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Buchi’s Problem for ultrametric meromorphic functions inside

an open disk

Alain Escassut, Hector Pasten

Abstract

Let K be a complete ultrametric algebraically closed field of characteristic zero such as Cp.

Büchi’s problem was solved for p-adic meromorphic functions in the whole field K. Here we

show similar conclusions for meromorphic functions in an open disk that are not quotients of

bounded analytic functions. The main method is the second Main Theorem for p-adic meromorphic

functions inside a disk, a specific p-adic theorem.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10

1 Introduction

The purpose of this work is to prove the analogue of certain diophantine question known as Büchi’s
problem, over the field of non-archimedean meromorphic functions on an ”open” disk. This problem
for the ring of rational integers reads as follows

Problem 1.1 (Büchi’s Problem). Does there exist some constant M0 such that, if a sequence of square

integers x2
1, x

2
2, . . . , x

2
n has second differences constant and equal to 2 and n ≥ M0, then necessarily the

x2
i are squares of consecutive integers?

The main motivation behind this problem came from Logic. Indeed, Büchi realized that a pos-
itive answer to this problem together with the negative answer to Hilbert’s tenth problem given by
Matijasevich, imply a very strong undecidability result about systems of diagonal quadratic equations.

If x2
1, . . . , x

2
n have second differences equal to two, an easy argument shows that there exist integers

ν, a such that x2
k = (k + ν)2 − a for each a. Hence, one wants to find some M0 with the property that,

if n ≥ M0 then necessarily a = 0.
A similar argument works in the context of fields of functions, but one has to consider as ”trivial”

the case where all the xk are constants. A very relevant case is the analogous problem for complex
meromorphic functions, where Büchi’s Problem was solved by Vojta in [?] and, in an equivalent
formulation, he shows that if we are given h1, ..., hM , f, g meromorphic functions over the whole C

not all constant, such that

h2
k = (k + f)2 − g for each j = 1, ...,M

then M ≤ 7. Unfortunately, in contrast to the case of integers, this result has no undecidability
consequence because Hilbert’s tenth problem is an open problem for complex meromorphic functions
(and even for rational functions over the complex numbers). In [?] and [?] the same problem was
considered for fields of rational functions and polynomial rings in both characteristic zero and positive.
It was natural to consider the same question for meromorphic and entire functions in a whole p-adic
field (because in this case some analogues to Hilbert’s tenth problem are known) and this was done in
[?].

Here we want to examine the same problem for ultrametric meromorphic functions defined in an
”open” disk. One of the main reasons of why we can deal with this problem on open disks, is that
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in the non-archimedean setting Nevanlinna Theory works in a satisfactory way inside a disk, and for
instance one gets results on the non-parametrization of hyper-elliptic curves [?], [?].

2 Notation, definitions and main result

Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric
absolute value | · |. Given α ∈ K and R ∈ R

∗
+, we denote by d(α, R) the disk

{x ∈ K : |x − α| ≤ R}

and by d(α, R−) the disk
{x ∈ K : |x − α| < R},

by A(K) the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius
of convergence) and by M(K) the field of meromorphic functions in K.

In the same way, given α ∈ K and r > 0, we denote by A(d(α, r−)) the K-algebra of analytic
functions in d(α, r−) (i.e. the set of power series with a radius of convergence ≥ r) and by M(d(α, r−))
the field of fractions of A(d(α, r−)). We then denote by Ab(d(α, r−)) the K-algebra of bounded analytic
functions in d(α, r−) and by Mb(d(α, r−)) the field of fractions of Ab(d(α, r−)). And we set

Au(d(α, r−)) = A(d(α, r−)) \ Ab(d(α, r−))

and
Mu(d(α, r−)) = M(d(α, r−)) \Mb(d(α, r−)).

Throughout the paper, we denote by D a disk d(a,R−) and by M an integer ≥ 6.
In [?] Buchi’s problem for meromorphic functions was solved in the whole field:

Theorem 2.1. Let f, g ∈ M(K) with g non-identically zero. Let h1, ..., hM ∈ M(K) with h1 non-

constant and let a1, ..., aM ∈ K be distinct and such that h2
j = (aj + f)2 − g for each j = 1, . . . ,M .

Then M ≤ 34. Moreover, if h1, ..., hM ∈ A(K), then M ≤ 12

Here we want to show that this result also holds for meromorphic functions lying in Mu(D):

Theorem 2.2. Let f, g ∈ M(D) with g non-identically zero. Let h1, ..., hM ∈ M(D) with h1 ∈ Mu(D)
and let a1, ..., aM ∈ K be distinct and such that

h2
j = (aj + f)2 − g

for each j = 1, ...,M . Then M ≤ 34. Moreover, if h1, ..., hM ∈ A(D) with h1 ∈ Au(D), then M ≤ 12.

3 Some preliminary results

The proof of Theorem ?? requires several preliminary results. First, we must notice a very basic
lemma:

Lemma 3.1. Let E/F be a field extension and assume that F is algebraically closed in E. Let

x1, x2, ..., xq ∈ E∗ and assume that x1 /∈ F . Then one of the products

q
∏

j=1,j 6=k

xj

does not belong to F .
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Proof. For each k = 1, ..., q let

yk =

q
∏

j=1,j 6=k

xj

and suppose that yk ∈ F for each k = 1, ..., q. First note that none of the yk is zero, because no xj is
zero. For each k = 1, ..., q, set xk = bkx1. Then bk = y1/yk hence bk belongs to F . Now,

y1 = (x1)
q−1

q
∏

j=2

bj

and therefore (x1)
q−1 belongs to F . But F is algebraically closed in E, hence x1 also belongs to F , a

contradiction.

Henceforth, we will use the classical Nevanlinna functions:

Notation 3.2. Given a function f ∈ M(D) such that f(0) 6= 0,∞, we will denote by Z(r, f) the

counting function of zeros of f in D, counting multiplicities, and by N(r, f) the counting function of

poles of f in D, counting multiplicities. Finally, we denote by T (r, f) the Nevanlinna characteristic

function

max(Z(r, f) + log(|f(0)|), N(r, f)).

For convenience, we will take D = d(0, R−) without loss of generality. The following theorem is
easily seen: for instance it is an immediate corollary of Theorem 2.6.4 [?].

Theorem 3.3. Let f ∈ M(D) with f(0) 6= 0,∞. Then T (r, f) is bounded when r tends to R if and

only if f belongs to Mb(D). Moreover, Mb(D) is algebraically closed in M(D).

The following theorem is a particular case of Theorem 3.1.6 [?] or Theorem 1 [?].

Theorem 3.4. Let c1, . . . , c5 ∈ K be pairwise distinct. Then there exist no pair (g, f) ∈ Mu(D) such

that

f2 =

5
∏

j=1

(cj − g).

That is, each M(D)-parameterizations of the hyper-elliptic curve

y2 =

5
∏

j=1

(cj − x)

is actually a Mb(D)-parametrization.

Theorem ?? allows us to apply Lemma ?? to the field extension M(D)/Mb(D) and obtain the
next lemma with help of Theorem ??.

Lemma 3.5. Let M ≥ 10 and let f, g ∈ M(D) with g non-identically zero. Let h1, ..., hM ∈ M(D)
and assume that at least one of the hj belongs to Mu(D). Suppose there exist a1, ..., aM ∈ K distinct

such that

h2
j = (aj + f)2 − g

for each j = 1, ...,M . Then f is not constant.
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Proof. By contradiction, assume that f is constant. Since at least one of the hj is not constant (indeed,
at least one of the hj /∈ Mb(D)) we get that g is non-constant and thus all the h2

j are non-constant.
In particular no hj is the zero function.

By Theorem ??, Mb(D) is algebraically closed in M(D). Consequently, by Lemma ??, there are
9 elements in {h1, ..., hM} whose product lies in Mu(D). Without loss of generality, we may assume
that

9
∏

j=1

hj ∈ Mu(D).

Let φ = h1 · · ·h9. For each j = 1, ..., 9 let cj = (aj + f)2 ∈ K. Since the aj are pairwise distinct, we
can conclude that no three of the cj are equal because ci = cj implies ai + aj = 2f . Consequently,
among the {c1, . . . , c9} there are at least 5 pairwise distinct elements, and without loss of generality
we assume that c1, . . . , c5 are pairwise distinct. Then we have

φ2 =

5
∏

j=1

(cj − g).

Since φ lies in Mu(D), so does g (because Mb(D) is algebraically closed in M(D)). But (g, φ) gives
a parametrization of the hyper-elliptic curve of equation

y2 =

5
∏

j=1

(cj − x).

which contradicts Theorem ??. This proves that f is not a constant.

We notice that in [?], all claims 1,2,3,4,5 only use inequalities that hold in M(K) as well as in
M(D). Consequently their conclusions hold in M(D).

The following lemma is Claim 2 in [?].

Lemma 3.6. Let f, g ∈ M(D) with g non-identically zero. Let h1, ..., hM ∈ M(D) with h1 ∈ Mu(D)
and let a1, ..., aM ∈ K be distinct and such that

h2
j = (aj + f)2 − g

for each j = 1, ...,M . Then

M
∑

j=1

Z(r, hj) ≥
M − 3

M − 1

M
∑

j=1

N(r, hj) + O(1).

4 Proof of Theorem ??

In this section, we present the proof of Theorem ??. Suppose M ≥ 35 in the general case and that
M ≥ 13 when all hj belong to A(D) with h1 ∈ Au(D) .

Let ∆ = (g′)2 − 4(f ′)2g. First, we will show that ∆ = 0. The process is quite similar to this of
Claim 6 in [?] but requires some precisions at the end. Indeed, assume that ∆ is not identically zero.
Set

Z =

M
∑

j=1

Z(r, hj)

and

N =

M
∑

j=1

N(r, hj).
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As in the proof of Claim 6, we have

−2 log r ≥

(

1

2
−

6M − 2

M(M − 1)

)

Z +

(

6M − 2

M(M − 1)
−

16

M − 1
−

8

(M − 1)2

)

N + O(1)

hence (since log r is bounded):

O(1) ≥

(

M2 − 13M + 4

2M(M − 1)

)

Z +

(

−10M2 + 2

2M(M − 1)2

)

N .

Suppose first that N is bounded when r tends to R, hence N(r, hj) is bounded for each j = 1, ...,M .
Since at least one of the hj belongs to Mu(D), by Theorem ?? there exists at least one index k such
that T (r, hk) is not bounded when r tends to R and hence Z(r, hk) is not bounded when r tends to
R. Consequently, Z cannot be bounded when r tends to R. Now, since M2 − 13M + 4 > 0 because
M ≥ 13,

(

M2 − 13M + 4

2M(M − 1)

)

Z +

(

−10M2 + 2

2M(M − 1)2

)

N

tends to +∞ when r tends to R, hence we have a contradiction. Particularly this applies to the case
when all hj belong to A(D) with h1 ∈ A(D).

Suppose now that N is not bounded when r tends to R. By Lemma ??, we have

Z ≥
M − 3

M − 1
N ,

hence
(

M2 − 13M + 4

2M(M − 1)

)

Z +

(

−10M+2

2M(M − 1)2

)

N ≥
M3 − 36M2 + 43M − 8

2M(M − 1)2
N

which tends to +∞ when r tends to R because M ≥ 35. So, we have proved that ∆ = 0 in the general
case whenever M ≥ 35 and when the hj belong to A(D), whenever M ≥ 13. Henceforth, we can
assume that ∆ = 0.

Next, we will follow a similar way as in [?], with however some change. Since ∆ = 0, we have
(g′)2 = 4(f ′)2g and since f is not a constant, this proves that there exists u ∈ M(D) such that u2 = g
and (u′)2 = (f ′)2. Consequently, u is of the form ǫf + b with ǫ = 1 or −1 (but fixed) and b ∈ K.
Therefore, for each j = 1, ...,M we check that

(hj)
2 = (aj − ǫb)(aj + ǫb + 2f). (1)

Note that for each j the function aj + ǫb + 2f is not identically zero by Lemma ??, and note also
that aj − ǫb = 0 at most for one j, because the aj are pairwise distinct and ǫb is fixed. Therefore at
least M − 1 > 5 of the functions hj are not identically zero, including h1 which belongs to Mu(D) by
hypothesis.

Now, by Lemma ??, there are 5 elements in {h1, ..., hM} whose product lies in Mu(D). Without
loss of generality, we may assume (just for notational convenience) that

5
∏

j=1

hj ∈ Mu(D).

Let φ =
∏5

j=1
hj . By Equation (??), we have

φ(x)2 =

5
∏

j=1

(aj − ǫb)(aj + ǫb + 2f).
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But since φ belongs to Mu(D), so does f . Consequently, the hyper-elliptic curve of equation

y2 =

5
∏

j=1

(aj − ǫb)(aj + ǫb + 2x)

admits a parametrization by a pair of functions lying in Mu(D), a contradiction to Theorem ??. This
finishes proving that M ≤ 34 and that M ≤ 12 when all hj belong to Au(D).
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[3] Pasten H. An analogue of Büchi’s Problem for p-adic meromorphic functions, to appear in
Transactions of the AMS.

[4] T. Pheidas and X. Vidaux The analogue of Büchi’s problem for rational functions, Journal
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