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Fuzzy-Based Electric Current Dependency on an MR Damper Model

A Magneto-Rheological (MR) damper exhibits a hysteretic and non-linear behavior. This behavior makes it a challenge to develop a model for the system. The present research is centered on proposing and analyzing a fuzzy-based method employed to introduce the electric current dependency into MR damper models, based on experimental data. Among the state of the art, a semi-phenomenological model was selected. The fuzzy-based method was compared against other approaches. The results showed that the fuzzy-based method was able to correctly introduce the dependency of the model to the electric current and reduce the prediction error by more than 12%.

I. MOTIVATION

With the development of science and technology for automobiles and the continuously increasing need for safety and comfort, great attention has been drawn to automotive suspension systems. Semi-active suspension systems have been specially analyzed. These systems offer the reliability of passive devices, but maintain the versatility and adaptability of active systems. A semi-active suspension can be adjusted in real time, but cannot input energy into the system being controlled. Hence, the force delivered by the suspension is constrained to be proportional and opposite to the elongation speed of the damper. Nonetheless, the power requirement of these systems is considerably lower than that of an active system.

A widely investigated mono-tube semi-active damper is the one denominated Magneto-Rheological (MR) damper. An MR damper is a non-linear dynamical system where the inputs can be the elongation speed and an electric current. The electric current is the control input that modulates the damping characteristic of the MR fluid through the variation of a magnetic field.

MR fluids are unique due to their ability to change their properties reversibly between fluid and solid-like states upon the application of a magnetic field. As discussed in [START_REF] Wang | Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition theory[END_REF], when a certain magnetic field is applied to an MR fluid, the particles in the fluid become polarized and form polarization chains in the direction parallel to the applied field. Fig. 1 shows the force-velocity behavior of an industrial MR damper under various constant electric current inputs. J. A. Ruiz-Cabrera is an MSc student at Tec de Monterrey, Monterrey, NL, Mexico. javier.ruiz.cabrera@itesm.mx R. Morales-Menendez, L. E. Garza-Castañon, and R. A. Ramirez-Mendoza are with Tec de Monterrey, Monterrey, NL, Mexico. {rmm, legarza, ricardo.ramirez}@itesm.mx
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olivier.sename@gipsa-lab.inpg.fr According to [START_REF] Savaresi | Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control[END_REF], concerning the automotive industry MR fluids are appealing for vehicle suspension systems since they can operate at temperatures ranging from 40 to 150 • C with only slight variations in the yield stress. Additionally, MR fluids are almost insensitive to impurities and can be controlled with low voltages and an electric current driven power supply outputting 1-2 A .

Although MR dampers are greatly promising for the control of vehicle suspension systems, their major drawback lies on their non-linear and hysteretic behavior. Furthermore, the first step in designing a control strategy for a suspension system is, usually, modelling the behavior of the damper in an accurate manner. Different modelling techniques have been studied for MR dampers. In [START_REF] Wang | Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition theory[END_REF], [START_REF] Kwok | A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification using Particle Swarm Optimization[END_REF], and [START_REF] Spencer | Phenomenological Model of a MR Damper[END_REF] phenomenological modelling techniques were explored. In [START_REF] Guo | Dynamical Modeling of Magneto-Rheological Damper Behaviors[END_REF], semi-phenomenological techniques were used to develop a mathematical model able to describe the hysteretic behavior of an MR damper. In [START_REF] Savaresi | Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control[END_REF] and [START_REF] Niño-Juarez | Minimizing the Frecuency in a Black Box Model of a Magneto-Rheological Damper[END_REF] black-box models based on Non-linear Autoregressive with eXogenous terms (NARX) structures were studied.

The present study is motivated on the aforementioned challenge that involves the correct modelling of an MR damping system, with specific concern on the inclusion of the electric current dependency to the models. Among the state of the art, the semi-phenomenological model presented in [START_REF] Guo | Dynamical Modeling of Magneto-Rheological Damper Behaviors[END_REF] was selected for analysis. This analysis is meant to compare a polynomial method for including the electric current on the model, versus a fuzzy-based technique. Experimental data sets were obtained at an industrial testing laboratory. Section II presents a literature review. Section III discusses the experimental setup and describes the design of experiments. Section IV presents the results. Section V discusses the obtained results. Finally, section VI concludes the research. Table I defines the variables that will be used through the paper.

II. LITERATURE REVIEW

A. Previous Work

The research done in [START_REF] Savaresi | Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control[END_REF] compared the semi-physical modified Bouc-Wen model presented in [START_REF] Spencer | Phenomenological Model of a MR Damper[END_REF] and a black-box NARX model structure. In order to include the electric current dynamics into the models, two methods were employed. For the semi-physical model, each coefficient was made equal to a time varying linear function of the electric current. For the NARX model, two regressors (present and past values) for the input electric current were added. The reported results showed that the semi-physical model was not able to predict the behavior of the damper. On the other hand, the NARX model was observed to accurately predict the damping force of the system. In the research presented in [START_REF] Wang | Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition theory[END_REF], a phenomenological model based on the phase shifting dynamics of MR fluids was discussed. The authors commented that in the model, all the coefficients are to be assumed dependent on the applied electric current. That is, the coefficients should be functions of the applied magnetic field. This dependency was said to be correctly approximated by a polynomial of order two.

B. Semi-Phenomenological (S-P) Model

Among the state of the art, the semi-phenomenological model for MR dampers presented in [START_REF] Guo | Dynamical Modeling of Magneto-Rheological Damper Behaviors[END_REF] has been greatly analyzed in the past years. The proposed model is said to describe the bi-viscous and hysteretic behaviors of the MR damper with high precision. The structure is described in [START_REF] Wang | Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition theory[END_REF].

F (t) = A 1 tanh A 3 ( ẋ(t) + V 0 X 0 x(t)) + A 2 ẋ(t) + V 0 X 0 x(t) (1) 
In the equation, the model can be seen to use the displacement and velocity as inputs and only depend on five parameters. The authors used a non-linear least-squares algorithm in order to identify the coefficients of the model. The results obtained in the experimentation were said to prove the correctness of the proposed structure. In addition, the concise form of the model was mentioned as its best feature. Nevertheless, the authors did not use experiments in which the electric current varied over time. Although, it was noted that each parameter could be made equal to a function of the electric current in order to include varying electric current scenarios into the model.

C. Fuzzy-Based Systems

Fuzzy systems have been recently employed for modelling and control of physical processes. A fuzzy system is a static nonlinear mapping between inputs and outputs. Fig. 2 presents a block diagram of a general fuzzy system. The inputs and outputs of the system are crisp, that is, they are real numbers and not fuzzy sets. The fuzzyfication block converts the crisp inputs to fuzzy sets (membership functions), the inference mechanism uses the fuzzy rules in the rule-base to produce fuzzy conclusions, and the defuzzification block converts these fuzzy conclusions into crisp outputs. Among fuzzy-based systems, a Takagi-Sugeno-Kang (TSK) fuzzy system is one whose output conclusions are linear functions. These fuzzy systems have been greatly utilized to model the behavior of MR dampers. In [START_REF] Schurter | Fuzzy Modeling of a Magnerorheological Damper using ANFIS[END_REF] and [START_REF] Atray | Design, Fabrication, Testing, and Fuzzy Modeling of a Large Magnetorheological Damper for Vibration Control in a Railcar[END_REF], TSK models of the MR damper were presented. The selected fuzzy structures utilized three inputs (displacement, velocity, and voltage) and one output (damping force). The total number of fuzzy rules was 27 per structure and the output functions were linear. A similar approach was followed in [START_REF] Du | Evolutionary Takagi-Sugeno Fuzzy Modelling for MR Damper[END_REF]. In the work done in [START_REF] Ahn | Hysteresis Modeling of Magneto-Rheological (MR) Fluid Damper by Self Tuning Fuzzy Control[END_REF], a self-tuning fuzzy structure was analyzed to model an MR damper. As inputs for the model were selected the displacement, velocity, and electric current, each with five triangular membership functions. The output functions were selected as constants combined using the centroid method. Finally in [START_REF] Wang | The Neuro-fuzzy Identification of MR Damper[END_REF], direct and inverse fuzzybased models of the MR damper were presented. The fuzzy structure for the direct model employed velocity, acceleration, and control voltage as inputs and damping force as output. On the other hand, for the inverse model the control voltage and damping force were swapped with respect to the direct one.

III. DESIGN OF EXPERIMENTS

A. Experimental System

The implemented experimental system can be divided into four parts: an MR damper, the actuators, the control system, and the data acquisition system. An MR damper, part of a suspension system from a commercial automobile, was employed. A controller testing system was used to control the position of the damper. A data acquisition system commanded the controller and recorded the position and force of the MR damper, as well as the electric current on the coil. A sampling frequency of 512 Hz was used. The displacement actuator was a hydraulic servo-controlled piston of 3000 psi and displacement bandwidth of 15 Hz. The displacement and electric current ranges were: 0 -1.6 in, and 0 -2.5 A, respectively. The damping force was measured using a load cell and the measured span was 0 -640 lbf . The experimental setup was controlled and monitored by a Human-Machine Interface (HMI) developed in a commercially available software.

B. Design of Experiments

Experiments were designed in order to generate displacement and electric current input patterns that would characterize the behavior of an MR damper for automotive applications. Special attention was placed on the proper frequency content of the displacement signals. Additionally, the sequences were selected in order to aid the modelling process of the system. The experiments were based on the work presented in [START_REF] Lozoya-Santos | Design of Experiments for MR Damper Modelling[END_REF], where a set of training sequences was reviewed and designed for the identification of MR dampers.

Eight sets of experimental data were obtained for the identification of MR damper models. In the selected experiments, the electric current sequences were: Constant Steps (CS), Increased Clock Period Signal (ICPS), Pseudo-Random Binary Sequence (PRBS), and Amplitude Pseudo-Random Binary Sequence (APRBS). On the other hand, Road Profile (RP) sequences were employed as displacement inputs. These RP sequences were calculated for smooth highways, and were based on the work in [START_REF] Wong | Theory of Ground Vehicles[END_REF] and [START_REF] Da Silva | Dynamical Performance of Highway Bridge Decks with Irregular Pavement Surface[END_REF]. Three 30 s experiments were performed for the highly varying electric current sequences. In addition, two 600 s experiments with APRBS and ICPS electric current sequences were performed in order to test the behavior of the MR damper as the temperature of the device increased. Finally, three 210 s experiments were carried out employing CS electric current sequences. For these last experiments, the electric current was held constant at seven different values (0, 0.4, 0.8, 1.2, 1.6, 2.1, 2.5 A). Various replicates of the eight experiments were performed and used as validation data.

The specific sequences of the eight experiments are shown in Table II, where the experiments have been labeled according to the sequences employed. The table specifies the utilized input sequences, and the number of replicates performed. Moreover, Figs. 3 and4 show 10 and 40 second windows of the sequences employed for the first and last experiments, respectively. In addition, 30 second windows present the frequency content of those experiments.

IV. MODELLING RESULTS

The modelling results were compared by means of the Square Root of the Sum of the Squared Errors (RSSE) and the Error to Signal Ratio (ESR) indexes. The RSSE and ESR are presented in ( 2) and (3), respectively. The RSSE presents the square root of the sum of the errors between the predicted and experimental output forces normalized by the total number of samples. The ESR is the ratio of the sum of squared errors and the variance of the experimental force. This last index is equal to one if the model is trivial. Both indexes are equal to zero if the model is perfect.

RSSE = 1 T T t=1 F (t) -F (t) 2 (2) 
ESR = (RSSE) 2 1 T T t=1 F (t) -1 T T j=1 F (j) 2 (3) 
The S-P model shown in [START_REF] Wang | Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition theory[END_REF] was identified for the first replicate of each of the eight sets of experiments afore- mentioned. The identification algorithm was chosen as nonlinear least squares. The five coefficients of the model were randomly initialized 25 times and the lowest error value was recorded. The resulting identification errors are shown in Table III. It can be noticed that the S-P model obtained high identification errors for most of the experiments. A later cross validation was performed using all the data sets and replicates (a total of 43 experiments). This validation confirmed that the S-P model was not able to predict the damping force in an accurate manner. Even for the models that obtained the lowest identification errors, ESR values of more than 0.30 were observed.

In order to include the electric current into the model, each of the parameters (A 1 , A 2 , A 3 , V 0 , and X 0 ) was made equal to a second order polynomial dependent on the electric current. The new structure depended on 15 coefficients that were identified for the first replicate of each of the eight sets of experimental data.

Contrary to the original one, the electric current dependent S-P model was able to obtain low error values for all the experimental data sets. A considerable decrease in error was seen for the models trained using experiments with constant electric current. As for the original model, a cross validation was performed using the electric current dependent version. Opposed to the use of polynomials in order to include the electric current to the S-P model, a fuzzy-based approach is analyzed in the present work, as proposed in [START_REF] Ruiz-Cabrera | MR Damper Fuzzy-Based Modelling[END_REF]. The fuzzy-based structure employs the electric current as input, and the fuzzy rules are defined as specified in (4). 
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If i(t) is M F j then f j (t) = g j (x(t), ẋ(t)) (4) 
Notice that each output function f j (t) depends on the displacement and the velocity of the MR damper. M F j are fuzzy sets of i(t). The output functions for the model were selected to be of the form of the S-P model of the MR damper presented in [START_REF] Guo | Semi-active Vehicle Suspension Systems with Magnetorheological Dampers[END_REF] and shown in a general form in [START_REF] Guo | Dynamical Modeling of Magneto-Rheological Damper Behaviors[END_REF].

f j (t) = d 1j tanh (d 2j ( ẋ(t) + d 3j x(t))) +d 4j ( ẋ(t) + d 3j x(t)) (5) 
The overall output force of the damper was selected to be computed as specified by [START_REF] Niño-Juarez | Minimizing the Frecuency in a Black Box Model of a Magneto-Rheological Damper[END_REF],

F (t) = 7 j=1 W F j (i(t)) f j (t) 7 j=1 W F j (i(t)) (6) 
where W j represents the membership degree of i(t) on each of the membership functions. Fig. 7 depicts the proposed fuzzy-based structure. As the original S-P model only depends on the displacement and velocity of the MR damper, the experimental data sets with constant stepped increments of the electric current were selected as identification sets. Each of these experimental data sets (RC1-CS, RC2-CS, and RC3-CS) was broken into seven subsets, each corresponding to a time span with constant electric current values. Then, the coefficients in (5) were identified using non-linear least squares and yielded one S-P model for each of the seven electric current stepped increments on the experiments. In this manner, one fuzzy-based electric-current-dependent structure, with seven output functions, was obtained from experiment RC1-CS, one from experiment RC2-CS, and one from experiment RC3-CS. The fuzzy-based structures were labeled according to the experimental data set with which they were trained. The input membership functions for each structure were defined as seven Gaussian functions with variance equal to 0.2 and means of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, respectively.

MF1
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Once the three structures were trained, a cross validation was performed using the eight sets of experimental data with replicates. Figs. 8 and9 present the resulting RSSE and ESR by trained structure, respectively. Notice that the three fuzzy-based structures obtained validation errors with medians below 29 lbf and 0.1. 

RP1-CS

V. DISCUSSION

A. Best Models

The average RSSE and ESR values were calculated for the original S-P model and its two electric-current-dependent variations. The lower average errors, and the corresponding experimental data sets with which the structures were trained, are shown in Table IV. Notice that the experimental data sets with which the lowest RSSE values were obtained correspond to those of the ESR. The best structures corresponding to the two methods for including the electric current to the S-P model were further compared by means of force-time and force-velocity plots. Experiment RP-APRBS was employed to test the models in the time domain, due to its variant electric current content. Experiment RP1-CS was employed to test the models in the force-velocity behavior, due to its constant electric current increments.

B. Polynomial Method

The polynomial inclusion of the electric current to the S-P model diminished the RSSE and ESR values by 15 lbf and 0.14, respectively for the best structure. Nonetheless, this inclusion of the electric current incremented considerably the number of parameters. Fig. 10 presents a two second window that compares the experimental force and the force estimated by the model. Fig. 11 It can be seen from the force-time plot that the polynomial electric-current-dependent S-P model follows the pattern of the experimental force with a minor lead time. On the other hand, the force-velocity plots confirm that the S-P model correctly follows the non-linearities of the MR damper, but overly exaggerates the width of the hysteresis loop. The model seemed to improve its performance as the electric current was increased.

C. Fuzzy-Based Method

The proposed non-linear fuzzy-based model was observed to reduce the error indexes by 12 lbf and 0.12 with the best structure. A force-time comparison revealed that the proposed fuzzy-based structure acceptably followed the experimental force. Nonetheless, minor noise was observed at certain moments, which may be produced by the shifting dynamics of membership functions. Moreover, Fig. 12 compares the force-velocity behavior of the experimental and estimated damper forces at six different constant electric current values. The force-velocity plots confirm that the S-P model with fuzzy-based electric current dependency accurately follows the non-linear behavior of the MR damper. Nevertheless, the hysteresis loops can be observed to be slightly wide in comparison to the experimental force. Moreover, as the electric current increases the proposed structure was seen to improve its performance.

VI. CONCLUSIONS

The electric-current-dependent S-P model obtained low error indexes when employing the polynomial method with 10 parameters. Nevertheless, as it was observed in the forcevelocity plots, the model could not accurately predict the non-linear and hysteretic behavior of the MR damper. This performance may be in part due to the restrictive way in which the electric current dependency was introduced to the model.

On the other hand, the proposed fuzzy-based approach to introduce the electric current dependency was observed to obtain RSSE and ESR values slightly higher than those obtained with the polynomial method. Nonetheless, the forcevelocity plots allowed to see that the fuzzy-based structure closely mimicked the non-linear and hysteretic behavior of the MR damper. After the present analysis, the fuzzybased method can be regarded as a considerable option for including the electric current dynamics into an MR damper S-P model. Furthermore, if more closely spaced steps of the electric current were performed during the experimentation phase, the performance of the proposed fuzzy-based structure may see a significant improvement. Additionally, other MR damper models could be employed as output functions for the fuzzy structure.
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 1 Fig. 1. Force-velocity behavior of an industrial MR damper. The force is plotted against the velocity for various constant electric current inputs.
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 2 Fig. 2. Fuzzy system block diagram.
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 3 Fig. 3. Description of experiment RP-ICPS. Displacement and electric current patterns (left). Frequency content (right).
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 4 Fig. 4. Description of experiment RP3-CS. Displacement and electric current patterns (left). Frequency content (right).
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 55 Fig. 5. RSSE results for the electric current dependent S-P model. The boxes have lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the boxes to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. The average error is shown at the bottom of the plot.
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 6 Fig. 6. ESR results for the electric current dependent S-P model.
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 7 Fig. 7. Fuzzy-based electric-current-dependent structure.
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 89 Fig. 8. RSSE results for the fuzzy-based electric-current-dependent S-P model.
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 11 Fig.11. Experimental and estimated F-v behavior of the selected S-P model with polynomial electric current dependency. Each of the figures presents the behavior at a constant value of the electric current using the data from experiment RP1-CS.

Fig. 12 .

 12 Fig.[START_REF] Lozoya-Santos | Design of Experiments for MR Damper Modelling[END_REF]. Experimental and estimated F-v behavior of the selected S-P model with fuzzy-based electric current dependency. Each of the figures presents the behavior at a constant value of the electric current using the data from experiment RP1-CS.

TABLE III IDENTIFICATION

 III ERRORS FOR THE ORIGINAL S-P MODEL

	Model Training	RSSE (lbf )	ESR
	RP-ICPS	38.35	0.1681
	RP-APRBS	31.23	0.1098
	RP-PRBS	44.74	0.3410
	RP-APRBS-L	27.27	0.0837
	RP-ICPS-L	35.95	0.1472
	RP1-CS	43.18	0.2073
	RP2-CS	45.16	0.2264
	RP3-CS	44.79	0.2105

TABLE IV BEST

 IV AVERAGE RSSE AND ESR BY EXPERIMENTAL DATA SET.

	Model	Exp. Data Set	RSSE [lbf]	ESR
	Original S-P	RP1-CS	39.86	0.2161
	Polynomial Method S-P	RP-ICPS-L	24.56	0.0771
	Fuzzy-Based Method S-P	RP3-CS	27.82	0.0993

  compares the force-velocity behavior of the experimental and estimated damper forces at six different constant electric current values.
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