LPV-based MR damper modelling
V.A. Diaz-Salas, R. Morales-Menendez, R.A Ramirez-Mendoza, Olivier Sename, Luc Dugard

To cite this version:
V.A. Diaz-Salas, R. Morales-Menendez, R.A Ramirez-Mendoza, Olivier Sename, Luc Dugard. LPV-based MR damper modelling. MED 2011 - 19th Mediterranean Conference on Control and Automation, Jun 2011, Corfou, Greece. pp.201-206, 10.1109/MED.2011.5982976. hal-00682121

HAL Id: hal-00682121
https://hal.science/hal-00682121
Submitted on 23 Mar 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—An MR damper is a device that exhibits a high nonlinear and complex behavior with a hysteresis phenomenon. A comparison between different state-of-the-art and a Linear Parameter Varying (LPV) models for Magneto-Rheological (MR) dampers is presented. Several experimental datasets validate that Linear Parameter Varying (LPV)-based model outperforms the classical MR damper models for 51% than any structures considering the Error to Signal Ratio index and 37% better considering the Squared root of Sum of Squared Errors index.

I. INTRODUCTION

MR dampers represent an improvement in the field of intelligent suspensions. This type of devices generate a mechanical impedance to velocity with a variable damping factor by using intelligent materials: Magneto-Rheological fluid. However, this type of damper shows a highly non-linear behavior when applying different damping ratios (controlled by the electric current input), see Figure 1.

Several research works has been published. In [1] one of the first hysteresis model is proposed, from which several other structures have been developed [2]–[5]. The most relevant models were the Semi-Phenomenological (SP) [6], and the Phenomenological (P) [7] ones. The P model exploit the phase transition theory. Also, blackbox models are referenced to describe mathematically the shock absorber behavior [2], [8].

These structures serve as a basis to replicate the MR damper behavior. However, it is important to provide a control-oriented dynamical description of this device, suitable to design control strategies to enhance comfort, steering, and road grip.

The Linear Parameter-Varying (LPV) approach allows to allocate the non-linearities of this device in the LPV input variable is designed to detect when the damper is exploring an hysteretic zone, and aids the model to reproduce the MR damper’s complex behavior.

Section II reviews the literature of MR damper models. Section III describes the proposed LPV-based model. Section IV includes the experimental setup and the Design of Experiments (DoE). Section V compares the obtained results. Finally, section VI concludes the research.

V.A. Díaz-Salas is a MSc Student at Tec de Monterrey, Monterrey, Mexico. A00790521@itesm.mx
R. Morales-Menendez and R. Ramírez are full professors at Tec de Monterrey, Monterrey, Mexico. {rmm, ricardo.ramirez}@itesm.mx
O. Sename and L. Dugard are full professors at INPG, Grenoble, France. {olivier.sename, luc.dugard}@gipsa-lab.grenoble-inp.fr

Fig. 1. Force-velocity (F-V) map of an MR damper for different electric current inputs.

II. MR DAMPER MODELS REVIEW

A. State-of-the-art models

Two representative models were reviewed: the Phenomenological (P) and Semi-Phenomenological (SP) structures, because they may be suitable for applications of control design [9], [10].

[6] proposes the SP structures which uses the displacement velocity of the damper to describe the hysteresis behavior.

\[F_{mr}(t) = S_1 \tanh \left(S_1 (v(t) + \frac{V_0}{X_0} x(t)) \right) + S_2 \left(v(t) + \frac{V_0}{X_0} x(t) \right) \]

Table I describes the terminology used in this paper. This model is divided in three main components: two linear parts depending on the displacement and velocity respectively and a third part for the hysteresis phenomena. By modifying these three components, it is possible to introduce the electric current functionality.

[7] introduces a Phenomenological model. It is based on a mathematical description of the evolution of the shear stress of the material inside the MR damper (when it changes from a solid state to a semi-solid one). A Lagrangian analysis was performed, using the constitutive mechanical relationship between the magnitudes of stress and the deformation of the material, and defining the kinetic and potential contributions for the phase transition, equation (2):

\[w_1 F_{mr}(t) + w_2 F_{mr}(t) + w_3 F_{mr}(t) + w_4 F_{mr}(t) + w_5 F_{mr}(t) = v(t) \]
The $\rho(t)$-parameter modifies the behavior of the system; it is delimited by a finite space:

$$\rho \in U_\rho \subset \mathbb{R}^k, \text{ and } U_\rho \text{ compact}$$ \hspace{1cm} (4)$$

where the relationship is valid only if U_ρ is bounded.

The importance of this model lies in the ability to change its dynamics over time. The pointer variable ($\rho(t)$) changes the states according to a variable of scheduling, whose selection is essential for the a good modeling of the device.

Matrices dependency of the scheduling variable is proposed by means of a polynomial linear system [11], [12]:

$$[A(\rho(t)) \ B(\rho(t))] = [A_0 \ B_0] + \sum_{i=1}^{N} \rho^i(t) [A_i \ E_i]$$ \hspace{1cm} (5)$$

$$\rho(t) \in [\rho_{\text{min}} : \rho_{\text{max}}]$$ \hspace{1cm} (6)$$

It is important, to ensure that the system based on ρ scheduling parameter is stable within a specific region.

A. LPV-based model proposal

The continuous LPV-based model (equation (3)) can be represented with a discrete-time transfer function:

$$G(z, \rho) = \frac{N(z, \rho)}{M(z, \rho)}$$ \hspace{1cm} (7)$$

where numerator and denominator depend on the ρ scheduling parameter. $N(z, \rho)$, and $M(z, \rho)$ can be defined as:

$$N(z, \rho) = b_0(p) + b_1(p)z^{-1} + \ldots + b_m(p)z^{-m}$$ \hspace{1cm} (8)$$

$$M(z, \rho) = 1 + a_1(p)z^{-1} + a_2(p)z^{-2} + \ldots + a_n(p)z^{-n}$$

Similarly its coefficients can be approximated by:

$$b_i(p) = \beta_i^0 + \beta_i^1 \cdot p^1(k) + \beta_i^2 \cdot p^2(k) + \ldots + b_i^{p_0} \cdot p^{p_0}(k)$$

$$a_i(p) = \alpha_i^0 + \alpha_i^1 \cdot p^1(k) + \alpha_i^2 \cdot p^2(k) + \ldots + \alpha_i^{p_0} \cdot p^{p_0}(k)$$

This discrete-time approximation can be expressed in a state space model. The controllable canonical state space representation of equations (7)-(9) is:

$$\dot{x}(k+1) = A(p)x(k) + B(p)u(k)$$

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ -a_{n_0}(p) & -a_{n_1}(p) & -a_{n_2}(p) & \ldots & -a_1(p) \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ w(k) \end{bmatrix}$$

and the output:

$$f(k) = C(p)x(k) + D(p)u(k)$$

$$f(k) = [\{b_1(p) - a_1(p) \cdot b_0(p)\} \ (b_{n_1}(p) - a_{n_1}(p) \cdot b_0(p)) \ \ldots \ \{b_1(p) - a_1(p) \cdot b_0(p)\} \cdot x(k) + b_0(p) \cdot u(k)$$

Equation (2) is a second-order nonlinear ordinary relationship. Parameters $F_{\text{out}}(t)$, $F_{\text{in}}(t)$, and $F_{\text{act}}(t)$ are used to represent the hysteresis of the MR damper, by recreating the phase transition of the MR fluid in the one-dimension. Parameters $F_{\text{in}}(t)$ and $F_{\text{act}}(t)$ in the model, are used to capture the dynamics of the phase switching.

According to [7], all coefficients (w_i) should be identified using experimental data. These coefficients are assumed to be a polynomial function of the magnetic field in order to achieve a more general model.

III. LPV-BASED SYSTEM.

MR damper complex behavior can also be described by the use of a Linear-Parameter-Varying (LPV) model. They belong to the set of Linear Time-Varying Systems, and are described in a finite dimension space. Their state-space representation is given by the weighted sum of local state vectors, such as the time dependency is hidden among these parameters.

$$f(t) = A(p(t)) \ x(t) + B(p(t)) \ u(t)$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ -a_{n_0}(p) & -a_{n_1}(p) & -a_{n_2}(p) & \ldots & -a_1(p) \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ w(k) \end{bmatrix}$$

and the output:
which clearly agrees with the LPV system description of equation (6). When including the ρ functionality (8), the model matrices become:

$$A(\rho(k)) = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix} + \begin{bmatrix} \alpha_0 & \alpha_1 & \ldots & \alpha_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix} \rho(k) + \cdots$$

$$B^T(\rho(k)) = [0 \ 0 \ 0 \ \cdots \ 1]$$

$$C(\rho(k)) = \begin{bmatrix} \beta_0^T \rho_{n-1}^T & \beta_1^T \rho_{n-1}^T & \cdots & \beta_{m-1}^T \rho_{n-1}^T \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} + \begin{bmatrix} \beta_0^T \rho_{n-1}^T & \beta_1^T \rho_{n-1}^T & \cdots & \beta_{m-1}^T \rho_{n-1}^T \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} \rho^N_p(k)$$

$$D(\rho(t)) = 0$$

$b_0(\rho) = 0$, is assumed.

B. Scheduling parameter

The scheduling parameter is of great importance in the LPV-based model formulation. The scheduling parameter will be designed as the electric current input based on Figure 1.

$$\rho(k) = i(k), \ \forall i(k) \in [0 \ , \ i_{\text{max}}]$$

C. Slope and Intercept analysis

A clear functionality between the force and velocity signals can be appreciated in Figure 2, where a static force-velocity map is shown. A piecewise straight-line regression (17) was plotted in this graph based on:

$$F(v(t)) = \begin{cases} m_1 \cdot v(k) + c_1 & \text{if} \quad v(k) < v_{\text{low}} \\
 m_2 \cdot v(k) + c_2 & \text{if} \quad v_{\text{low}} \leq v(k) \leq v_{\text{high}} \\
 m_3 \cdot v(k) + c_3 & \text{if} \quad v(k) > v_{\text{high}} \end{cases}$$

For each zone in Figure 2, a m_j-slope and c_j-intercept were computed, see Figure 3. As the electric current grows up, the slope becomes greater.

D. Input signal and hysteresis replication

In order to aid the LPV model to describe the force hysteresis, an input variable is proposed. This signal will detect when the MR damper is exploring an hysteric zone. The definition of this variable is based on the following analysis.

The MR damper output force is clearly related to the displacement velocity of the piston, Figure 4. This relationship shows hysteretic zones in the force-velocity static map.

$$v_{\text{high}}(i) = |v_{\text{low}}(i)| = \mu_1 \cdot i + \mu_2$$

It is clear that the force-velocity map changes when the velocity surpasses or fall behind some velocity limits. These limits are symmetric $v_{\text{high}} = -v_{\text{low}}$. Also, these limits change with electric current input.

Velocity limits linearly depend on the electric current.

$$v_{\text{high}}(i) = |v_{\text{low}}(i)| = \mu_1 \cdot i + \mu_2$$
E. Input variable definition

A new input variable will be computed based on the above observations, such as it detects when the damper is exploring an hysteretic region, and takes into account the force-velocity slope change to aid the LPV model to remain attached to the MR damper force.

LPV input variable \(u(t) \) is closely related to the velocity \(v(t) \). The main purpose of this variable is to provide a saturation on the velocity measures when they reach magnitudes above the velocity limits defined previously. This relationship is proposed as:

\[
u(k) = f(v(k), i(k)) = \sigma(i(k)) \cdot v(k) + \psi(i(k)), \quad \text{and} \quad (19)
\]

where \(\sigma(i(k)) \) is a scale factor for the velocity, that will reduce the velocity magnitude when it exceeds its border limit and \(\psi(i(k)) \) is the correction factor used to ensure the variable continuity near the scale changes.

\[
\sigma(i(k)) \in [0, 1], \quad |\psi(i(k))| < |v(k)| \quad (20)
\]

These scale and correction factor are experimentally computed; then both factors are normalized with the central slope \(m_2(i(t)) \), which is always the biggest slope value. This normalization is done in order to maintain the force-velocity relationship untouched when using the same LTI model to follow hysteretic patterns, can be computed as:

\[
u(k) = f(v(k), i(k)) = \sigma(i(k)) \cdot v(k) + \psi(i(k));
\]

\[
u(k) = \begin{cases}
 m_2(i(k)) \cdot v(k) + \psi(i(k))
 & \text{if } v(t) > v_{\text{safe}}(i(t)) \\
 v_i(k)
 & \text{if } v_{\text{low}}(i(k)) \leq v(t) \leq v_{\text{safe}}(i(t)) \\
 m_1(i(k)) \cdot v(k) + \psi(i(k))
 & \text{if } v(t) < v_{\text{low}}(i(k))
\end{cases} \quad (21)
\]

IV. EXPERIMENTAL SYSTEM

The experimental system contains three main components: actuators (displacement and electric current), data acquisition (DAQ) devices, and a control system, Figure 5. The data acquisition system Flextest™ commands the controller and records the position and force from the MR damper.

The hydraulic servo-controlled piston introduces a displacement excitation sequence \((s_{\text{in}}) \) commanded by the DAQ system \((x_u) \), and measured in the LVDT sensor \((x_m) \). The MR damper force \((F_{\text{MR}}) \) is measured by means of a load cell located at the union of the damper and the piston. The electric current excitation is introduced into the damper and is measured by an electric current transducer. Measured signals are monitored through HMI. The displacement and electric current range are: \(0 \cdot 0.04 \text{ m}, \) and \(0 \cdot 4 \text{ A} \) respectively. The measured span of the MR damping force is \(0 \cdot 2850 \text{ N} \).

Eight training sequences were designed to obtain the data for the learning process. Each sequence considers both a displacement and electric current patterns. For each training sequence, various replicates were done, Table V.

The first 1-5 training sequences contain recurrent signals (changing in time) for the electric current pattern. These sequences generate a useful database for training of the MR damper.

A comparison of the models was done based on two performance indices. Squared root of Sum of Squared Errors (SSSE) index, which is the squared root of a L2 norm of the fitting error of the learned MR damper models, normalized by the number of samples of the test. Error to Signal Ratio (ESR) index is a similar index, but it is divided by the MR damper force variance. These indices are computed as follows:

\[
SSSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} \left(F(t) - \hat{F}(t) \right)^2} \quad (23)
\]

\[
ESR = \frac{\sqrt{\sum_{t=1}^{n} \left(F(t) - \hat{F}(t) \right)^2}}{\sqrt{\sum_{t=1}^{n} F(t)^2}} \quad (24)
\]
V. RESULTS

Six different models were validated in order to include the electric current, a polynomial approximation was used. For the case of the P model [7], a second order polynomial was applied to all its coefficients. For the SP model, four different modifications were tested, focusing mainly on the hyperbolic term of the equation. The modified models are shown:

\begin{align*}
\text{P-15:} & \quad F_{\text{mr}} = w_1(i)v + w_2(i)F + w_3(i)F^2 + w_4(i)F^3 + w_5(i)F^5 \\
\text{SP-1:} & \quad F_{\text{mr}} = S_1(i) \cdot \tanh(S_2(i)v + S_3(i)x) + S_4(i)v + S_5(i)x \\
\text{SP-2:} & \quad F_{\text{mr}} = S_1 \cdot i \cdot \tanh(S_2v + S_3x) + S_4v + S_5x \\
\text{SP-3:} & \quad F_{\text{mr}} = (S_1 + S_2) \cdot \tanh(S_3v + S_4x) + S_5v + S_6x \\
\text{SP-4:} & \quad F_{\text{mr}} = (S_1^2 + S_2i + S_3) \cdot \tanh(S_4v + S_5x) + S_6v + S_7x
\end{align*}

These models were identified, using a least-squares algorithm [11]. Figure 6 shows an example of modeling results for the LPV-based model. As it can be seen, velocity and electric current change during the experiment, while the modeled force remains close to the experimental force.

A. ESR results comparison.

Figure 7 shows a box and whisker plot for the ESR index of each model. The boxes have lines at the lower, median, and upper quartile values. The whiskers show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. It is shown that for the case of the P and $SP-1$ models, the results are very similar. It can be noted, that for the $SP-2$, $SP-3$ and $SP-4$ models, there is no reduction even when changing the amount of coefficients. Finally, the LPV-based model outperforms all the models. The ESR average achieved for the LPV-based model (0.036) is 51% below the best results of the other models ($SP-1$, 0.074).

B. SSSE results comparison.

The statistics results based on Squared-root of SSE ($SSSE$) for each equation are shown in Figure 8. The pattern results are similar: LPV-based model outperforms other models. The $SSSE$ average for the LPV-based model is 14.98, which represents an improvement of 36.8% w.r.t. $SP-1$ model, which is the second $SSSE$ best with an average of 23.72.
C. Discussion

In the force-time comparison between the models, the best structures are in order of importance the LPV-based, P and SP-I structures, see Figure 9. In the force-velocity static plane, the best models are the LPV-based and P models, see Figure 10.

![Real and Computed Damper Force](image)

Fig. 9. Real and Computed Damper Force.

In [9], [13]–[15] an LPV model structure for the quarter of vehicle is proposed, by the use of a static relationship to handle the non-linear relationship of the damper. Based on this model, a control scheme was designed to regulate the vibrations received by the wheels of the car, and assure, in this way, the vehicle safety, improving at the same time the comfort of the passengers.

The LPV-based model proposed only recreates the dynamic behavior of the damper. It represents an innovative way to represent this non-linear system, and it might be extended to handle the whole suspension system, suitable for control design. This represents a great improvement in the performance of these type of controllers.

VI. Conclusions

MR Dampers represent a key component in the field of intelligent suspensions; because, they can easily improve the comfort and handling control systems. However, these devices exhibit a high nonlinear and complex behavior with an hysteresis phenomenon that represent a modeling challenge. Several classical models were learned, exploiting experimental datasets taken from an industrial MR Damper. A new structure of Linear Parameter Varying (LPV)-based model with an electrical current variable is presented. Based on both ESR and SSSE indices, the LPV-based model outperforms the Phenomenological (P), and Semi-Phenomenological (SP) models. Furthermore, some modifications considering the electrical current variable were implemented; LPV-based model is 51 % better than any structures considering the ESR index, and 37 % better considering the SSSE index. Also, LPV-based model shows a compact and simple equation, suitable for control design.

VII. Acknowledgements

Special thanks to Dr. Olivier Sename and Dr. Luc Dugard for the opportunity given in the research stay at GIIPSA Lab, and to CONACYT for the economic funding which made possible this research.

References