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Abstract— This work considers the problem of the stabiliza-
tion of linear time invariant systems with two unstable poles
plus time delay. For this, we will proposed a simple observer
based controller in order to stabilize the system. A robustness
analysis with respect to the delay uncertainty is presented as
well as numerical examples and electronic implementation of
the proposed schema in order to illustrate the performance of
the closed loop system.

I. INTRODUCTION.

Time-delay is the property of a physical system by which
the response to an applied signal is delayed in its effect.
Systems with delays are very common in the world, they
appears in various systems as biological, ecological, social,
engineering systems, etc., and are due to several mechanisms
like material or energy transport, recycling loops, etc,. In
addition, actuators, sensors and field networks that are in-
volved in feedback loops usually introduce such delays, [16].
Also delays can be used in modeling reduction where high-
order (finite-dimensional) systems are approximated (in some
norm sense) by low order systems with delays, [13]. It is
known that time-delay is often a source of complex behaviors
(oscillations, instability, bad performance), in many dynamic
systems, and thus considerable attention has been paid on the
stability analysis and controller design of time delay systems.
Hence, there exist a great motivation to study of delay effects
on dynamical systems properties for two main reasons: first
to understand how the delay presence may deteriorate the
behavior of the system, and second to control their effects
for better performance achieved on closed-loop systems, [5],
[1].

Several control strategies have been developed to deal with
delayed systems. A common approach is to approximate the
time-delay operator by means of a Taylor or Pade series
which could leads to a non minimum-phase system with ra-
tional transfer function representation. Another classical con-
trol approaches for time-delay systems include Proportional-
Integral-Derivative (PID) control, classical smith predictors
(SPC), etc, [8], [14].

Open-loop unstable processes arise frequently in the chem-
ical and biological systems and are fundamentally difficult to
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control. Unstable time-delay systems represent a challenge
for control design, for instance the SPC scheme has not a
stabilization step, which restricts its application to open-loop
stable plants. To get over this problem, some modifications
of the SPC original structure have been proposed to deal with
non-stable delayed process, for instance, [11] has presented
an efficient modification to the Smith predictor in order to
control unstable first order system plus time delay. With
a different perspective, [7] proposes a modification to the
original Smith Structure in order to deal with unstable first
order delayed systems. Using a similar structure, the result is
extended to delayed high order systems [6]. In the last works,
a robustness analysis is done concluding that for unstable
dead time dominant systems, the closed-loop system can be
unstabilized with an infinitesimal value of the modeling error,
i.e., that robustness is strongly dependent on the relationship
T/Tun, Where 7 is the process time delay and 7,, the
dominant unstable time-constant. For the control scheme
proposed in both latter works, it can be easily proven that
in the case of unstable plants, the internal stability is not
guaranteed. In fact it is obtained an unstable estimation
error and, as a result, a minimal initial condition difference
between the original plant and the model produces an internal
unbounded signal. Notice that in a practical situation it is not
possible to exactly measure the initial condition of the plant
to assign the same value to the model considered on the
modified Smith compensator.

Many chemical and biological systems exist whose dy-
namics present second-order behavior. Continuous stirred
tank reactors, polymerization reactors and bioreactors are
inherently unstable by design, these types of systems can
be modeled as open-loop unstable second-order plus time
delay models, [12], [9]. This paper is concerned with the
stabilization problem of systems with two unstable poles plus
time delay. The control schema relies on an observer-based
structure with a memory observer and a memoryless state
feedback. On the contrary of modified Smith predictors, the
scheme only contains discrete time delay (and not distributed
ones) which makes easy its practical implementation (see
[16] for details on numerical implementation of modified
Smith predictor scheme). This paper is organized as follows,
the Section 2 is dedicated to the problem formulation. The



Section 3 yields the preliminaries results used to obtain
the main result of this work. An observer based controller
is proposed in order to stabilize the unstable system in
the Section 4, also the stability conditions of the proposed
controller schema are stated. Then, in section 5 a robustness
analysis for the observer based schema with respect to the
uncertainty in the delay operator is presented. Numerical
simulations are presented in order to show the controller
performance and the control strategy is implemented on a
real electronic plant built with operational amplifiers. Finally
conclusions and future perspectives are stated.

II. PROBLEM STATEMENT.

Consider the following class of single-input single-output
(SISO) linear systems with delay at the input:

Y(s) _ N(s)
U(s) ~ D(s)

Where U(s) and Y(s) are the input and output signals
respectively, 7 > 0 is the time delay, N(s) and D(s) are
polynomials in the complex variable s and G(s) is the delay-
free transfer function. Notice that with respect to the class of
systems (1) a traditional control strategy based on an output
feedback of the form:

e TP =G(s)e . (1)

U(s) = [R(s) = Y (s)]Q(s)- 2

Produces a closed-loop system given by:

V() QUs)G(s)
R(s) 14+ Q(s)G(s)e™s’

Where the exponential term e~"° located at the denomi-
nator of the transfer function (3) leads to a system with an
infinite number of poles and where the closed-loop stability
properties must be carefully stated. This work proposes an
observer based control scheme in order to stabilize a system
characterized by the following transfer function:

Y(s) !

Ui)  (5—a)s—b)°

Where, without loss of generality, a > b > 0, 7 > 0.
The control schema proposed has been designed based on a
traditional observer theory, hence, only the plant model and
two static gains are enough to get an adequate estimation of
an internal delay free variable which will be used in the final
stabilizing control schema.

3)

77’3. (4)

III. PRELIMINARY RESULTS

Preliminary results are presented, which will be used later
in order to state the stability conditions of the studied system.

Consider the following unstable first order system plus
time delay:

Y(S) _ e TS = a e TS

s—o
With ¢ > 0, and a proportional output feedback control as
follows:

U(s) = R(s) — kY (s). (6)
Which produces a closed-loop system:
Y(s ae” 78
R(s) s—o+kae 7

The following result has been widely studied in the
literature and the proof can be easily obtained by considering
different approaches as a classical frequency domain. An
alternative simple proof based on a discrete time approach
is shown in [3].

Lemma 1: Consider the delayed system (5) and the pro-
portional output feedback (6). Then, there exists a propor-
tional gain k such that the closed loop system (7), is stable
if and only if 7 < 1.

Now, consider the system characterized by:

Y(S) s (6% s

0 - T e aere @
With o,¢ > 0. Note that the system has only one unstable
pole. With the proportional output feedback (6), we get a
closed-loop system as follows:

Y (s) ae” S

R(s)  [(s—0)(s+ )] + kae ™ Q)

Lemma 2: Consider the delayed system (8) and the pro-
portional output feedback (6). Then, there exists a propor-
tional gain k such that the closed loop system (9), is stable
if and only if 7 < > — 2.

The proof of this result can easily be obtained by mean
of different approaches, as the frequency domain based

approach shown in [4].

IV. CONTROL STRATEGY PROPOSED.

Consider the class of systems studied in this work and
characterized by the transfer function (4) with a,b > 0 and
assuming without lost of generality a > b. An observer
based control strategy is proposed, which allows to get an
estimation of the internal variables of the system to be used
as control signals for the real process.

As a first step, the stability conditions for the controller
and the observer systems are stated separately . This con-
ditions will be used later to submit the observer based
controller closed loop stability conditions.

A. Controller Schema.

Now, taking into account the proportional state feedback
control strategy shown in the Figure 1.

Lemma 3: Consider the delayed system (4), and the state
feedback controller shown in Figure 1. There exist constants
k1 and k5 such that the closed-loop system is stable if and
only if 7 < %.

Proof:

Sufficiency. Let us consider 7 < % Then, 7 = % - B,

for some B > 0. Therefore, there exists k1 such that § >

1 1 1
o > 0. Then 7 < 5~ aka From Lemma 2, where




o =b and ¢ = ak; — a there exists ko such that the closed
loop system shown in Figure 1 is stable.

Necessity. Consider the delayed system (4), and the state
feedback controller shown in Figure 1, with constants k; and
ko such that the closed-loop system is stable. The closed loop
transfer function can be written as follows:

Y(s) ae” TS

Rs) [G-DGtd] thae

with ¢ = ak; — a. It is well known that a ko that stabilizes
the delayed system (10) must also stabilize the delay free
system (see for instance [2] or [5]), which implies that ¢
> 0. Indeed, from Lemma 2, 7 < % — é with o = b (note
that ¢ > 0 is a free parameter function of k1 ). Let us consider
B8 > % > 0, denoting 3 = 1 — 7, therefore 7 = 1 — 8 <
1 [}

o b

Note that a root locus and frequency domain analysis can be
used to compute proper constant gains k; and ks in order to
stabilize the proportional states feedback scheme.

B. Observer Scheme.

In most of the practical applications, some of the state
variables may not be measured. Thus, an observer, based on
an output injection strategy is proposed, it can be represented
as in Figure 2. The stability of the observer can be tackled
as follows.

Lemma 4: Consider the delayed system (4), and the static
output injection scheme shown in Figure 2. There exist
constants g; and go such that the closed-loop system is stable
if and only if

1
T .
a
Proof:

The proof can be easily derived from a dual procedure of

the previous result.

|
As in the controller design, the computation of the propor-
tional gains g; and go can be solved by mean of a root locus
and frequency domain analysis.

C. Observer-Based Controller.

Finally, the main result of this work is presented, we
propose an observed based controller as in the Figure 3,
where the observer allows to estimate the state variables, to
be use in state feedback controller. The authors would like

w(r) %/ Cm|Lu)_>

State Feedback Scheme.

Fig. 1.

Fig. 2.

Output-Injection Scheme of the Observer.

to stress that, in the proposed scheme, only four proportional
gains are sufficient to get a stable closed loop behavior. As
a consequence of the previous results, the following lemma
can be stated.

Lemma 5: Consider the observer based controller scheme
shown in Figure 3. There exist k1, k2, g1 and go such that
the closed-loop system is stable if and only if 7 < é

Proof: As a first step, in order to ensure an accu-
rate estimation of the states variables, let us demonstrate
that the error signal converges asymptotically to zero, i.e.,
tlggo[w(t) — w(t)] = 0 if and only if 7 < 1. Consider the
state space representation of the system (4) characterized by
the following equation:

z(t) = Aoz (t) + A1z(t — 7) + Bu(t) (11)

y(t) = Cx(t)

a 0 0 0
vl o] om=[i )
B{O‘} , Cc=[0 1].
Note that the state space representation characterized by

(11) can be returned to its transfer function representation
by mean of:

Y(s)
U(s)

r(r) ult) .
= & s—a
y

wi(t) 1
s—b
ks et
L

=CO(sI — (Ag+ A1e™ ™)) 'B. (12)

e ™ y“}_»

Fig. 3.

Control Strategy Proposed.



Which brings us back to the delayed transfer function (4).
The dynamics of the estimated states and the control law can
be described as follows.

2(t) = Api(t)+ AL (t—7)+Bu(t)—G(Ci(t)—y(t)) (13)
u(t) = Ki(t).

Where (t) is the estimated state of x(¢), and the propor-
tional gains are defined by K = [k; k2] and G = [g; ¢2]7.
Let be e(t) := x(t) — &(t), then we have:

é(t) = i(t) — &(t) = (Ag — GCe(t) + Are(t — 7). (14)

And the controlled system:

i(t) = Agx(t) + Aya(t — 7) + BK2(t).  (15)

Noting z. = [x(t) e(t)]” and after a simple manipulation
of variables we have the following closed loop system with
the observer and the controller proposed in the Figure 3:

Ao+ BK

Ze(t) = { 0 ok

ot { %1 ;1)1 ]xe(t—r)

y(t) = [ ¢ o ]xc(t)'

It is easy to see that the observer and the controller can
be designed separately, i.e. satisfies the separation principle.
Hence, the stability of the observer scheme is sufficient to
assure the error convergence, i.e. there exist proportional
gains g; and g2 such that tli)r&[lb(t) —w(t)] = 0 if and
only if 7 < %

Then, considering the fact of the observer and controller
can be designed separately and reminding the stability con-
ditions stated previously in Lemmas 4 and 3, is clear that
the observer stability condition is more restrictive than the
controller stability condition, i.e. % < % Therefore, there
exist k1, ko, g1 and go such that the closed-loop system is
stable if and only if 7 < L. [

D. Examples.

The following numerical examples illustrate the perfor-
mance obtained by main of the observed based controller
proposed.

Example 1. Consider the unstable delayed system char-
acterized for the following transfer function:

Y(s) 1
U(s)  (5—07)(s—04)°
Let be a = 0.7, b = 04, a = 1and 7 = 1, it is
clear that the stability conditions given in Lemma 5 are
satisfied, therefore there exist an observer based structure
with proportional gains kj, k3, g; and go such that the
resulting closed-loop system is stable due to 7 = 1 <

-, (17)

% = 1.428. As was demonstrated before, the control scheme
3 holds the separation property, hence the design of the
controller and the observer is independent. First, from the
proof of Lemma 3, the gain k; must be larger than a/a. On
the other hand, to ensure the existence of a proportional gain
ko such that the closed loop system is stable, from Lemma
2

1 a
_l’_i

k1> ——— .
! a(t—7)  «a

As the value k; can be as large as we wish, the gain chosen
is k1 = 100.7, form this, after a frequency domain analysis,
Nyquist stability criterion for instance, we can compute the
gain ko such that the controller scheme shown in the Figure
3 is stable, for this example, 40 < ko < 131.06.

The procedure for compute the observer gains g; and go
is quite similar, the proportional gain g must be larger than
b to ensure stability of the system. From Lemma 2 we know
that

1
(=7

As the value go can be as large as we wish, the gain
chosen is g2 = 100.4, form this, after a frequency domain
analysis, we can compute the gain g;, such that the observer
scheme shown in the Figure 2 is stable, for this example,
69.93 < g1 < 113.89.

Hence, the constant gains computed for this example are
ki = 100.7, ko = 90, g1 = 80 and g» = 100.4.
The Figure 4 illustrate the performance of the observer
based controller in numerical simulations, the output and the
error are shown respectively. The continuous line indicates
the output of the closed loop system with identical initial
conditions between x(t) and Z(t). The dashed line point
to the system performance whit different initial conditions
(w(0) — w(0) = 0.5).

Below, for the same example, the observed based con-
troller is implemented by mean of the Data Acquisition sys-
tem Sensoray 626, using its analog inputs/ouputs as sensors

+b.

g2 >

Output y(t)
o
7
I

i i i i i i
0 5 10 15 20 25 30 35 40
Time (t)

| N N B -
10 \

Error e(t)
o
i

I I I I I I I
0 5 10 15 20 25 30 35 40
Time (t)

Fig. 4. Numerical Simulation Results.



Fig. 5. Practical Implementation.

and actuators communicated with a computer through the
MATLAB Real Time Workshop Toolbox. The real electronic
plant is built with commercial operational amplifiers, resis-
tors, and capacitors. The stable output y(¢) of the closed loop
system is shown in the Figure 5.

Remark 1: Notice that the controller have a efficient per-
formance regardless the different initial conditions between
the original process and the observer, and the parametrical
variations due to the use of commercial electronic devices.

V. ROBUSTNESS ANALYSIS WITH RESPECT TO DELAY
UNCERTAINTY.

No mathematical representation can exactly model a phys-
ical system. For this reason we must be aware of how
modeling errors might adversely affect the performance of
a control system. Here, we refer to robustness with respect
to delay to the fact that the exact value of the delay is not
known a priori.

Therefore, we assume now that the delay is uncertain,
i. e. the delay of the real system is 7 = d(1 + 66) and
may be different from the one used in the observer (the
nominal delay d). Consider the delay uncertainty in the
original process, and the design of the observer taking into
account the nominal time delay, i.e.,

#(t) = Apx(t) + Arx(t — 1)+ Bu(t) (18)
(t) = Ai(t)+ A2(t —d) + Bu(t) — G(Ca(t) — y(t))
ut) = Ki(t).

Let us consider the observer-controller system with the
form (18) and its extended closed loop system considering
the delay uncertainty characterized as follows:

e { Ao +OBK A(]—_BIG{C } o)+
a0 || 4 [eaue-a,
(19)
= Apzo(t) + Ar(2)r (t — 7) + Ag(ze)alt —d).  (20)

Note that when the delay value of the actual process
matches to the nominal one, the extended closed loop system

(20) is equivalent to the nominal closed loop system (16),
[15]. Now modeling the time delay with a multiplicative
uncertainty as 7 = d(1+ d6), with 6 normalized, i.e. |§] <1
we obtain.

—sT _ e—sd(1+6«9) _ e—sde—sdzie — e—sd(l _ A)

e 2n

With A(s) = 1 — e %% Therefore the characteristic
polynomial of the above system is given by:

U(s) = det[Vo(s)]det[I,, + \Ifgl(s)ATe*SdA(s)]. (22)

Where Wo(s) = I, — Ao — (A, + Ag)e *%. Now, when
the design of the controller and the observer ensures that
the nominal extended system is stable, i. e. det[Uy(s)] is
stable, the perturbed closed loop system remains stable if
det[I, + W5 (s) A e *¢A(s)] does not change sign when s
sweeps the imaginary axis. Invoking Rouche’s Theorem, it
follows that the condition for stability is:

1Qa(s)A(s)]loo <1 (23)

Where Qu(s) = W, '(s)Ae % Note that the term 1 —
5400 — gdfhe—sd00/2 ls=jw sinc%. Hence, on the
imaginary axis, |1 — e~%%| < |sd&6)|, then if one can show
stability for 1 — €999 replacing it by sdd@ in the analysis,
then stability for the uncertain system will follow. Note that
this amounts to replacing the delayed term by its first order
Taylor expansion. This means that the maximal uncertainty
bound § that preserves stability for the worst case, i.e. § = 1,
is determined by:

1
[sde=>105 (5) Ar o

Then for all |#] < 1 and the uncertainty bound 6,4,
the determinant has a fixed sign, implying the absence of
zero crossings, and henceforth the stability of the perturbed
system (provided the nominal one is stable) [10], [15].

Example 2. In order to illustrate the above robustness
analysis we can consider the example given in the section
IV, and characterized by the following transfer function:

(24)

5maw = |

Y(s) _ 1 -
U(s)  (s—07)(s—04) (25)

Let us choose a = 0.7, b =04, o =1 and 7 = 1, the
constant gains, already computed, to stabilize the system are
k1 = 100.7, ko = 90, g1 = 80 and go = 100.4. Therefore,
with (24) we can compute 6,4, = 0.057023, the maximum
uncertainty bound of the delay.

The Figure 6 shown the performance of the closed loop
system when there is not uncertainty in the delay value (con-
tinuos line), and the behavior when the maximum uncertainty
bound is present in the system (dash line). The following
table shows the relation between the the size of the time
delay d of the nominal system and the maximal uncertainty
bound 4,4, in the above example. The terms 7,5, and 7y,
indicate the minimal and maximal value respectively of the




Outputy(y)

50
Time ()

Fig. 6. Robustness Analysis W.R.T. Delay Uncertainty

delay term 7, such that the closed loop system with nominal
delay d, remains stable.

d Omaz Tmin Tmazx
0.1 | 3.855741 - 0.485574
0.2 | 1.739842 - 0.547968
0.3 | 1.026864 - 0.608059
0.4 | 0.665379 | 0.133848 | 0.666152
0.5 | 0.441873 | 0.279064 | 0.720936
0.6 | 0.293497 | 0.423902 | 0.776098
0.7 | 0.194797 | 0.563642 | 0.836358
0.8 | 0.129188 | 0.696650 | 0.903350
0.9 | 0.085734 | 0.822839 | 0.977161
1.0 | 0.057023 | 0.942977 | 1.057023

TABLE 1

ROBUST ANALYSIS WITH DIFFERENT TIME DELAY SIZE.

Remark 2: Note that the stabilizing gains computed for
the observer based controller for the nominal time delay d
are able to preserve stability of the closed loop system with
a nominal delay belongs to the interval [0 d], the analysis of
the stability sets and regions are dealt in [5] and [2]

VI. CONCLUSIONS.

An observer based controller is proposed in order to
stabilize a linear-time invariant system with two unstable
poles plus time delay. The conditions that ensure existence
of the control scheme and the stability of the closed loop
system are stated. The scheme is simple and may be easily
implemented. Numerical examples illustrate the performance
of the controller under ideal conditions, an implementation
of the observer based controller is presented by mean of
an electronic plant built with operational amplifiers and the
Data Acquisition system Sensoray 626. This example shows
the controller performance working under different initial
conditions between the plant and the observer, as well as the
parametrical variations introduced by the use of commercial
devices, also an robustness analysis is presented to show the
effects of the modeling errors of the delay operator. The
extension of the presented results to design an observer based
controller to high order systems with two unstable poles and
its robustness analysis are taken into account as a future
work.
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