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Fuzzy-Based Electric Current Dependency on an MR Damper Model

Javier A. Ruiz-Cabrera, Ruben Morales-Menendez,

Luis E. Garza-Castañon, Ricardo A. Ramirez-Mendoza, and Olivier Sename.

Abstract— A Magneto-Rheological (MR) damper exhibits a
hysteretic and non-linear behavior. This behavior makes it
a challenge to develop a model for the system. The present
research is centered on proposing and analyzing a fuzzy-based
method employed to introduce the electric current dependency
into MR damper models, based on experimental data. Among
the state of the art, a semi-phenomenological model was
selected. The fuzzy-based method was compared against other
approaches. The results showed that the fuzzy-based method
was able to correctly introduce the dependency of the model to
the electric current and reduce the prediction error by more
than 12%.

I. MOTIVATION

With the development of science and technology for

automobiles and the continuously increasing need for safety

and comfort, great attention has been drawn to automotive

suspension systems. Semi-active suspension systems have

been specially analyzed. These systems offer the reliability of

passive devices, but maintain the versatility and adaptability

of active systems. A semi-active suspension can be adjusted

in real time, but cannot input energy into the system being

controlled. Hence, the force delivered by the suspension is

constrained to be proportional and opposite to the elongation

speed of the damper. Nonetheless, the power requirement of

these systems is considerably lower than that of an active

system.

A widely investigated mono-tube semi-active damper is

the one denominated Magneto-Rheological (MR) damper.

An MR damper is a non-linear dynamical system where the

inputs can be the elongation speed and an electric current.

The electric current is the control input that modulates the

damping characteristic of the MR fluid through the variation

of a magnetic field.

MR fluids are unique due to their ability to change their

properties reversibly between fluid and solid-like states upon

the application of a magnetic field. As discussed in [1],

when a certain magnetic field is applied to an MR fluid, the

particles in the fluid become polarized and form polarization

chains in the direction parallel to the applied field. Fig.

1 shows the force-velocity behavior of an industrial MR

damper under various constant electric current inputs.
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Fig. 1. Force-velocity behavior of an industrial MR damper. The force is
plotted against the velocity for various constant electric current inputs.

According to [2], concerning the automotive industry MR

fluids are appealing for vehicle suspension systems since

they can operate at temperatures ranging from 40 to 150 ◦C

with only slight variations in the yield stress. Additionally,

MR fluids are almost insensitive to impurities and can be

controlled with low voltages and an electric current driven

power supply outputting 1-2 A .

Although MR dampers are greatly promising for the con-

trol of vehicle suspension systems, their major drawback lies

on their non-linear and hysteretic behavior. Furthermore, the

first step in designing a control strategy for a suspension

system is, usually, modelling the behavior of the damper

in an accurate manner. Different modelling techniques have

been studied for MR dampers. In [1], [3], and [4] phe-

nomenological modelling techniques were explored. In [5],

semi-phenomenological techniques were used to develop a

mathematical model able to describe the hysteretic behavior

of an MR damper. In [2] and [6] black-box models based

on Non-linear Autoregressive with eXogenous terms (NARX)

structures were studied.

The present study is motivated on the aforementioned

challenge that involves the correct modelling of an MR

damping system, with specific concern on the inclusion of the

electric current dependency to the models. Among the state

of the art, the semi-phenomenological model presented in [5]

was selected for analysis. This analysis is meant to compare a

polynomial method for including the electric current on the

model, versus a fuzzy-based technique. Experimental data

sets were obtained at an industrial testing laboratory. Section

II presents a literature review. Section III discusses the

experimental setup and describes the design of experiments.



TABLE I

DESCRIPTION OF VARIABLES

Variable Description

F (t) MR damper force
Fest(t) Estimated MR damper force
I(t), i(t) Electric current

x(t) Damper piston position
ẋ(t), v(t) Damper piston velocity

A1 Dynamic yield force of the MR fluid
A2 Post-yield viscous damping coefficient
A3 Pre-yield viscous damping coefficient
V0 Hysteretic critical velocity
X0 Hysteretic critical displacement
dkj General coefficients for the S-P model

Section IV presents the results. Section V discusses the

obtained results. Finally, section VI concludes the research.

Table I defines the variables that will be used through the

paper.

II. LITERATURE REVIEW

A. Previous Work

The research done in [2] compared the semi-physical

modified Bouc-Wen model presented in [4] and a black-box

NARX model structure. In order to include the electric current

dynamics into the models, two methods were employed. For

the semi-physical model, each coefficient was made equal to

a time varying linear function of the electric current. For the

NARX model, two regressors (present and past values) for

the input electric current were added. The reported results

showed that the semi-physical model was not able to predict

the behavior of the damper. On the other hand, the NARX

model was observed to accurately predict the damping force

of the system. In the research presented in [1], a phenomeno-

logical model based on the phase shifting dynamics of MR

fluids was discussed. The authors commented that in the

model, all the coefficients are to be assumed dependent on

the applied electric current. That is, the coefficients should

be functions of the applied magnetic field. This dependency

was said to be correctly approximated by a polynomial of

order two.

B. Semi-Phenomenological (S-P) Model

Among the state of the art, the semi-phenomenological

model for MR dampers presented in [5] has been greatly

analyzed in the past years. The proposed model is said to

describe the bi-viscous and hysteretic behaviors of the MR

damper with high precision. The structure is described in (1).

F (t) = A1tanh

(

A3(ẋ(t) +
V0

X0

x(t))

)

+

A2

(

ẋ(t) +
V0

X0

x(t)

) (1)

In the equation, the model can be seen to use the

displacement and velocity as inputs and only depend on

five parameters. The authors used a non-linear least-squares

algorithm in order to identify the coefficients of the model.

The results obtained in the experimentation were said to

prove the correctness of the proposed structure. In addition,

the concise form of the model was mentioned as its best

feature. Nevertheless, the authors did not use experiments in

which the electric current varied over time. Although, it was

noted that each parameter could be made equal to a function

of the electric current in order to include varying electric

current scenarios into the model.

C. Fuzzy-Based Systems

Fuzzy systems have been recently employed for modelling

and control of physical processes. A fuzzy system is a

static nonlinear mapping between inputs and outputs. Fig.

2 presents a block diagram of a general fuzzy system. The

inputs and outputs of the system are crisp, that is, they are

real numbers and not fuzzy sets. The fuzzyfication block con-

verts the crisp inputs to fuzzy sets (membership functions),

the inference mechanism uses the fuzzy rules in the rule-base

to produce fuzzy conclusions, and the defuzzification block

converts these fuzzy conclusions into crisp outputs.
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Fig. 2. Fuzzy system block diagram.

Among fuzzy-based systems, a Takagi-Sugeno-Kang

(TSK) fuzzy system is one whose output conclusions are

linear functions. These fuzzy systems have been greatly

utilized to model the behavior of MR dampers. In [7] and [8],

TSK models of the MR damper were presented. The selected

fuzzy structures utilized three inputs (displacement, velocity,

and voltage) and one output (damping force). The total

number of fuzzy rules was 27 per structure and the output

functions were linear. A similar approach was followed in

[9]. In the work done in [10], a self-tuning fuzzy structure

was analyzed to model an MR damper. As inputs for the

model were selected the displacement, velocity, and electric

current, each with five triangular membership functions. The

output functions were selected as constants combined using

the centroid method. Finally in [11], direct and inverse fuzzy-

based models of the MR damper were presented. The fuzzy

structure for the direct model employed velocity, acceler-

ation, and control voltage as inputs and damping force as

output. On the other hand, for the inverse model the control

voltage and damping force were swapped with respect to the

direct one.

III. DESIGN OF EXPERIMENTS

A. Experimental System

The implemented experimental system can be divided

into four parts: an MR damper, the actuators, the control

system, and the data acquisition system. An MR damper,



part of a suspension system from a commercial automobile,

was employed. A controller testing system was used to

control the position of the damper. A data acquisition system

commanded the controller and recorded the position and

force of the MR damper, as well as the electric current

on the coil. A sampling frequency of 512 Hz was used.

The displacement actuator was a hydraulic servo-controlled

piston of 3000 psi and displacement bandwidth of 15 Hz.

The displacement and electric current ranges were: 0 - 1.6

in, and 0 - 2.5 A, respectively. The damping force was

measured using a load cell and the measured span was

0 - 640 lbf . The experimental setup was controlled and

monitored by a Human-Machine Interface (HMI) developed

in a commercially available software.

B. Design of Experiments

Experiments were designed in order to generate dis-

placement and electric current input patterns that would

characterize the behavior of an MR damper for automotive

applications. Special attention was placed on the proper

frequency content of the displacement signals. Additionally,

the sequences were selected in order to aid the modelling

process of the system. The experiments were based on the

work presented in [12], where a set of training sequences was

reviewed and designed for the identification of MR dampers.

Eight sets of experimental data were obtained for the

identification of MR damper models. In the selected exper-

iments, the electric current sequences were: Constant Steps

(CS), Increased Clock Period Signal (ICPS), Pseudo-Random

Binary Sequence (PRBS), and Amplitude Pseudo-Random

Binary Sequence (APRBS). On the other hand, Road Pro-

file (RP) sequences were employed as displacement inputs.

These RP sequences were calculated for smooth highways,

and were based on the work in [13] and [14]. Three 30 s

experiments were performed for the highly varying electric

current sequences. In addition, two 600 s experiments with

APRBS and ICPS electric current sequences were performed

in order to test the behavior of the MR damper as the

temperature of the device increased. Finally, three 210 s

experiments were carried out employing CS electric current

sequences. For these last experiments, the electric current

was held constant at seven different values (0, 0.4, 0.8, 1.2,

1.6, 2.1, 2.5 A). Various replicates of the eight experiments

were performed and used as validation data.

The specific sequences of the eight experiments are shown

in Table II, where the experiments have been labeled ac-

cording to the sequences employed. The table specifies

the utilized input sequences, and the number of replicates

performed. Moreover, Figs. 3 and 4 show 10 and 40 second

windows of the sequences employed for the first and last

experiments, respectively. In addition, 30 second windows

present the frequency content of those experiments.

IV. MODELLING RESULTS

The modelling results were compared by means of the

Square Root of the Sum of the Squared Errors (RSSE) and

the Error to Signal Ratio (ESR) indexes. The RSSE and

TABLE II

EXPERIMENTAL DATA SETS

Experiment Displacement E. Current Number of

Name Pattern Pattern Replicates

RP-ICPS RP ICPS 11
RP-APRBS RP APRBS 11
RP-PRBS RP PRBS 11
RP-APRBS-L Long RP APRBS 3
RP-ICPS-L Long RP ICPS 4
RP1-CS RP CS 1
RP2-CS RP CS 1
RP3-CS RP CS 1
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Fig. 3. Description of experiment RP-ICPS. Displacement and electric
current patterns (left). Frequency content (right).

ESR are presented in (2) and (3), respectively. The RSSE

presents the square root of the sum of the errors between the

predicted and experimental output forces normalized by the

total number of samples. The ESR is the ratio of the sum

of squared errors and the variance of the experimental force.

This last index is equal to one if the model is trivial. Both

indexes are equal to zero if the model is perfect.

RSSE =

√

√

√

√

1

T

T
∑

t=1

(

F (t)− F̂ (t)
)2

(2)

ESR =
(RSSE)2

1

T

∑T

t=1

(

F (t)−
(

1

T

∑T

j=1
F (j)

))2
(3)

The S-P model shown in (1) was identified for the first

replicate of each of the eight sets of experiments afore-
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Fig. 4. Description of experiment RP3-CS. Displacement and electric
current patterns (left). Frequency content (right).



mentioned. The identification algorithm was chosen as non-

linear least squares. The five coefficients of the model were

randomly initialized 25 times and the lowest error value was

recorded. The resulting identification errors are shown in

Table III.

TABLE III

IDENTIFICATION ERRORS FOR THE ORIGINAL S-P MODEL

Model Training RSSE (lbf ) ESR

RP-ICPS 38.35 0.1681
RP-APRBS 31.23 0.1098
RP-PRBS 44.74 0.3410

RP-APRBS-L 27.27 0.0837
RP-ICPS-L 35.95 0.1472

RP1-CS 43.18 0.2073
RP2-CS 45.16 0.2264
RP3-CS 44.79 0.2105

It can be noticed that the S-P model obtained high identi-

fication errors for most of the experiments. A later cross val-

idation was performed using all the data sets and replicates

(a total of 43 experiments). This validation confirmed that

the S-P model was not able to predict the damping force in

an accurate manner. Even for the models that obtained the

lowest identification errors, ESR values of more than 0.30

were observed.

In order to include the electric current into the model,

each of the parameters (A1, A2, A3, V0, and X0) was made

equal to a second order polynomial dependent on the electric

current. The new structure depended on 15 coefficients that

were identified for the first replicate of each of the eight sets

of experimental data.

Contrary to the original one, the electric current dependent

S-P model was able to obtain low error values for all the

experimental data sets. A considerable decrease in error was

seen for the models trained using experiments with constant

electric current. As for the original model, a cross validation

was performed using the electric current dependent version.

Figs. 5 and 6 present box and whisker plots for the RSSE

and ESR by trained model, respectively.
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Fig. 5. RSSE results for the electric current dependent S-P model. The
boxes have lines at the lower quartile, median, and upper quartile values.
The whiskers are lines extending from each end of the boxes to show the
extent of the rest of the data. Outliers are data with values beyond the ends
of the whiskers. The average error is shown at the bottom of the plot.

Opposed to the use of polynomials in order to include the

electric current to the S-P model, a fuzzy-based approach

is analyzed in the present work, as proposed in [15]. The

fuzzy-based structure employs the electric current as input,

and the fuzzy rules are defined as specified in (4).
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Fig. 6. ESR results for the electric current dependent S-P model.

If i(t) is MFj then fj(t) = gj(x(t), ẋ(t)) (4)

Notice that each output function fj(t) depends on the

displacement and the velocity of the MR damper. MFj are

fuzzy sets of i(t). The output functions for the model were

selected to be of the form of the S-P model of the MR damper

presented in [16] and shown in a general form in (5).

fj(t) = d1j tanh (d2j (ẋ(t) + d3j x(t)))

+d4j (ẋ(t) + d3j x(t))
(5)

The overall output force of the damper was selected to be

computed as specified by (6),

F (t) =

∑7

j=1
WFj(i(t)) fj(t)

∑

7

j=1
WFj(i(t))

(6)

where Wj represents the membership degree of i(t) on each

of the membership functions. Fig. 7 depicts the proposed

fuzzy-based structure.

MF1

i(t) Σ F(t)

MF2

MF3

MF4

MF5

MF6

MF7

f1(x,x,t)

f2(x,x,t)

f3(x,x,t)

f4(x,x,t)

f5(x,x,t)

f6(x,x,t)

f7(x,x,t)

WF2

WF1

WF3

WF4

WF5

WF6

WF7

.

.

.

.

.

.

.

Fig. 7. Fuzzy-based electric-current-dependent structure.

As the original S-P model only depends on the displace-

ment and velocity of the MR damper, the experimental

data sets with constant stepped increments of the electric

current were selected as identification sets. Each of these

experimental data sets (RC1-CS, RC2-CS, and RC3-CS) was

broken into seven subsets, each corresponding to a time span

with constant electric current values. Then, the coefficients

in (5) were identified using non-linear least squares and

yielded one S-P model for each of the seven electric current

stepped increments on the experiments. In this manner, one

fuzzy-based electric-current-dependent structure, with seven

output functions, was obtained from experiment RC1-CS, one



from experiment RC2-CS, and one from experiment RC3-

CS. The fuzzy-based structures were labeled according to

the experimental data set with which they were trained. The

input membership functions for each structure were defined

as seven Gaussian functions with variance equal to 0.2 and

means of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, respectively.

Once the three structures were trained, a cross validation

was performed using the eight sets of experimental data

with replicates. Figs. 8 and 9 present the resulting RSSE

and ESR by trained structure, respectively. Notice that the

three fuzzy-based structures obtained validation errors with

medians below 29 lbf and 0.1.
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Fig. 8. RSSE results for the fuzzy-based electric-current-dependent S-P

model.
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model.

V. DISCUSSION

A. Best Models

The average RSSE and ESR values were calculated for

the original S-P model and its two electric-current-dependent

variations. The lower average errors, and the corresponding

experimental data sets with which the structures were trained,

are shown in Table IV. Notice that the experimental data sets

with which the lowest RSSE values were obtained correspond

to those of the ESR.

TABLE IV

BEST AVERAGE RSSE AND ESR BY EXPERIMENTAL DATA SET.

Model Exp. Data Set RSSE [lbf] ESR

Original S-P RP1-CS 39.86 0.2161
Polynomial Method S-P RP-ICPS-L 24.56 0.0771
Fuzzy-Based Method S-P RP3-CS 27.82 0.0993

The best structures corresponding to the two methods for

including the electric current to the S-P model were further

compared by means of force-time and force-velocity plots.

Experiment RP-APRBS was employed to test the models in

the time domain, due to its variant electric current content.

Experiment RP1-CS was employed to test the models in the

force-velocity behavior, due to its constant electric current

increments.

B. Polynomial Method

The polynomial inclusion of the electric current to the S-P

model diminished the RSSE and ESR values by 15 lbf and

0.14, respectively for the best structure. Nonetheless, this

inclusion of the electric current incremented considerably

the number of parameters. Fig. 10 presents a two second

window that compares the experimental force and the force

estimated by the model. Fig. 11 compares the force-velocity

behavior of the experimental and estimated damper forces at

six different constant electric current values.
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Fig. 10. Experimental and estimated damper force by the selected S-

P model with polynomial electric current dependency. Experimental data
taken from experiment RP-APRBS.
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Fig. 11. Experimental and estimated F-v behavior of the selected S-P model
with polynomial electric current dependency. Each of the figures presents
the behavior at a constant value of the electric current using the data from
experiment RP1-CS.

It can be seen from the force-time plot that the polynomial

electric-current-dependent S-P model follows the pattern of

the experimental force with a minor lead time. On the other

hand, the force-velocity plots confirm that the S-P model

correctly follows the non-linearities of the MR damper, but

overly exaggerates the width of the hysteresis loop. The

model seemed to improve its performance as the electric

current was increased.



C. Fuzzy-Based Method

The proposed non-linear fuzzy-based model was observed

to reduce the error indexes by 12 lbf and 0.12 with the

best structure. A force-time comparison revealed that the

proposed fuzzy-based structure acceptably followed the ex-

perimental force. Nonetheless, minor noise was observed at

certain moments, which may be produced by the shifting

dynamics of membership functions. Moreover, Fig. 12 com-

pares the force-velocity behavior of the experimental and

estimated damper forces at six different constant electric

current values.
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Fig. 12. Experimental and estimated F-v behavior of the selected S-P

model with fuzzy-based electric current dependency. Each of the figures
presents the behavior at a constant value of the electric current using the
data from experiment RP1-CS.

The force-velocity plots confirm that the S-P model with

fuzzy-based electric current dependency accurately follows

the non-linear behavior of the MR damper. Nevertheless,

the hysteresis loops can be observed to be slightly wide

in comparison to the experimental force. Moreover, as the

electric current increases the proposed structure was seen to

improve its performance.

VI. CONCLUSIONS

The electric-current-dependent S-P model obtained low

error indexes when employing the polynomial method with

10 parameters. Nevertheless, as it was observed in the force-

velocity plots, the model could not accurately predict the

non-linear and hysteretic behavior of the MR damper. This

performance may be in part due to the restrictive way in

which the electric current dependency was introduced to the

model.

On the other hand, the proposed fuzzy-based approach to

introduce the electric current dependency was observed to

obtain RSSE and ESR values slightly higher than those ob-

tained with the polynomial method. Nonetheless, the force-

velocity plots allowed to see that the fuzzy-based structure

closely mimicked the non-linear and hysteretic behavior

of the MR damper. After the present analysis, the fuzzy-

based method can be regarded as a considerable option for

including the electric current dynamics into an MR damper

S-P model. Furthermore, if more closely spaced steps of the

electric current were performed during the experimentation

phase, the performance of the proposed fuzzy-based structure

may see a significant improvement. Additionally, other MR

damper models could be employed as output functions for

the fuzzy structure.
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