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Abstract

Background: Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the

dynamics of transcription remains a challenging task. A host of computational approaches have been developed to

identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites.

Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly

improved these methods.

Results: Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups

of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We

developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is

considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated

using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are

over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes.

Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have

increased SSM values.

Conclusions: Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution

to provide a clearer definition of expression networks.

Background
A major challenge for modern molecular biology consists

in deciphering the complex regulation of gene expression.

During the two last decades, numerous experimental and

computational approaches have been developed to identify

functional regulatory domains in genes. Binding sites for

transcription factors (TFBS) are central elements in the

modulation of transcriptional activity. These short DNA

sequences are cis-regulatory motifs usually located in the

proximal promoter region of target genes and bind trans-

acting transcription factors [1]. Transcription factors have

been shown to act cooperatively [2], leading to the emer-

gence of the CRM (cis-regulatory modules) concept.

In silico approaches designed to uncover regulatory ele-

ments in gene promoters are based on this understanding

of gene regulation. A possible binary categorization of

these approaches is based on the fact that they use or not

previously described TFBS, stored in databases such as

TRANSFAC [3] or JASPAR [4]. Both strategies have

advantages and drawbacks.

Although TFBS databases are admittedly incomplete,

storing a small subset of the TFBS predicted to operate in

eukaryotic genomes [5], searching for previously described

TFBS is a much easier task than discovering de novo motifs

[6]. Multiple tools have been following this approach work-

ing either on sets of genes [7-10] or designed to scan whole

genomes [11-14]. The earlier methods were focusing on

single TFBS, the more recently published mainly focus on

CRM detection.

On one hand, not using TFBS databases allows not to be

restrained by the yet incomplete set of described binding

sites. On the other hand, uncovering regulatory elements

becomes a much more challenging problem. Aiming at

de novo discovering either single TFBS or CRM, such

* Correspondence: gruelj@gmail.com
1EA 4427 SeRAIC IFR140, Université de Rennes 1, 2 avenue du Pr. Léon

Bernard, Rennes, 35043, France

Full list of author information is available at the end of the article

Gruel et al. BMC Bioinformatics 2011, 12:365

http://www.biomedcentral.com/1471-2105/12/365

© 2011 Gruel et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gruelj@gmail.com
http://creativecommons.org/licenses/by/2.0


approaches are limited to sets of genes thought to be co-

regulated [15-18] (for instance observed co-expressed) and

have not yet been applied to whole genome experiments.

Aside from the CRM concept, the main advance in

the field came from the accumulation of high-through-

put gene expression data and the sequencing of multiple

genomes. Multiple genome comparisons allows to select

genetic regions undergoing a strong selection pressure

and thus accumulating less mutations over time than

the rest of a genome. Applied to promoter sequences,

phylogenetic footprinting or phylogenetic shadowing

allow to specify functional elements of the sequence,

thus reducing the search space for transcription factors

binding sites and the rate of false positive detected

TFBS [19,20]. Most of the recently published algorithms

make use of phylogenetic footprints instead of raw

genomic data.

In the present study we propose a novel approach allow-

ing genomewide regulatory element based searches without

the need to rely on TFBS databases. Our main input data-

set is the evolutionary conserved sequences of promoters

obtained from the cisRED database [21]. Instead of using

TFBS databases to narrow down the search scope, a gene

of interest is selected. The methodology compares its evo-

lutionary conserved sequences with those from all the

other genes from cisRED, searching for statistically overre-

presented sets of shared sequences. Although not permit-

ting a straightforward extraction of the motifs involved,

our study combines the advantages of performing genome-

wide searches and not being limited by described TFBS in

order to find genes potentially co-regulated with a gene of

interest.

The methodology is based on the compilation of statis-

tically exceptional number of short, degenerate and

shared sequences between gene pairs. We hypothesize

that regulation of gene expression might be characterized

by sequences involved in expression regulation whose

common feature is to be evolutionary conserved and pre-

sent in the promoter of genes (including cis-regulatory

modules and potentially structural features or epigenetic

patterns). Genes co-expressed should share some of

these sequence features. We designed an algorithm tak-

ing as input the atomic motifs described in the cisRED

database. Atomic motifs are evolutionary conserved

sequences identified in the promoter of genes through a

comparative analysis including more than 40 vertebrate

species and making use of various motif discovery algo-

rithms such as MEME [22], Consensus [8] or Motif Sam-

pler [23]. The algorithm finds all Simple Shared Motifs

(SSM), i.e. sets of complementary reverse sequences

defined by their length l, Hamming edition distance d

[24], and their occurrence in gene pairs. The number of

SSM is then statistically assessed and groups of genes

with an exceptional number of SSM are compiled. This

simple methodology allows to perform a genomewide

search for genes potentially co-regulated with a gene of

interest by selecting a set of genes (out of the 18000

genes provided in the cisRED database) sharing a statisti-

cally exceptional SSM profile with the given gene. In sup-

port of our approach, we carried out a functional analysis

of identified genes by using gene-set enrichment analysis

(GSEA) [25,26] and gene-expression meta-analysis

(Gemma [27]). Using Gene Ontology and KEGG path-

ways annotation ([28] and [29]), we demonstrate that the

genes identified by our SSM approach are overrepre-

sented in specific biological categories. We further show

that these genes are more often co-expressed in expres-

sion array databases than randomly selected genes, thus

suggesting that the SSM approach identifies genes that

share common regulatory mechanisms. As a reverse

experiment, we applied the SSM analysis to genes pre-

viously reported as belonging to the same biological path-

way or co-expressed in the same tissue. We demonstrate

that these genes contain significantly more SSM than

genes chosen in different pathways or tissues, strengthen-

ing the association between SSM and regulatory patterns.

We believe that SSM, as a set of composite conserved

sequences, introduces a new concept in the identification

of genes subject to similar patterns of regulation within a

genome.

Methods
Simple Shared Motifs

Simple Shared Motifs (SSM) are sets of subsequences

identified through a comparative analysis of atomic

motifs from the cisRED database that contains more

than 18,000 single human genes with 12.7 ± 8.9 atomic

motifs per gene and a mean length of 11.7 ± 4.1 nucleo-

tides per atomic motif. For each nucleotide sequence,

we associate extended sequences as a set {w, wc, wr, wrc}

where wc is the complementary sequence of w, wr its

reverse sequence and wrc its reverse complementary

sequence. If d is the standard Hamming distance

between two sequences of same length, the distance

between two extended sequences W and W’ is min(d(w,

w’)) for all w, w’ in W and W’, respectively.

A SSM is a set of extended sequences extracted from

the atomic motifs from of a gene pair (g1,g2) and para-

meterized using two integers (l, d). l is the length of the

extended sequences in the SSM and d is the maximum

distance between two extended sequences. A SSM must

satisfy the three following properties:

1. the SSM contains at least an extended sequence

coming from an atomic motif of g1 and an extended

sequence coming from an atomic motif of g2;

2. the Hamming distance between two extended

sequences of the SSM is at most d;
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3. the set is maximal when these properties are

fulfilled.

The last condition means that it is impossible to add

any more sequences in the set while preserving condi-

tions (1) and (2).

We designed an algorithm to build all (l, d)SSMs for a

gene pair (g1,g2) (Additional file 1). We gather all the

length l subsequences of atomic motifs in g1 and g2. We

associate to each extended subsequence s, the set of

genes G(s) containing s. Given a distance d, we build the

graph where the i nodes are the i extended subsequences

si. An edge between s1 and s2 means that d(s1, s2) ≤ d.

We compute all maximal cliques of the graph and obtain

sets of extended sequences that satisfy properties 2 and

3. We finally discard all sets that do not satisfy property

1, the remaining set of subsequences are (l, d)SSMs. Our

strategy is reminiscent of the one presented in [30].

To take into account the SSM occurrences arising by

chance, we have to consider two factors: first, the number

of subsequences in atomic motifs which increases with

the length of atomic motifs; second, the probability of

finding a subsequence by chance which increases with

the distance parameter. As an example, let us take a

search for (8, d)SSM. A gene g1 has two atomic motifs of

length 9 and 10; the atomic motif of length 9 has two

subsequences of length 8 while the atomic motif of

length 10 has three. A gene g2 with only one atomic

motif of length 10, has three subsequences of length 8.

The total number of potential (8, d)SSM for the gene

pair (g1,g2) is (2 + 3) × 3 = 15 subsequences. Considering

a gene g3 with two atomic motifs of length 8 and 9

respectively, the total number of potential (8, d)SSM for

the gene pair (g2,g3) is 3 × (1 + 2) = 9, or more generally,

the product of the number of possible subsequences of

length l in each gene set of atomic motifs. This suggests

that small changes in the atomic motifs size can induced

a broad variation in the potential number of SSMs. In

order to correct for the influence of this noise in SSM

counts, we use the ratio SSMC = number of SSMs
number of potential SSMs

.

Given a pair of genes g1, g2, both present in the cisRED

database, we define SSMC(g1, g2, l, d) as the corrected

count of (l, d)SSMs for the set of genes and hypothesize

that an exceptionally high value is the mark of common

regulation.

To measure the exceptional nature of the SSMC

obtained for a pair of genes and a SSM type, defined as

any SSM with given l and d parameters, we test the null

hypothesis that the selected pair of genes has a higher

SSMC than expected by chance with a random pair of

genes. To do this, the distribution of SSMC for the

whole set of cisRED genes is estimated through the ana-

lysis of the 50,000 pairs of randomly selected genes.

This estimation is in the form of a cumulative distribu-

tion function which gives directly, for each SSMC value,

the probability of finding an equal or greater SSMC

value. This probability is used as an estimated p-value

for the null hypothesis. A (g1, g2, l, d)SSMC value is

considered exceptional if its estimated p-value is less

than a defined threshold t. To capture the most excep-

tional number of SSMs independently of the length and

edition distance, we introduce cp-values. Given a pair of

genes g1, g2 and a list L of (l, d)SSMs, we define the cp-

value as the lowest p-value among the p-values com-

puted for g1, g2 and each of the (l, d)SSMs. A cp-value is

considered exceptional if its value is less than a defined

threshold t. Thus our method identifies lists of genes

sharing a Combined EXceptional (CEX) number of

SSMs, independently of the SSM type. Given a gene g, a

list L of (l, d) SSMs and a cp-value threshold t, we

define the CEXlist(g, L, t) as a subset of the cisRED

genes. The CEXlist holds every cisRED gene that, paired

with g, shows a cp-value below the defined threshold t.

Functional analysis

To characterize the biological relevance of the CEXlists,

we carried out a functional analysis by using gene anno-

tations including Gene Set Enrichment Analysis (GSEA)

[25,26] and gene expression data. The GSEA method

consists in determining whether a defined set of genes

shows an over-representation of biological annotations or

categories such as Gene Ontologies or KEGG pathways.

To perform this analysis, we used the Category and

GOstats R packages that implement an improved GSEA

[31] and are freely distributed on the Bioconductor pro-

ject web site http://bioconductor.org/. Each gene from a

selected list and the whole set of cisRED human genes

were annotated with their category term and a hypergeo-

metric test was computed to assess whether the number

of selected genes associated with the term was greater

than expected by chance. We defined the following score

to measure the relative importance of gene over-repre-

sentation in biological categories:

cscore =

n∑

i=0

log(
1

pi
− 19)

where pi is the p-value associated with the ith category

among the n over-represented categories found for a list

of genes; 19 is a constant chosen to give a cscore = 0 for

a category with p-value = 0.05 (threshold set of the

hypergeometric test). This allows taking into account

the number of over-represented categories together with

the ranking of this over-representation (i.e., p-value).

We next estimated the cscores null distributions for lists

of different sizes including 100, 500, 1000, 2000 and

3000 genes randomly selected from the cisRED database.
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Figure 1 displays the cscores null distributions and shows

that they approximate a normal law. To assess the

importance of a cscore for a given list, we computed a

standard zscore :

zscore =
cscore − µ

σ

where μ and s are the mean and standard deviation of

the associated distribution, respectively. For a given list,

a null zscore implies that the over-representation of genes

in biological categories equals the average representation

of randomly selected genes, while a zscore ≥ 0 indicates

an increase of gene clustering in categories.

Next, we carried out a comparative analysis between

genes identified by our SSM approach and gene co-

expression. For that purpose we used Gemma, a data-

base containing hundreds of microarray datasets, and

software that uses as input a gene of interest to generate

a list of genes co-expressed in microarray experiments

[27]. To compare CEXlists and Gemma lists, we com-

puted the intersection according to different cp-values.

The number of Gemma genes found in a CEXlist per

gene belonging to the CEXlist is defined as a density:

density =
|G ∩ S|

|S|

where G is the set of genes obtained from Gemma

and S is the set of genes from CEXlist. The significance

of an enrichment in co-expressed genes in CEXlists was

assessed by comparing the counts of Gemma genes per

gene in the CEXlist to the counts of Gemma genes per

gene out of the CEXlist using a standard Fisher test.

Databases and biological resources

CisRED: the cis-REgulatory Database is a database for

conserved regulatory motifs predicted in promoter

regions http://www.cisred.org/. This study focuses on

the atomic motifs extracted from the database, defined

Figure 1 cscore distribution of 200 groups of random gene pairs. Each panel indicates the cscore mean, median, standard deviation (s) and

the minimal and maximal obtained zscores (zmin and zmax).
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as: “a set of sequences, typically with a common length

between 6 and 12 bp, members of which are present in

a sequence region on the target species and in corre-

sponding regions on other genomes” [21]

GO: the Gene Ontology database describes gene pro-

ducts in a species-independent manner by using three

structured controlled vocabularies for biological pro-

cesses, cellular components and molecular functions

http://www.geneontology.org/.

KEGG: the Kyoto Encyclopedia of Genes and Genomes

database is an integrated resource consisting of 16 main

databases that include the KEGG Pathway for Metabolic

and Signaling Pathways and KEGG Brite for Gene Ontol-

ogy http://www.genome.jp/kegg/.

TIGER: the Tissue-specific Gene Expression and Regu-

lation database contains tissue-specific expression pro-

files for 20,000 UniGene genes http://bioinfo.wilmer.jhu.

edu/tiger/.

Gemma: Gemma is a database and software system for

the meta-analysis of gene expression data, it contains

data from hundreds of public microarray data sets http://

www.chibi.ubc.ca/Gemma/.

SSM types: according to the size distribution for clas-

sical regulatory motifs, we selected SSMs with l ranging

form 6 to 14. To avoid alignments due to pure chance,

the editing distance d ranges from 0 to 5 and is no

longer than a third of the SSM size.

Results
From SSMs determination to CEXlists computing

The overall workflow of the SSM based approach is

described in Figure 2. Search for genes sharing similar

motif pattern with a gene g1 consists in counting all (l, d)

SSMs, l ranging from 6 to 14 and d from 0 to 5, in gene

pairs associating g1 with each other gene from the

cisRED database (g2, g3, g4, g5. . . gn). Each (l, d)SSM is

corrected by the number of potential SSMs as described

in methods section (SSMC). Next, in order to evaluate

the effect of atomic motif sizes in the evaluation of the

number of potential SSMs, we computed the distribution

of the number of SSMs for 50,000 pairs of randomly

selected genes, showing that the number of SSMs found

for gene pairs is correlated with the number of potential

SSMs. Representative distribution for (6,0), (8,1), (10,2)

and (14,4) SSM are displayed in Figure 3. These data

demonstrate that the number of SSMs found for gene

pairs is correlated with the number of potential SSMs

thereby requiring a correcting factor leading to the

SSMC. Then, the exceptional nature of each SSMC is

measured by testing the null hypothesis that the selected

gene pairs have a higher SSMC than expected by chance

with random genes (using a SSMC empirical distribution

computed from 50,000 pairs from the cisRED database).

The probability of finding an equal or greater SSMC

value than by chance, is used as an estimated p-value for

the null-hypothesis. Next, the p-values are computed for

each of the (l, d)SSMCs and the cp-value is defined as the

lowest p-value, considered as exceptional if its value is

less than a defined threshold t. Given a gene g1 and a list

L of (l, d)SSMC genes, we finally identify the CEXlist(g1,

L, t) as a subset of the cisRED genes sharing a Combined

EXceptional (CEX) number of SSMs.

To investigate the relevance of CEXlists, we analyzed

31 genes (Table 1), 20 were randomly selected and 11

with known function were arbitrarily chosen and used

as internal control for gene annotation analysis. Each

gene (g1, g2. . . g31) was independently submitted to a

SSM analysis versus all genes from the cisRED database

leading to 31 independent analyses of 18.000 gene pairs.

The 31 CEXlists, obtained with the SSM search, were

independently submitted to both GSEA and Gemma

analysis as described in the following.

SSM patterns identify gene clusters associated with

specific biological categories

To show that the SSM-based approach does indeed select

genes that share putative common regulatory motifs with

a gene of interest, we characterized genes in CEXlists

using biological category annotations (Gene Ontology and

KEGG pathways). Genes involved in the same biological

process have a greater likelihood of being coordinately

expressed, thereby potentially sharing co-regulation pat-

terns. For this purpose, we investigated the over-represen-

tation of specific categories in CEXlists compared with

random lists of gene. Briefly, CEXlists were computed for

a test set of 31 genes (Table 1) and the 31 lists were

further subjected to gene-set enrichment analysis. p-values

for over-represented categories in CEXlists were com-

puted to define the cscores that measures the relative impor-

tance of gene clustering in over-represented categories.

Finally, zscores were calculated to compare the cscores
obtained from different CEXlists with the distribution of

randomly selected genes. As shown in Figure 4, the zscores
varied according to the thresholds of defined sizes of CEX-

list. Note that the number of CEXlists with a significant

zscores strongly increased with the size of the tested lists

including 3, 6, 11 and 13 CEXlists for lists of 500, 1000,

2000 and 3000 genes, respectively. This observation could

be related to the nature of the cscores. Indeed, the cscores
depends on both the p-value of over-represented cate-

gories and the number of categories which affects the

number of terms in the sum
n∑

i=1

log(
1

pi
− 19). For small

lists of genes, the number of over-represented categories is

low and variation in the number of categories might affect

the cscores, introducing some noise. Interestingly, we
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observed that CEXlists with low cp-value threshold

showed higher zscores, suggesting that the cp-value thresh-

old used for generating CEXlists is more relevant than the

fixed CEXlist size (Figure 4). In addition, CEXlists which

showed significant variation when compared to random

lists were CEXlists obtained from genes characterized

by specific regulatory profiles, e.g. genes expressed in

differentiated tissue or highly induced by microenviron-

ment stimulation (including the CEXlists obtained from

ALB, ADAM12, SPG7 and C9orf3). We expect that genes

with such specific expression should be characterized by

the presence of strong specific regulatory motifs (such as

the binding site for MyoD in all muscle-specific genes). In

contrast, constitutively expressed housekeeping genes that
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show low regulatory patterns should exhibit weak signa-

tures that are not considered significant by the SSM

approach. In order to validate this hypothesis, a larger set

of genes needs to be tested, however, out of the test set,

our results assigned high scores to ALB (albumin), a mar-

ker for differentiated hepatocytes, and ADAM12, specific

for the differentiation of mesenchymal cells (Figure 4,

lower panel). Although ubiquitously expressed SPG7, a

mitochondrial protease that belongs to the m-AAA pro-

tease family but displays specific substrates that affect

mitochondrial biogenesis in a tissue-specific manner, was

also selected. So was C9orf3 (aminopeptidase O), which

has been described as playing a role in the proteolytic pro-

cessing of bioactive peptides in specific tissues such as tes-

tis and heart. Genes with low z-scores included genes of

unknown function such as TRIM61 (Putative tripartite

motif-containing protein 61) or ubiquitously expressed

genes such as SLC9A3R2, which encodes a scaffold pro-

tein that connects plasma membrane proteins with mem-

bers of the ezrin/moesin/radixin family (Figure 4, lower

panel).

In support of these findings, we show that the over-

represented biological categories associated with a CEX-

list indeed matches the functional specificity of the gene

considered. For example the categories associated with

the olfactory receptor OR51Q1 are olfactory receptor

activity and sensory perception of smell (Table 2). Simi-

larly overrepresented GO categories for MYOG, the

muscle-specific transcription factor involved in myoblast

differentiation, are skeletal muscle fiber development and

myoblast migration. Finally, we focused on ADAM12, a

transmembrane disintegrin and metalloproteinase

involved in differentiation of mesenchymal cells, cell

adhesion and growth-factor signaling [32,33]. Over-

represented biological categories in the corresponding

CEXlist matched known ADAM12 functions, including

intracellular, intracellular signaling cascade, fibroblast

growth factor activity, focal adhesion (Table 2). Notably,

we also identified the over-represented biological cate-

gory positive regulation of neurogenesis, suggesting that

ADAM12 might be co-regulated with genes involved in

neuronal processes. In agreement with this observation,

several neuronal markers were recently described in the

hepatic stellate cells that are also the major source of

ADAM12 in the liver [34].

Taken together, our data clearly demonstrate that the

SSM approach identifies lists of genes, which are signifi-

cantly more closely associated within given biological

Figure 3 Analysis of the correlation between the number of SSMs and the number of potential SSMs. SSMs were identified for 50,000

pairs of randomly selected genes. Results are presented for 4 SSM types: (6,0)SSM; (8,1)SSM; (10,2)SSM and (14,4)SSM.
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processes than randomly selected lists of gene. In addi-

tion, the over-represented categories verify known func-

tion of the genes and also allow the prediction of new

ones. Finally theses results suggest that SSMs select

genes that share similar regulatory patterns.

Co-expression is a significant feature of genes identified

by the SSM approach

Co-expression criteria, widely used to search for common

regulatory elements among genes and high throughput

transcriptome data, now provides an important biological

resource. Although gene co-expression does not imply

similar regulation, especially when tissue transcriptomes

are investigated, we hypothesized that genes selected in

CEXlists might be co-transcribed in specific biological

contexts. We took advantage of Gemma, a database and

software suite for the meta-analysis of gene expression

data. Gemma contains 1474 array experiments, including

584 human data sets, which we screened with genes from

our test set (Table 1). We compared the genes obtained

from SSM analysis (CEXlists) to those obtained from

Gemma analysis (co-expressed genes). Briefly, each gene

from the test set was used as input for both SSM analyses

and Gemma (co-expression search, the scope was set to

all human and the stringency to 3, results were limited to

500 genes containing in priority genes more often

observed co-expressed with the gene of interest), note

that, at the time the analysis was performed, Gemma

contained data for 25 genes of the 31 genes test set. The

overlap between genes issued from Gemma and SSM

analyses was expressed as a density value, the number of

Gemma genes per gene belonging to the CEXlist. As

shown in Figure 5, density was clearly correlated with the

cp-value threshold. This suggests that genes sharing high

Table 1 CEXlist test set

GENE SYMBOL DESCRIPTION

APLP1 Amyloid beta (A4) precursor-like protein 1

C6orf62 HBV X-transactivated gene 12 protein

C9orf3 aminopeptidase O

CLK3 CDC-like kinase 3

DEFA3 Defensin, alpha 3, neutrophil-specific

DUSP12 Dual specificity phosphatase 12

EEF1D Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)

FSHR Follicle stimulating hormone receptor

MNT MAX binding protein

MRGPRF MAS-related GPR, member F

SH3D19 SH3 domain protein D19

TRIM61 Putative tripartite motif-containing protein 61

C1orf216 chromosome 1 open reading frame 216

C2orf67 chromosome 2 open reading frame 67

OR51Q1 Olfactory receptor, family 51, subfamily Q, member 1

CCDC64B Coiled-coil domain-containing protein 64B

SLC9A3R2 solute carrier family 9 isoform 3 regulator 2

SPG7 Spastic paraplegia protein 7

WISP2 WNT1 inducible signaling pathway protein 2

SNRPD2 Small nuclear ribonucleoprotein Sm D2 (snRNP core protein D2) (Sm-D2)

ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha)

SMAD2 SMAD family member 2

SMAD3 SMAD family member 3

AURKA Aurora kinase A

AURKB Aurora kinase B

AURKC Aurora kinase C

ACTA1 Actin, alpha 1, skeletal muscle

ALB Albumin

ALDOA aldolase A, fructose-bisphosphate

DES Desmin

LRRTM1 Leucine rich repeat transmembrane neuronal 1

Twenty genes (lane 1 to 20) were randomly selected from the cisRED database. Eleven genes (lane 21 to 31) with known functions were arbitrarily added to

complete the random selection and used as internal controls for gene annotation analyses.
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numbers of SSMs with another gene are significantly

more often co-expressed with this gene than genes shar-

ing lower numbers of SSMs. Finally, we used Fisher tests

to compare Gemma genes among genes in CEXlists (cp-

value <t) to Gemma genes among genes out of CEXlists

(cp-value >t). This comparative analysis was performed

using 25 genes and 4 cp-value thresholds leading to 100

samples. 61 samples show an enrichment of co-expressed

genes in CEXlists, Fisher tests identified 29 significant

cases (p-value < 0.05) - and one significant decrease.

Results are presented in Table 3. This analysis lends

further support to our conclusion that CEXlists are

enriched in co-expressed genes.

Genes involved in a same biological process or over-

expressed in a same tissue show higher SSM numbers

To confirm that SSM analyses capture regulatory motif

patterns, we compared the SSM number for genes either

involved in the same biological pathway or over-expressed

in the same tissue, two conditions that have been suggested

cp-value threshold cp-value threshold

cp-value threshold

C9orf3

ALB

SPG7

ADAM12

SH3D19

SLC9A3R2

C1orf216

TRIM61

EEF1D

SMAD2

MNT

OR51Q1

CCDC64B

DUSP12

C6orf62

XP_061427.1

APLP1

CLK3

SMAD3

AURKB

ALDOA

MRGPRF

AURKC

DEFA3

ACTA1

Q658L9

DES AURKA

WISP2

LRRTM1

FSHR

cp-value threshold cp-value threshold

Figure 4 Variation of the zscore as a function of the cp-value threshold for various CEXlist sizes. SSM analysis was applied to genes from

the test set and non-specific variations were calculated for 200 random gene lists (green area).
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to implicate putative co-regulatory processes. For this pur-

pose, we selected 2539 genes distributed in 162 different

human pathways from the KEGG database and 1228 genes

specifically expressed in 28 different tissues from the

TIGER database.

We hypothesized that genes implicated in the same

pathway or over-expressed in the same tissue may share

more common regulatory mechanisms than random

genes. To test this, we extensively computed the most

exceptional number of SSMs (cp-value) for every pair of

genes involved in the same pathway or tissue. These

results were then compared to the cp-values computed

for a sample of randomly selected pairs of genes

extracted from different pathways or tissues. The sam-

ples contained 70,000 and 100,000 pairs of genes for the

KEGG and TIGER databases, respectively.

As shown in Table 4, the number of pairs with an

exceptional SSM number was significantly higher

between pairs of genes involved in the same biological

pathway or expressed in the same tissue than in differ-

ent ones. It is important to note that the increase in cp-

value threshold stringency was associated with an

increase in enrichment of gene pairs selected within a

biological process (KEGG) or tissue (TIGER), with a

maximum of a 3.484-fold increase for cp-value = 10e-5.

Among tissues, placenta had the highest SSM-based

pairs of genes, including PSG1/PSG6, PSG1/PSG11,

PSG1/PSG8, PSG1/PSG9 and PSG8/PSG9 pairs, which

showed highly significant cp-values (< 8.10-5). It is of

interest to note that the common regulation between

members of PSG family genes has been suggested to be

related to chromatin structure [35], suggesting that epi-

genetic markers might be also detected by the SSM

approach. Taken together, our data show that genes

Table 2 Representative categories

CATEGORY p-value

OR51Q1

olfactory receptor activity (MF) 5.7 × 10-10

sensory preception of smell (BP) 2.4 × 10-10

MYOG

skeletal muscle fiber development (BP) 3.8 × 10-3

myoblast migration (BP) 4.8 × 10-3

ADAM12

fibroblast growth factor activity (MF) 1.2 × 10-3

intracellular signaling cascade (BP) 1.8 × 10-3

intracellular (CC) 1.7 × 10-7

focal adhesion (K) 6.1 × 10-3

positive regulation of neurogenesis (BP) 2.5 × 10-4

Representative categories in CEXlists from OR51Q1, MYOG and ADAM12. MF,

Molecular Function; BP, Biological Process; CC, Cellular Component and K,

KEGG pathways.

Figure 5 Association between SSM enrichment and co-

expression. Genes (circles) from the sample set were submitted to

both SSM and Gemma analyses and the overlap between genes

was expressed as a density value (number of Gemma genes per

gene in CEXlist) according to different cp-value thresholds. Circle

size is correlated with the number of genes in CEXlists.

Table 3 Comparison between co-expressed genes and

not co-expressed genes in CEXlists

cp-value threshold 0.05 0.01 0.005 0.001

ACTA1 1.601 1.168 1.187 2.215

DES 1.366* 1.285 0.659 0.000

SPG7_HUMAN 2.078* 1.957* 1.846* 2.078*

SMAD2 1.877* 1.414* 1.297 1.361

SMAD3 1.363* 1.354 1.206 0.000

ADAM12 0.803 0.965 1.003 0.777

C9orf3 1.662* 1.400* 1.443* 1.381

APLP1 0.879 1.228 1.380 0.525

WISP2 1.311 0.559 0.000 0.000

SLC9A3R2 1.079 1.083 1.380 2.673

MNT 1.789* 1.893* 1.426 0.855

ALDOA_HUMAN 1.008 0.986 0.759 0.000

DEFA3 0.974 1.576 0.000 0.000

AURKA 1.274 1.247 0.687 1.145

AURKB 1.999* 2.263* 2.249* 2.353*

FSHR 0.000 0.000 0.000 0.000

LRRTM1 0.871 0.000 0.000 0.000

AURKC_HUMAN 0.556* 0.515 1.180 0.000

MRGPRF 1.559 1.697 1.300 0.000

Q658L9_HUMAN 0.000 0.000 0.000 0.000

DUSP12 1.446* 2.139* 1.555 1.993

EEF1D 1.649* 1.515* 1.634* 1.348

ALB 1.953* 1.877* 1.769* 0.972

C6orf62 1.930* 1.756* 1.926* 1.626

CLK3 0.759* 0.970 0.558 1.953

For four cp-value thresholds, t, the table compares Gemma genes present in

CEXlists (cp-value <t) and Gemma genes not present in CEXlists (cp-value >t).

For genes present or not in CEXlists, the ratio of genes in Gemma per gene is

computed. The final value in the Table is the ratio of the result obtained for a

CEXlist and the genes out of it. Thus, a value above one indicates an

enrichment of co-expressed genes in a CEXlist. Fisher tests were used to

compare the distribution of Gemma genes in and out of CEXlists, a “*”

indicates a distribution significantly different (p < 0.05).
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associated with the same biological process or expressed

in the same tissue share more SSMs than random genes,

thereby serving as a useful and novel marker for com-

mon regulatory mechanisms.

Discussion
Many methods have been developed to identify cis-regula-

tory elements and the recent integration of both phyloge-

netic footprinting and co-expression data demonstrably

enriches the predictive function of these methods. How-

ever, our understanding of the regulation of gene expres-

sion is far from complete and the discovery of functionally

important sequence modules remains a difficult task. To

improve on these in silico investigative methods, instead of

searching for putative regulatory motifs [36-38], we

searched for genes which share common sequence profiles

in promoter regions, without a priori information about

sequence motifs per se. In agreement with our approach,

others have shown that regulatory signals are supported by

the involvement of combinatorial interactions between

transcription factors that function as cis-regulatory modules

with complex signatures [39] and dynamics [40]. We based

our method on previously computed conserved sequences,

using the atomic motifs from the cisRED human database.

Other methods can be used to identify conserved sequences

such as the global multiple alignment [41] and Footprinter

approaches [42]. Note that conserved upstream sequences

from the CORG database [43] have been previously used to

search for short regulatory motifs [44]. However, CORG

only includes orthologous genes from the human and

mouse genomes and the authors further reduced their

benchmark by adding filters based on common Gene

Ontology and Gene Expression. In the present study, our

analysis was conducted on more than 18,000 conserved

sequences across 40 species and all pairs of genes implicat-

ing a gene of interest were exhaustively investigated.

The performance of the SSM approach to uncover

gene expression regulation signatures is demonstrated

by the SSM enrichment of genes co-expressed in similar

tissues (TIGER) or biological pathway (KEGG). An ori-

ginality of the method is the creation of CEXlists which

are lists of genes predicted to be co-regulated with a

gene of interest. We demonstrated that the genes

obtained in a CEXlists for a gene g, show clustering in

biological categories related to the function of g and are

significantly more co-expressed with g than randomly

selected genes.

It is important to note that although we have shown

the SSM approach was able to uncover regulatory signals,

the fuzzy nature of SSM makes difficult to relate specific

results to previously described regulatory signals such as

TFBS. This is especially true when the result is obtained

with short and degenerated SSM (in the case of (6, 2)

SSM for instance).

During last years, numerous integrative approaches

that search for regulatory elements have been developed

by incorporating co-expression datasets and/or ontology

annotation within an unique algorithm to improve the

discovery of regulatory modules in various organisms

such as archeae [45], bacteria [46], yeast [47] and human

[48,49].

Overall these approaches are thought to be promising,

computational predictions are still mainly based on geno-

mic sequences [50]. However, one criticism that can be

formulated regarding current sequence-based methods

(including ours) is that they do not yet take into account

the microenvironmental regulatory context, including epi-

genetic factors and the dynamics of transcription factor

binding, although these sequences necessarily share regu-

latory signals. Such epigenetic signals might be captured

using fuzzy sequence based method such as SSM. Never-

theless, integration of additional biological information

linked to gene regulation, including methylation and chro-

matin remodeling might improve cis-regulatory patterns

discovery in the future.

Conclusions
The coordinated transcriptional regulation of gene expres-

sion is essential for cells to respond to their environment

and mediate complex processes including proliferation, dif-

ferentiation and death. Binding of transcription factors to

cognate DNA binding sites within promoters of genes can

account for their expression and numerous methods have

been developed to identify or predict transcription-factor

binding sites. However, data derived from genome-wide

sequencing, high-throughput analyses of DNA-protein

interactions and integration of epigenetic signaling necessa-

rily lead to a much more intricate view of the mechanisms

that account for the regulated expression of gene networks.

Accordingly, a major challenge lies in the development of

new computational approaches that successfully extract

from DNA sequence alone gene expression signatures

Table 4 Comparative analysis of SSM counts with TIGER

and KEGG databases

Threshold KEGG TIGER

0.01 1.081* 1.117*

0.005 1.087* 1.134*

0.001 1.094* 1.115

0.0001 1.197 1.234

0.00001 1.404 3.484*

Analysis of SSM count for genes expressed within specific tissues (TIGER

database) or pathways (KEGG database). According to different thresholds, the

number of gene pairs with an exceptional SSM count divided by total gene

pairs was computed for genes either associated or not associated, within the

same tissue or pathway. Data are expressed as a ratio between these two

values, a ratio superior to 1 indicating an enrichment of gene pairs with an

exceptional SSM number when genes are expressed in a same tissue or

pathway(*, p ≤ 0.05)
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characteristic of ensembles of co-regulated or co-expressed

genes. The new approach we describe clusters genes from

whole-genome sequences according to a broad range of

degenerate shared short sequence motifs. This successfully

selects for genes that are highly enriched for sets associated

with given biological processes or found to be significantly

more frequently co-expressed in the same tissues. The

computational identification of genes that possess such

functional signatures should prove useful to decipher the

multi-layered patterns of co-regulated gene expression that

form the basis for complex biological pathways.

Additional material

Additional file 1: Diagram of the algorithm leading to the

construction of a set of (l, d)SSM for a pair of genes. A)

Representation of the atomic motifs for 2 genes (gray). Gene 1 and Gene

2 have 3 and 2 atomic motifs, respectively. The colored areas stress some

subsequences of length l of the atomic motifs used as examples in the

following panels, matching colors indicate matching extended

sequences. In the first step of the algorithm, a sliding window of length l

travels through the sequence of all atomic motifs, analyzing all

overlapping subsequences. B) Subsequences drawn from the first step of

the algorithm are stored in PreSSM structures. 2 subsequences having

matching extended sequence are stored in the same PreSSM (i.e. PreSSM

2). PreSSMs store the identifier of the genes the subsequences were

drawn from. C) A graph is created whose nodes are PreSSMs and

vertices between 2 nodes indicate a Hamming distance ≤ d between the

extended sequence of 2 PreSSMs. Maximal cliques of the graph are

computed. D) Maximal cliques whose PreSSMs contain subsequences

from genes 1 and 2 are (l, d)SSM. In the diagram example, 2 SSMs are

found.
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