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[1] Surface displacements solutions of elastic deformation around an inflating magma chamber generally
assume that the associated internal overpressure is limited by the bedrock tensile strength. When consider-
ing stress equilibrium in the bedrock adjacent to a spherical or infinitely long cylinder, the gravity body
force actually resists tensile failure, thus leading to a much larger pressure threshold. And when considering
a Coulomb failure criterion, analytical and numerical models predict that shear failure develops instead of
tensile failure. Here, three numerical codes are used to compare elasto-plastic solutions of surface displace-
ments and patterns of failure in plane-strain. Shear failure propagates independently from the surface down-
ward, then from the chamber walls upwards, and finally the two plasticized domains connect. Another test
with internal underpressure (simulating source deflation) fits standard solutions from tunneling engineering.
The effect of pore fluid pressures is also explored. In case of lithostatic fluid pore pressure in the bedrock,
the gravity effect cancels out, and tensile failure is enabled for an overpressure close to the tensile strength.
Coupled hydromechanical models in undrained conditions indicate that the initial bedrock porosity modi-
fies the evolution of fluid pressure, volumetric strain and effective normal stress, and consequently also
the pressure threshold for the onset of failure. We show that a bedrock of low porosity is more prone to fail
than a bedrock of high porosity. In summary, our elasto-plastic and hydromechanical models illustrate the
contexts for either tensile or shear failure around magmatic bodies, at the same time complementing and
delimiting predictions deduced from elasticity.
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1. Introduction

[2] Elastic deformation and failure resulting from
an inflating magma chamber have been among the
first analytical developments applied to geological

observations [Anderson, 1936]. While a variety of
magma sources shapes are considered when
studying deformation associated to volcanism (e.g.,
see review by Segall [2009]), the heterogeneity
of the medium, densities, thermal and viscous
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properties are also well-known first order factors
[e.g., Tait et al., 1989; Dragoni and Magnanensi,
1989; Parfitt et al., 1993; Sartoris et al., 1990;
Trasatti et al., 2005;Gudmundsson, 2006;Masterlark,
2007; Bonafede and Ferrari, 2009; Long and
Grosfils, 2009; Karlstrom et al., 2010]. However,
a first reference approach consists in considering
an idealized circular or spherical cavity, submitted
to uniform internal pressure in a homogeneous
isotropic elastic half-space. Analytical solutions of
this problem in two-dimensions (2D plane-strain)
had been calculated in the 1920s by Jeffery [1921],
who provided the stress distribution at the bound-
aries of a cavity and the free surface above it. This
solution has been used to study dike intrusions
around cylindrical magmatic chambers [e.g.,
Gudmundsson, 1988, 2006], or the influence of a
volcanic edifice on conditions for eruption [e.g.,
Pinel and Jaupart, 2005]. The three-dimensional
(3D) solution derived by Mogi [1958] for a pres-
sure point source, further generalized by McTigue
[1987], is also very much used today to evaluate
changes in shape of active volcanic sources [e.g.,
Battaglia et al., 2003; Bonaccorso et al., 2005;
Pritchard and Simons, 2004; Masterlark, 2007;
Segall, 2009].

[3] Two conceptual approaches exist when con-
sidering how failure initiates from magmatic
reservoirs. A first popular view, resulting from the
view-point that small magma-filled cracks pre-exist
at the contact between the chamber and the bedrock
[e.g., Lister and Kerr, 1991; McLeod and Tait,
1999] (see review by Rubin [1995]), assumes that
failure initiates as soon as the internal pressure
reaches a value of the order of the bedrocks’ tensile
strength [e.g., Tait et al., 1989; Gudmundsson et al.,
2002; Gudmundsson, 2006; Pinel and Jaupart,
2005]. The other view considers that such pre-
existing magma-filled cracks are not significant
(for example, they freeze before being able to
propagate), and in this case bedrock failure at the
chamber’s wall becomes dependent on the gravity
body force [e.g., Sammis and Julian, 1987;Grosfils,
2007]. In section 2 we briefly review previous
studies, emphasizing the latter approach which is
the one that we develop here. We recall how
Grosfils [2007] argued that for tensile failure to
occur at a chamber’s wall, the hoop stress must
account for the lithostatic stress component, thus
leading to a critical overpressure an order of mag-
nitude greater than the tensile strength. Gerbault
[2012] showed with two-dimensional (2D) analyti-
cal and numerical models that when accounting for
gravity and a depth-dependent failure criterion,

failure initiates in mode II at the chamber wall
instead of in mode I.

[4] Section 3 of our study completes Gerbault’s
[2012] study with more detailed numerical bench-
marks of the surface displacements and patterns of
localized deformation produced around an infi-
nitely long inflating cylinder. We show when
departure from elastic solutions occur, i.e., when
the plasticized (i.e., fractured) domain connects the
chamber and the ground surface. Because the
problem is formulated in a way very similar to
studies seeking for the critical support pressures
around tunnels, we also display a case of internal
deflation. The results are compared with standard
fault pattern predictions from tunneling engineering
[d’Escatha and Mandel, 1974]. In section 4, we
employ hydromechanical simulations to analyze
the effect of fluid pressure in pores on the initiation
of shear failure. We demonstrate the sensitivity of
failure to initial bedrock porosity. Acknowledging
the limitations of our theoretical approach to real
processes, we conclude with a discussion of the
possible contexts for either tensile or shear failure
initiating around magmatic chambers and on the
perspectives to improve our understanding of this
process in nature.

2. Analytical Solutions of Displacements
Produced by Internal Overpressure

[5] In the quest for determining the state of internal
pressure that triggers the onset and propagation of
failure around an overpressurized magmatic source,
we shall consider the simplest idealized shapes of
either spherical (3D) or circular (2D) sources in a
homogeneous half-space. These assumptions coin-
cide with those of many previous studies, thus
allowing a direct comparison. The relevance of
accounting for changes in volume [e.g., Johnson
et al., 2000; Rivalta and Segall, 2008] instead of
a homogeneous internal overpressure is also
beyond the scope of this paper. In this brief review,
we shall first provide an explicit solution for sur-
face displacements in plane-strain condition. This
solution had not been published before (to our
knowledge), and it is useful to compare it with the
well-known 3D solution from Mogi [1958]. After
briefly summarizing the existing predictions of
tensile failure out of a magmatic chamber, we recall
Gerbault’s [2012] demonstration of the occurrence
of shear failure instead of tensile failure when
gravity is accounted for. Finally we cite previous
studies which for various practical reasons, have not
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sought to specify the state of overpressure associ-
ated to modeled failure patterns.

2.1. Analytical Expressions of the Hoop
Stress and Surface Displacements

[6] When seeking for an analytical solution of the
displacements at the surface of an overpressurized
magmatic inclusion, Mogi [1958] provided a rea-
sonable first order approximation for a deep point
source satisfying H ≫ R (in 3D). R being the cavity
radius and H the depth to its center, m the bedrock’s
shear modulus (Poisson’s coefficient is equal to
0.25) and x the horizontal coordinate, the solution is

Ux ¼ 3 ⋅DP

4m
⋅

R3 ⋅ x
ðx2 þ H2Þ3=2

; Uy ¼ 3 ⋅DP

4m
⋅

R3 ⋅H
ðx2 þ H2Þ3=2

:

ð1Þ

This approximation was then developed and gen-
eralized to shallow sources by McTigue [1987].

[7] In two-dimensions in turn, while the stress field
produced by a pressurized circular cavity was
solved exactly by Jeffery [1921] in bipolar coordi-
nates, not the displacements. The hoop stress at the

chamber wall is expressed according to a free sur-
face factor C, expressed either with R and H, or
with the angle a between the vertical axis of sym-
metry and the line joining the surface origin Xo to a
point on the chamber wall [Jeffery, 1921] (Figure 1a):
C = 1 + 2 tan2 a. As mentioned by Jeffery [1921],
failure should initiate either at the free surface or at
the cavity walls, depending on the shape ratio R/H.
It should initiate at the wall where the hoop stress
sqq is maximum, sm = �DP ⋅ (H2 + R2)/(H2 � R2),
corresponding to sin am = R/H. These stress solu-
tions are still applied today to a variety of magmatic
sources that present an elongated shape in one
horizontal direction [e.g., Gudmundsson, 1988,
2006; Pinel and Jaupart, 2003, 2005; Gray and
Monaghan, 2004].

[8] In two-dimensions, the exact analytical solu-
tions of the surface displacements appear not to
have been published, and therefore we display them
here. They are obtained here from the general
expressions derived by Verruijt [1998], who used
complex variables with a conformal mapping onto
a circular ring. Variable a is defined by R/H =
2a/(1 + a2), and the coordinate system is referred

Figure 1. (a) Parametric definition of the problem. Grey values are those used by Grosfils [2007]. Top lines are
typical shapes of displacements at the surface. (b) Plot of critical overpressure to initiate either tensile or shear failure
around a chamber at depth h from its crest (modified from Gerbault [2012]).
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by z = x + iy. Additional variables are defined: g =
(1 � a2)/(1 + a2), and z such that z = �i ⋅ H ⋅ g2 ⋅
(1 + z)/(1 � z). The displacements at the surface
y = 0 are expressed in terms of a stress function
8(z) of z: Ux + iUy = 2/m ⋅ (1 � n) ⋅ 8(z).

[9] Verruijt [1998] provided the function corre-
sponding to a uniform radial stress P acting on a
cavity boundary of radius R and depth H: F(z) =
2i ⋅ DP ⋅ [�(1 + a2) + z + a2/z].

[10] The vertical and horizontal displacements are
thus deduced (for an infinitely long cylinder):

Ux ¼ ℜðFÞ
2m

¼ 3⋅DP

4m
⋅
H⋅ðx2 þ H2Þ
x2 þ g2⋅H2 ;

Uy ¼ FðFÞ
2m

¼ 3⋅DP

2m
⋅
x⋅H⋅ðx2 þ H2Þ
x2 þ g2⋅H2 :

ð2Þ

In section 3.3 analytical and numerical solutions of
equations (1) and (2) are compared, illustrating the
significant different magnitudes that result from
either a two-dimensional (infinitely long) or a three
dimensional spherical chamber.

2.2. Predictions of Critical Internal
Overpressure to Initiate Tensile Failure

[11] Many authors assume that the same tensile
failure criterion applies to the Earth’s surface and
the chamber walls, that is when the deviatoric stress
(sk = (s1 � s3)/2) exceeds the rocks tensile strength,
T [e.g., Tait et al., 1989; Pinel and Jaupart, 2003,
2005; Gudmundsson, 1988; Gudmundsson et al.,
1997]. With this criterion: at the surface, failure is
predicted to occur when the internal overpressure
reaches the critical value

DPs ¼ T⋅ðH2 � R2Þ=ð2R2Þ; ð3Þ

and at the chamber wall, tensile failure is predicted
to occur for the critical internal overpressure

DPT ¼ T⋅ðH2 � R2Þ=H2: ð4Þ

This last assumption is justified by the point of
view that failure originates from the opening of
small pre-existing cracks filled with over-
pressurized magma at the walls of the reservoir
[e.g., Lister and Kerr, 1991; Rubin, 1993, 1995;
McLeod and Tait, 1999; Fialko et al., 2001]. The
tensile failure condition of equation (4) results
from the balance between the internal pressure (let
us take the simplest case, DP � rgy) and the
external stress (most simply s3 = �rgy) acting
normal to the crack’s wall, and requiring to attain
the bedrock’s tensile strength, T. Thus, predicted

values of the magmatic internal overpressure DPT

are bounded by T, typically ranging between
�6 MPa [Gudmundsson et al., 2002] and 20 MPa
[Pinel and Jaupart, 2003].

[12] However, for the above condition to be valid,
adequate physical conditions must be satisfied at
the chamber wall, including that magmatic over-
pressure (DP) is appropriately distributed within a
sufficiently large pre-opened crack oriented per-
pendicular to the chamber wall [e.g., Sammis and
Julian, 1987]. Critical conditions on local geome-
tries, input pressures and thermally dependent
rheologies must be satisfied so that neither does the
magmatic source consume the incipient dike, nor
does the dike freeze [e.g., Rubin, 1993, 1995;
Karlstrom et al., 2010, and references therein].

[13] When one starts to consider a situation in
which pre-existing incipient dikes may freeze
before propagating over significant distances, the
stress balance at the chamber wall must rather be
written over an elementary volume of bedrock in
which a new fracture will nucleate. Along this line
of reasoning, Grosfils [2007] demonstrated that in
order to evaluate the conditions for tensile failure in
the bedrock adjacent to the walls of a spherical
chamber, gravity must be accounted for in the stress
balance. In his reasoning, Grosfils [2007] argued
that on an elementary volume across the chambers
wall, tensile failure should occur when the normal
stress, which is the hoop stress sqq, exceeds not
only the tensile strength of rocks (T), but also the
wall-parallel component of the lithostatic stress (of
the form�rgy for negative depth y). His expression
of the overpressure DPTG associated to wall failure
then becomes

DPTG ¼ 2=C⋅ðT� rgyÞ; ð5Þ

with C the free surface factor as defined above by
Jeffery [1921]. This prediction of minimum over-
pressure DPTG for bedrock wall failure produces
values about 2 times greater than the lithostatic
stress [Grosfils, 2007], and contrasts with the clas-
sical prediction given in equation (4), stating that
failure is bounded by T < 20 MPa (Figure 1b).

2.3. Conditions for Shear Failure
When Accounting for Gravity

[14] In continuation of the previous line of reason-
ing, in which the bedrock adjacent to the magmatic
chamber remains preserved and sufficiently intact,
we recall here how shear failure would rather occur
prior to tensile failure [Gerbault, 2012]. The
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Coulomb criterion of failure relating the tangential
and normal stresses via the bedrock friction angle 8
and cohesion So, can be written in terms of the
mean stress (P = (s1 + s3)/2) and the deviatoric
shear stress (sk = (s1 � s3)/2):

ts ¼ So � tan 8⋅sn; ts ¼ sk cos 8; sn ¼ �P þ sk sin 8:

ð6Þ

Without gravity, the minimum and maximum
principal stress components at the chamber’s wall
are of opposite sign (s1 = �s3), so that P = 0. The
second invariant of the stress field differs for an
infinitely long chamber (plane-strain or 2D) and a
spherical chamber (axisymmetry or 3D) with either
sk = DPMC in the former case, and sk = DPMC /2 in
the latter case [Timoshenko and Goodier, 1970].

[15] When adding gravity, the pressure at the
chamber wall may be assumed to coincide with that
of the medium at gravitational equilibirum, so that
P = �rgy (at negative depth y). This value and
the free-surface condition s1 = �C ⋅ s3 [e.g.,
Gudmundsson, 1988] are inserted into equation (6).
When defining To = So/tan 8, the critical overpres-
sure required for shear failure is obtained. For an
infinitely long chamber [Gerbault, 2012]

DPMCS ¼ 2 sin 8⋅
�rgyþ To

1þ sin 8þ C⋅ð1� sin 8Þ : ð7Þ

For a spherical chamber (in 3D), this critical over-
pressure is basically multiplied by a factor 2. For
any given values of H and R, comparison of
equations (4), (5) and (7) show that the critical
overpressure for shear failure is smaller than that for
tensile failure when gravity is accounted for (details
in the work ofGerbault [2012] (Figure 1b)). In other
words, the bedrock adjacent to an inflating mag-
matic chamber is predicted to yield by shear failure
(mode II) rather than by tensile failure (mode I).

2.4. Overpressure in Other Modeling
Studies

[16] For the “dike-propagation-from-a-pre-existing-
magma-filled-crack” condition to be valid, ade-
quate physical conditions must be satisfied at the
chamber wall, including that magmatic overpres-
sure is appropriately distributed within a pre-
opened thin crack oriented perpendicular to the
chamber wall [e.g., Sammis and Julian, 1987].
Critical conditions on local geometries, input pres-
sures and thermally dependent rheologies must be
satisfied so that neither does the magmatic source
consume the incipient dike, nor does the dike freeze

[e.g., Rubin, 1993, 1995; Karlstrom et al., 2010,
and references therein]. Dieterich and Decker
[1975] examined the effect of source geometries
such as point sources, spheres, circular sills and
pill-shapes on surface displacements. The fact that
variable geometries of magmatic sources are used
in specific field studies indicates that the initial
appropriate conditions for dike propagation are not
always easily achieved. Thus we believe that the
standard approach that consists in using equation (2)
cannot be systematically used as a condition for
failure around magmatic chambers.

[17] Considering now the other view-point of fail-
ure nucleation adjacent to a circular (or spherical)
magmatic chamber, very few of the many analog
and numerical models have actually addressed
quantitatively the link between the state of internal
overpressure and the failure (plasticized) domain.
There are several methodological reasons to this.
First, analog models have difficulties in dealing
with the quantification of stresses (e.g., Roche and
Druitt [2001]; see reviews by Acocella [2007] and
Marti et al. [2008]). Then, numerical models
accounting for elasticity (or visco-elasticity) alone,
assume a priori that failure occurs at locations where
the rocks tensile strength is exceeded and exclude
self-consistent plasticity [e.g., Sartoris et al., 1990;
Gudmundsson, 1988, 2006; Gudmundsson et al.,
1997, 2002; Pinel and Jaupart, 2005; Masterlark,
2007; Bonafede and Ferrari, 2009]. Therefore
these models cannot address when exactly failure
initiates with respect to the level of internal mag-
matic overpressure. Other models that incorporate
self-consistent elasto-plasticity, apply a dilational
deformation instead of an internal overpressure
[Chéry et al., 1991; Kusumoto and Takemura, 2003;
Hardy, 2008]. Among those that have quantified
internal overpressures:

[18] 1. Chéry et al. [1991] measured in their elasto-
visco-plastic numerical models an overpressure of
30 to 60 MPa, in a chamber located at 10 km depth
and for a state of hydrostatic pore fluid pressure in
the bedrock. Whereas brittle shear deformation was
shown to develop around the chamber, the rela-
tively poor resolution of these models could not
reproduce precise patterns of failure.

[19] 2. Models of magmatic chambers with sharp
edges produce failure more easily than with an ideal
circular shape. For example, Burov and Guillou-
Frottier [1999] and Guillou-Frottier et al. [2000]
modeled a cycle of inflation and collapse with
only 10 MPa of overpressure in a middle-crust
rectangular chamber and with visco-elasto-plastic
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rheology. In these 2D models, shear bands link the
sharp edges of the chamber and the surface.

[20] 3. Trasatti et al. [2005] tested a number of
parameters to model surface uplift at Campi Flegrei
volcano. Whereas Mogi-type elastic models
excluding gravity reproduced the measured uplift
for an internal overpressure of at least 80 MPa
(equal to the lithostatic pressure at the chamber’s
crest D � 3200 m, considered as unrealistic),
elasto-plastic models including gravity and a Von
Mises failure threshold set to 15 MPa (no depth
dependency), reproduced the uplift for an internal
overpressure of 45–50 MPa. This study illustrates
how greater surface uplift is obtained when
accounting for gravity and shear failure, and yet for
an overpressure greater than the tensile strength
(note that this overpressure fits our equation (7) at
the crest, with sin(30) ⋅ (rgD + T) � 48 MPa).
Unfortunately Trasatti et al. [2005] did not com-
ment much on their choice of a Von Mises yield,
neither did they display the geometrical pattern of
bedrock failure.

[21] 4. Gray and Monaghan [2004] studied how
faulting initiated and propagated from the chamber
to the surface or the other way down, with a 2D
smooth particle method. Whereas these authors
prescribe failure according to a Von Mises thresh-
old involving an elegant criterion for damage, nei-
ther the distribution of stresses nor the full amount
of internal overpressure associated to the modeled
failure patterns are provided.

[22] 5. Let us also cite approaches which, while
concentrating on the important visco-elastic pro-
cesses occurring at a chambers wall, assume
empirically a Von Mises yield criterion, with
overpressure values reaching 50–75 MPa [e.g.,
Jellinek and De Paolo, 2003; Karlstrom et al.,
2010].

[23] To date, we find that a gap still remains in the
explicit quantification of the state of internal over-
pressure associated to the propagation of faulting
around a chamber. The present paper aims at clar-
ifying this link with the help of numerical models
that handle self-consistent elasto-plasticity.

[24] It is useful to mention from engineering
mechanics, the classical problem of estimating the
critical support pressure of a tunnel. This problem
is very similar to our present description of an
inflating magmatic chamber, with only a sign dif-
ference accounting for underpressure instead of
overpressure. With theoretical plasticity, Caquot
and Kerisel [1956] had provided closed-form

solutions of a statical admissible stress field for an
upper bound of the support pressure in a frictional
and cohesive material. Using the slip-line char-
acteristics method, d’Escatha and Mandel [1974]
constructed the geometrical pattern of failure, also
accounting for gravity and a frictional material. In
the following numerical study, we will be display-
ing a model example with an applied internal
underpressure, and in which shear bands develop
comparable to the d’Escatha and Mandel [1974]
solution.

[25] More recently, Massinas and Sakellariou
[2009] investigated the shape of the plasticized
domain around a tunnel using elasto-plastic ana-
lytical and numerical models. Their analytical
solution is actually equivalent to our solution given
in equation (7) (details in the work of Gerbault
[2012]), and while the geometry of their modeled
plasticized domain is comparable to ours, their
mesh resolution is once again not sufficient to dis-
play precise shear band geometries.

3. Numerical Assumptions
and Comparison of Elastic Solutions

[26] The models presented below aim at (1) speci-
fying pressure conditions for the development of
either tensile or shear failure around an idealistic
infinitely long magmatic chamber (2D approxima-
tion similar to the approach taken by Gudmundsson
[1988], Pinel and Jaupart [2003, 2005], and
others), and (2) comparing these failure patterns
with three numerical codes at given internal over-
pressure. A three-dimensional approach would
have been useful as well, however computational
time explodes (several months) as soon as one
aims at reproducing detailed localized structures
similar in quality to those that are shown below in
2D. Also, for sake of simplicity we do not consider
heterogeneities in the bedrock nor elliptical mag-
matic chambers, which lead to a variety of com-
binations that are best targeted when a specific case
is considered.

3.1. Description of the Numerical Methods

[27] Three numerical codes are used to simulate
elasto-plastic deformation resulting from an
increase in uniform internal pressure, in order to
gain confidence on the quality of the results. With
these approaches we shall address the sensitivity of
failure initiation to physical and numerical param-
eters, namely the initial pressure conditions, the
mesh geometry, and the hydromechanical coupling
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between fluid flow and deformation. The first code
used is Parovoz [Poliakov and Podladchikov, 1992]
and is based on the FLAC finite difference method
[Cundall and Board, 1988; Cundall, 1989].
Parovoz has been adapted and applied to many
geodynamical applications at crustal and litho-
spheric scales [Podladchikov et al., 1993; Poliakov
et al., 1993; Gerbault et al., 1998; Lavier et al.,
2000; Burov et al., 2003]. The second code is
FLAC3D [Itasca Consulting Group, 2006], which
was designed to simulate geomechanical problems.
FLAC3D builds radial meshes and incorporates the
coupling between fluid flow and deformation,
either in static and dynamic modes [Itasca
Consulting Group, 2006]. The third code is Adeli
[Hassani et al., 1997; Chéry et al., 2001], a finite
element method based on the dynamical relaxation
method which is also commonly used in a variety
of geodynamical problems.

[28] We precise that in this study, the term plasticity
refers to a process of failure and fracturing in
accordance with the engineering mechanics mean-
ing, rather than with the geological meaning, which
usually involves viscous behavior.

3.2. Setup of the Models

[29] The problem is modeled in plane-strain, and
assumes that the chamber has a radius R = 2 km and
is located at H = 7 km depth. These values were
chosen arbitrarily as an average from reported
estimates. For instance, Mogi [1958] considered
depths greater than 10 km and radii greater than
3 km, Rivalta and Segall [2008] studied radii
ranging from 0.5 to 4 km and depths from 4 to
10 km, Battaglia et al. [2003] tested for the Long
Valley caldera radii ranging from 0.5 to 4 km and
concluded to a depth of 5.9–7.5 km, and Kumagai
et al. [2011] determined a depth of 6 km for the
source of the Tungurahua volcano in Ecuador.
The vertical axis of symmetry passing through the
center of the chamber is represented by the left
border of the model at X = 0. Domain dimensions
are 100 km in length and 80 km in depth. Whereas
the homogeneity of a medium over such an extent
is clearly not realistic on Earth, we are simply
respecting here a conventional rule for resolving
mechanical problems, consisting in eliminating
border effects.

[30] In Parovoz, the mesh is initially defined with
square elements of length 25 m, over the first 12 km
of the domain. Grid resolution progressively reduces
in both directions to approximately 1 km at the
bottom right corner of the domain. The total

number of mesh elements is 275,000 (meshes are
displayed in Appendix A). In order to achieve high
mesh resolution with the quadrilaterals of this
mesh, we had to mesh the chamber as part of the
model domain, and give it elastic properties. To
justify this assumption, many studies point to the
important proportion of volatile phases in a mag-
matic chamber, which reduce both its elastic rigid-
ity and its incompressibility [Bower and Woods,
1997; Huppert and Woods, 2002; Rivalta and
Segall, 2008]. Thus, the higher the internal
Young’s modulus at given Poisson’s ratio, the more
the chamber dilates and «absorbs» its internal
pressure, thus transferring less pressure to the outer
model domain. Our models built with Parovoz,
assume Lamé parameters equal to 1/10th of those
outside the chamber (corresponding to n = 0.25,
E = 5 GPa, whereas E = 50 GPa in the bedrock, an
average value for the crust). In this case, modeled
stress and deformation become undistinguishable
for models with n = 0.25 and n = 0.45. The models
presented below will show how the presence of an
elastic chamber in the model little affects the
results, when compared to those produced by Adeli
and FLAC3D in which the chamber is excluded. In
Adeli the mesh is built with triangles, and in
FLAC3D, it is built with quadrilaterals expanding
radially from the chamber (see Appendix A). Both
meshes are coarser with a minimal elementary size
of about 50 m.

[31] In the models, all borders have free-slip
boundary conditions, except the ground surface
which is free. Along the far field lateral border (X =
100 km), such a free-slip condition (zero horizontal
displacements) was found to produce less border
effects than a fixed boundary condition (zero dis-
placements in both directions). This is explained by
the fact that at X = 100 km, analytical surface dis-
placements remain significantly different from the
zero-value predicted at infinite distance. Rock
density is uniform, with r = 2500 kg/m3 (an arbi-
trary value chosen similar to that of Cayol and
Cornet [1998], for Piton de la Fournaise). The
model is initially set with isotropic lithostatic
components (weight of overburden rocks), so that a
strain of only 1‰ develops as readjustment to the
plane-strain conditions [e.g., Turcotte and Schubert,
1982].

[32] Conventional Mohr-Coulomb parameters are
specified with a friction angle 8 = 30� and a cohe-
sion So = 10 MPa (corresponding to a tensile
strength To = So/tan 8 = 17 MPa), for all three
codes, Parovoz, Adeli and FLAC3D. We will also
be showing the effect of a cutoff value of the tensile
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rock strength, T = 5 MPa. Parameter names and
values are given in Table 1.

[33] In the numerical models, the application of a
pressure which sets elements in a state of stress
which exceeds their yield value is not trivial. The
internal overpressure (DP) is applied in incremen-
tal steps ∂p proportional to the numerical time step
∂t, and is inversely proportional to the numerical
sound speed (which is defined with the mesh size,
density and Lamé parameters [e.g., Cundall and
Board, 1988]). ∂p is thus set so that the pressure
increases fast enough for the total computing time
of the run to be reasonable, and slow enough so that
deformation resulting from ∂p provides a quasi-
static solution.

[34] In the real world, the onset of an eruption or a
dike injection acts to liberate confined magmatic
fluids from the chamber, and therefore prevents
further increase in internal overpressure. However,
it may not always be the case; Wegler et al. [2006]
interpreted continuously increasing shear wave
velocities below the Merapi volcano as an indicator
of increasing magmatic pressure in between two
consecutive eruptions in 1998. The application of
an elevated internal overpressure in our models

should therefore be associated to the rapid arrival of
overpressurized magma which has no time to
equilibrate neither thermally nor mechanically with
the surrounding bedrock.

3.3. Elastic Solutions (M0)

[35] We first illustrate how analytical solutions of
surface displacements differ significantly whether
axisymmetric (Mogi’s solution, equation (1)) or
plane-strain (equation (2)) conditions are assumed.
For the conditions of a reference model (R = 2 km,
H = 7 km, DP = 50 MPa), vertical and horizontal
displacements in plane-strain achieve 2.3 m and
1.1 m, whereas in an axisymmetric chamber, they
achieve 0.3 m and 0.1 m, respectively. An infi-
nitely long tunnel produces nearly 10 times more
deformation than a sphere (Figure 2a).

[36] FEM tests in plane-strain and accounting for
only elastic behavior show how surface displace-
ments are very sensitive to the dimensions of the
numerical domain. Figure 2b shows that a right-
hand side border set 400 km away produces an
error of 1% and 2%, respectively for the vertical
and horizontal displacements at the surface. A

Table 1. Main Parameters Used in This Study and Value Given for the Reference Model Only

Symbol Description Value

R Radius of chamber 2 km
H Depth to center of chamber 3, 7 km
D Depth to crest of chamber [Grosfils, 2007], D = H � R
h Depth inside the chamber, starting from its crest, h = D � y
G Shear modulus: chamber (for Parovoz models), bedrock 2, 20 GPa
N Poisson’s ratio 0.25
r Density 2500 kg/m3

g Gravity 9.81 m2/s
a Angle intersecting at the surface origin a wall-point and the

vertical axis x = 0 [Jeffery, 1921]
C Free surface factor: 1 + 2 tan a2

Q Angle intersecting at the chamber center a wall-point and the
horizontal axis y = �H [Grosfils, 2007]

sxx Horizontal stress
sqq Hoop stress at the chamber wall
DP Internal overpressure
Ux, Uy Horizontal and vertical displacements at the surface
P, sII Mean stress and deviatoric shear tress
t, sn Tangential and normal stress in Coulomb criterion
8, So Bedrock friction angle and cohesion in Coulomb criterion 30�, 10 MPa
T, To Bedrock tensile strength, cutoff deduced from So 5, 17.3 MPa
DPS, DPT Critical overpressure for tensile failure at surface and wall Equation (4)
DPTG Critical overpressure for tensile failure [Grosfils, 2007] Equation (5)
DPMCS Critical overpressure for shear failure [Gerbault, 2012] Equation (7)
l Pore pressure ratio that defines pore pressure pf = �lrgy 0, 1
no Bedrock initial porosity (for FLAC3D models) 0.01, 0.1
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vertical border set 100 km away produces errors of
6% and 10% (Figure 2c).

[37] Since elasto-plastic behavior is rather expen-
sive in terms of computational time, we must limit
the dimensions of the model domain as a tradeoff to
a high resolution mesh capable to generate failure
structures. Therefore when studying elasto-plastic
solutions with the three above mentioned numerical
methods, Parovoz, Flac3D and Adeli, the model
domain was defined with 100 km in width and
80 km in depth. Thus up to 10% error is expected
due to these limited dimensions (Figure 2d).

4. Elasto-plastic Models, Neglecting
the Effects of Fluid

4.1. Stages of Deformation With Increasing
Overpressure

[38] Gerbault [2012] presented sequential results of
deformation at increasing internal overpressure,
identifying three stages:

[39] Stage 1 corresponds to tensile failure occurring
first at X = 0, Y = 0 at the surface origin, when the
applied internal overpressure reaches the predicted
value of equation (1), DP � 28 MPa (numerical
time step sampling does not necessarily correspond
to exact analytical predictions).

[40] Stage 2 corresponds to shear failure initiating
around the chamber, at a DP consistent with pre-
diction from equation (7): DPMC = (�rgy + To) ⋅
sin 8 � 71 MPa. With increasing pressure, shear-
bands propagate from the chamber wall with an
eccentric logarithmic geometry (according to Nadai
[1950]). They have an angle of 60� one from the
other and form outward dipping reverse faults,
consistent with non-associated plasticity predic-
tions [e.g., d’Escatha and Mandel, 1974; Vermeer
and de Borst, 1984; Gerbault et al., 1998].

[41] Stage 3 begins when the two plasticized
domains, propagating first inward from the ground
surface and second, upwards from the chamber
walls, become connected. Shear bands continue to
expand outwards from the chamber.

[42] In the next sections we will compare solutions
produced for each of these three stages.

4.2. Modeled Surface Deformation in Case
of a Mostly Elastic Domain (Stage 1, M1)

[43] This series of models (M1) serves as a first
benchmark between all three codes Parovoz Adeli
and Flac3D. A fixed internal pressure DP = 50 MPa
is applied (Figure 3). Therefore we are within
stage 1, where apart from about a 100 m close to the
origin at the top surface, the whole domain remains
elastic.

[44] When comparing the results, the computed
superficial displacements differ from the analytical
solution from 6 to 18% in all three models (Ux =
2.1–2.2 m, Table 2). We consider that these errors
are satisfying when recalling that about 10% error
is already expected due to border effects alone (see
section 3.3).

4.3. Comparison of Models at Well
Developed Elasto-plastic Stage 2 (M2)

[45] We apply now an overpressureDP = 120 MPa,
which corresponds to a state of plastification just
before stage 3 (fault connection). The compari-
son of stress and deformation patterns between
different meshes raises the following points
(Figure 4):

[46] 1. The model produced by Parovoz produces a
zone of failure over a thickness of about 1 km
around the chamber, coeval with failure at the sur-
face down to about 2 km depth (Figure 4b).

[47] 2. Model M2′ produced by Adeli displays a
similar geometry of failure at a significantly higher
level of chamber overpressure equal to 150 MPa
instead of 120 MPa (Figure 4c). This is because
the failure yield stress is expressed according to
a Drucker-Prager criterion instead of a Mohr-
Coulomb criterion (and despite a standard adapta-
tion of friction and cohesion parameters). At DP =
120 MPa, the radius of the failed domain around the
chamber is only 700 m and surface normal faulting
extends down to only 1.8 km depth. However,
surface displacements at 120 MPa compare well
with those produced by Parovoz (Figure 4a).

[48] 3. Model M2″ with Flac3D are loaded instan-
taneously, and produce an envelope of the plasti-

Figure 2. Elastic solutions for surface displacements (models M0). (a) Analytical solutions for plane strain (2D,
equation (2), blue lines) and axisymmetric (3D, equation (1), red lines) cases. (b) Comparison of the numerical elastic
solution (blue crosses) with the analytical plane-strain solution (equation (2)), for a horizontal size of the model of
400 km. (c) Errors produced by the numerical solutions for different sizes of the model domain. 10% error in vertical
displacement (Uy, in blue) occurs when the model domain is 100 km wide.
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Figure 3. Comparison of models M1 for a field overpressure of DP = 50 MPa. (a) Vertical (left) and horizontal
(right) surface displacements. (b) M1 is Parovoz, (c) M1′ is Adeli, and (d) M1″ is Flac3D; panels from left to right
are the failure zones, the shear strain, and the shear stress.
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cized domain which is consistent with the 2 previ-
ous models, and similar to previous results by
Chéry et al. [1991] or Massinas and Sakellariou
[2009]. Localized shear bands cannot form
because of the coarse mesh resolution (Figure 4d).

[49] As the mesh is coarser in different models,
shear bands are also coarser: this is a common
feature of numerical modeling of plastic (e.g.,
faulting) behavior. The loss of unicity of the
mathematical solution causes shear band geome-
tries to depend on numerical characteristics such as
mesh resolution [e.g., Prevost and Loret, 1990;
Kaus, 2010]. The validity of the models in repro-
ducing similar faulting patterns appears limited by
the specificities of each modeling approach, e.g., an
elastic chamber with Parovoz, a slightly different
yield stress formulation with Adeli, and a sudden
application of overpressure with Flac3D.

[50] The ground surface displacements differ by
about 10% one numerical model with the other
(Figure 4 and Table 2), except for model M2″. At
this stage, they differ from the elastic solution by
slightly lower surface uplift at the origin, and lower
surface uplift at distance (around position X =
20 km). Horizontal displacements in turn, exceed
the elastic solution at the origin, and they also
underestimate it around X = 20 km (M2″ with
Flac3D model produces the less good fit).

4.4. Modeled Deformation During Stage 3,
Plastic Domain (M3)

[51] Now the modeled elasto-plastic solutions are
displayed after Stage 3, which occurs when the
plastic domain is connected in between the cham-
ber and the surface (Figures 5 and 6).

[52] Figure 5 shows how maximum vertical dis-
placements start to overshoot significantly the
elastic solution, from this stage 3, in all three
models. The moment when the crest of the chamber
starts to yield occurs at about 70 MPa in the first
Parovoz model, consistent with the analytical pre-
diction (equation (7)). Failure produced by the
Adeli model is delayed with respect to the two other
models, because of the formulation of the yield
criterion which renders the bedrock more rigid. The
third Flac3D model produces intermediate surface
displacements with respect to the two other models.

[53] Figure 6 displays the modeled faulted domain
at an advanced stage: most of the deformation
localizes along the curved shear bands that connect
the edges of the chamber wall to the surface. As
deformation continues to localize with pressure
increase, these active shear bands will tend to adopt
a vertical geometry which reminds of the classical
downsag structures described elsewhere in the lit-
erature (e.g., Acocella [2007], for deflation). This
typical failure pattern shows that eventually at large

Table 2. Setup Conditions and Models Resultsa

Model
Name Figure Code

Gravity
Porosity

Tensile
Limit, T

DP
(MPa)

Fail.
Stage

Shear
Strain, ɛII

Surface,
Uy (m)

Error,
Uy

Error,
Ux

M1 3a Parovoz G 17.3 50 1 0.004 2.1 0.16 0.13
M1′ 3b ADELI G 17.3 50 1 0.001 2.13 0.14 0.06
M1″ 3c FLAC3D G 17.3 50 1 0.001 2.2 0.18 0.16
M2 4a Parovoz G 17.3 120 2 0.029 4.9 0.21 0.17
M2′ 4b ADELI G 17.3 120 2 0.029 4.8 0.11 0.04
M2″ 4c FLAC3D G 17.3 120 2 0.005 5.1 0.19 0.49
M3 6a Parovoz G 5 148 3 0.134 25 1.21 1.67
M3′ 6b Parovoz G 5 65 3 0.022 5 0.30 0.20
M4 7 Parovoz G 5 �130 3 0.079 �18 0.99 1.88
M5 8a Parovoz HPP 5 60 2 0.005 2.37 0.26 0.16
M5′ 8b FLAC3D n = 0.01 5 60 2 0.002 2.21 0.22 0.40
M5″ 8c FLAC3D n = 0.1 5 60 2 0.002 2.23 0.33 0.38
M6 9a Parovoz LPP 17.3 20 2 0.008 1.9 0.60 0.39
M6′ 9b ADELI 0 17.3 20 2 0.001 1.2 0.29 0.07
M6″ 9c FLAC3D 0 17.3 20 2 0.001 1.3 0.38 0.30
M7 10a FLAC3D n = 0.1 17.3 20 2 0.001 1.4 0.82 0.51
M7′ 10b FLAC3D n = 0.01 17.3 20 2 0.002 2.1 1.21 0.59
aThe first column displays models names, the second column gives the associated figure, and the third column the numerical code. Column four

indicates the gravity and fluid state (G or 0 for gravity or not, LPP for lithostatic pore pressure, and initial porosity no for models 7). Columns five
and six indicate values in MPa of the tensile strength T and the applied internal overpressureDP, respectively. The last columns describe the results,
according to their stage of failure: 1 for failure at the surface only, 2 for failure at the walls, and 3 when the plasticized domain is connected. Then the
maximum shear strain (ɛII) and maximum surface topography Uy are given. The two last columns display errors in surface displacements Uy and Ux,
with respect to the theoretical values of equation (2) (10% error is expected already due to the finite dimensions of the model). Bolded numbers are
errors >20%.
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strains, localized deformation responds to the min-
imization of energy integrated over the entire
domain between the chamber and the surface, and
not only from the local yield stress distribution
[e.g., Masek and Duncan, 1998; Gerbault et al.,
1998]. In other words, while the initial curved
shear bands result from the elastic stress distribu-
tion, at large strains, these shear bands tend to
straighten vertically, following the shortest dis-
tance linking the chamber and the free top surface.

[54] When investigating for which conditions the
bedrock around a magmatic chamber would fail in
tension, Gerbault [2012] showed that with a tensile
strength cutoff set to T = 5 MPa, tensile failure
develops over the first �500 m from the ground
surface, whereas shear failure still occurs every-
where else as described above and for identical
levels of the internal overpressure. It is interesting
to look at how the two systems of failure connect at
stage 3, for two different shape ratios R/H:

[55] 1. Figure 6a is a model with a geometry similar
to that above, i.e., with depth H = 7 km and a radius

R = 2 km. Tensile failure (shown in light blue as
opposed to dark blue for shear failure in Figure 6a)
and vertical shear bands merge at about 500 m
depth, over a width equivalent to the chamber’s
radius R. At the surface, tensile failure occurs over
a width of nearly 2R.

[56] 2. Figure 6b displays the results for a chamber
located at H = 3 km depth and of radius R = 2 km.
One might have anticipated that the proximity of
the chamber to the free surface will enhance the
occurrence of tensile failure. But shear failure still
originates from the chamber wall, and tensile fail-
ure still remains confined to the top first kilometer.
A beautiful geometrical pattern appears, in which
vertical shear bands initiating from the chamber
wall, concentrate at a distance from the crest, and
propagate upwards up to about 500 m depth, where
they merge with the domain of tensile failure. This
geometry suggests that perhaps, fluid material
being transferred vertically from the chamber along
the shear faults and then intruding at �500 m depth
into zones of horizontal tensile stress, may produce
«sills». This depth is controlled by the value of T.

Figure 4. Models M2 at stage 2, for a field overpressure DP = 120 MPa. (a) Vertical (left) and horizontal (right)
surface displacements. (b) M2 is Parovoz, (c) M2′ is Adeli but for DP = 150 MPa, and (d) M2″ is Flac3D; panels from
left to right are the failure zones, the shear strain, and the shear stress.

Figure 5. Maximum surface uplift as a function of increasing internal overpressure (models M1, M2 and M3): depar-
ture from elastic solutions become significant when the entire domain from the chamber to the surface becomes plastic,
when DP approaches 100 MPa. Adeli results are delayed due to the slightly different yield criterion. Plots displaying
the shear stress at the chamber crest (labeled sII crest) show that the yield is reached at 70 MPa for Parovoz and Flac3D.
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More elaborated hydromechanical modeling is
required to confirm this proposition.

[57] One noticeable difference in this model (R/H =
2/3) with respect to the previous model (with R/H =

2/7), is that shear bands localize in an area closer
to the vertical axis of the domain. It depends on
the location of maximum deviatoric stress along the
walls of the chamber, which directly relates to the
free-surface factor C, as has been discussed by

Figure 6. Models M3 at stage 3, proceeded with Parovoz, and with a tensile cutoff T = 5 MPa. Light blue zones indi-
cate domains of tensile failure as opposed to dark blue zones indicating shear failure, as in previous figures. Failure
domain and shear strain at (a) DP = 135 MPa for a chamber H = 7 km and R = 2 km, and (b) at DP = 65 MPa for
a chamber H = 3 km and R = 2 km.
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Grosfils [2007]. We recall that a distinction exists
between the location of failure onset at the chamber
wall, and the location of subsequent most active
shear bands that connect to the surface, which
satisfies a pattern of energy minimization [e.g.,
Masek and Duncan, 1998].

4.5. Case of an Applied Underpressure (M4)

[58] In the theory of plasticity used in engineering
mechanics, the critical state of stress for failure is
assumed to be reached everywhere, and the solution
provides the geometry of potential slip-lines along
which rigid blocks slide. In elasto-plasticity, this
type of solution thus becomes valid once a suffi-
cient portion of the domain has reached its yield
stress state [Gerbault et al., 1998]. It is the case
here in our study from Stage 3, as opposed to pre-
vious Stages 1 and 2 where the elastic solution
remains valid because an elastic core remains in
between the chamber and the surface.

[59] As mentioned in section 2.4, tunneling engi-
neers have long been studying the critical support
pressure of a tunnel, and graphical solutions based
on theoretical plasticity have been proposed by
d’Escatha and Mandel [1974], accounting for
gravity and for various angles of bedrock friction.
Since both formulations of a deflating tunnel and an
inflating chamber are similar, it is useful to com-
pare our numerical solution at stage 3 with their

calculation. Therefore we display the model in
Figure 7a, which was obtained with the application
of an underpressure instead of an overpressure (thus
a switch in sign of DP), and a friction angle equal
to 20� instead of 30�. This simple change in sign
of the internal overpressure produces a pattern of
eccentric conjugated shear bands, differing from
our previous model M3 by a global rotation of
90�, including also a rotation of 90� of the angle
from which they depart from the chamber wall
(due to the switch in orientation of principal
stresses). This solution compares with the eccen-
tric pattern calculated by d’Escatha and Mandel
[1974] (Figure 7b).

[60] When transposing this case to the field, the
relative orientation of conjugate fault systems with
respect to the location of the magmatic body (i.e.,
direction of elongation of block lozenges) serves as
an indicator to differentiate inflating-related from
deflating-related structures.

5. The Effect of Fluid Pressure on
Bedrock Deformation

[61] A process that must play a role in the mode of
fracturing around magmatic chambers is the state of
pore fluid pressure in the bedrock. Here we intend
to illustrate its prime influence, first with a classical
one-way coupling approach based on a modifica-
tion of the effective normal stress in the yield

Figure 7. Model M4: (a) underpressure DP = �130 MPa for a chamber H = 7 km and R = 2 km, and a friction 8 =
20�; (b) graphical semi-analytical solution calculated by d’Escatha and Mandel [1974].
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criterion, and second with a more realistic two-way
hydromechanical coupling based on the undrained
response of a porous bedrock.

[62] One-way coupling is achieved with Parovoz, in
which the yield criterion can account for the effect
of a constant fluid pore pressure in the bedrock. The
approximation proposed by Hubbert and Rubey
[1959] is used, which expressed fluid pore pres-
sure pf in terms of the vertical lithostatic stress and
the pore fluid pressure ratio l, so that pf = �lrgy.
In a rock of density 2500 kg/m3, l = 0.4 for
hydrostatic fluid pressures, and l = 1 for lithostatic
pore fluid pressures. The effective normal stress
seff = sn � pf is then involved in the Mohr-
Coulomb yield criterion so that

t ¼ So � tan 8 ⋅ðsn � pf Þ: ð8Þ

While hydrostatic pore fluid pressure is thought to
describe appropriately a common state of the crust
[Townend and Zoback, 2000], lithostatic pore fluid
pressure may also exist in nature since many well
data indicate values of l reaching 0.9 [Engelder
and Leftwich, 1997; Hillis, 2003].

[63] Two-way coupling is simulated with the com-
mercial code FLAC3D which allows to account for
hydromechanical processes in a porous medium
saturated with water in liquid phase. The initial
conditions are thus identical to those prescribed in
the Parovoz models, but an initial fluid pressure is
assumed that follows a constant hydrostatic gradi-
ent with depth. Loading at the chamber wall is now
applied instantaneously. The associated fluid pres-
sure and deformation response is mainly undrained
(i.e., instantaneous response relative to the subse-
quent flow response), so that the influence of fluid
flow and permeability on the results is negligible.
Consequently, the change in fluid pressure (Dpf)
varies according to the change in the ratio of volu-
metric total strain (or dilatation), and thus according
to the initial rock porosity (n0)

Dpf ¼ �Kf ⋅DV=V ð9Þ

where Kf is the fluid bulk modulus (Kf = 2 GPa), V
is the initial pore volume (V = n0 in a unit volume of
rock, if the pore spaces are fully saturated with
fluid), and DV is the volume change due to defor-
mation. Thus, fluid pressure is now driven by
localized volume expansion (DV positive) or con-
traction (DV negative).

[64] Gerbault [2012] showed with the Parovoz
code, that when accounting for a hydrostatic pore
fluid pressure ratio, shear failure still initiated at the

chamber wall, whereas with a lithostatic pore fluid
pressure, tensile failure occurred instead. Below,
we benchmark these results and test the effects of
accounting for either one-way or two-way hydro-
mechanical coupling.

5.1. Hydrostatic Pore Fluid Pressure,
One- and Two-Way Coupling (M5)

[65] In this section a series of models M5 explores
the effect of an initially hydrostatic pore fluid
pressure in the bedrock on failure propagation.
These models account for a tensile strength T = 5
MPa, and an internal overpressure arbitrarily set to
DP = 60 MPa.

[66] A first reference model M5 is displayed
Figure 8b, and corresponds to a Parovoz model
assuming the one-way hydromechanical coupling
described in the previous section. Tensile failure
develops only over the first �500 m below the
surface. Shear failure is incipient along the chamber
wall, but has initiated at DP � 43 MPa (consistent
with equations (7) and (8)).

[67] To test the effect of two-way hydromechanical
coupling, two additional models M5′ and M5″ are
set with Flac3D in which the initial porosity (n0) is
set to 0.01 and 0.1, respectively (this range of
porosities corresponds to values used in the works
of Hurwitz et al. [2007] and Hutnak et al. [2009]).
The “triangular” domain of tensile failure near the
surface is slightly narrower and deeper than that
obtained in model M5 with Parovoz, and reaches
1 km depth in model M5′ with the smallest porosity
value n0 = 0.01. Shear failure occurs around the
chamber wall over a significantly greater extent
than in model M5, reaching a thickness of about
200 m and 500 m for models with high (M5″, n0 =
0.1) and low porosity (M5′, n0 = 0.01), respectively
(Figures 8c–8d). This larger failure extent is related
to a greater volumetric deformation (DV/V) when
the porosity is low. This induces a greater variation
in fluid pressure that reaches a maximum value of
Dpf = 4.3 MPa and 13 MPa, respectively for
models M5″ and M5′ (rightmost plots in Figures 8b
and 8c).

5.2. Lithostatic Pore Fluid Pressure,
One-Way Coupling (M6)

[68] A series of models (M6) consider a lithostatic
pore fluid pressure assuming one-way coupling. In
the first Parovoz model M6, the pore fluid ratio is
set lithostatic in the bedrock (l = 1, pf = �rgy). In
this case, and for an overpressure of only DP =
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Figure 9. Models M6 with one-way coupling for a lithostatic pore fluid pressure in the bedrock. Solution for internal
overpressure DP = 20 MPa, with (a) Parovoz and an effective lithostatic pore fluid pressure (LPP) in the yield crite-
rion. Models (b) M6′ with Adeli, and (c) M6″ with Flac3D, both without gravity.

Figure 8. Models M5 predicting failure for a hydrostatic pore fluid pressure (HPP) in the bedrock. Solution for inter-
nal overpressure DP = 60 MPa, with (a) Parovoz and a one-way coupling using a hydrostatic pore fluid pressure ratio
in the yield crierion (M5), and with Flac3D accounting for two-way coupling relating strain changes to fluid-pressure
changes, for an initial porosity (b) no = 0.01 for M5′ (c) and no = 0.1 for M5″.
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20 MPa, shear bands propagate outwards, embedded
in a plasticized domain which is nearly circular
around the chamber (Figure 9a). An increase in
internal pressure increases the radius of this plas-
ticized domain. In order to compare this result with
the other two codes Adeli and Flac3D, we note that
a state of lithostatic fluid pore pressure produces
the same effect on failure as simply removing the
gravity force. The results obtained with Adeli and
with Flac3D thus simply have gravity switched off,
and are displayed in Figures 9b and 9c. The fractured
domain, the strain and stress distributions between
all three codes compare well, despite the obvious
differences due to variable mesh resolutions.

[69] It is delicate to simulate the occurrence of
mode I failure using a continuum mesh, but White
et al. [2004] showed that FLAC methods were
able at least to correctly identify domains of mode I
failure. Gerbault [2012] considered a one-way
coupling model at lithostatic pore fluid pressure and

a tensile strength T = 5 MPa. In this model (not
shown here), tensile failure indeed begins at the
chamber wall at DP = 8.6 MPa [Gerbault, 2012].
Note that this specific situation finally corresponds
to usual assumptions of mode I opening for an
overpressure of the order of 10 MPa.

5.3. Two-Way Coupling and Initial
Lithostatic Pore Fluid Pressure (M7)

[70] A last comparison is presented here to bench-
mark the previous series of models M6, in which a
lithostatic pore fluid pressure ratio controls the
onset of failure with a one-way coupling. Here,
two-way coupling is tested using FLAC3D, with an
initial state of lithostatic fluid pore pressure and an
internal overpressure DP = 20 MPa. Results shown
in Figure 10 compare with those displayed in
Figure 9:

[71] 1. At high porosity with n0 = 0.1 (Figure 10a,
M7), the domain of failure around the chamber wall

Figure 10. Flac3D models M7 and M7′ showing the effect of two-way coupling at initially lithostatic pore fluid pres-
sure (LPP), for an internal overpressure DP = 20 MPa (a) with porosity no = 0.1 and (b) with no = 0.01. From left to
right, failure zones, shear strain, shear stress, and the change in pore pressure (PP).
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adopts an “ear” shape similar to that obtained in
models M6. It is associated to an increase in bed-
rock fluid pressure Dpf = 2.7 MPa (Figure 10a,
rightmost plot).

[72] 2. At low porosity (n0 = 0.01, model M7′,
Figure 10b), shear failure expands around the
chamber wall (�100 m wide), and the ear tips
expanding upwards are close to connecting to the
surface. This effect is due to the reduction of the
original pore space (i.e., porosity) with deformation,
resulting from the chamber load. The change in
fluid pressure reaches a maximum Dpf = 9.9 MPa,
which is sufficient to decrease the effective stress
and trigger rock failure.

[73] Thus, in a fluid-saturated bedrock of low
porosity, a factor 3 increase in fluid pressure (Dpf)
can trigger the propagation of a large plastic
domain, and perhaps even cause an eruption. In
contrast, a dry and porous bedrock would not fail
anywhere.

[74] The modeled ground surface displacements are
shown in Figure 11, for all models M6 and M7 that
simulate a situation of bedrock at lithostatic pore
fluid pressure:

[75] 1. Large differences of about 30% are observed
between the Parovoz model M6 (max(Uy) =
1.65 m) and the Adeli model M6′ (max(Uy) =
1.3 m), once more due to the presence of an elastic
chamber in the former case, and a more “rigid” yield
criterion in the latter case. The Flac3D model (M6″)
produces intermediate values (see Table 2). Also,
horizontal displacement affects a narrower domain

in model M6′. These results confirm those from
section 4.4, that once the plasticized domains dom-
inate over the elastic domains around the chamber,
little differences in overpressures are sufficient to
explain large differences in surface uplift.

[76] 2. Displacements are also sensitive to initial
rock porosity, with a difference in maximum ver-
tical uplift of 0.7 m (about 30% again) between the
high and low porosity models (Figure 11). Surface
deformation decreases when porosity increases, due
to the absorption of “stress-induced strain” in elas-
tic pores. This result illustrates how variations in
pore fluid pressure produce additional deformation
of the ground surface given the internal overpres-
sure. We conclude that variations in bedrock pore
fluid pressure significantly affect surface displace-
ments above an active volcano.

6. Discussion and Conclusion

[77] The onset and propagation of failure from a
magmatic reservoir is often considered in terms of
the propagation of dikes and sills opening from pre-
existing magma-filled cracks [e.g., Rubin and
Pollard, 1987; Lister and Kerr, 1991; Rubin,
1993, 1995; McLeod and Tait, 1999; Fialko et al.,
2001; Marti et al., 2008], and has led to the para-
digm that failure occurs as soon as the internal
overpressure DP reaches values of the order of the
bedrock tensile strength T. However, for this con-
dition to be valid, the initial magmatic overpressure
(DP) must be distributed at the chamber’s wall
along a radial “thin zone” representing the pre-

Figure 11. (left) Vertical and (right) horizontal displacements forDP = 20 MPa, simulating a case of lithostatic bed-
rock fluid pressure (models M6 and M7). M6 model with Parovoz assumes failure for a lithostatic state of pore pres-
sure (LPP), while Adeli and the first of the Flac3D models exclude gravity (models M6′ and M6″). The two
hydromechanical models M7 and M7′ with Flac3D test the effect of n = 0.01 and n = 0.1.
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opened crack. Appropriate conditions that inhibit
both the existence of a viscous shell around the
chamber or the freezing of incipient dikes must also
be satisfied [e.g., Rubin, 1995; Karlstrom et al.,
2010]. An appropriate geometrical representation
of the boundaries of a magma reservoir results from
several properties that determine whether propaga-
tion of failure from a pre-existing magma-filled
crack is a more valid approximation than that of
fault nucleation in intact bedrock. Field observa-
tions seem to illustrate the occurrence of both
mechanisms with either mode I opening structures
(e.g., see review by Gudmundsson [2006]), or shear
failure preceding dike formation [Woodcock and
Underhill, 1987; Henry et al., 1997; White et al.,
2011]. When considering this second view-point,
Gerbault [2012] showed that shear failure occurs
rather than tensile failure at the walls of an inflating
chamber, and at an internal overpressure signifi-
cantly greater than the usually inferred limit given
by the rocks tensile strength (similar to the result
obtained when tensile failure alone was considered
[Grosfils, 2007]). Both view-points merge when
one considers a bedrock that is already at a state of
lithostatic pore fluid pressure, since the effect of
gravity is effectively suppressed, and tensile failure
is enabled for low overpressures of the order of the
tensile strength [e.g., Rozhko et al., 2007]. The
present study has developed some aspects of this
second view-point.

[78] One may argue that the gravity body force may
be neglected when one is only interested in a “rel-
ative approach” that considers departure from an
equilibrium state. However, as long as even the
effective stress used to assess fracturing remains
tied to a yield criterion that depends on the mean
pressure, it remains necessary to account for the
gravity body force. Only in the very specific case
where the bedrock is saturated of fluids in pores
(and the effective mean stress is zero), do condi-
tions for tensile rupture become independent from
the mean stress, and thus from gravity.

[79] Here, we have detailed the benchmarking
issues of elasto-plastic solutions, and illustrated the
results with a variety of tests including another H/R
ratio, the application of underpressure, and the
incorporation of hydromechanical coupling. In
summary, about 30% of uncertainty in surface dis-
placements can be attributed to elasto-plastic
behavior, and another 30% to hydromechanical
effects. For example, in comparison to the discus-
sion by Battaglia et al. [2003] on the importance of
magmatic sources fitting both vertical and hori-
zontal surface displacements, our elasto-plastic

solutions suggest that the use of elastic solutions
may be more judicious if fitting distant “slopes”
(around 2 to 4 H) rather than values immediately
above the center of the source (which can be greatly
amplified by localized failure deformation, i.e., as
also obtained by Trasatti et al. [2005]).

[80] Additional results are as follows:

[81] 1. The analytical expression for the vertical and
horizontal displacements at the surface in plane-
strain is given (equation (2) had not been published
to our knowledge). While elastic solutions are all
consistent in between the three numerical codes that
we used, they remain valid only until Stage 3, i.e.,
as long as the plastic domain is not connected
between the chamber and the surface. Then, elasto-
plastic numerical solutions differ for several rea-
sons. One code includes an elastic chamber, and
another code uses a Drucker-Prager formulation for
failure. Differences in strain localization are also
due to mesh resolution, a problem which has been
extensively studied in engineering mechanics [e.g.,
Prevost and Loret, 1990]. Here, high resolution
shear bands are obtained thanks to a very high mesh
resolution, and they compare with potential slip-
lines solutions derived for tunneling engineering.
We make a call to the community to extend our
benchmark results linking internal pressure and
localized failure patterns. Note that we have been
considering here the onset of failure and its propa-
gation in a continuum. At large cumulated strain
and as the domain becomes largely plastified, we
expect that with the rise of discontinuity, failure
zones adopt a more direct pattern of vertical faults
linking the chamber to the surface (e.g., the differ-
ence between “elastic” and “plastic” solutions
[Gerbault et al., 1998]).

[82] 2. Models that account for hydromechanical
coupling show that the initial porosity of rocks
influences the extent of the failure domain, its
shape, and the magnitude of displacements and
stresses at the surface. It is well known that changes
in fluid pressure can trigger failure, and fluid pres-
surization has frequently been observed in volcanic
systems [Bjornsson et al., 1990; Watanabe, 1983;
Reid, 2004; Segall, 2009; Sturkell et al., 2006;
White et al., 2011]. However, to our knowledge, the
effects shown here of coupling between fluid pres-
sure, deformation and hydraulic properties around a
magma chamber, and their influence on the propa-
gation of failure, had not been clearly documented
before. Low porosity bedrocks saturated with fluids
in pores is very prone to fail for small internal
magma overpressure. Consequently, geodetic studies
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that use standard elastic solutions to evaluate
chamber depth and radius should not be surprised if
their data fit is sometimes associated to “high”
overpressures [e.g., Bonaccorso et al., 2005], all the
more if the surrounding bedrock contains saturated
low porosity rocks. It is therefore useful to be able
to assess the hydromechanical properties of the
bedrock [e.g., Heap et al., 2011].

[83] In the literature, geodetic measurements of
ground surface displacements rarely exceed one
meter above inflating volcanic sources. Volcano-
logical observations of relatively small surface
displacements may be associated to small influxes
of magma that trigger failure and dike intrusion,
and inhibit the occurrence of large eruptions, in a
commonly saturated fluid-pore pressure bedrock.
The fact that we obtain several meters of uplift (yet
given a large 7 km depth and 2 km radius source)
indicates that our modeled plastic effects may in
fact represent an end point achieved only some-
times in nature, when low porosity and hydrostatic
pore fluid pressure conditions prevail in a suffi-
ciently homogeneous bedrock. For instance, Mogi
[1958] cited leveling values reaching an uplift of
3.96 m and horizontal displacements of 1.3 m
above Kilauea shield volcano during the period
1912–1927, We also recall thatWegler et al. [2006]
interpreted the evolution of seismic wave speeds at
Merapi volcano as resulting from continuous pres-
sure increase in between two eruptions, indicating
that a single eruption may not necessarily release
the building up of internal overpressure.

[84] On the other hand, the temporal evolution of
bedrock pore pressure, for example due to meteor-
itic or glacial water infiltration, or in contrast due to
cementation, may also allow to consider transitions
from one end-member to the other as an explana-
tion of the historical evolution of specific volcanic
areas. The following potential scenario may be
interesting to consider: porosity reduction in
response to cementation, added to the arrival of
meteoritic fluids, may cause a volcanic system to
evolve from a stable situation at hydrostatic bed-
rock pore pressure and relatively high internal
overpressures, to an unstable situation of near-
lithostatic pore pressure. A large eruption may then
be triggered, despite no significant increase of the
internal overpressure.

Figure A1. Meshes used in the three codes: (a) quadri-
laterals for Parovoz, which includes the chamber in the
mesh, (b) a mesh of triangles for Adeli, and (c) a radial
mesh of quadrilaterals for FLAC3D.
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[85] A number of complementary analyses are open
for the future, by associating our elasto-plastic and
hydromechanical approach with numerous and
already well identified other factors. Non-circular
magma chamber geometries (i.e., ellipsoïdal),
multiple chambers, elastic heterogeneity and a
volcanic edifice [i.e., Pinel and Jaupart, 2003;
Gudmundsson, 2006; Masterlark, 2007; Segall,
2009; Long and Grosfils, 2009] are necessary to
account for in order to proceed to proper compari-
son with natural three-dimensional cases. Incorpo-
ration of more realistic rheologies including
temperature-dependent viscosity [e.g., Dragoni and
Magnanensi, 1989; Bonaccorso et al., 2005;
Karlstrom et al., 2010] and lithospheric flexure
[Galgana et al., 2011] introduces additional con-
trols on failure mechanisms. Hydromechanical
processes deserve a more elaborated approach,
including poro-elastic effects [Bonafede and
Mazzanti, 1998; Hutnak et al., 2009]. Finally,
application of a dilatational deformation instead of
overpressure may be more sensible to fit models to
measurements above active volcanoes. The com-
plex multiphase processes inside a chamber may
also lead to non-negligible inhomogeneous cham-
ber growth.

Appendix A

[86] Figure A1 illustrates the meshes defined in
each three codes, zoomed around the circular
chamber: quadrilaterals for Parovoz and which
includes the chamber in the mesh, a mesh of trian-
gles for Adeli, and a radial mesh of quadrilaterals
for FLAC3D.
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