′. If x 6= 1 and
x ′ 6= 1, then we have:

uv|w = uv|xy
βuv,x,y

�0

Hu,v,w,v ′,w ′

��

u|vw
=

u|v ′w ′

βu,v,w
*>

βu,v ′,w ′  4

uvx|y
=

uv ′x ′|y

uv ′|w ′ = uv ′|x ′y

βuv ′,x ′,y

.B

Here, we have chosen the direction of the 3-cell Hu,v,w,v ′,w ′ in an arbitrary way.

The second case is when either x = 1 or x ′ = 1. Let us note that both cannot happen at the
same time, otherwise v = v ′ and w = w ′, so that the branching is aspherical and not critical. For
example, let us assume that x ′ = 1, so that v ′ = vx, w = xy and w ′ = y:

uv|xy
βuv,x,y

�'
u|vxy

βu,v,xy
-A

βu,vx,y

+? uvx|y
Iu,v,x,y
��

All the critical branchings created during the first part are confluent, ending the homotopical completion
procedure. As an instance of Theorem 3.4.2, we get:

4.3.4. Proposition. The monoid B+(W, S) admits a coherent presentation by the (3, 1)-polygraph with
one 0-cell, one 1-cell for every element of W \ {1}, two 2-cells

αu,v : u|v ⇒ uv, for every u v ,

and

βu,v,w : u|vw ⇒ uv|w, for every u v w
×

,

and the nine families of 3-cells A, B, C, D, E, F, G, H and I previously listed.

4.3.5. Homotopical reduction. We study the critical triple branchings of the convergent 2-polygraph
HC(Σ) produced by the homotopical completion procedure and, for each one, we check if it can be used
to perform a coherent elimination of a 3-cell of HC(Σ). There are four different cases, depending on
the generating 2-cells forming the branching, and, then, different subcases depending on the 2-cells that
close it.
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4.3. Actions with Deligne’s presentation

Case 1. There is one critical triple branching for every u v w x :

uv|w|x

u|v|w|x

αu,v|w|x
&:

u|αv,w|x %9

u|v|αw,x $8

u|vw|x

u|v|wx

Then, we distinguish five subcases.

− When u v w x :

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

αuvw,x


!
Au,vw,xu|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x

�*
u|Av,w,x

uvwx

u|v|wx

u|αv,wx

(< u|vwx
αu,vwx

<P �?

uv|w|x

αuv,w|x
"6

uv|αw,x

�*
c©

uvw|x

αuvw,x


!
Auv,w,x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx αuv,wx %9

Au,v,wx

uvwx

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx
αu,vwx

<P

− When u v w x

×

:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

4H

u|αvw,x

�*
u|Av,w,x

u|v|wx

u|αv,wx

(< u|vwx

βu,vw,x

Xl

Bu,vw,x �?

uv|w|x

αuv,w|x
"6

uv|αw,x

�*
c©

uvw|x

u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

βuv,w,x

4H

u|v|wx

αu,v|wx

4H

u|αv,wx

(< u|vwx

βu,v,wx

Vj

βu,vw,x

XlBuv,w,x

Bu,v,wx

Iu,v,w,x

− When u v w x
×

:

uv|w|x

αuv,w|x
"6

Au,v,w|x

uvw|x

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

αu,vw|x

<P

u|v|wx

u|βv,w,x

<P
u|Bv,w,x

�?

uv|w|x

uv|αw,x

�*

αuv,w|x

�,
c©u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx βuv,w,x
%9

Cu,v,w,x

uvw|x

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
αu,vw|x

<P

Buv,w,x
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− When u v w x
× ×

:

uv|w|x

uv|αw,x
"6
uv|wx

u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

u|vw|x

βu,v,w|x

[o

u|v|wx

u|βv,w,x

<P

Bu,v,w|x

u|Bv,w,x

�?

uv|w|x

uv|αw,x


!
c©u|v|w|x

αu,v|w|x
/C

u|v|αw,x �/

uv|wx

Du,v,w,x

uv|w|x

uv|αw,x
h|

u|v|wx

αu,v|wx

4H

u|βv,w,x

(< u|vw|x
βu,v,w|x

<P

− When u v w x
×

:

uv|w|x uv|αw,x

�,
u|v|w|x

αu,v|w|x
/C

u|αv,w|x %9

u|v|αw,x �0

Bu,v,w|x
u|vw|x

βu,v,w|x

Vj

u|αvw,x

�*
u|Av,w,x

Eu,v,w,x
uv|wx

u|v|wx

u|αv,wx

(< u|vwx
βu,v,wx

<P
�?

uv|w|x

uv|αw,x

�"
c©u|v|w|x

αu,v|w|x
/C

u|v|αw,x �0

uv|wx

u|v|wx

αu,v|wx

4H

u|αv,wx

(<Bu,v,wx u|vwx

βu,v,wx

\p

The first family of 4-cells can be used to coherently eliminate all the 3-cells Au,v,w, by induction on
the size of u, with the exception of the 3-cells As,v,w, where s is a generator of the Coxeter group W.
Symmetrically, we could also keep 3-cells with shape Au,s,w or with shape Au,v,s.

The four other families of 4-cells are used to coherently eliminate the 3-cells Iu,v,w,x, Cu,v,w,x,
Du,v,w,x and Eu,v,w,x, in order. Indeed, in each case, the corresponding 4-cell proves that the 3-cell
to be removed has the same boundary as a 3-cell made of As and Bs.

Case 2. There is one critical triple branching for every u v w x y
×

:

uv|w|xy

u|v|w|xy

αu,v|w|xy
&:

u|αv,w|xy %9

u|v|βw,x,y #7

u|vw|xy

u|v|wx|y
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4.3. Actions with Deligne’s presentation

As previously, there are several subcases. However, only one of them yields a new relation between

3-cells, namely when u v w x y
× ×

:

uv|w|xy

uv|βw,x,y
"6
uv|wx|y

u|v|w|xy

αu,v|w|xy
.B

u|αv,w|xy %9

u|v|βw,x,y �0

u|vw|xy

βu,v,w|xy
Xl

u|βvw,x,y

�,
u|Cv,w,x,y

Gu,v,w,x,y

u|v|wx|y

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y

I]

Bu,v,w|xy
�?

uv|w|xy

uv|βw,x,y

�#
c©u|v|w|xy

αu,v|w|xy
.B

u|v|βw,x,y �0

uv|wx|y

u|v|wx|y

αu,v|wx|y

2F

u|αv,wx|y

(< u|vwx|y

βu,v,wx|y
\p

Bu,v,wx|y

We have seen that the 3-cell Cv,w,x,y is superfluous, since a previous computation of a critical triple
branching has produced a 4-cell that proved that it can be replaced by a combination of As and Bs.
Hence, we can use this 4-cell to coherently eliminate Gu,v,w,x,y.

Case 3. There is one critical triple branching for every u v w x y
×

:

uv|w|x|y

u|vw|x|y

βu,v,w|x|y
';

u|αvw,x|y %9

u|vw|αx,y $8

u|vwx|y

u|vw|xy

Once again, only one subcase yields a new relation, when u v w x y
× ×

:

uv|w|x|y

uv|αw,x|y
"6

Eu,v,w,x|y

uv|wx|y

uv|αwx,y

��
u|vw|x|y

βu,v,w|x|y
.B

u|αvw,x|y %9

u|vw|αx,y �0

u|vwx|y

βu,v,wx|y

2F

uv|wxy

u|vw|xy

u|βvw,x,y

:N
u|Bvw,x,y

�?

uv|w|x|y

uv|αw,x|y
"6

uv|w|αx,y

�,
c©

uv|wx|y

uv|αwx,y

�#
uv|Aw,x,y

u|vw|x|y

βu,v,w|x|y
.B

u|vw|αx,y �0

uv|w|xy uv|αw,xy
%9 uv|wxy

u|vw|xy

βu,v,w|xy

2F

u|βvw,x,y �0

uv|wx|y

uv|αwx,y

:N

u|vwx|y

βu,v,wx|y

:N

Fu,v,w,x,y

We have seen that the 3-cell Eu,v,w,x is superfluous, having the same boundary as a composite of As
and Bs, so that the 3-cell Fu,v,w,x,y can be coherently eliminated thanks to this 4-cell.
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Case 4. Finally, there is one critical triple branching for every u v w
×

, u v ′ w ′
×

and u v ′′w ′′
×

with
vw = v ′w ′ = v ′′w ′′:

uv|w

u|vw
=

u|v ′w ′

=
u|v ′′w ′′

βu,v,w
(<

βu,v ′,w ′
%9

βu,v ′′,w ′′ !5

uv ′|w ′

uv ′′|w ′′

As a consequence, there exist x, x ′, x ′′ and y in W such that

w = xy, w ′ = x ′y, w ′′ = x ′′y, vx = v ′x ′ = v ′′x ′′, y 6= 1.

Moreover, at most one of x, x ′ and x ′′ can be equal to 1. Indeed, otherwise, the triple branching would
be aspherical and not critical. Thus, in the case where x ′′ = 1, we get:

uv|w
βuv,x,y

�,
Hu,v,w,v ′,w ′

u|vw

βu,v,w

)=

βu,v ′,w ′ %9

βu,vx,y

0Duv ′|w ′ βuv ′,x ′,y %9

Iu,v ′,x ′,y

uvx|y �?

uv|w
βuv,x,y

�,
u|vw

βu,v,w

*>

βu,vx,y

0Duvx|y
Iu,v,x,y

Since the 3-cells Is are superfluous, each one having the same boundary as a composite of As and Bs,
we can coherently eliminate the 3-cell Hu,v,w,v ′,w ′ .

As a conclusion of homotopical reduction in dimension 3, we are left with the two families of 2-cells α
and β and the two families of 3-cells A and B. Then, since β and B have been coherently adjoined by
the homotopical completion, the homotopical reduction in dimension 2 removes them, leaving α and A
only in RHC(Σ).

4.3.6. Theorem. The monoid B+(W, S) admits a coherent presentation by the (3, 1)-polygraph with
one 0-cell, one 1-cell for every element of W \ {1}, one 2-cell

αu,v : u|v ⇒ uv, for every u v ,

and one 3-cell
uv|w

αuv,w

�$
Au,v,w

��

u|v|w

αu,v|w
.B

u|αv,w �0

uvw for every u v w .

u|vw

αu,vw

:N
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4.3.7. Corollary (Deligne, [7] Theorem 1.5). An action of B+(W, S) on a category C is the same as
the following data:

− for any u ∈W \ {1}, an endofunctor T(u) : C→ C,

− for any u v , a natural isomorphism Tu,v : T(u)T(v) ' T(uv),

such that, for any u v w , the relation T(Au,v,w) holds:

T(uv)T(w)
Tuv,w

%%

T(u)T(v)T(w)

Tu,vT(w)
44

T(u)Tv,w **

c© T(uvw)

T(u)T(vw)
Tu,vw

99

Remark. In fact, as mentioned during homotopical reduction, the reduced homotopical completion yields
a more compact homotopy basis, since it is sufficient to consider the family As,v,w of 3-cells, with s in S
and v and w in W \ {1} or, symmetrically, the family Au,s,w or the family Au,v,s. As a consequence, this
simplification can also be done in Deligne’s result.
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