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Some LPV Approaches for Semi-active Suspension Control

Olivier Sename1, Anh-Lam Do1, Charles Poussot-Vassal2 and Luc Dugard1

Abstract— This tutorial paper aims at presenting two
methodologies to deal with the semi-active suspension control
problem, in the framework of Linear Parameter Varying (LPV)
systems.

I. INTRODUCTION

The suspension system is a key element of the vehicle
dynamics since it actually links the tires to the vehicle
chassis. The characteristics of the suspension components
(spring and damper) then influence the passenger comfort
(through the vibration isolation) and the safety or road
holding (through the wheel rebound).

This paper is concerned with controlled semi-active sus-
pensions (such as Magneto-Rheological dampers) that have
been more and more studied in the latter decade since they
allow for varying damping rate (thus performance adaptation)
and provide an interesting compromise between cost and
performance compared to passive and active suspensions.
The control challenge stands in the ability of taking into
account the dissipativity of the damper [1]. If not handled
the referred to as “clipped strategy” is necessary to saturate
the control input [2], without any guarantee of performances.

In this tutorial paper, two control methodologies that
handle the inherent limitations of the damper are described
in the LPV framework. In the first one, a “smart” parameter
is introduced allowing to take the real abilities of the damper
into account, representing in some sense the excess of active
control [3]. A scheduling parameter is indeed defined as
the difference between the real controlled damper force and
the required one given by the controller. In the second one,
an LPV model is written from a quarter-car vehicle model
including a non linear semi-active damper model [4]. From
this LPV model, the dissipativity constraint of the semi-
active damper is brought into the problem of input saturation.
This latter problem is actually solved by integrating the
saturation constraint as a new scheduling parameter. The
advantage of this method is that the control input always
meets the saturation constraint and hence the dissipativity
constraint is fulfilled.

Both LPV controllers are designed using the well-known
results given in [5] and [6].
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II. CONTROL-ORIENTED MODELS OF MR DAMPERS

Magneto-Rheological (MR) dampers use MR fluids whose
properties can be changed through the application of a
magnetic field. Their advantages are a fast time response
as well as a stable hysteretic behavior over a broad range
of temperature, and a low battery voltage consumption. The
modeling of MR dampers is a challenging problem because
of the highly nonlinear behavior such as the bi-viscosity, the
temperature dependency and specially the hysteresis. Here,
the following model will be used for simulation of the real
MR damper behavior [7]:

Fdamper = C1 tanh(C2ẋmr +C3xmr)+C4ẋmr +C5xmr (1)
+C6ẍmr +C7I tanh(C8ẋmr +C9xmr)

The parameters of the model (1) have been identified (see
[7]) on the test-rig at Metalsa 1 and are given in Tab. I. It is
worth noticing that the coefficients in compression (ẋmr < 0)
and extension (ẋmr ≥ 0) modes are different to better model
the non-symmetric characteristics.

TABLE I
PARAMETER VALUES OF MR DAMPER (FOR SIMULATION)

Parameter ẋmr ≥ 0 ẋmr < 0 Unit
C1 128.5 −128.6 [Ns/m]
C2 412.2 −489 [N/m]
C3 83.5 −204 [N]
C4 608.8 611.5 [N]
C5 5457.6 −2855.4 [s/m]
C6 3.9 4.2 [1/m]
C7 484.3 484.3 [1/m]
C8 6.5 6.5 [1/m]
C9 3.4 3.4 [1/m]

A. Controlled-oriented model 1

While the nonlinearity of the damper should be taken
into account in the controller design, many studies have
considered a simple linear model of the damper:

Fdamper = cżde f (2)

where c is the varying damping coefficient and limited by
[cmin,cmax]. Moreover, the damper force must be limited by a
maximal value, i.e |Fdamper| ≤Fmax where Fmax > 0, as shown
in Tab. II from the real MR damper.

1www.metalsa.com.mx



TABLE II
PARAMETER VALUES OF DAMPER - CONTROL ORIENTED MODEL 1

Parameter Value Unit
cmin 881 [Ns/m]
cmax 7282 [Ns/m]
Fmax 1400 [N]

B. Controlled-oriented model 2

While the model (1) approaches very well the behavior of
a real MR damper, it is unnecessarily complex for control
design. In [4], a simpler control-oriented model has been
proposed as follows:

Fdamper = c0ẋmr + k0xmr + fI tanh(c1ẋmr + k1xmr) (3)

where fI is the controllable force which varies according to
the electrical current I in the coil (0≤ fImin < fI ≤ fImax). In
general, fI can be any positive and invertible function of I,
as the simple linear one:

fI = ymrI (4)

where ymr is also a constant parameter. The model (3) whose
parameters are given in Tab. III reflects the realistic behavior
of an MR damper and approaches better the realistic MR
damper model (1) and allows to fulfill the passivity constraint
of the semi-active damper and introduces a control input fI
(or I). As shown in Fig. 1, it well presents the bi-viscous
and hysteretic characteristics of the damper, particularly the
dependency on the input current.

TABLE III
PARAMETER VALUES OF DAMPER - CONTROL ORIENTED MODEL 2

Parameter Value Unit
c0 810.78 [Ns/m]
k0 620.79 [N/m]
fImin 0 [N]
fImax 800 [N]
c1 13.76 [s/m]
k1 10.54 [1/m]
ymr 457.04 [N/A]

Fig. 1. Force vs Velocity characteristics of the damper model 2 with
different current values I and admissible region of the damper model 1
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Fig. 2. Model of quarter vehicle with a semi-active damper.

In what follows, two control methods will be proposed
according to the considered model (2) or (3). The validation
of the control method will then be assessed in simulation
using the realistic nonlinear model (1).

III. APPLICATION IN AUTOMOTIVE SUSPENSION
SYSTEMS

A. Quarter-car model

One of the most well-known applications of semi-active
dampers in industry is the automotive suspension system. To
study the vertical dynamics of a car, i.e comfort and road
holding, the simple quarter vehicle, depicted in Fig. 2, is
usually considered. In this model, the quarter vehicle body
is represented by the sprung mass (ms) and the wheel and
tire are represented by the unsprung mass (mus). They are
connected by a spring with the stiffness coefficient ks and
a semi-active damper. The tire is modeled by a spring with
the constant stiffness coefficient kt . As seen in the figure,
zs (respectively zus) is the vertical displacement around the
equilibrium point of ms (respectively mus) and zr is the
variation of the road profile. It is assumed that the wheel-
road contact is ensured. The dynamical equations of a quarter
vehicle are given by{

msz̈s =−Fspring−Fdamper
musz̈us = Fspring +Fdamper−Ftire

(5)

where Fspring = kszde f is the dynamical spring force, Ftire =
kt(zus − zr) is the dynamical tire force and Fdamper is the
damper force. Let us denote zde f = zs − zus the damper
deflection. In this study, the model parameters correspond to
the 1/4 Renault Mégane Coupé (1/4 RMC) test car available
in MIPS Laboratory (Mulhouse, France) (see in [8]), as given
in Tab. IV.

TABLE IV
PARAMETER VALUES OF THE RENAULT MÉGANE COUPÉ QUARTER CAR

MODEL

Parameter ms [kg] mus [kg] kt [N/m] ks [N/m]
Value 315 37.5 29500 210000



B. Performance criteria

In general, the vehicle body acceleration between 0-20 Hz
should be filtered to guarantee a good ride comfort, although
it is worth noting again that the human is the most sensible
to vertical acceleration around 4-8 Hz (ISO 2631). Besides,
to maintain the road-wheel contact, it is necessary that the
dynamic tire force is smaller than g(ms + mus) (where g is
the gravity). Hence, for the road holding improvement, the
dynamic tire force kt(zus− zr), in other words the dynamic
tire deflection zus−zr, should be small in the frequency range
0-30 Hz. Note also that the road holding is improved by
limiting the up and down bouncing of the wheel zus around
its resonance 10-20 Hz. With these remarks, the performance
criteria (JComfort for comfort and JRoadHolding for road holding)
in the frequency domain are explicitly described as follows

JComfort = min
∫ 20

0
z̈s/zr( f )d f (6)

JRoadHolding = min
∫ 30

0
(zus− zr)/zr( f )d f (7)

The objectives of the control design is to minimize both
criteria that are consistent with the ones given in [1] and
[2].

C. H∞ problem

In this paper, the suspension control problem is tackled in
the H∞ framework. The control configuration for semi-active
suspensions is given in Fig. 3. The controlled outputs are the
vehicle body acceleration z̈s (for the ride comfort improve-
ment) and the wheel displacement zus (for the road holding
improvement) (see [4]). The measurement outputs are the
suspension deflection zde f and suspension deflection velocity
żde f . To obtain the desired closed-loop performances, the
weighting functions on controlled outputs {Wz̈s ,Wzus} and
disturbance input Wzr are considered.
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Fig. 3. LPV control scheme.

Wzr = 3×10−2 (8)

Wz̈s = kz̈s

s2 +2ξ11Ω11s+Ω11
2

s2 +2ξ12Ω12s+Ω12
2 (9)

Wzus = kzus

s2 +2ξ21Ω21s+Ω21
2

s2 +2ξ22Ω22s+Ω22
2 (10)

Let us define the set of parameters

ν = [ Ω11,12 ξ11,12 kz̈s Ω21,22 ξ21,22 kzus ]T (11)

which, in the sense of the optimization problem, is the
decision vector.

D. Controller optimization for semi-active suspensions

It is well-known that the key step of the H∞ control
design depends on the selection of the weighting functions,
which is linked to the engineer skill and experience. In this
section, one applies the optimization procedure for H∞/LPV
controller optimization for semi-active suspension control
presented in [4]. Let us remark that the control objective
is to minimize the frequency-dependent performance criteria
(6)-(7) for closed-loop suspension systems, rather than to
minimize its induced L2-L2 gain. For this reason, in the
following, an LPV controller is sought that solves the fol-
lowing problem:

minimize JD (12)
subject to LMI solution for H∞/LPV in [6] and [4]

where

JD =
[

JD
Comfort

JD
RoadHolding

]
(13)

JD
Comfort

=
Nv

∑
i=1

αi

∫ 12

0
(z̈s/zr( f )i)d f (14)

JD
RoadHolding =

Nv

∑
i=1

αi

∫ 20

10
(zus/zr( f )i)d f (15)

Note that the bounds of the integrals are chosen to emphasize
the frequency ranges where the comfort and road holding are
the most significant. Note also that, in the equations above,
“D” is used to differentiate these design objective functions
with the ones in Section III-B and the index “i” stands for
the ith vertex of the polytope, Nv is the number of vertices
of the considered polytope of the LPV system. The scalars

αi are weighting parameters satisfying αi ≥ 0 and
Nv
∑

i=1
αi = 1.

It can be seen that the cost function (13) is not convex,
so (12) is a nonconvex optimization problem which can be
solved, for instance as in [4] using genetic algorithms.

Below, two control methodologies will be designed from
models (2)-(5) or (3)-(5) in the H∞ framework for polytopic
systems. Indeed some scheduling parameters will be used
later, representing, in some sense, the damper non-linearities.

IV. DESIGN METHOD 1

The design method presented in [3] is briefly recalled.
First, from the linear model of damper (2), the damper force
is decomposed as follows

Fdamper = c0żde f +Fd (16)

where c0 = (cmin + cmax)/2 and Fd is the additional force.
According to this decomposition, the control design will be



based on the following quarter car model, denoted as (Σc), msz̈s =−ks(zs− zus)− c0(żs− żus)−Fd
musz̈us = k(zs− zus)+ c0(żs− żus)+Fd− kt(zus− zr)
Ḟd = 2πβ (Fdin −Fd)

(17)
where β represents the band-width of the damper. In the next
section, the H∞ control method will be used, which means
that Fdin = uH∞ where uH∞ is the additional force provided
by an H∞ controller.

The H∞ control method for the semi-active suspension
system (17) referred to as Method 1, is given as in Fig. 4.
This is a particular case of the control scheme in Fig. 3. Due
to the fact that the damper force Fdamper must be limited in
the admissible region of a semi-active damper (dissipative
domain), the amplitude of Fd or uH∞ must be limited as well.
To deal with this problem, a weighting function Wu(ρ) on
the controller output signal uH∞ is introduced:

Wu(ρ) = ρWu (18)

where ρ ∈ [ρ;ρ]⊆R+ and Wu is a strictly proper LTI filter.
The scheduling parameter ρ is used here to mitigate the semi-
activeness violation of the damper force (i.e the damper force
must be limited in D , see Fig. 1):
• when ρ is high, Wu(ρ) is large, therefore, it tends to

attenuate the uH∞ signal.
• when ρ is low, Wu(ρ) is small, therefore, it does not

attenuate the uH∞ signal.
Therefore, from a general point of view, ρ may be viewed
as an anti-windup signal, computed on the actuator model
(controlled damper model), and is similar to a variable sat-
uration. For that purpose, the following scheduling strategy
ρ(ε) is introduced:

ρ(ε) :=


ρ if ε < µ

ρ +
ρ−ρ

µ
(ε−µ) if µ ≤ ε ≤ 2µ

ρ if ε > 2µ

(19)

ε = ||Fdamper−F⊥damper||2 (20)

F⊥damper is the orthogonal projection of the design force
Fdamper on the admissible region of a semiactive damper’s
force (see [3]), µ is a design parameter that modifies the
dead-zone of the ρ(ε) function.

The controller design and optimization procedure that
solve the problem 12 presented in [4] can be established
for Method 1 with the following parameter specifications:
Wu = 2π50

s+2π50 , β = 100π , ρ = 0.1, ρ = 1, µ = 100, α1 = 0
(corresponding to the vertex ρ = ρ) and α2 = 1 (corre-
sponding to the vertex ρ = ρ). This means that only the
performance of the closed-loop system associated with the
more active controller (Wu is small) is taken into account in
the performance objective.

V. DESIGN METHOD 2

In this section, the LPV formulation and controller syn-
thesis based on the model (3) presented in [9] and [4] are
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Fig. 4. Block diagram for semi-active suspension control: Method 1.

recalled. The dynamical equations corresponding to Fig. 2
(including the damper model (3)) are as follows

msz̈s =−ks (zs− zus)− c0 (żs− żus)− k0 (zs− zus)
− fI tanh(c1 (żs− żus)+ k1 (zs− zus))

musz̈us = ks (zs− zus)+ c0 (żs− żus)+ k0 (zs− zus)
+ fI tanh(c1 (żs− żus)+ k1 (zs− zus))− kt (zus− zr)

(21)
Denoting

ρ̂ = tanh(c0 (żs− żus)+ k0 (zs− zus)) (22)
uI = fI− f0 (23)

where f0 = ( fImin + fImax)/2. The state-space representation
of the quarter vehicle is given as follows:

P :


ẋs = (As +Bs1

ρ̂

Cs1xs
Cs1)xs +Bsρ̂

sat(uI)
uI

uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂

sat(uI)
uI

uI

y = Csxs
(24)

where xs=(zs, żs, zus, żus)
T , w=zr,

y = (zs− zus, żs− żus)T , z = (z̈s zus)T .

As =


0 1 0 0
− kp

ms
− cp

ms

kp
ms

cp
ms

0 0 0 1
kp

mus

cp
mus

− kp+kt
mus

− cp
mus

,

Bs =


0
− 1

ms
0
1

mus

, Bsw =


0
0
0
kt

mus

,

Bs1 =


0
− f0

ms
0
f0

mus

, Cs =


1 0
0 1
−1 0
0 −1

,

Csz =

(
−kp
ms

−cp
ms

kp
ms

cp
ms

0 0 1 0

)
, Dsz=

( −1
ms
0

)



Cs1 =
(

k1 c1 −k1 −c1
)
, Ds1=

(
− f0
ms

0
)

sat(uI) is the saturated function of uI and takes values in
[−( fImax− fImin)/2,( fImax− fImin)/2].

In [4], the model (24) is transformed into the following
LPV model:  ẋ = A(ρ1,ρ2)x+Bu+B1w

z = Cz (ρ1,ρ2)x
y = Cx

(25)

with x =
(

xs
T x f

T )T where x f represents the state of the
filter, needed to make the generalized plant consistent with
the H∞ design problem for polytopic systems [5].

Wf :
(

ẋ f
uI

)
=
(

A f B f
C f 0

)(
x f
u

)
(26)

with ‖Wf ‖∞ ≤ 1, A f , B f , C f being constant matrices, and

A(ρ1,ρ2) =
(

As +ρ2Bs1Cs1 ρ1BsC f
0 A f

)
,

B =
(

0
B f

)
, B1 =

(
Bs1
0

)
, C =

(
Cs
0

)T

,

Cz (ρ1,ρ2) =
(

Csz +ρ2Ds1Cs1 ρ1DszC f
)

ρ1 = tanh(Cs1xs)
sat(c f x f )

c f x f
, ρ2 = tanh(Cs1xs)

Cs1xs

The control configuration for semi-active suspensions is
given in Fig. 5. This configuration is very similar to the one
used by Method 1 (in this case Wu is set to 0).
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Fig. 5. Block diagram for semi-active suspension control: Method 2

The controller design and optimization procedure
presented in [4] is once again applied for Method 2. The
complete results for Method 2 are given in [4]. Notice that,
due to the self-dependence between ρ1 and ρ2, the set of
all ρ̄ = (ρ1, ρ2) is not a polytope. In this study, a polytopic
approach is developed for the LPV control design (which
leads to some conservatism). As a consequence, ρ1 and ρ2
are considered as independent parameters and ρ̄ belongs to
a polytope Θ whose vertices are ρ̄1 = (−1,0), ρ̄2 = (1,0),
ρ̄3 = (1,1), ρ̄4 = (−1,1).

VI. NUMERICAL ANALYSIS AND RESULTS

Some simulation results are presented to emphasize the
interest and the possible limitations of both methodologies
for the best comfort-oriented controllers of Method 1 and
Method 2 (i.e only JD

Comfort is considered in the optimization
problem 12). In what follows, because the outputs of the
controllers obtained in Method 1 and Method 2 are forces,
the desired current I is reconstructed for each method in
order to be used in model (1) for simulation of MR damper:
For method 1: Since the damper model is not included in
the controller design, an inverse damper model is needed to
regenerate the input current. In this study, with the good
approximation to real data, the model (3) is used as the
inverse model, i.e the input current will be recovered by
the following equation (note that the input current must be
limited in [0, fImax/ymr] (see Section II-B)):

I =
uH∞ + c0żde f − c0żde f − k0zde f

ymr tanh
(
c1żde f + k1zde f

) (27)

For method 2: Since the damper model is taken into
consideration in the controller design, the input current is
simply computed from the controller output uI by using the
equations (4) and (23):

I =
uI +F0

ymr
(28)

Below the comparison is completed by simulations of the
following passive MR dampers: Soft MRD ( fI = fImin), Hard
MRD ( fI = fImax), Nominal MRD ( fI = ( fImin + fImax)/2).

A. Frequency domain analysis

In this section, the evaluation in the frequency domain is
performed via the nonlinear frequency response of z̈s that is
computed by the “Variance Gain” algorithm [10] (where the
input zr is chosen to be a sinusoidal signal with magnitude of
1.5 cm and frequency varying in [0.1-30] Hz). This algorithm
is simple and provides a good approximation to the nonlinear
frequency response.

Some general remarks can be drawn for passive MR
dampers (see [4]):
• Between 0− 2 Hz, the Hard MRD is the best strategy

for ride comfort.
• Between 2−30 Hz, the Soft MRD is the best strategy

for ride comfort.
As seen in Fig. 6, both LPV controllers largely improve

the passenger comfort w.r.t passive cases. When compared
between each other, the LPV Method 1 is slightly better in
medium frequencies but lightly worse in high frequencies
and low frequencies than the LPV Method 2.

B. Time domain analysis

Test 1: Step road profile In this test, the road profile zr is
a step signal (the amplitude is 10 cm and the starting time
is t0 = 1 s) filtered beyond 30 Hz. The car body acceleration
responses are depicted in Fig. 7. The results show that:



The peak values around the starting time (1s) are small
for the cases of Soft MRD, Method 1 and Method 2 while
they are larger for Nominal MRD and Hard MRD. The
damping behavior (the convergence to zero) is the best in
the case of Hard MRD. The Method 2 and Nominal MRD
provide a good damping behavior as well. The Method 1
is a little worse compared to the Method 2 and the Soft
MRD give the worst damping capacity. The use of LPV
controllers reduce the peak values as well as the RMS
values of the car body acceleration. They provide a better
comfort improvement w.r.t passive dampers.

Test 2: Random road profile The road profile can also be
viewed as a random signal, because it is not predicted by
the vehicle. However, in practice, its bandwidth is limited.
In this test, a road profile is represented by an integrated
white noise, band-limited within the frequency range [0-30]
Hz.

The comfort is evaluated using the RMS value of the car
body acceleration. The comparison of the RMS values is
depicted in Fig. 8. It confirms again the efficiency of LPV
approaches to improve the comfort of automotive suspension
systems equipped with an MR damper. In this case, the LPV
controllers give the same results.
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Fig. 6. Frequency responses comparison.

VII. CONCLUSION

In this paper, the illustration of two LPV control meth-
ods for automotive suspension systems equipped with MR
dampers has been done. The two main contributions of
the paper may be summarized as follows: the proposed
control schemes are homogenous to ensure a fair comparison
between two methods, the application (synthesis and imple-
mentation) of the LPV approach proposed by [3] and [4]
on nonlinear MR damper. The simulations on the nonlinear
quarter vehicle model equipped with a validated MR damper
(in both frequency and time domains) have shown the interest
of LPV design in semi-active suspension control.
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