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Mechanical identification of layer-specific properties of mouse 
carotid arteries using 3D-DIC and a hyperelastic anisotropic 
constitutive model 
  

The role of mechanics is known to be of primary order in many arterial 
diseases; however determining mechanical properties of arteries remains a 
challenge. This paper discusses the identifiability of the passive mechanical 
properties of a mouse carotid artery, taking into account the orientation of 
collagen fibers in the medial and adventitial layers. Based on 3D digital image 
correlation measurements of the surface strain during an inflation/extension 
test, an inverse identification method is set up. It involves a 3D finite element 
mechanical model of the mechanical test and an optimization algorithm. A two-
layer constitutive model derived from the Holzapfel model is used, with five 
and then seven parameters. The five parameter model is successfully identified 
providing layer specific fiber angles. The seven parameter model is over-
parameterized, yet it is shown that additional data from a simple tension test 
make the identification of refined layer-specific data reliable.  
 

Keywords: vascular mechanics ; 3D digital image correlation (3D-DIC) ; 
inverse identification ; hyperelasticity ; anisotropy 

1. Introduction 

Understanding the genesis and development of vascular diseases is one of the current 

goals of cardiovascular research. In this quest, the contribution of solid mechanics is 

highly relevant since many arterial disorders involve significant changes in vascular 

mechanical properties. The structure and mechanical response of arteries vary 

according to many factors such as the distance from the heart and age (Valenta et al. 

1993; Fung 1973; Humphrey et al. 2003; Tremblay et al. 2010, Haskett et. al. 2010). 

In addition, these properties may alter under various physiological conditions and 

during the development of diseases. Accurate identification of mechanical and 

structural properties of the arteries can therefore provide helpful information for 

clinical diagnoses and treatments. To improve the contribution of solid mechanics, a 

lot of effort has been undertaken to develop constitutive models of the arterial wall as 

well as experimental and numerical methods to identify these models.  

Several constitutive models intended to describe the mechanical response of 

arterial tissues at finite strains have been developed, see Vito and Dixon (2003) for an 
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extensive review of these models. Most of anisotropic non-linear models considering 

the passive response of arteries are hyperelastic.  Fung (1973) first introduced a 

phenomenological exponential strain energy function. More recently, structurally-

motivated models including fiber reinforcements have been developed. Bischoff et. al. 

(2002) suggested an orthotropic eight-chain model to represent, in a global sense, the 

nonlinear orthotropic material response of the arterial wall, without distinguishing the 

contributions of media and adventitia. This model was further used in recent studies 

(Bischoff et. al. 2002, Ning et. al. 2010) considering the artery as a single 

homogeneous layer. It has proven adequate to capture the nonlinear orthotropic 

response of vascular tissues although the physical meaning of its parameters is not 

clear. Holzapfel et al. (2000) introduced a two-fiber family model to account for the 

helically-oriented distribution of collagen fibers within the arterial wall. To ideally 

describe the arterial wall from the mechanical point of view, two separate layers of 

this material are required for medial and adventitial layers. A variant of this model 

was proposed introducing several fiber families within one single layer (Baek et al. 

2007).  

All of these constitutive equations suggest various assumptions regarding the 

non-linear behavior of fiber families and their orientations. Originally, Holzapfel et al. 

(2000) grounded the choice of two symmetrically- and helically-oriented fiber 

families per layer on histological observations (Rhodin 1980; Canham et al. 1989; 

Valenta et al. 1993; Finlay et al. 1995). The reason for considering two separate layers 

also arose from histology of arteries since the composition of medial and adventitial 

layers (elastin, collagen and cell contents) are different (Humphrey 2002). The main 

variant of this model which is, in contrast, a one-layer model, includes additional fiber 

directions in axial and circumferential directions (Baek et al. 2007). It was used in 
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several subsequent studies (Masson et al. 2008; Gleason et al. 2008; Eberth et al. 

2009). Note also that some authors considered the active response of the arterial wall 

due to smooth muscle activity (Masson et. al. 2008), which is not the concern of this 

paper. These various assumptions lead to models using multiple parameters, usually 

ranging from five up to 14.  

Correct identification of these constitutive parameters is a key issue in 

considering the reliability of interpretation for medical purposes or subsequent 

utilization in numerical models, for instance. The process of identification requires 

experimental data obtained from mechanical testing. When dealing with mouse 

carotid arteries, biomechanical testing of such small-caliber arteries is very 

challenging because of their small size and delicate structure. Hence, most of the 

previous biomechanical studies on mouse carotid arteries have been conducted using 

global or average data such as pressure-diameter and/or force-length measurements 

(Dye et al. 2007; Wagenseil et al. 2005; Guo et al. 2006; Gleason et al. 2004). The 

data which are used in this study are collected with a 3D-DIC stereo-microscopy 

system on a mouse carotid artery, which is, to our knowledge, unique at this time. See 

Sutton et al. (2008) for a detailed description of this previous experimental work and 

Ning et al. (2010) for the latest setup providing the data used here. 

From experimental data, the identification of constitutive models relies, most 

of the time, on inverse approaches. This type of approach is necessary in many cases 

because establishing response curves from the model may involve complex non- 

linear relations between the parameters. Classical inverse approaches are based on 

updating methods (Holzapfel et al. 2005, Gleason et al. 2008; Masson et al. 2008, 

Bischoff et. al. 2009, Ning et. al. 2010) using optimization algorithms such as the 

Levenberg-Marquardt algorithm to find the best-fit parameters in a least-square sense 
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with respect to a given cost function. In these approaches, previous authors have most 

often used analytical developments to derive their modeled data from the given 

constitutive equations, which presupposed multiple assumptions. Among these, note 

the widely-accepted assumption of axisymmetry and that of a single homogeneous 

layer. The latter may be relevant when experimental data is global or averaged over 

the arterial wall, though two separate layers would be closer to reality and would 

emphasize the distinction between the layer properties. In addition, for the study of 

mouse carotid arteries, Gleason et al. (2008) performed analytical developments 

within the framework of thin-tube elasticity theory. This may be a strong assumption 

in cases of thick arteries like mouse carotid arteries where the ratio of thickness to 

inner radius was reported to be about 0.6 (Dye et al. 2007; Ning et al. 2010). Note that 

the theory related to thick tubes was presented in (Holzapfel et al. 2000) and allows 

circumventing this assumption. In this previous paper, the authors identified 

simultaneously the material parameters of both the media and adventitia of a rabbit 

carotid artery using literature data, but the focus was not dedicated to the 

identification procedure and its reliability. To our knowledge, such simultaneous 

identification in both the media and adventitia has never been performed again. 

Identification of mechanical properties in both the media and adventitia classically 

entails separating mechanically the layers (Holzapfel et al.2005).  

The simultaneous identification of the mechanical parameters in both the 

media and adventitia is one objective of the present paper.  

However, in contrast to (Holzapfel et al. 2000), the present paper employs a 

finite element approach because it can handle more complex geometries and/or 

boundary effects, if any. This kind of approach has already been employed in 

numerous situations (Linder-Ganz et. al. 2007, Moerman et. al. 2009, Avril et. al. 
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2010a, Franquet et. al. 2010). To our knowledge, in the field of non linear anisotropic 

mechanical characterization of arteries, finite element (FE) simulations have rarely 

been used to recover those modeled data and perform inverse identification. 

Regarding non-linear anisotropic vascular properties, the study of Ning et. al. (2010) 

was focused on stress and strain distributions within the arterial wall and how they are 

influenced by axial pre-stretch. Using the same data as the present paper, they 

identified the parameters of the constitutive model of Bishoff et. al . (2002), thereby 

not considering heterogeneity between media and adventitia, which would likely 

affect these distributions. From our point of view, the advantage of using finite 

element based identification approaches is to model complex mechanical tests 

(Bischoff et. al. 2009, Avril et. al. 2010b) and/or complex structures, like a thick 

multi-layer artery presented in this paper.  

The question of whether an identification method is relevant with respect to 

the problem to be treated is seldom addressed. Zeinali-Davarani et al. (2009) 

addressed the parameter estimation of multi-fiber family models for the biaxial 

mechanical behavior of passive arteries. Nevertheless, their interest was rather 

focused on the influence of measurement errors and uncertainty handling than on the 

modeling assumptions. Bischoff et. al. (2009) examined comparatively global and 

local updating techniques and confessed that the local approach, based on a 

Levenberg-Marquardt algorithm, did not succeed in yielding a unique solution in their 

problem.  

Nevertheless, introducing multiple assumptions and parameters may lead to 

improper identification or multiple solutions. Much care has to be devoted to this kind 

of procedure. The objective of the present paper is to address the feasibility of the 
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simultaneous inverse identification of mean fiber angles in both medial and adventitial 

layers using DIC surface strain measurements.  

2. Methods  

2.1. Experimental considerations 

The experimental data referenced to in this paper were described in (Sutton et. al. 

2008) and (Ning et. al. 2010) where three-dimensional digital image correlation (3D-

DIC) is used to obtain full-field surface strain measurements on mouse carotid arteries 

at the micro-scale during an inflation/extension test (Fig. 1). DIC is a non-contact 

method based on image processing of speckle patterns before and after deformation to 

determine the complete full-field displacements and strains. The mechanical test 

performed here allows both pressurization loading and extension loading at the same 

time (see the schematic principle of the setup in Fig. 1). This test is interesting 

because of its simplicity and because it provides biaxial loading conditions. It can be 

noted that biaxial tests such as those developed earlier (Gleason et. al. 2004) are richer 

because the whole space of axial and circumferential strains can be reached by 

performing several tests (at fixed pressure or axial stretch), but require a more 

complex setup. The experiment used here presents a different way to span the space of 

axial and circumferential strains, with a single test, along a curve corresponding to a 

fixed ratio of axial to circumferential stresses.  

To briefly describe this experimental setup, both ends of a freshly-dissected carotid 

artery are cannulated with Luer stubs. For image processing and local deformation 

measurements, a high contrast speckle pattern is incorporated into the vessel structure 

thanks to ethidium bromide nuclear staining. The experiments are performed with one 

end of the artery attached to the pressure controller and pressure source, while the 

other capped end is free in the axial direction, thereby allowing axial translation. The 
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artery is pressurized from 5 to 150 mmHg in steps of 9 mmHg with a flow rate of 0.2 

ml/min and an average pressurization rate of 1.8 mmHg/s. After each pressurization 

step, synchronized images are acquired from two cameras and analyzed using existing 

commercial software, VIC-3D. 

The region of interest being small (about 200  140 µm²), due to the depth of 

field of the system, and displaying very little heterogeneity, only the strains averaged 

over this region are considered in the analysis. Note that usual 2D-DIC is not suitable 

for this problem due to the non planar nature of the specimen and possible out-of-

plane deformation. More details about the experimental setup and procedure can be 

found in (Sutton et. al. 2008) where the method is extensively described, and in (Ning 

et al. 2010) regarding the data obtained and used in this paper. 

2.2. Constitutive model of the artery 

The constitutive model used in this study is based on the developments of Holzapfel 

et al. (2000). This hyperelastic incompressible model was developed to describe the 

passive mechanical response of arterial tissues at finite strains.  

The material considered by Holzapfel et al. (2000) is a collagen-fiber-

reinforced material with two fiber directions being symmetrically arranged with 

respect to the axis of the artery (Fig. 2). The theoretical basis of this model arises from 

composite material mechanics and relates to the mechanics of the fiber network at 

finite strains. This formulation provides a strong physical meaning to the constitutive 

parameters involved in the model. The simplest form of the isochoric strain energy 

function consists of two terms (note that incompressibility of the tissue is a commonly 

adopted assumption). The first term represents the isotropic response of the medium, 

related to the ground substance and elastin content, and the other two terms represent 
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the response of the collagenous fiber network, each fiber direction having its own 

contribution: 

       2 21 1
1 2 4 2 6

2 2

  3 exp 1 1 exp -1 1
2 2 2

k kC
I k I k I

k k
          

   
 [1] 

where:   

 C is the parameter of the isotropic neo-Hookean term,  

 k1 and k2 are the parameters for the exponential response of the collagen fiber 

networks, 

 the structural anisotropy induced by the fiber network arises from both I4 and 

I6. These terms are pseudo-invariants of the right Cauchy Green tensor C and 

the fiber directions f1 and f 2. Therefore they are driven by β, the mean fiber 

angle in the medium, defined in Fig. 2. Note that fiber angle distributions were 

not considered here (Gasser et. al. 2006). I4 and I6 give the squares of stretch 

for the two fiber families: 

  2 2
1 1 2 24 fiber 1 6 fiber 2. .  and . .I I    f C f f C f  [2] 

Classically, due to histological differences between media and adventitia, 

separate strain energy functions are assigned to each of these mechanically-relevant 

layers of an artery. The contribution of the intima is commonly considered negligible. 

Thus, two sets of parameters are to be identified for each layer, yielding eight material 

parameters. 

In this study, two variants of this model are considered: a simplified five 

parameter model and a seven parameter model. The simplified five parameter model 

includes the assumption that media and adventitia have identical exponential 

parameters. In addition, it is assumed that the value of C is the same in both layers. 

Hence, it features the following five parameters: C for the Neo-Hookean isotropic 

term (elastin and ground substance), two parameters k1 and k2 for the exponential 
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response of collagen fibers, and two parameters βmedia and βadventitia for the fiber angles 

in media and adventitia. The corresponding strain energy function, derived from Eq. 

1, is the following: 

     21 1
1 2

  ,   4,6 2

3    exp 1 1  
2 2


 

         layer
i

layer media i
adventitia

kC
I k I

k
 [3] 

However, a full two-layer Holzapfel-type model considers that the exponential 

terms used in medial and adventitial layers are different (Holzapfel et al. 2000), 

necessitating two additional parameters. Therefore, the seven parameter model 

releases the constraint on exponential parameters, making them different in each 

arterial layer. The corresponding strain energy function, derived from Eq. 1, is the 

following: 

    22 1
1 2

  ,   4,6 2

3    exp 1 1  
2 2


 

        
layer

layer layer
ilayer

layer media i
adventitia

kC
I k I

k
 [4] 

2.3. Numerical model  

The development of the FE model of the inflation/extension test in Abaqus® is based 

on the experimental considerations and measurements described in Ning et al. (2010). 

The geometry of the artery is assumed to be perfectly cylindrical with initial inner and 

outer radii of 0.1003 and 0.1715 mm with a total specimen length of 2 mm. The ratio 

of medial thickness to total thickness is 0.45 as measured experimentally. These 

dimensions are similar to those measured in Dye et al. (2007). One end of the artery is 

capped as shown in Fig. 3. Due to axial symmetry, only one quarter of the geometry is 

meshed with 4280 8-node brick elements resulting in 22070 degrees of freedom. The 

element type chosen here, called C3D8RH in Abaqus® (hybrid formulation with 

constant pressure), is recommended for nearly incompressible constitutive models. 

The initial mesh displaying media and adventitia in different colors is shown in Fig. 3. 
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The open end of the cylinder is blocked in the axial direction whereas 

symmetry boundary conditions are applied on the surfaces of the quarter cylinder. 

Pressure is applied onto the inner surface of the artery, with values ranging up to 140 

mmHg. 

The constitutive model presented above being already built in Abaqus®, its 

implementation is straightforward. 

The resolution of the problem is performed using an implicit scheme 

accounting for large displacements. 

2.4. Identification procedure 

Given a set of experimental pressure and surface strain measurements, the principle of 

the present identification method is to minimize the following cost function: 

             2 2sim exp sim exp
11 11 22 22

1

2 i i i i
i

J E p E p E p E p       



 [5] 

where:  

 


 is the vector of parameters to be identified (ie. the constitutive parameters). 

 pi is the pressure applied during the inflation test, with index i ranging over the 

experimental data points.  

 E11 and E22 are Green Lagrange circumferential and axial strain components 

on the surface of the artery, superscripts ‘sim’ and ‘exp’ standing respectively 

for the simulated and experimental data. The inflation test of a long thick tube 

segment leads to a homogeneous strain field on the surface, provided the 

measurement is not performed close to the capped end of the tube. Therefore 

11 22 and sim simE E  are the strain components computed in a surface element far 

from the closed tip of the artery. exp exp
11 22and E E  are the strain components 

obtained by averaging local strains over the region analyzed by 3D-DIC, 3D-
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DIC acting thus like a strain gauge. In this paper, synthetic data generated by a 

FE calculation are also used in order to avoid noise issues when identifying the 

seven parameter model. 

An in-house Levenberg-Marquardt algorithm with bounds handling is used to 

minimize the cost function J defined above since this algorithm is dedicated to least-

square minimization problems. Note that it requires computing the gradient of J with 

respect to 


, which is performed by backward finite differences using corresponding 

simulations.  

The global principle of the inverse identification method is schematized in Fig. 

4. Two types of stopping criteria are used: a threshold on the value of J (i.e. good 

quality of identification is reached), and another one on the norm of 


 increments 

(i.e. no more improvement can be reached). The first one is set to 10-5, which is very 

low for this problem, and the second one is set to 10-11 of 


’s norm. 

To asses the robustness of the identification method, 35 identification runs 

with random starting points are performed in order to compare the obtained results. 

However in the case of the seven parameter model, since noise in data is a major 

source of identification errors, especially when identifying a lot of parameters, we 

choose to use noise-free data which are obtained by finite element simulation with an 

arbitrary set of parameters. Here the set of parameters obtained with the first 

identification run is used. 

3. Results 

In order to avoid FE convergence issues, the starting values of the minimization 

algorithm are chosen in the range of values found in the literature for this type of 

artery and for a similar constitutive model (Gleason et al. 2008).  
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Using the five parameter model, convergence of the optimization algorithm is 

obtained after 46 iterations, the stopping criterion on the norm of 


 increments 

being reached. We report in Table 1 the results of this identification procedure. The 

pressure/strain curves are shown in Fig. 5. To further test the identification method, a 

second set of experimental data obtained by performing a second identical test with 

the same arterial segment is also used, the aim being to compare the results. We also 

report in Table 1 the results of this identification run (curves are not shown here). 

Note that they are very close to those obtained with the first set of data. In the 

following developments, only the first set of data is used. 

In addition to these results, the robustness of the identification method is 

assessed with the method mentioned in section 2.4. The range of spanned starting 

points and the range of the obtained results are reported in Table 2. Note that C shows 

quite a large standard deviation because these multiple runs showed that there exist 

two close minima in the space of parameters, the influence on the response being 

negligible. 

Regarding the seven parameter model, synthetic noise-free data are generated 

using the first parameter set identified with the algorithm, referred to as the “true” set. 

Again, to evaluate the reliability of identifying this constitutive model, we try to 

identify its seven constitutive parameters using 35 identification random starting 

points. The results obtained through these tests are presented in Table 3, and the 

corresponding curves shown in Fig. 6. They raise several noteworthy comments.  

The first comment to be made is that only three out of 35 runs lead to an 

agreement which is slightly not as good as most runs (cost function is found to be of 

the order of 10-5 versus 10-7 or less for the other runs), which means that the algorithm 

is practically always able to find a solution. However, only seven of 35 runs lead to 
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the true set of parameters. The dispersion among the other results is very large; seven 

families of significantly different solutions can be distinguished.  

4. Discussion 

Note that residual stresses and active stress components are not considered at the 

moment. This paper is intended to bring a feasibility proof of the identification of 

layer-specific properties, and in particular mean fiber angles in each layer. 

4.1. Relevancy of the two-layer model  

First, the authors want to emphasize the relevancy of using a two-layer model to 

recover the constitutive properties of this artery. This statement is not obvious, 

because using a single homogeneous layer model within the framework of thin-tube 

theory will provide a good match to the experimental data. This type of approach was 

used in previous studies (Gleason et. al. 2008). The analytical developments leading 

to identifying such a constitutive model are detailed in Appendix A. From the 

experimental strain measurements made at different pressures, the fiber angle thus 

obtained is within the range 34-35°. This range is narrow, with variations attributable 

to noise in the experimental data. Thus, the conclusion can be made that the 

constitutive parameters of the model are correctly identified with a single 

homogeneous layer, given the thin-tube assumption. 

However, the artery considered here features dimensions which prevent from 

using thin-tube theory. For this reason, the procedure described in this paper, which 

considers the artery as a 3D thick tube modeled using the FE method, is also 

implemented for a single homogeneous layer. This type of model was also used in the 

previous work of Ning et. al. (2010) who modeled the artery’s behavior with the 

constitutive model of Bischoff. Our results show that the best-fit parameters obtained 

for the constitutive model presented in section 2 are unable to capture the biaxial 
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response of the artery (see the pressure/strain response plotted in Fig. 7). This 

conclusion constitutes, at least, a heuristic proof that the identification is not 

satisfactory when considering the actual thickness of the artery and a single layer with 

this constitutive model. This reasoning justifies use of the two-layer model. 

Possible explanations for this result are related to 3D through-thickness effects 

which are not captured by the thin-tube model, while they are with the actual 

geometry of the artery modeled with FEM. The behavior of the thick tube is different 

due to triaxial effects induced by radial stresses, which disallows fitting the two 

exponential curves at the same time. This effect was also pointed out in Ning et. al. 

(2010). It can be seen from Fig. 7 that the axial strain response should be softened at 

low pressures only, without affecting the circumferential response. This is possible 

with two separate layers with different fiber angles. Indeed, the stress state varies 

significantly through the thickness of a homogeneous layer: though axial stress 

remains constant, circumferential stress shows a substantial decrease at larger radii. 

This classical result in elasticity theory for a thick pressurized tube was also found in 

Ning et. al. (2010). Therefore a lower fiber angle in the outer layer will provide a 

softer overall axial response while the influence on the circumferential response 

remains weak. The latter is mainly driven by the behavior of the inner layer where 

circumferential stress is highest. Our result for the five parameter two-layer model 

shows that balancing these effects is possible and sufficient to provide a good 

agreement with the axial and circumferential experimental data. This type of 

reasoning about stress distribution within the layers was also mentioned by Humphrey 

(2002) who discussed the potential interests of the inversion test in which the arterial 

segment is turned inside out to reverse the spatial locations of the media and 

adventitia. 
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In addition, the identification based on the second set of data and the 

identifications with random starting points confirm that the solution to the simplified 

two-layer problem is unique (see Table 1 and 2), which proves that the model is well 

parameterized with respect to the available data and that the method is robust.  

Though residual stresses may affect the numerical values of these results and 

this aspect of the discussion, the question of identifiability and related problems 

would remain the same. However, the precise distribution of residual stresses in each 

layer is not known a priori and is difficult to hypothesize. A measure of the opening 

angle of the artery might help in introducing a global information on this 

phenomenon, but these data were unfortunately not available for the specimens used 

here.  

4.2. Five parameter two-layer model  

In this study, firstly, two separate thick layers are considered, with the further 

assumption that the material parameters in the exponential terms related to the 

response of fiber bundles are identical in each layer. This assumption seems to be 

reasonable as long as only the passive mechanical behavior is considered. The reason 

for this is that the passive mechanical response is mainly driven by elastin and 

collagen fibers. The response of elastin, as well as that of the ground substance, is 

included in the neo-Hookean term of the strain energy function. On the other hand, 

the response of collagen fibers is included in the exponential terms. Whether they are 

in media or adventitia, it is assumed in this model that collagen fibers of the arterial 

wall have the same behavior. 

This parameterization of the constitutive model has been shown to be correct 

thanks to random starting point identifications, and to the comparison of the results 
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obtained with the data from two different experimental tests performed on the same 

arterial segment. 

These results confirm that identifying layer-specific fiber angles, based on the 

constitutive model of Holzapfel, is possible for such arteries using data from only one 

experimental test of inflation with free axial movement. 

In our results, the mean fiber angle in the media is close to 45° while fibers 

are, in average, more circumferentially oriented in the adventitia. This means that the 

adventitia is found to be circumferentially stiffer than the media. Though it cannot be 

generalized based on a single example, this result brings some comments. From a 

global point of view the overall anisotropy of the artery, with the circumferential 

direction being stiffer, is typical for arteries in general, and is in qualitative agreement 

with previous studies, even though the constitutive models were different (Sutton et 

al. 2008; Gleason et al. 2008; Haskett et. al. 2010). However, the media is usually 

found to be circumferentially stiffer than the adventitia (Holzapfel et al. 2000, 2005), 

which is in contrast with the results obtained here. The possible influence of residual 

stresses may explain this difference and will have to be investigated in future work.  

 

4.3. Additional parameters  

A full two-layer Holzapfel-type model considers that the exponential terms used in 

each layer (media and adventitia) are different, necessitating two additional 

parameters (Holzapfel et al. 2000). This is the case of the seven parameter model also 

implemented in the present study. In contrast with the five parameter model, this 

model has failed in providing a unique solution to the problem of identification. 

Our results (see Table 3) show the typical trend of an over-parameterized 

problem. They confirm that identifying such a model on these experimental data is 
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very easy because the algorithm is always able to capture the experimental data with a 

close fit. Unfortunately, robustness is very poor because seven families of different 

possible solutions are obtained. Yet, this issue is not unexpected because the problem 

of inflating a tube made up of two fiber-reinforced layers potentially presents two 

solutions: one solution with a large fiber angle for the inner layer and small angle for 

the outer layer, and vice versa. Both solutions are possible as long as their constitutive 

properties can be different to compensate the thickness effects addressed in section 

4.1. Interestingly, our results clearly show these two alternatives, with a noticeable 

preference for large media angle and low adventitia angle (28 out of 35 solutions). 

Note, also, that the mechanism of compensation is clearly illustrated by the ratio of k1 

parameters between media and adventitia, which is inversed in these two situations. 

To correctly identify the parameters for this kind of model, more abundant 

and/or relevant experimental data are required. In order to confirm this hypothesis, 

additional synthetic data are generated by simulating, from the same FE model, an 

axial tension test on the arterial segment, without any pressurization, and recording 

the axial force versus axial stretch. The material parameters used for the generation of 

these synthetic data are arbitrarily chosen to be those of the second family of previous 

solutions (see Table3). Accordingly the cost function (see eq. 5) is enriched with these 

data: 

                2 2 2sim exp sim exp sim exp
11 11 22 22

1

2
          

 


i i i i i i
i i

J E p E p E p E p F F

 [6] 
where:  

 λi is the axial stretch applied during the tension test, with index i ranging over 

the available experimental (synthetic) data points.  
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 Fsim and Fexp are simulated and experimental (synthetic) axial force. Values are 

scaled so that both sum terms in J are of the same order of magnitude. 

Using this updated cost function, the same 35 identification runs are 

performed again. Instead of obtaining seven different families of solutions, as with the 

former cost function, the algorithm provides only two (see Table 4). Among these two 

solutions, the first one, obtained five times out of 35, reaches two boundaries of the 

allowed range for the parameters. This solution must obviously be rejected, as the 

procedure would have diverged or found inconsistent values. The other one, obtained 

30 times out of 35, can be considered as the true solution. 

These results show that additional relevant data may easily make the 

identification procedure robust. In this case, a simple tension test added to the 

inflation/extension test is sufficient. However, any larger set of data obtained with an 

experimental setup allowing spanning widely the strain or stress space would be 

helpful as well. The interest of the two tests used in the present paper is that they do 

not require specific biaxial equipment. If available, such equipment will obviously be 

of a great support. 

Circumventing the problem of non-uniqueness emphasized above would also 

be made possible by using different types of additional data, or other strategies. For 

instance, separate mechanical tests of medial and adventitial layers can be used as was 

done in Holzapfel et al. (2005), or inversion tests which were theoretically studied in 

Humphrey (2002). This would be, though, very challenging with such small vessels as 

mouse carotid arteries. Another possible way to access useful experimental 

information would be to acquire through-thickness data, thanks to the use of optical 

coherence tomography or confocal microscopy, for instance. Such layer-specific data 

would help discriminate the true solution. Otherwise, in order to reduce the number of 
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dependent parameters to be identified and help make the solution unique, additional 

information regarding the fiber angle distributions within each layer (from histology 

for instance) would be helpful. A part of the work in progress at this time is related to 

these last two aspects. 

4.4. Symmetry of the structure  

The assumption of geometric and constitutive axisymmetry of arteries is widely 

accepted and used in the literature. The inflation/extension tests performed on those 

mouse carotid arteries raise, though, the question of axisymmetry. Indeed, full-field 

strain measurements have reported significant shear strains occurring during the test. 

Values up to 3 % have been recorded, which may make the assumption of 

axisymmetry questionable. 

One can imagine two ways of including such effects in the model in order to 

identify additional parameters related to this behavior. The first one would be to 

consider that the twist of the artery is a consequence of an imbalance in fiber 

directions. Then considering that the fiber directions are not symmetrically oriented 

would lead to identification of two fiber angles per layer instead of one. The second 

approach would be to consider that shear results from an imbalance in fiber 

proportions in each direction. This would lead to introduction of a multiplying factor 

between the responses in each fiber direction. 

These perspectives require further developments of the model, therefore they 

are part of future work. 

5. Conclusion  

In this study, 3D-DIC is used to measure surface strains on the surface of a mouse 

carotid artery. Instead of the usual pressure-diameter measurements for which post-

analysis often suffers approximations such as the thin-tube assumption, the actual 
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surface strains are acquired. The objective of the present paper was to study the 

feasibility of recovering fiber angles in each arterial layer from these data.  

A Holzapfel-type material model is identified using an inverse method based 

on a finite element model and a Levenberg-Marquardt optimization algorithm. Layer-

specific mean fiber angles are thus determined using a five parameter constitutive 

model demonstrating good robustness of the identification procedure. Importantly, we 

show that a model based on a single thick layer is unable to render the biaxial 

mechanical response of the artery tested here. On the contrary, difficulties related to 

the identification of a seven parameter constitutive model are evidenced; such a model 

leads to multiple solutions. Nevertheless, it is shown that an additional mechanical 

test, different in nature with the previous one, solves this problem. Additional data 

such as through-thickness or histological data are also likely to be the key to such 

refined models. Current work is dedicated to improving this aspect. 

 

Appendix A 

In this appendix, the analytical developments made to recover the constitutive 

properties of a one-layer thin-tube model are detailed. 

Let {ei} denote the reference frame as a circular permutation of the cylindrical 

frame linked to the artery: 1 θθ 2 zz 3 rr ;  ;   e e e e e e . Assume the principle axes of 

the transformation are aligned with the axes of the reference frame {ei}, and assume 

no shear. Note that this is the case of the inflation/extension test considered here. The 

gradient tensor is thus diagonal and the following kinematical tensors can be written: 
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According to Fig. 2, let f1 and f2 denote the fiber directions oriented at angles 

 β with respect to the direction e1. The stretch of the fibers can be expressed as a 

function of principle stretches or, equivalently, as a function of Green Lagrange 

strains: 

2 2 2 2 2 2
4 6 1 2 11 22cos sin 2 cos 2 sin 1I I E E             

Using Holzapfel’s model with a single homogeneous layer for the whole artery 

wall (and neglecting the neo-Hookean term for the sake of simplicity), the following 

second Piola-Kirchhoff stress components can be derived from Eq. 1: 
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Cauchy stresses are then given by: 
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Within the assumption of thin-tube theory, the following relationships can 

easily be retrieved for the inflation/extension test: 
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where p is the inner pressure, R the mean radius of the thin tube and t its 

thickness. Then, using Eq. A.1 and A.2 it should be verified, for each pressure level, 

that: 
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This expression immediately yields the fiber angle β: 

 1

2

tan
2




  

Parameters k1 and k2 are subsequently obtained by fitting the exponential 

pressure/strain response. 
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List of figures 

 
Figure 1. Schematic of the inflation/extension test of the mouse carotid artery showing 
one fixed end (on the left) linked to the pressure controller and one end (on the right) 
free to translate axially. Dashed lines represent the schematic shape of the deformed 
segment. 
 
Figure 2. Schematic of an arterial layer as considered in the Holzapfel constitutive 
model ; fiber angle β is defined with respect to the circumferential direction e1 and 
axial direction e2 
 
Figure 3. Initial geometry and mesh of the artery used in the FE model of the 
inflation/extension test. Different colors are used for the medial and adventitial layers. 
 
Figure 4. Flow chart of the inverse identification procedure 
 
Figure 5. Pressure/strain curves obtained with the five parameter constitutive model. 
 
Figure 6. Pressure/strain curves obtained with the seven parameter constitutive model. 
 
Figure 7. Pressure/strain curves for the one-layer Holzapfel model (4 parameters). 
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List of tables 

 
Table 1. Material parameters determined by inverse identification of the simplified 
two-layer Holzapfel model. Two different experimental data set obtained with the 
same arterial segment have been used for comparison. 
 

 C (kPa) k1 (kPa) k2 βmedia (°) βadventitia (°) 

Starting 

point 
20 20 1 35 35 

First data 

set  
0.5 33 12.8 46.4 27.2 

Second data 

set  
0.86 31.3 14 43.3 27.3 

 
 
Table 2. Results of parameter identification of the five parameter model with random 

starting points. Results are presented as mean values  standard deviation. 

 
 Media Adventitia 

 C (kPa) k1 (kPa) k2 β (°) β (°) 

Starting 

point range 
[0.3;50] [0.5;100] [0.1;100] [5;60] [5;60] 

Results 

range 
0.450.37 30.51.07 15.40.51 46.70.2 26.80.17 

 
 
Table 3. Results of the identification of the seven parameter model with random 
starting points. The different families of solutions obtained, and their occurence are 
presented. 
 

 Media Adventitia 

 C (kPa) k1 (kPa) k2 β (°) k1 (kPa) k2 β (°) 

Starting point range [0.3;50] [0.5;100] [0.1;100] [5;60] [0.5;100] [0.1;100] [5;60]

True parameters 8.8 13.9 21.6 41.9 11.8 0.242 5.14 

Solution 

family  

Occurrence 

(%) 
 

n°1 40 1.01 0.01 52 55.1 15.1 17.4 7 
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n°2 20 8.8 13.9 21.6 41.9 11.8 0.31 5.4 

n°3 14.3 0.75 0.8 0.1 5 19.6 20.5 38.8 

n°4 11.4 8.46 13.6 21.7 41.8 14.5 0.1 15.5 

n°5 8.6 18.1 22.9 27 53.7 43.8 14.4 30 

n°6 2.8 13.4 14.9 13.7 35.2 87 58 12.9 

n°7 2.8 8.3 10.2 5 7.4 8.8 100 51.9 

 
Table 4. Results of the identification of the seven parameter model with random 
starting points, using the cost function enriched with tensile test data. The different 
families of solutions obtained, and their occurence are presented. 
 

 Media Adventitia 

 C (kPa) k1 (kPa) k2 β (°) k1 (kPa) k2 β (°) 

Starting point range [0.3;50] [0.5;100] [0.1;100] [5;60] [0.5;100] [0.1;100] [5;60]

True parameters 8.8 13.9 21.6 41.9 11.8 0.242 5.14 

Solution 

family  

Occurrence 

(%) 
 

n°1 85.7 8.8 13.7 21.8 42 12.3 5.4 8 

n°2 14.3 8.8 8.11 0.1 5 14.2 64.7 38.9 
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