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Primitives of p-adic meromorphic functions

Kamal Boussaf, Alain Escassut and Jacqueline Ojeda

Dedicated to the memory of Nicole De Grande-De Kimpe

Abstract. Let K be an algebraically closed field of characteristic 0, complete
with respect to an ultrametric absolute value. We show that a meromorphic
function in K or in an open disk admits primitives if and only if all its residues
are null.

1. Introduction and results

Notation and definitions: Let K be an algebraically closed field of character-
istic 0, complete with respect to an ultrametric absolute value | . |. Given α ∈ K

and r ∈ IR∗
+, we denote by d(α, r) the disk {x ∈ K | |x− α| ≤ r} and by d(α, r−)

the disk {x ∈ K | |x − α| < r}, by A(K) the K-algebra of analytic functions in K
(i.e. the set of power series with an infinite radius of convergence) and by M(K)
the field of meromorphic functions in K [2],[4].

In the same way, given α ∈ K, r > 0 we denote by A(d(α, r−)) the K-algebra
of analytic functions in d(α, r−) (i.e. the set of power series with an infinite radius
of convergence ≥ r) and by M(d(α, r−)) the field of fractions of A(d(α, r−)).

Here we mean to characterize meromorphic functions in K or inside an open
disk that admit primitives. In complex analysis, a meromorphic function having all
its residues equal to 0 admits primitives. On our field K, such a conclusion seems
obvious but apparently has not been published in any paper. Actually, the proof
requires the use of analytic elements [1], [3].

Notation and definitions: Let f ∈ M(d(a,R−)) have a pole of order q at
a: f then admits an expansion in a Laurent series inside a disk d(anr−) of the

form f(x) =

∞∑

n=−q

an(x− a)n. As usual, a−1 is called residue of f at a and will be

denoted by resa(f).
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Main Theorem : Let f ∈ M(K) (resp. f ∈ M(d(a,R−))). Then f admits
primitives in M(K) (resp. in M(d(a,R−))) if and only if f has no residue different
from zero.

2. The proofs

Let D be a subset of K. If D is bounded of diameter R we denote by D̃ the

disk d(a,R) for any a ∈ D. If D is not bounded we put D̃ = K.
Given a point a ∈ K we put δ(a,D) = inf{|x− a| |x ∈ D}. Then δ(a,D) is named
the distance of a to D.

Recall that given any subset D of K, D̃ \D admits a unique partition of the
form (Ti)i∈I , whereas each Ti is a disk of the form d(ai, r

−
i ) with ri = δ(ai, D).

Such disks d(ai, r
−
i ) are called the holes of D [1].

Given a ∈ K and r′, r′′ ∈ IR∗
+ with r′ < r′′, we denote by Γ(a, r′, r′′) the

annulus {x ∈ K | r′ < |x− a| < r′′}.

A set D is said to be infraconnected if for every a ∈ D, the mapping Ia from D

to IR+ defined by Ia(x) = |x− a| has an image whose closure in IR+ is an interval.
In other words, a set D is not infraconnected if and only if there exist a and b ∈ D

and an annulus Γ(a, r1, r2) with 0 < r1 < r2 < |a− b| such that Γ(a, r1, r2)∩D = ∅.

Given a subset E of K, we denote by R(E) the algebra of rational functions
with no pole in E and the functions that are uniform limits of a sequence of R(E)
are called analytic elements on E. We denote by H(E) the set of analytic elements
on E. Moreover, we denote by Rb(E) the sub-K-algebra of R(E) consisting of
the h ∈ R(E) that are bounded in E. So, Rb(E) admits the norm of uniform
convergence as a K-algebra norm and we denote by Hb(E) its completion that
consists of all h ∈ H(E) that are bounded in E. The algebra Hb(E) is then a
K-Banach algebra. Moreover, when E is unbounded, we denote by H0(E) the set
of f ∈ H(E) such that lim

|x|→+∞,x∈E
f(x) = 0. Particularly, when E is of the form

K \d(a,R−), then H0(E) is K-Banach algebra with respect to the norm of uniform
convergence on E denoted by ‖ . ‖E.

Lemma 1: Let f ∈ H(d(0, R)) and let r ∈]0, R[. Then f admits primitives in
H(d(0, r)).

Proof: Since f lies in H(d(0, R)), f(x) has expansion of the form

∞∑

n=0

anx
n with

lim
n→∞

|an|R
n = 0. Particularly, the radius of convergence

ρ =
1

lim supn→∞
n
√
|an|

is such that ρ ≥ R. But by Theorem 1.5.4 [2] the primitive F (x) =

∞∑

n=0

an

n+ 1
xn+1

also has a radius of convergence equal to S. Consequently, for all r < R, by
Proposition 13.3 [1], F belongs to H(d(0, r)).

In the proof of the Main Theorem, we need Krasner’s Mittag-Leffler Theorem.
Here for simplicity, we will only state it when the set D is closed and bounded.
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Theorem A : (Krasner-Mittag-Leffler Theorem) [1], [3] Let D be a closed
and bounded infraconnected subset of K and let f ∈ H(D). There exists a unique
sequence of holes (Tn)n∈IN∗ of D and a unique sequence (fn)n∈IN in H(D) such that

f0 ∈ H(D̃), fn ∈ H0(K \ Tn) (n > 0), lim
n→∞

fn = 0 and

(1) f =

∞∑

n=0

fn and ‖f‖
D

= sup
n∈IN

‖fn‖D
.

Moreover for every hole Tn = d(an, r
−
n ) , we have

(2) ‖fn‖D
= ‖fn‖K\Tn

≤ ‖f‖
D
.

If D̃ = d(a, r) we have
(3) ‖f0‖D

= ‖f0‖fD
≤ ‖f‖

D
.

Let us recall Theorems B and C [1].

Theorem B (Theorem 19.5 [1]): Let E be an open set in K such that E also
is open. Then E is infraconnected if and only if for every f ∈ H(E) such that
f ′(x) = 0 whenever x ∈ E, we have f = ct.

Theorem C (Theorem 25.5 [1]): Let (aj)j∈IN be a sequence in d(0, r−) such
that |an| ≤ |an+1| for every n ∈ IN and lim

n→∞
|an| = r. Let (qn)n∈IN be a sequence in

IN∗ and let B ∈]1,+∞[. There exists f ∈ A(d(0, r−)) satisfying
i) f(0) = 1

ii) ‖f‖d(0,|an|) ≤ B

n∏

j=0

|
an

aj

|qj whenever n ∈ IN

iii) for each n ∈ IN, an is a zero of f of order zn ≥ qn.

Proof of the Main Theorem: Let α be a pole of f . According to the Laurent
series of f at α, if f admits primitives then f has no residue different from zero at

α because
1

x− α
has no primitive in H(d(α, r)) (whenever r > 0).

Now suppose that for every pole α of f we have resα(f) = 0. Without loss
of generality, we may assume that f admits infinitely many poles and has no pole
at the origin. Moreover, when f is a meromorphic function in d(a,R−), we may
assume that a = 0.

Let (an)n∈ IN be the sequence of poles of f in K (resp. in d(0, R−)), with |an| ≤

|an+1|, ∀n ∈ IN, each pole an being of order qn and let ψ(x) =

∞∏

n=0

(1 −
x

an

)qn−1.

For each S > 0 (resp. for each S ∈]0, R[), we denote by t(S) the greatest integer n

such that |an| ≤ S. And for each r ∈]0, S[, we setD(r, S) = d(0, S−) \ (

t(S)⋃

j=0

d(aj , r
−)).

According to results on analytic elements [1], [2], f obviously defines an element of
H(D(r, S)).

Let us take r < min(|ai − aj |, 0 ≤ i < j ≤ t(S)). In each hole d(an, r
−) of

D(r, S), f has a unique pole that is an. It is of order qn and the Mittag-Leffler term

fn of f in the hole d(an, r
−) is of the form

qn∑

i=2

λn,i

(x− an)i
because, by hypothesis,

the residue of f at an is null. On the other hand, as an element of H(D(r, S)),
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by Theorem A, the Mittag-Lefler decomposition of f on the infraconnected set

D(r, S) is of the form

t(S)∑

n=0

fn + gS with gS ∈ H(d(0, S)). Moreover, we notice that

there exists S′ > S (resp S′ ∈]S,R[) such that f admits no pole b ∈ Γ(0, S, S′).
Consequently, the holes of D(r, S) are the same as these of D(r, S′) and therefore,
the Mittag-Leffler decomposition of f on D(r, S) also holds on D(r, S′). Hence gS

belongs to H(d(0, S′)). But then by Lemma 1, gS admits primitives in H(d(0, S)).
Now, as an element of H(D(r, S)), each fn admits a primitive Fn of the form

−

qn∑

i=2

λn,i

(i− 1)(x− an)i−1
.

And as an element of H(D(r, S)) again, f admits a primitive LS satisfying LS(0) =

0, equal to

t(S))∑

n=0

Fn +GS with GS ∈ H(d(0, S)) .

Now, fixing S we can take r arbitrary small: the Mittag-Leffler terms f1, ..., ft(S)

and GS remain the same because if r′ < r < min(|ai − aj | 0 ≤ i < j ≤ t(S)), the
Mittag-Leffler expansions on D(r′, S) holds on D(r, S) and the two expansions are
equal, due to the properties of the Mittag-Leffler expansions. Thus, the function
LS is defined in d(0, S) \ {a1, ..., at(S)} and satisfies (LS)′(x) = f(x), ∀x ∈ d(0, S) \
{a1, ..., at(S)}.

Consider first the case when f belongs to M(K). The function

ψ(x) =

∞∏

n=0

(1 −
x

an

)qn−1 is an entire function, hence an element of H(d(0, S)).

Let φS(x) = LS(x)ψ(x). Then for any r > 0, φS is an element of H(D(r, S))
meromorphic on each hole of D(r, S) [1], (chap. 31). But actually, by construction,
φS has no pole in any hole of D(r, S). Consequently, φ belongs to H(d(0, S)).

Now, let S′ > S. Similarly we can make a function φS′ = LS′ψ. We will show
that the restriction of φS′ to d(0, S) is φS . Indeed, by definition, both functions
LS and LS′ are null at 0 and have a derivative equal to f in D(r, S), for any
r > 0. Consequently, LS and LS′ coincide in a disk and therefore so do φS and φS′ .
Hence the equality φS(x) = φS′(x) holds in all d(0, S). Thus, we can define the
function φ(x) = φS(x), ∀x ∈ d(0, S). Since φS belongs to H(d(0, S)), φ belongs
to H(d(0, S)) for all S > 0 and therefore is an entire function. Now, we can set

F (x) =
φ(x)

ψ(x)
and then F belongs to M(K). On the other hand, since (LS)′ = f

and since F (x) = LS(x) in d(0, S)\{a1, ..., an, ...}, we have F ′(x) = f(x), ∀d(0, S)\
{a1, ..., an, ...} and hence, by Theorem B we know that the equality F ′(x) = f(x)
holds in each set D(r, S), for all r > 0, hence in all K \ {a1, ..., an, ...}.

Similarly, consider the case when f belongs to M(d(0, R−)). By Theorem C,
we can find a function ψ(x) ∈ A(d(0, R−)) admitting each an as a zero of order
sn ≥ qn − 1. Then, as in the previous case, using the same notation, we can show
that LS(x)ψ(x) lies in H(d(0, S)) for every S < R, because it has no pole in d(0, S).
Now, for every S < S′ < R, φS is the restriction of φS′ to d(0, S). Let φ be defined
as φ(x) = φS(x) for all x ∈ d(0, S), ∀S < R. Then φ belongs to A(d(0, R−)) and
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hence the function F (x) =
φ(x)

ψ(x)
belongs to M(d(0, R−)). And similarly, we have

F ′ = f , which ends the proof.
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