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Abstract: We present a wave front sensorless adaptive optics scheme
for an incoherent imaging system. Aberration correction is performed
through the optimisation of an image quality metric based upon the low
spatial frequency content of the image. A sequence of images is acquired,
each with a different aberration bias applied and the correction aberration
is estimated from the information in this image sequence. It is shown,
by representing aberrations as an expansion in Lukosz modes, that the
effects of different modes can be separated. The optimisation of each
mode becomes independent and can be performed as the maximisation
of a quadratic function, requiring only three image measurements per
mode. This efficient correction scheme is demonstrated experimentally
in an incoherent transmission microscope. We show that the sensitivity
to different aberration magnitudes can be tuned by changing the range of
spatial frequencies used in the metric. We also explain how the optimisation
scheme is related to other methods that use image sharpness metrics.

© 2007 Optical Society of America

OCIS codes:(010.1080) Adaptive Optics; (010.7350) Wave-front sensing; (110.4850) Optical
transfer functions.

References and links
1. R. K. Tyson,Principles of Adaptive Optics, Academic Press, London, 1991.
2. J. W. Hardy,Adaptive Optics for Astronomical Telescopes, Oxford University Press, 1998.
3. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Engineering21, 829-832, 1982.
4. D. R. Luke, J. V. Burke and R. G. Lyon, “Optical Wavefront Reconstruction: Theory and Numerical Methods,”

SIAM Review44, 169-224, 2002.
5. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through

image sharpening,” J. Opt. Soc. Am.64, 1200–1210, 1974.
6. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, “Correction of atmospheric

distortion with an image-sharpening telescope,” J. Opt. Soc. Am.67, 298–303, 1977.
7. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an

adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A13, 1456–1466,
1996.

8. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel
gradient-descent optimization,” Opt. Lett.22, 907–909, 1997.

9. N. Doble,Image Sharpness Metrics and Search Strategies for Indirect Adaptive Optics. PhD thesis, University
of Durham, United Kingdom, 2000.

10. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc.
Am. A 20, 609–620, 2003.

11. L. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximisation,” in Proc.
S.P.I.E., ‘Opto-Ireland 2005: Imaging and Vision’5823, 40–47, 2005.

12. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt.
Express14, 1339–1352, 2006.

#81604 - $15.00 USD Received 29 Mar 2007; revised 11 Jun 2007; accepted 11 Jun 2007; published 14 Jun 2007

(C) 2007 OSA 25 June 2007 / Vol. 15,  No. 13 / OPTICS EXPRESS  8176



13. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32, 5–7, 2007.
14. W. Lukosz, “Der Einfluß der Aberrationen auf die optischeÜbertragungsfunktion bei kleinen Orts-Frequenzen,”
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1. Introduction

The objective of all adaptive optics systems is to reduce the wave front aberrations to an ac-
ceptable level. Normally this would involve a wave front sensor to measure the aberrations,
which are in turn corrected using an adaptive element, such as a deformable mirror [1, 2]. In
imaging systems, however, direct wave front sensing is not straightforward and wave front sen-
sorless schemes are often employed. In certain situations, some aberration information can be
extracted from a single image using phase retrieval methods; further information is obtained
from two or more defocused images using the methods of phase diversity [3]. These methods
use iterative calculations based upon a model of the imaging process to retrieve the aberrations
and the object structure. However, these calculations are not guaranteed to converge to a unique
solution for arbitrary objects [4]. In other wave front sensorless systems, the adaptive element is
reconfigured in order to optimise a metric related to image quality. The optimisation procedure
involves measurement of the metric for a number of trial correction aberrations, followed by
the estimation of an improved correction aberration. This process is repeated until the image
quality is considered acceptable. The number of measurements required during this process de-
pends upon the optimisation algorithm and parameters used, the mathematical representation
of the aberration, and the object structure.

Most previous work in this area has used model-free algorithms, such as simplex optimisa-
tion, conjugate gradient search or multidithering [5, 6, 7, 8, 9, 10, 11]. These schemes have
employed several optimisation metrics that are appropriate for image-based adaptive optics.
However, the derivation of a constructive model based upon these metrics is complicated by
the image formation process, which depends on both the aberrations and the object structure.
An effective model-based adaptive optics scheme should be object independent, so the model
should permit the separation of aberration and object influences on the measurements. We show
that this separation is possible through the appropriate choice of optimisation metric and aberra-
tion representation. A similar approach has been demonstrated for adaptive optics in focussing
systems. Using a Strehl intensity metric in conjunction with a Zernike mode aberration expan-
sion has led to efficient schemes for the correction of small aberrations [12]. Another system
capable of correcting larger aberrations has been demonstrated, using a metric related to the
focal spot radius and an alternative aberration expansion in Lukosz modes [13].

In this paper we describe and demonstrate an image-based adaptive optics scheme that is
predominantly independent of object structure. This scheme uses the low spatial frequency
content of the image as the optimisation metric but leads to correction for all spatial frequencies.
The aberration is represented in terms of Lukosz modes; these modes are ideal for modelling the
effects of aberrations on the imaging of low spatial frequencies[14]. We describe the imaging
process in terms of spectral densities and the optical transfer function. The optimisation metric
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Fig. 1. The calculation of the incoherent optical transfer function: (a) the circular pupil P
with circumference C; (b) The geometry used in the autocorrelation calculation, showing
the pupil overlap A; (c) The resulting aberration-free incoherent optical transfer function.

g is introduced as the sum of a range of low frequencies and is related to the coefficients of the
aberration expansion,{a i}. Because of this choice of aberration expansion and optimisation
metric, the functiong({ai}) is found to have a paraboloidal maximum that permits the use of
simple maximisation algorithms. Moreover, we show that this optimisation can be performed as
a sequence of independent maximisations in each aberration coefficient. The correction scheme
is demonstrated for imaging in an incoherent transmission microscope.

2. Image formation in an incoherent imaging system

For incoherent imaging, the imageI(x) is given by the convolution of the object functiont(x)
and the intensity point spread function (IPSF),h(x), of the system:

I(x) = t(x)∗ h(x) . (1)

wherex is the position vector in the image plane; for clarity we have omitted magnification
factors. The object is, of course, independent of any aberrations in the optical system and all
aberration effects are therefore manifested in the IPSF. If instead we consider the imaging
process in the frequency domain, the image Fourier transform (FT),J(m), is given by

J(m) = H(m)T (m) , (2)

wherem is the spatial frequency vector,H(m) is the optical transfer function (OTF), which
is equivalent to the FT ofh(x), andT (m) is the FT oft(x). In general, each of the terms in
Eq. 2 is a complex quantity. In order to deal solely with real quantities, we can also describe
the imaging process in terms of spectral density functions. Defining the object spectral density
function asST (m) = |T (m)|2 and the image spectral density asSJ(m) = |J(m)|2, then

SJ(m) = |H(m)|2 ST (m) , (3)

where|H(m)| is the modulation transfer function (MTF). In Eq. 3, all aberration effects are
confined to the MTF.

3. Image spectral density for low spatial frequencies

In this section we derive approximations forS J(m) at low spatial frequencies. Expressions
for heavily aberrated OTFs at low spatial frequencies have been derived using the geometrical
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OTF [14, 15, 16]. We present an alternative derivation, based upon the diffraction OTF, provid-
ing equivalent expressions that are valid for all aberration magnitudes. The diffraction OTF is
calculated as the autocorrelation of the effective pupil function,P(r):

H(m) = P(r)⊗P∗(r) =

∫ ∫

P(r −m)P∗(r)dA , (4)

wherer is the position vector in the pupil andP∗ is the complex conjugate ofP. This is illus-
trated in Fig. 1. When the pupils are circular and aberration free, we define the pupil function
P(r) = Π(r), whereΠ(r) = 1 for |r | ≤ 1 and zero otherwise. From this we obtain the familiar
expression for the OTF as

H0(m) =
1
π

∫ ∫

Π(r −m)Π(r)dA =
2
π

[

cos−1
(m

2

)

− m
2

√

1−
(m

2

)2
]

, (5)

wherem = |m|. A normalisation factor has been introduced so thatH0(0) = 1. The spatial
frequencies are also normalised such that the cut-off of the incoherent imaging system corre-
sponds to|m| = 2. We model phase aberrations as a functionΦ(r ), such that the pupil function
P(r) = Π(r)exp[ jΦ(r )], wherej =

√
−1. The corresponding, aberrated OTF can be calculated

as

H(m) =
1
π

∫ ∫

Π(r −m)Π(r)exp j [Φ(r −m)−Φ(r)]dA . (6)

This is valid for all spatial frequencies. However, for small spatial frequencies, the phase term
Φ(r −m) can be approximated using a Taylor series expansion and Eqn. 6 can therefore be
approximated by

H(m) ≈ 1
π

∫ ∫

Π(r −m)Π(r)expj
[

−m ·∇Φ+O(m2)
]

dA , (7)

where the dot represents the scalar product,∇ is the gradient operator andO(m 2) represents
error terms of at least the second order inm. For small arguments, the exponential term can also
be expanded as a Taylor series, so that Eq. 7 becomes

H(m) ≈ 1
π

∫ ∫

Π(r −m)Π(r)dA− j
π

∫ ∫

Π(r −m)Π(r)(m ·∇Φ)dA (8)

− 1
2π

∫ ∫

Π(r −m)Π(r)(m ·∇Φ)2dA+O(m2) .

The first integral is equivalent toH0(m). For the other integrals, the effective region of integra-
tion is defined by the overlap of the two offset pupilsΠ(r −m)Π(r), shown as A in Fig. 1(b). If
we approximate this region by the circular pupil P, then the corresponding approximation error
is at least second order inm. Equation 8 can therefore be written

H(m) ≈ H0(m)− j
π

∫ ∫

P
(m ·∇Φ)dA− 1

2π

∫ ∫

P
(m ·∇Φ)2dA+O(m2) . (9)

An approximation for the squared MTF,|H(m)|2, follows as

|H(m)|2 ≈ H0(m)2− 1
π

∫ ∫

P
(m ·∇Φ)2dA+

[

1
π

∫ ∫

P
(m ·∇Φ)dA

]2

, (10)

where the error terms have now been omitted. The final term in Eq. 10 is non-zero only ifΦ(r)
contains a component of constant phase gradient (see Appendix A). The effect of this aberration
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component, which corresponds to the tip and tilt modes, is simply to shift the image laterally.
We assume in the rest of this paper that these aberration modes play no role, although we note
that the components are readily extracted from the phase of the image FT. If these modes are
not present, Eq. 10 becomes

|H(m)|2 ≈ H0(m)2− 1
π

∫ ∫

P
(m ·∇Φ)2dA . (11)

Substitution of this expression into Eq. 3 yields an expression for the image spectral density at
low spatial frequencies:

SJ(m) ≈
[

H0(m)2− 1
π

∫ ∫

P
(m ·∇Φ)2dA

]

ST (m) . (12)

In the equivalent derivation using the geometric OTF, the termH0(m)2 would be replaced by
unity. The corresponding error in the calculation of the MTF would be of orderm, leading to
significant differences compared to the diffraction OTF calculations.

4. Optimisation metric based upon low spatial frequencies

In this section, we derive an optimisation metric that uses the low spatial frequency content of
an image. The metric permits the separation of the effects of specimen structure and aberrations.
Let g(M1,M2) be defined as the total “energy” in all image spatial frequencies lying within the
annulus for whichM1 ≤ |m| ≤ M2, whereM2 is small:

g(M1,M2) =
∫ 2π

ξ=0

∫ M2

m=M1

SJ(m)m dm dξ (13)

≈
∫ M2

m=M1

{

H0(m)2
∫ 2π

ξ=0
ST (m)dξ − 1

π

∫ 2π

ξ=0
ST (m)

[

∫ ∫

P
(m ·∇Φ)2 dA

]

dξ

}

m dm .

If we definem = (mcosξ ,msinξ ), thenST (m) must be a periodic function of the polar angle
ξ and can be represented by its Fourier series:

ST (m) =
α0(m)

2
+

∞

∑
i=1

[αi(m)cos(2iξ )+ βi(m)sin(2iξ )] . (14)

Note that this series has fundamental periodπ as the spectral density always has even symmetry
about the origin, such thatST (m) = ST (−m). This permits us to calculate the first integral with
respect toξ in Eq. 13 as

∫ 2π

ξ=0
ST (m)dξ = πα0(m) . (15)

In order to calculate the the second integral with respect toξ , we can first show that the pupil
integral, by expanding the scalar product, becomes

∫ ∫

P
(m ·∇Φ)2dA =

m2

2

∫ ∫

P
|∇Φ|2 [1+cos(2ξ −2χ)]dA , (16)

whereχ(r) is the polar angle of the vector∇Φ(r). The second integral is then calculated as

∫ 2π

ξ=0
ST (m)

[

∫ ∫

P
(m ·∇Φ)2dA

]

dξ =

πm2

2

∫ ∫

P
|∇Φ|2 [α0(m)+ α1(m)cos(2χ)+ β1(m)sin(2χ)]dA . (17)
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Hence, we find that only the non-azimuthally variant componentα 0(m) and the first order
termsα1(m) and β1(m) contribute to the value ofg. Significant values of these first order
coefficients will indicate that the object has noticeable periodicity in a predominant direction,
such as a one dimensional grid. For other object structures more likely to be encountered in
applicationsα1(m) andβ1(m) are expected to be small so the corresponding terms in Eq. 17
can be neglected. Hence, we find that

g(M1,M2) ≈ q0(M1,M2)−q1(M1,M2)
1
π

∫ ∫

P
|∇Φ|2dA , (18)

where

q0(M1,M2) = π
∫ M2

m=M1

H0(m)2α0(m)mdm (19)

and

q1(M1,M2) =
π

2

∫ M2

m=M1

α0(m)m3dm (20)

are both positive quantities ifα0(m) �= 0 in the frequency range of interest. IfM1 and M2

are fixed and the object contains frequencies in this range, it can be seen from Eq. 18 that
g is maximum if and only if|∇Φ(r)| = 0 for all r or equivalently whenΦ(r ) is a constant.
Althoughg is based only on low spatial frequencies, the optimisation process will remove all
phase aberrations and hence improve imaging quality for all spatial frequencies. It is therefore
appropriate to useg as an optimisation metric for aberration correction. It can also be seen from
Eq. 18 that the variation ofg for different aberrations can be derived entirely from the properties
of the integral

I1 =
1
π

∫ ∫

P
|∇Φ|2dA . (21)

5. Aberration expansion in Lukosz functions

In order to understand the effects of the aberration onI 1, it is useful to represent the aberration
as a combination of Lukosz functions. These functions, based upon the Zernike polynomials,
were first derived by Lukosz [14] and later, independently by Braat [15]. Like Zernike circle
functions, the Lukosz functions are each expressed as the product of a radial polynomial and an
azimuthal function and use the same dual index and numbering scheme. They can be defined
as

Lm
n (r,θ ) = Bm

n (r)×
{

cos(mθ ) m ≥ 0
sin(mθ ) m < 0

(22)

with

Bm
n (r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2
√

n

[

R0
n(r)−R0

n−2(r)
]

n �= m = 0
1√
2n

[

Rm
n (r)−Rm

n−2(r)
]

n �= m �= 0
1√
n Rn

n(r) m = n �= 0

1 m = n = 0

(23)

wheren andm are the radial and azimuthal indices, respectively, andR m
n (r) is the Zernike radial

polynomial given by

Rm
n (r) =

n−m
2

∑
k=0

(−1)k(n− k)!rn−2k

k!
(

n+m
2 − k

)

!
(

n−m
2 − k

)

!
. (24)

It is also convenient to refer to the Lukosz polynomials using a single index numbering scheme,
which is explained in Appendix B. We express the aberration as a series ofN Lukosz modes
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with coefficientsai:

Φ(r) =
N+3

∑
i=4

aiLi(r,θ ) , (25)

where the piston, tip and tilt modes (i = 1,2,3 respectively) have been omitted. Using this
aberration expansion, we find that each mode contributes independently toI 1:

I1 =
1
π

∫ ∫

P
|∇Φ|2dA =

N+3

∑
i=4

a2
i . (26)

Note that, in contrast to the derivations of Lukosz and Braat, we have chosen the normalisation
of the radial polynomialsBm

n (r) to ensure that the weighting of each coefficient in Eq. 26 is
independent of the coefficient’s indices. The normalisation ofB m

n (r) used here is also slightly
different to that employed in Reference [13].

The optimisation metricg in Eq. 18 can now be directly expressed in terms of the set of
aberration coefficients,{ai}, to give

g({ai}) ≈ q0−q1

N+3

∑
i=4

a2
i , (27)

where for clarity we have omitted the explicit dependence onM1 andM2. This approximation is
accurate for small aberration amplitudes. However, for larger amplitudes it can give inaccurate,
even negative values, whereas in practiceg would tend to zero. A more appropriate approxima-
tion is a Lorentzian function, which is always positive, tends to zero for large aberrations, and
retains an identical form to relation 27 for small aberrations:

g({ai}) ≈
1

q2 + q3∑N+3
i=4 a2

i

, (28)

whereq2 = 1/q0 andq3 = q1/q2
0. This Lorentzian approximation provides a close fit to empir-

ical measurements ofg, as shown in the next Section.

6. Experimental investigation of the optimisation metric

The properties of the optimisation metricg({a i}) were investigated experimentally using the
system shown in Fig. 2(a). The system comprised an incoherent transmission microscope with
a deformable mirror (DM) and a CCD camera. For the purposes of this demonstration, the DM
acted as both aberration source and correction element. A light emitting diode (LED; Lumileds,
Luxeon Star/O, centre wavelength 650nm) provided incoherent illumination to a transmissive
specimen which was imaged using a 150mm focal length achromatic doublet as the objective
lens. An iris provided the 5mm diameter limiting aperture of the imaging system at the pupil
plane of the objective. This pupil plane was imaged onto the DM (Boston Micromachines Corp.,
Multi-DM, 140 element, 1.5µm stroke) using a 4f system. The DM was then re-imaged through
the same 4f system onto the pupil plane of the tube lens, which formed an image of the specimen
on the CCD camera.

The DM was driven using a set of control signals,{c i}, where each control signal was pro-
portional to the square root of the corresponding electrode voltage. This was found to produce
linear operation over most of the DM’s deflection range. In order to produce desired combina-
tions of Lukosz modes, the control signals were obtained from Lukosz modal coefficients{a i}
through a matrix multiplication:

c = B†D a , (29)
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Fig. 2. (a) Schematic diagram of the experimental apparatus; (b) Raw image of scatterer
without aberrations; (c) Spectral density of the scatterer image (log scale) withM1, M2 and
incoherent cut-off frequencies marked. The horizontal and vertical lines at the edge of this
image are FT artefacts arising from the sharp image boundaries.

where the elements of the vectorsa andc are identical to the elements of{a i} and{ci}, respec-
tively. The matrixD provides conversion from Lukosz coefficients into Zernike coefficients (see
Appendix B). The pseudo-inverse matrixB† permits the calculation of the control signals from
the Zernike coefficients. This matrix was obtained using an interferometric method described
in Reference [17], which also enabled flattening of the initial DM aberration figure.

In order to characterise the properties ofg, we used a holographic scatterer (Physical Op-
tics Corp.) as the transmissive specimen. An aberration-free image of the scatterer is shown
in Fig. 2(b). This specimen is ideal for this characterisation as it contains all spatial frequen-
cies within the pass band of the imaging system; this can be seen in the image spectral density
(Fig. 2(c)). Figure 3(a) shows the measured variation ofg with the root mean square (rms)
aberration amplitude using different spatial frequency ranges. The aberration consisted of eight
Lukosz modes (i = 4 to 11). The rms amplitude was calculated from the Lukosz coefficients
asa = |a| (see Appendix B). Each data point shows the mean and standard deviations for an
ensemble of 200 random aberrations of magnitudea. Each aberration was constructed by gen-
erating random coefficients in the range (-1,1) with uniform probability; the resulting vector
was then scaled to the magnitudea. When only small spatial frequencies are used in the calcu-
lation of g, the deviation from the mean is small and the response is predominantly quadratic,
as predicted by Eq. 27. When larger frequencies are also included, so that the low frequency
approximations no longer hold, the value ofg drops off more quickly and the deviation from
the mean is more significant. However, the Lorentzian approximation is found to provide a
close fit to the mean value ofg for all curves. In Fig. 3(b), it can be seen that the width of the
experimentally determinedg response fits the theoretical prediction for low spatial frequencies.

It is important to note that the width of theg response can be tuned by changing the spatial
frequency range. In other words, the use of smaller spatial frequencies in the metric permits
the measurement of larger aberrations. This property presents the possibility of schemes where
aberrations are corrected in a series of optimisations covering first the large magnitude aber-
rations (using the smallest spatial frequencies), progressing to correction of less significant
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Fig. 3. Experimental measurement of the optimisation metric: (a) Variation ofg with aber-
ration magnitudea = |a| for the different frequency ranges given by the figures in paren-
theses(M1,M2). The solid lines are Lorentzian fits to the mean values; (b) The measured
and calculated half width ofg(a) for different frequency ranges. The theoretical curve is
valid for small frequencies.

aberrations using larger frequencies.

7. Optimisation scheme

The aberration correction process can be performed as the maximisation ofg({a i}). Using
relation 28, we see that this is equivalent to the minimisation of a different metricG({a i})
defined as

G({ai}) = g({ai})−1 ≈ q2 + q3

N+3

∑
i=4

a2
i , (30)

where the approximation is valid over all aberration amplitudes. Using the Lukosz coefficients
{ai} as anN-dimensional coordinate basis, it is clear from Eq. 30 thatG({a i}) has a uniform
paraboloidal shape in the neighbourhood of its minimum. This representation is particularly ad-
vantageous for optimisation, as the minimum of a paraboloidal function is readily found from a
small number of metric evaluations. Moreover, the minimisation ofG can be decomposed into a
sequence ofN independent one dimensional parabolic minimisations in each of the coefficients
ai. In order to perform a minimisation with respect to the coefficienta k of a particular modeLk,
we can expressG as

G(ak) ≈ q′2 + q3a2
k , (31)

where
q′2 = q2 + q3 ∑

i �=k

a2
i (32)

can be considered a constant. As the values ofq ′
2 andq3 are not known, the value ofak that

minimisesG(ak) can be calculated from a minimum of three measurements ofG. In practice,
we took these three measurements by intentionally introducing different aberrations using the
adaptive element. We refer to these aberrations as biases. The biases were chosen to beΦ =
−bLk, Φ = 0 andΦ = +bLk, whereb is a suitable bias amplitude. An image was acquired and
its FT and spectral density were calculated. The appropriate range of frequency components
was summed, giving the metric measurementsg−, g0 andg+ respectively, and the reciprocal
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Fig. 4. Correction of a single Lukosz aberration mode (astigmatism,i = 5) using the scat-
terer specimen withM1 = 0.06 andM2 = 0.4. The first row shows the raw images and the
second row contains the corresponding spectral densities. The third row illustrates schemat-
ically the sampling of the Lorentzian curve used in the optimisation calculation. The dia-
grams correspond to: (a1-a3) initial aberration of magnitudea5 = −4.9; (b1-b3) additional
negative bias−b = −11.5 applied; (c1-c3) additional positive biasb = 11.5 applied; (d1-
d3) correction applied.

of each result was calculated, givingG−, G0 andG+. The optimum correction aberration was
then estimated by parabolic minimisation as [18]

acorr =
b(G+−G−)

2G+−4G0+2G−
, (33)

which is exactly equivalent to the Lorentzian maximisation of the metricg. To correct this
single mode, the correction aberrationΦ = acorrLk would be added to the deformable mirror.
For multiple mode correction, each modal coefficient would be measured in this manner before
applying the full correction aberration containing all modes.

7.1. Correction of a single mode

The correction process is illustrated in Fig. 4 for the correction of one Lukosz mode using the
scatterer specimen. A suitable range of spatial frequencies and the bias amplitude were chosen
based upon the curves in Fig. 3. An initial aberration was added using the DM, an image was
acquired and the value ofg was calculated. Positive and negative bias aberrations were added in
turn and the corresponding values ofg were calculated. The correction aberration was obtained
using Eq. 33 and the correction was applied to the DM. The final rms phase aberration was
found to be 0.18, corresponding to a Strehl ratio of 0.97.
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Fig. 5. Correction of multiple Lukosz aberration modes showing images (upper row) and
spectral densities (lower row). The initial aberration was a random combination of eight
modes,i = 4 to 11, with overall amplitudea = 11.5. For the correction procedureM1 =
0.06,M2 = 0.4, and the biasb = 9.8. The images show: (a) Scatterer, initial aberration; (b)
Scatterer, corrected; (c) USAF test chart, initial aberration; (d) USAF test chart, corrected.
The values ofφrms show the root mean square phase aberration in radians.

7.2. Correction of multiple modes

The correction of multiple aberration modes is illustrated in Fig. 5 for both the scatterer spec-
imen and a US Air Force test chart. In each case, the initial aberration,a in, introduced by the
DM consisted of eight Lukosz modes (i = 4 to 11) and had a total amplitude of|a in| = 11.5.
Each modal coefficient was estimated in turn using a bias amplitudeb = 9.8. Once all eight
coefficients had been estimated, the full correction aberration,acorr, was added to the DM. We
note that the unbiased measurement was identical for each modal estimation, so was only taken
once. The final Strehl ratios were found to be 0.87 for the scatterer and 0.91 for the test chart.
A further cycle of correction was also performed (not shown in the figure) using biasb = 4.9,
giving final Strehl ratios of 0.99 for the scatterer and 0.98 for the test chart.

7.3. Accuracy of correction

We investigated the correction accuracy for various spatial frequency ranges, bias amplitudes
and input aberrations using the scatterer specimen. The results are summarised in Fig. 6 and
Table 1. As in the previous section, the initial aberration,a in, introduced by the DM consisted
of a random combination of the eight Lukosz modesi = 4 to 11. The values of optimisation
metric were obtained in a similar manner and the correction aberration,acorr, was determined.
We define the aberration error to beaerr = ain +acorr and the error magnitude as

ε = |aerr| = |ain +acorr| . (34)

The approximate Strehl ratio was calculated using the Gaussian approximation [16] and related
to aerr using the expression derived in Appendix B:

S = exp
(

−φ2
rms

)

= exp
(

−|D aerr|2
)

. (35)
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Fig. 6. Correction accuracy for the correction of eight Lukosz modes (i = 4 to 11) using
different frequency ranges A-F (see Table 1). The upper graphs correspond to biasb = 4.9
whereas in the lower graphsb = 1.6. (a1,a2) show the mean correction errorε; (b1,b2)
show the mean Strehl ratioS.

Table 1. Spatial frequency ranges for the results of Fig. 6.

Frequency Range M1 M2 Half width g(a)

A 0.06 0.08 17.0

B 0.06 0.20 9.82

C 0.06 0.40 6.05

D 0.06 0.80 4.25

E 0.06 1.20 3.88

F 0.06 2.00 3.81

A sequence of 50 measurements was taken for each input aberration magnitude|a in| and the
mean values ofε andS were calculated and plotted in Fig. 6. The data show that each of the
frequency combinations can provide effective correction over a particular range, but that the
range is largest when the lowest spatial frequencies are used. This property is related to the
width of theg(a) curves shown in Fig. 3(a). Some of the data points in Fig. 6(a1) and (a2)
lie above theε = |ain| line, indicating that the corrected aberration is larger than the initial
aberration. These points correspond to metrics using higher spatial frequencies, where we do
not expect the quadratic approximations used in the derivation of Eq. 27 to hold. We note
that for small input aberrations there is an offset error. However, in all cases shown here, this
corresponds to a Strehl ratio of greater than 0.8, close to the diffraction limit.
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Fig. 7. The effect of additional modes on the correction procedure usingM1 = 0.06,M2 =
0.4, andb = 4.9.

These results indicate that, when aberration statistics are unknown, a sensible strategy would
involve choosing small spatial frequencies for an initial correction. This would be accompanied
by a bias that is no larger than the half width of the response curve, as shown in Fig. 3(b). If
further correction is required, this could be performed using a larger range of frequencies and a
corresponding smaller bias. If the maximum expected aberration magnitude is known, then the
bias could be chosen to be similar to this maximum.

The effect of additional aberration modes on the correction process was investigated by in-
cluding random combinations of an extra eight modes (i = 12 to 19) in the initial aberration.
The original eight modes (i = 4 to 11) were corrected in the same manner as before andε was
calculated taking into account only the modes that were corrected. The results obtained when
different amounts of the additional modes were present are shown in Fig. 7. The errorε shows
only a small variation as the amplitude of the additional modes is increased. This illustrates that
different aberration modes can be corrected independently using this procedure.

8. Discussion and Conclusions

We have introduced a model-based adaptive optics scheme for correcting aberrations in an
incoherent imaging system. Using an optimisation metric based upon the low spatial frequency
content of the image and an aberration expansion in terms of Lukosz modes, we have been able
to separate the effects of the different aberration modes. This allowed the optimisation to be
performed as a sequence of independent corrections of each mode. Although only low spatial
frequencies are used in the optimisation process, correction of all aberrations (aside from piston,
tip and tilt) results. Consequently, imaging quality is improved for all spatial frequencies and not
solely the frequencies used in the optimisation metric. The correction scheme is predominantly
independent of object structure – the model is valid when the low spatial frequency components
are not significantly concentrated in one orientation. This would occur, for example, if the
image were dominated by a one dimensional grid-like pattern. Even if the object has this form,
we expect the scheme to be robust – this has been indicated by preliminary results. Although
the discussion in this paper was framed in the context of an incoherent imaging system, we
expect this approach also to be valid for coherent or partially coherent systems.

The optimisation metric used in this paper can be related to image sharpness measures that
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have been employed in many other image-based adaptive optics systems [5, 6, 7, 8, 9, 10, 11].
A common definition for image sharpness,σ , is obtained by integrating the square of the image
intensity,I(x):

σ =

∫ ∫

I(x)2dxdy . (36)

As noted by Hamaker et al. [19], by using Parseval’s theorem,σ can also be calculated in the
Fourier domain as

σ =

∫ 2π

ξ=0

∫ 2

m=0
SJ(m)mdmdξ (37)

and is thus equivalent to the metricg if using the spatial frequency range(M 1,M2) = (0,2).
The methods described in this paper could therefore be extended for use with image sharpness
metrics, obviating the need to calculate the image FT. For example, they would be directly
applicable if the object spectrum were dominated by low spatial frequency components.
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Appendix A: Evaluation of an integral

In this Appendix we examine the properties of the following integral that appears in the calcu-
lation of the OTF (Eq. 10):

I2 =
1
π

∫ ∫

P
(m ·∇Φ)dA . (38)

The integration is independent ofm, which can be removed from the integrand, so we find that

I2 =
1
π

m ·
∫ ∫

P
(∇Φ)dA =

1
π

m ·
∮

C
Φ n dc , (39)

where we have employed Gauss’ theorem to convert the surface integral over the pupil P to a
line integral around its circumference C (see Fig. 1). The term dc is an infinitesimal section
of C that has the corresponding unit normal vectorn. If we definem = (mcosξ ,msinξ ) and
φ(θ ) = Φ(r ) when|r | = 1 then Eq. 39 can be rewritten as

I2 =
1
π

m
∫ 2π

θ=0
φ(θ )cos(ξ −θ )dθ . (40)

We can expandφ(θ ) as a Fourier series:

φ(θ ) =
µ0

2
+

∞

∑
i=1

[µi cos(iθ )+ νi sin(iθ )] , (41)

which, when substituted into Eq. 40, yields

I2 = m [µ1cos(ξ )+ ν1sin(ξ )] . (42)

Hence, the integralI2 is zero unlessµ1 or ν1 are non-zero. IfΦ(r) is expressed as a series of
Lukosz modes, then the only modes that can contribute toµ 1 or ν1 are mode 2 (tip) and mode 3
(tilt). All other Lukosz modes of the first azimuthal order are identically zero atr = 1 so do not
contribute toφ(θ ). The effect of the tip and tilt modes is simply to translate the image laterally.
Their influence on the OTF is the introduction of a phase variation and has no effect on the OTF
magnitude. The role ofI2 in Eq. 10 is therefore to compensate for the previous second order
term so that the OTF magnitude is not affected by tip and tilt.
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Appendix B: Zernike and Lukosz functions

Some low-order Zernike and Lukosz functions are listed in Table 2. The mode indexing
schemes, using the single indexi or the dual indices(n,m), are explained by Neil et al. [20].
The Zernike functions are normalised such that a coefficient of value 1 corresponds to a wave
front variance of 1 rad2. The Lukosz functions are normalised such that a coefficient of value
1 corresponds to a focal spot second moment (or equivalently rms spot radius) ofλ/(2πNA),
whereλ is the wavelength andNA is the numerical aperture of the focussing lens.

Conversion between sets of Lukosz modal coefficients{am
n } and Zernike coefficients{zm

n }
can be performed using the following relationships:

zm
n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
√

n(n+1)
am

n − 1
2
√

(n+1)(n+2)
am

n+2 m �= n
1√

2n(n+1)
an

n m = n �= 0

a0
0 m = n = 0

(43)

If the sets of Lukosz and Zernike coefficients are represented by the vectorsa andz respectively
then we can use the matrix-vector equationz= Da for the conversion, where the elements of the
sparse matrixD are calculated from Eq. 43. The rms phase aberration can be easily calculated
from the Zernike mode coefficients as|z|. It follows that, in terms of Lukosz coefficients, the
rms phase aberration is given by

φrms = |Da| . (44)

Using a geometric optics approximation, the rms focal spot radiusρ rms is related to the Lukosz
coefficients by [14, 15]

ρrms =
λ

2πNA
|a| . (45)

Table 2. Zernike and Lukosz mode definitions

Index Zernike mode Lukosz mode

i n m Zi(r,θ ) Li(r,θ ) Name

1 0 0 1 1 Piston

2 1 1 2r cos(θ ) r cos(θ ) Tip

3 1 -1 2r sin(θ ) r sin(θ ) Tilt

4 2 0
√

3(2r2−1) 1√
2
(r2−1) Defocus

5 2 2
√

6r2cos(2θ ) 1√
2
r2cos(2θ ) Astigmatism

6 2 -2
√

6r2sin(2θ ) 1√
2
r2 sin(2θ ) Astigmatism

7 3 1 2
√

2(3r3−2r)cos(θ ) 1√
6
(3r3−3r)cos(θ ) Coma

8 3 -1 2
√

2(3r3−2r)sin(θ ) 1√
6
(3r3−3r)sin(θ ) Coma

9 3 3 2
√

2r3cos(3θ ) 1√
3
r3cos(3θ ) Trefoil

10 3 -3 2
√

2r3sin(3θ ) 1√
3
r3 sin(3θ ) Trefoil

11 4 0
√

5(6r4−6r2+1) 1
2(3r4−4r2 +1) Spherical
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