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Introduction

As it is well known, the classical Minkowski content of a closed set S ⊂ R n is defined by The quantity M measures the area of "(n -1)-dimensional sets", and it is an alternative to the more classical Hausdorff measure H n-1 . With the role of surface measure, the Minkowski content turns out to be important in many problems arising from real applications: for instance M is related to evolution problems for closed sets [START_REF] Aubin | Mutational equations in metric spaces[END_REF][START_REF] Lorenz | Set-valued maps for image segmentation[END_REF][START_REF] Sokolowski | Introduction to shape optimization[END_REF].

Clearly, it poses as natural problems its existence and comparison with H n-1 . Let us mention some known results in this direction. In [9, p. 275] the author proves that M(S) exists and coincides with H n-1 (S) whenever S is compact and (n -1)-rectifiable, i.e. S = f (K) for some K ⊂ R n-1 compact and f : R n-1 → R n is Lipschitz. A generalization of this result is contained in [4, p. 110]. Here, the authors consider countably H n-1 -rectifiable compact sets in R n , i.e. sets which can be covered by a countable family of sets S j , with j ∈ N, such that S 0 is H n-1 -negligible and S j is a (n -1)-dimensional surface in R n of class C 1 , for any j > 0. In this case, M(S) exists and coincides with H n-1 (S) if a further density assumption on S holds: more precisely there must exist γ > 0 and η a probability measure on R n satisfying η(B(x, r)) ≥ γr n , for each r ∈ (0, 1) and for each x ∈ S, where B(x, r) is the open ball centered in x of radius r. Counterexamples [4, p. 109] show that the countable rectifiability is indeed not sufficient to ensure the existence of M.

More recently in [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets and applications to stochastic geometry[END_REF], motivated by problems in stochastic geometry, a generalization of the Minkowski content has been introduced, the so-called outer Minkowski content, which is defined by (1.2) SM(E) := lim

ε→0 + |{x ∈ R n : dist(x, E) ≤ ε} \ E| ε , E ⊂ R n compact.
In [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets and applications to stochastic geometry[END_REF] the authors investigate general conditions ensuring the existence of SM: in particular, they prove that if E is a set with finite perimeter and M(∂E) exists and coincides with the perimeter of E, then also SM(E) exists and coincides with the perimeter of E (in Ω). Now, notice that the quantity which appears in the argument of the limit in (1.2) can be rewritten as (provided the set E is "nice" enough)

1 ε (|E + εB(0, 1)| -|E|).
We consider in this short note a variant of this content, which is an anisotropic outer Minkowski content. The idea is to study the limit, as ε → 0 + , of

(1.3) 1 ε (|E + εC| -|E|),
where C ⊂ R n is a closed convex body. It is standard that if E is convex, then |E + εC| is a polynomial in ε (of degree n) whose coefficient of the first degree term (see also Remark 3.7 below) is precisely the anisotropic perimeter

(1.4) ∂E h C (ν E ) dH n-1 ,
where h C is the support function of C, defined by h C (ν) = sup x∈C x • ν, and ν E the outer normal to ∂E, see [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF] for details. The convergence of (1.3) to (1.4) follows for convex sets E and can be easily extended to (very) smooth sets.

We show here two (expected) results: first, as a functional defined on sets, (1.3) Γ-converges to the natural limit (1.4) as ε → 0.

Second, we show in Theorem 3.4 that given any set for which the (classical) outer Minkowski content equals the perimeter, then the limit of (1.3), as ε → 0 + , coincides with (1.4).

The proof of Theorem 3.4 is quite technical, because we wanted to work under the only assumption of the convergence of the classical content. We show that this convergence implies that the boundary is flat enough in a relatively uniform way, so that the convergence of (1.3) holds.

Eventually, we also deduce a Γ-convergence result (see [START_REF] Braides | Γ-convergence for beginners[END_REF][START_REF] Maso | Introduction to Γ-convergence[END_REF] for details) for functionals of the type

(1.5) 1 ε ess sup x-εC u -u(x) dx
which coincides with (1.3) on characteristic functions of sets. The limit is (quite obviously) given by Ω h C (-Du) (where the minus sign accounts for the fact that the outer normal was appearing in (1.4), and not the inner normal which corresponds more naturally to the gradient of the characteristic function χ E )

As a simple corollary, one is able to approximate functionals of the type

∂E φ(ν E ) dH n-1 ,
for φ a positively one-homogenous convex function φ : R n → [0, +∞) (and positive away from 0). Indeed, it suffices to choose the convex body

C := {x ∈ R n : x • ν ≤ φ(ν) ∀ ν ∈ R n }
and apply our results.

The paper is organized as follows: in section 3 we define the setting and we state the results, then in section 4 we prove the Γ-convergence result for (1.5), and then the pointwise convergence result for (1.3).

Notation and preliminaries

2.1. Notation. Let n ≥ 1 be integer. Given a measurable set A ⊂ R n , we will denote by |A| its Lebesgue measure. If k ∈ {0, . . . , n}, the k-dimensional Hausdorff measure of S ⊂ R n will be denoted by H k (S). We will use the notation x • y for the standard scalar product in R n between x and y, B(x, r) for the closed ball of radius r centered in x. Finally, here convergence in L 1 loc (Ω) means convergence in L 1 (B ∩ Ω) for any ball B. (Strictly speaking, it is thus the convergence in L 1 loc (R n ) of the functions extended with the value 0 outside of Ω.) We say that a sequence of sets

E j ⊂ R n converges to E ⊂ R n in L 1 loc (Ω) as j → +∞, if χ E j converges to χ E in L 1
loc (Ω) as j → +∞, where χ S denotes the characteristic function of the set S.

Geometric measure theory.

In this paragraph we recall some basic notions of geometric measure theory we will need; for an exhaustive treatment of the subject we refer the reader to [START_REF] Simon | Lectures on Geometric Measure Theory[END_REF].

Let n ≥ 1 be integer and let k ∈ N with k ≤ n. We say that S ⊂ R n is countably H krectifiable if S can be covered by a countable family of sets S j , with j ∈ N, such that S 0 is H k -negligible and S j is a k-dimensional surface in R n of class C 1 , for any j > 0.

Let E ⊂ R n be a measurable set and Ω ⊂ R n be an open domain. We say that E has finite perimeter in Ω if the distributional derivative of χ E , denoted by D χ E , is a R nvalued Radon measure on Ω with finite total variation; the perimeter of E in Ω is defined by Per(E; Ω) := |D χ E |(Ω), where |D χ E | denotes the total variation of D χ E . The upper and lower n-dimensional densities of E at x are respectively defined by

Θ * n (E, x) := lim sup rց0 |E ∩ B(x, r)| ω n r n , Θ * n (E, x) := lim inf rց0 |E ∩ B(x, r)| ω n r n ,
where ω n is the volume of the n-dimensional unit ball. If Θ * n (E, x) = Θ * n (E, x) their common value is denoted by Θ n (E, x). For every t ∈ [0, 1] we define (2.1)

E t := {x ∈ R n : Θ n (E, x) = t}.
The essential boundary of E (or measure-theoretic boundary) is the set

∂ * E := R n \(E 0 ∪ E 1 ). It turns out that if E has finite perimeter in Ω, then H n-1 (∂ * E \ E 1/2 ) = 0, and Per(E; Ω) = H n-1 (∂ * E ∩ Ω).
Moreover, one can define a subset of E 1/2 as the set of points x where there exists a unit vector ν E (x) such that:

E -x r → {y ∈ R n : y • ν E (x) ≤ 0}, in L 1 loc (R n ) as r → 0,
and which is referred to as the outer normal to E at x. The set where ν E (x) exists is called the reduced boundary and is denoted by

∂ * E. One can show that H n-1 (∂ * E \ ∂ * E) = 0, moreover, one has the decomposition D χ E = (-ν E )H n-1 ∂ * E.

Statement of the results

Let us assume that C ⊂ R n is a closed convex body, that is, bounded and with 0 in its interior. We denote its support function by h C (ν) = sup x∈C x • ν, and its polar function is 

h • C (x) := sup h C (ν)≤1 x • ν. It is
a|ν| ≤ h C (ν) ≤ b|ν| , 1 b |x| ≤ h • C (x) ≤ 1 a |x| .
Let Ω ⊂ R n be an open domain. Given a Lebesgue measurable set E ⊂ Ω, we introduce the outer ε, C-Minkowski content,

(3.2) SM 0 ε,C (E; Ω) := 1 ε (|Ω ∩ (E + εC)| -|E|) .
Actually, this definition is not very practical, since it can change drastically with Lebesguenegligible changes of the set E. For this reason, we introduce the functional, defined for a measurable function u:

(3.3) F ε,C (u; Ω) := 1 ε Ω ess sup Ω∩(x-εC) u -u(x) dx
which takes values in [0, +∞]. Notice that one can check easily (using Fatou's lemma) that F ε,C is l.s.c. in L 1 loc (Ω). We then define

(3.4) SM ε,C (E; Ω) := F ε,C ( χ E ; Ω) .
It is also easy to check that the definition coincides with SM 0 ε,C on smooth sets, and in general for a measurable set E we have

SM ε,C (E; Ω) = min |E ′ △E|=0 SM 0 ε,C (E ′ ; Ω) = SM 0 ε,C (E 1 ; Ω) = SM 0 ε,C (Ω \ E 0 ; Ω)
where E 1 (resp., E 0 ) is the set of points of Lebesgue density 1 (resp., 0) in Ω (see (2.1)), and A△B denotes the symmetric difference (A \ B) ∪ (B \ A) of the sets A and B. Eventually, one can check easily that F ε,C satisfies a generalized coarea formula [START_REF] Visintin | Nonconvex functionals related to multiphase systems[END_REF][START_REF] Chambolle | Continuous limits of discrete perimeters[END_REF]: for any function u ∈ L 1 loc (Ω),

(3.5) F ε,C (u; Ω) = ∞ -∞ SM ε,C ({u > s}; Ω) ds .
Indeed, for any integer k and a.e. x ∈ Ω with u(x) > -k, ess sup

Ω∩(x-εC) u + k = +∞ -k ess sup Ω∩(x-εC)
χ {u>s} ds so that ess sup

Ω∩(x-εC) u -u(x) = +∞ -k ess sup Ω∩(x-εC) χ {u>s} -χ {u>s} (x) ds ,
and sending k → +∞ we deduce (3.5).

Eventually, one can show that for any measurable sets, E and F ,

SM ε,C (E ∪ F ; Ω) + SM ε,C (E ∩ F ; Ω) ≤ SM ε,C (E; Ω) + SM ε,C (F ; Ω)
from which it follows that F ε is convex on L 1 loc (Ω), see [START_REF] Chambolle | Continuous limits of discrete perimeters[END_REF] for details. Before stating our results we recall the following definition: we say that a family of functionals (G ε ) ε>0 defined on the Lebesgue measurable subsets of R n Γ-converges to G in L 1 loc (Ω) as ε → 0 if

• for any Lebesgue measurable set E, and for any family

(E ε ) ε>0 of Lebesgue measurable sets E ε → E in L 1 loc (Ω) as ε → 0, we have G(E) ≤ lim inf ε→0 G ε (E ε ) ,
• for any Lebesgue measurable set E, there exists a family of Lebesgue measurable sets

(E ε ) ε>0 such that E ε → E in L 1 loc (Ω) as ε → 0 and lim sup ε→0 G ε (E ε ) ≤ G(E).
In the same way, we say that a family of functionals

(F ε ) ε>0 defined on L 1 loc (Ω) Γ-converges to F in L 1 loc (Ω) as ε → 0 if • for any u ∈ L 1 loc (Ω)
, and for any family (u ε ) ε>0 of elements of L 1 loc (Ω) such that u ε → u in L 1 loc (Ω) as ε → 0, we have

F (u) ≤ lim inf ε→0 F ε (u ε ) ,
• for any u ∈ L1 loc (Ω), there exists a family

(u ε ) ε>0 of elements of L 1 loc (Ω) such that u ε → u in L 1 loc (Ω) as ε → 0 and lim sup ε→0 F ε (u ε ) ≤ F (u).
We will show the following result:

Theorem 3.1. As ε → 0, SM ε,C and SM 0 ε,C Γ-converge to (3.6) Per h C (E; Ω) :=    ∂ * E∩Ω h C (ν E (x)) dH n-1 (x) if E has finite perimeter in Ω , +∞ else in L 1 loc (Ω), where ν E (x) is the outer 1 normal to ∂ * E at x. Moreover, if {E ε } ε>0 are sets with locally finite measure and sup ε>0 SM ε,C (E ε ; Ω) < +∞, then, up to subsequences, E 1 ε converge to some set E in L 1 loc (Ω).
In particular, we deduce from [6, Prop. 3.5]:

Corollary 3.2. As ε → 0, F ε,C Γ-converges to T V -C (u; Ω) :=    Ω h C (-Du) if u ∈ BV (Ω) , +∞ else in L 1 loc (Ω), where h C (-Du) stands for h C -dDu d|Du| d|Du| [8]. Moreover, if {u ε } ε>0 are functions in L 1 loc (Ω) with sup ε F ε,C (u ε ; Ω) < +∞, then {u ε } ε>0 is precompact in L 1 loc (Ω).
Indeed, Proposition 3.5 in [START_REF] Chambolle | Continuous limits of discrete perimeters[END_REF] shows that for functionals such as F ε,C which satisfy (3.5), the Γ-convergence of the functionals restricted to characteristics functions of sets to some limit (Theorem 3.1) is sufficient to imply the Γ-convergence of the full functionals to a limit which is precisely the extension by co-area formula of the previous limit (here T V -C is the extension of (3.6)). The compactness is shown in Section 4.1.

For any measurable set E we can also consider

M ε,C (E; Ω) := (SM ε,C (E; Ω) + SM ε,C (Ω \ E; Ω))/2.
From Theorem 3.1 the following Corollary follows easily:

Corollary 3.3. As ε → 0, M ε,C Γ-converges to (Per h C (E) + Per h C (Ω \ E))/2 in L 1 loc (Ω).
Concerning the pointwise convergence of SM 0 ε,C , we also have the following interesting result, from which the Γ-lim sup inequality in Theorem 3.1 follows in a straightforward way. Theorem 3.4. Assume that the set E is a finite-perimeter set such that

(3.7) lim ε→0 SM 0 ε,B(0,1) (E; Ω) = Per(E; Ω) .
Then,

(3.8) lim ε→0 SM 0 ε,C (E; Ω) = Per h C (E; Ω) .
Remark 3.5. If we assume moreover that C is C 1,1 and "elliptic" (precisely: that h 2 C /2 is both uniformly convex and with Lipschitz gradient), then the two assertions in Theorem 3.4 should in fact be equivalent. To check this, it requires to adapt the proof by replacing the Euclidean ball and distance with C and the corresponding anisotropic (nonsymmetric) distance. The smoothness and ellipticity are required because, in the proof, we use the ellipticity of the distance to control the difference of measure between a flat surface, orthogonal to a given vector ν, and a slanted C 1,1 surface with at least a point with normal ν = ν, see Fig. 1 and the proof of (4.32) for details.

Remark 3.6. The sets which satisfy (3.7) are studied in [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets and applications to stochastic geometry[END_REF]. A sufficient condition is that the Minkowski content of the reduced boundary coincides with its (n -1)-dimensional measure, that is,

(3.9) lim ε→0 |{x ∈ Ω : dist(x, ∂ * E) ≤ ε}| 2ε = Per(E; Ω) .
The proof is quite elementary (see [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets and applications to stochastic geometry[END_REF]Thm 5]). Indeed, we observe first that (3.9) implies that {dist(•, ∂ * E) = 0} has zero Lebesgue measure. Then, we can introduce for x ∈ Ω the (essential) signed distance function

d E (x) := dist(x, E 1 ) -dist(x, E 0 )
to the boundary. If dist(x, E 1 ) > 0 then clearly x is in the interior of E 0 , in the same way if dist(x, E 0 ) > 0, x is in the interior of E 1 . Hence |d E (x)| = dist(x, E 1 ) + dist(x, E 0 ), and in particular d E (x) = 0 if and only if for any ρ > 0, B(x, ρ) contains points of both E 0 and E 1 , which in turn is equivalent to dist(x, ∂ * E) = 0. It follows that |d E (x)| = dist(x, ∂ * E) (and, by (3.9) {d E = 0} is negligible, showing also that d E is the classical signed distance function to ∂E 1 in Ω). Thanks to the co-area formula and the fact that |∇d E | = 1 a.e., we have both

1 ε |{x ∈ Ω : 0 < d E (x) < ε}| = 1 0 Per({d E < εs}; Ω) ds , 1 ε |{x ∈ Ω : -ε < d E (x) < 0}| = 0 -1 Per({d E < εs}; Ω) ds . Now for any s, {d E < εs} goes to either {d E < 0} (if s < 0) or {d E ≤ 0} (if s > 0) as ε → 0,
which both coincide to E up to a negligible set. Hence by Fatou's lemma, (3.10)

Per(E; Ω) ≤ lim inf ε→0 1 ε |{x ∈ Ω : 0 < d E (x) < ε}|, Per(E; Ω) ≤ lim inf ε→0 1 ε |{x ∈ Ω : 0 < -d E (x) < ε}|.
Together with (3.9), it follows that the inequalities in (3.10) must in fact be equalities, and the lim infs are limits. In particular, we deduce (3.7).

If ∂E is compact and rectifiable (that is, included in the image of a Lipschitz map from R n-1 to R n ), and H n-1 (∂E \ ∂ * E) = 0, then the Minkowski content coincides with the perimeter, see [9, Thm 3.2.39 p. 275], and the previous analysis applies. It is easy to build examples, though, where this is not true and still, (3.8) holds, see again [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets and applications to stochastic geometry[END_REF].

Remark 3.7. In case E is a convex body, then it is well known that (see [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF])

|E + εC| = |E| + εPer h C (E; Ω) + O(ε 2 ) .
As before, for any measurable set E ⊂ Ω we let

M 0 ε,C (E; Ω) := (SM 0 ε,C (E; Ω) + SM 0 ε,C (Ω \ E; Ω))/2.
Then the following pointwise convergence result holds.

Theorem 3.8. Assume that the set E is a finite-perimeter set such that

lim ε→0 M 0 ε,B(0,1) (E; Ω) = Per(E; Ω) .
Then,

lim ε→0 M 0 ε,C (E; Ω) = (Per h C (E; Ω) + Per h C (Ω \ E; Ω))/2 .
In particular, we get

lim ε→0 M 0 ε,C (E; Ω) = ∂ * E h C (ν E (x)) + h C (-ν E (x)) 2 dH n-1 (x).

Proof of the results

4.1. Proof of Theorem 3.1. In order to prove the Γ-convergence, we must show that for any E,

• if E ε → E in L 1 loc (Ω), then (4.1) Per h C (E; Ω) ≤ lim inf ε→0 SM ε,C (E ε ; Ω) ,
• and that there exists

E ε → E with (4.2) lim sup ε→0 SM ε,C (E ε ; Ω) ≤ Per h C (E; Ω).
As it is standard that one can approximate any set E with finite perimeter by means of smooth (enough) sets such that Per(E k ; Ω) → Per(E; Ω) (for instance, minimizers of min F Per(F ; Ω) + k|E△F | will have a C 1 boundary, up to a compact singular set of small dimension) then (4.2) will follow, using a diagonal argument and Remark 3.6, from Theorem 3.4 (which we will prove later on).

Hence, we focus on the proof of (4.1). We will also prove, simultaneously, the last claim of the theorem, which is the compactness of a family (E ε ) with equibounded energies. Let us introduce the anisotropic (essential) distance function to a set E:

dist C (x, E) := ess inf y∈E h • C (x -y) .
(Equivalently, this is the h • C -distance to the set E 1 of points where the Lebesgue density of E is 1, or to the complement of E 0 .) Then, dist C (x, E) < ε if and only if there exists a set of positive measure in E of points y with h • C (xy) < ε, or, in other words, such that xy ∈ εC, which is equivalent to say that x ∈ E 1 + εC. In particular, it follows that

(E 1 + εC \ E 1 ) ∩ Ω = {x ∈ Ω \ E 1 : dist C (x, E) < ε}.
On the other hand, if one lets d(x) := dist C (x, E), it is standard that d is Lipschitz and that h C (∇d) = 1 a.e. in {d > 0}, and h C (∇d) = 0 a.e. in {d = 0} ⊃ E 1 . The proof of this fact follows the same lines as in [START_REF] Ambrosio | Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory[END_REF]: first, for any x, y ∈ Ω, if δ > 0, one can find a set with positive measure in E of points y ′ with d(y) ≤ h • C (yy ′ ) ≤ d(y) + δ. Then, for these points,

(4.3) d(x) -d(y) ≤ h • C (x -y ′ ) -h • C (y -y ′ ) + δ ≤ h • C (x -y) + δ
and sending δ to zero and using (3.1), it follows that d is Lipschitz. Moreover, ∇d = 0 a.e. in {d = 0}. Now, from (4.3) we also see that

d(x + tz) -d(x) ≤ th • C (z) for all z; therefore, if d is differentiable at x it follows that ∇d(x) • z ≤ 1 for all z ∈ C, hence h C (∇d(x)) ≤ 1.
We show the reverse inequality for points x where d(x) > 0: for such a point, there exists y ∈ E 1 with d(x) = h • C (xy). For each x ′ ∈ (y, x] (which means that x ′ = y and x ′ lies on the line segment with extreme points y and x), one has d(x ′ ) = h • C (x ′y) > 0, otherwise there would exist y ′ with h

• C (x ′ -y ′ ) < h • C (x ′ -y), but then, it would follow that h • C (x -y ′ ) ≤ h • C (x -x ′ ) + h • C (x ′ -y ′ ) < h • C (x -x ′ ) + h • C (x ′ -y) = h • C (x -y)
since x ′ ∈ (y, x], a contradiction. It follows that for z = xy, t ∈ (0, 1),

d(x -tz) = h • C (x -tz -y) = (1 -t)d(x),
and if in addition x is a point of differentiability, it follows that

-∇d(x) • z = -d(x) = -h • C (z). But since h C (∇d(x)) ≤ 1 and z/h • C (z) ∈ C, it follows that h C (∇d(x)) = 1. If moreover h • C is differentiable as well in x -y, we find in addition that ∇d(x) = ∇h • C (x -y). If h C is differentiable in ∇d(x)
, we find that y = xd(x)∇h C (∇d(x)) and in particular, in that case, the projection y must be unique. For a general convex set C this might not be the case, even at points of differentiability.

Let us now show (4.1) and the compactness. We let {E ε } ε>0 be a family of sets, with lim inf ε→0 SM ε,C (E ε ; Ω) < +∞. We consider a subsequence E k := E ε k such that this lim inf is in fact a limit. We will show both that, up to subsequences, it converges to a set E in L 1 loc (Ω) and that (4.1) holds. We have

((E 1 k + ε k C) \ E 1 k ) ∩ Ω ⊇ {x ∈ Ω : 0 < dist C (x, E k ) < ε k } (the difference being the possible set of points x ∈ E 1 k with dist C (x, E k ) = 0). It follows, letting d k (x) := min{dist C (x, E k )/ε k , 1}, SM ε k ,C (E k ; Ω) ≥ 1 ε k {0<dist C (•,E k )<ε k } h C (∇dist C (x, E k )) dx = Ω h C (∇d k (x)) dx .
In particular, (d k ) k≥1 have equibounded total variation: we may assume that a subsequence (not relabelled) converges to some limit d, with values in [0, 1], in L 1 loc (Ω). (And, in fact, we may even assume that the convergence is pointwise, out of a negligible set.)

By assumption,

|{0 < d k < 1}| ≤ |{d k < 1} \ E 1 k | ≤ cε k
, in particular we deduce easily that d ∈ {0, 1} a.e. in Ω (for instance, by checking that

d k (1 -d k ) → 0). We call E = {d = 0}. In particular, χ E = 1 -d. Observe that if B is a ball in R n , B | χ E k -χ E | dx = B∩E 1 k |d k -d| dx + B∩({d k <1}\E 1 k ) | χ E | + B∩{d k =1} |d k -d| dx ≤ d k -d L 1 (B∩Ω) + cε k → 0 as k → ∞, so that E k → E in L 1 loc (B)
, hence showing the compactness. Thanks to Reshetniak's lower semicontinuity Theorem, it follows from the L 1 loc -convergence of

d k to 1 -χ E that Ω h C (-D χ E ) ≤ lim inf k→∞ Ω h C (∇d k (x)) dx ≤ lim k→∞ SM ε k ,C (E k ; Ω) . Since Ω h C (-D χ E ) = Per h C (E; Ω), (4.1) follows. 
To extend the compactness result to Corollary 3.2, one can consider for each δ > 0 and function u ε a function

u δ ε = k∈Z s k χ {s k+1 ≥uε>s k } ,
where s k ∈ (kδ, (k + 1)δ) is a level appropriately chosen so that

SM ε,C ({u ε > s k }; Ω) ≤ (1 + sup ε>0 F ε,C (u ε ; Ω))/δ.
Then, the previous compactness result (and a diagonal argument) shows that there exists a a positive infinitesimal sequence ε k such that u

1/n ε k converges to some u 1/n in L 1 loc (Ω), for all n ≥ 1. Since u 1/m ε k -u 1/n ε k ∞ ≤ 2/ min{m, n} and u 1/m -u 1/n ∞ ≤ 2/ min{m,
n} for all m, n, k, we easily deduce that (up to a subsequence), there exists u such that

u ε k → u in L 1 loc (Ω).
As already mentioned, the proof of (4.2) will follow from Theorem 3.4, which is proved in the next Section. 4.2. Proof of Theorem 3.4. Now, we consider a set E ⊂ Ω such that (3.7) holds. We will identify E with the set of points where its Lebesgue density is 1, moreover, a necessary condition for (3.7) is that E = ε>0 E + B(0, ε) coincides with E up to a negligible set, in other words, |E \ E| = 0.

A first remark is that, clearly, using (3.1),

aSM 0 aε,B(0,1) (E; Ω) ≤ SM 0 ε,C (E; Ω) ≤ bSM 0 bε,B(0,1) (E; Ω)
hence any limit of SM 0 ε,C (E; Ω) is in between aPer(E; Ω) and bPer(E; Ω). In particular, we can introduce the non-negative measures

µ ε := 1 ε ( χ E+εC -χ E ) H n
which are equibounded, since by definition µ ε (Ω) = SM 0 ε,C (E; Ω). Then, up to a subsequence, we have µ ε k * ⇀ µ as measures in Ω, with aH n-1 ∂ * E ≤ µ ≤ bH n-1 ∂ * E. In order to prove the result, we need to show that µ is equal to h

C (ν E )H n-1 ∂ * E.
For this purpose, we introduce the Besicovitch derivative g of the measure µ w.r.t.

H n-1 ∂ * E, defined by g(x) = lim ρ→0 µ(B(x, ρ)) H n-1 (∂ * E ∩ B(x, ρ))
(observe that g(x) ∈ [a, b]) and which is defined for H n-1 -a.e. x ∈ Ω ∩ ∂ * E. Moreover, since ∂ * E is rectifiable, it is also given a.e. by where α n = ω n-1 is the measure of the n -1 dimensional unit ball. As mentioned, Theorem 3.4 will follow if we can show that g(x) = h C (ν E (x)) for H n-1a.e. x ∈ ∂ * E. Observe that from (4.1), it follows that g(x) ≥ h C (ν E (x)) for H n-1 -a.e. x ∈ ∂ * E, so that we just need to show that g(x) ≤ h C (ν E (x)) for H n-1 -a.e. x ∈ ∂ * E.

A first step, which is classical, is to blow-up the space around a point x where the Besicovitch derivative exists, and by a diagonal argument, to consider the situation where the set is close to a half space, orthogonal to ν E (x). We thus fix from now on a point x ∈ ∂ * E where (4.4) holds.

We recall that

lim ρ→0 H n-1 (∂ * E ∩ B(x, ρ)) α n ρ n-1 = 1 and (4.5) lim ρ→0 B(0,1) χ E-x ρ -χ {y : y•ν E (x)≤0} dy = 0
hold. We denote ν = ν E (x) and without loss of generality we will assume that it is the direction of the last coordinate x n . We will use the notation x = (x ′ , x n ) ∈ R n-1 × R to distinguish between the component x ′ ⊥ ν and x n (along ν) of a point x ∈ R n . We also introduce the measures

λ ε := 1 ε χ E+εB(0,b) -χ E H n ≥ µ ε ,
the main assumption of Theorem 3.4 ensures that these measures converge weakly- * to λ = bH n-1 ∂ * E as ε → 0. Now we use a classical procedure: since for a.e. ρ > 0,

µ ε k (B(x, ρ)) → µ(B(x, ρ)) and λ ε k (B(x, ρ)) → λ(B(x, ρ)),
(see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] Proposition 1.62 and Example 1.63) we can build an infinitesimal sequence

(ρ k ) k∈N with ε ′ k = ε k /ρ k → 0 as k → ∞ such that (4.6) lim k→∞ µ ε k (B(x, ρ k )) α n ρ n-1 k = g(x)
and (4.7)

lim k→∞ λ ε k (B(x, ρ k )) α n ρ n-1 k = b.
The rest of the proof would be relatively easy if we could ensure that ε k ∼ ρ k as k → ∞, using then a blow-up argument. The reason is that in this case, at the scale k , the set E would look like a half-space while (E + bB(0, ε k )) \ E would look like a strip, of constant width ∼ b(ε k /ρ k ). The fact that the volume of this strip goes precisely to the volume of a straight strip (which (4.7) tells us) would then imply that it is essentially straight, up to a small error. This would, in particular, show that at the scale ε k , ∂E is almost flat and we would be able to estimate precisely the volume of (E + ε k C) \ E. However, this is not clear in general, and we need to consider the general situation, where

ε k = o(ρ k ), hence ε ′ k → 0.
The workaround will be to consider, after a blow-up at scale ρ k , a covering of the (flat) limit surface with cubic regions of scale ε ′ k and show that "most of" these regions are good, meaning that they can be roughly analyzed at scale ε ′ k with the arguments previously mentioned, while the other regions are not enough to contribute significantly to the limit.

As is usual, we do a blow-up using the change of variables x = x + ρ k y. We let E k = (Ex)/ρ k , and we observe that from (4.6), (4.7) and (4.5),

lim k→∞ 1 α n ε ′ k B(0,1) ( χ E k +ε ′ k C -χ E k ) dy = g(x), (4.8) lim k→∞ 1 α n ε ′ k B(0,1) ( χ E k +ε ′ k B(0,b) -χ E k ) dy = b, (4.9) lim k→∞ B(0,1) χ E k -χ {y : y•ν≤0} dy = 0. (4.10)
Moreover, for any β > 0 (small), one can check easily that if we replace in (4.9) and (4.10) B(0, 1) with B(0, 1β), or even with C(0, 1β) := {(y ′ , y n ) ∈ B(0, 1) : |y ′ | ≤ 1 -β}, (4.10) still holds and the right-hand side in (4.9) is replaced with b(1β) n-1 . Indeed, it follows from (4.1) (with C = B(0, b)) and (4.10) that for any open set A ⊆ B(0, 1),

bH n-1 (A ∩ {y • ν = 0}) ≤ lim inf k→∞ 1 ε ′ k A ( χ E k +ε ′ k B(0,b) -χ E k ) .
Together with (4.9), we deduce that as soon as

H n-1 (∂A ∩ {y • ν = 0}) = 0, (4.11) bH n-1 (A ∩ {y • ν = 0}) = lim k→∞ 1 ε ′ k A ( χ E k +ε ′ k B(0,b) -χ E k ) dy .
We fix a (small) value of β > 0. Then, we choose a value θ > 10b and we consider the points z ∈ Z n-1 such that the hypersquares (θε ′ k (z + (0, 1) n-1 )) × {0} are contained in B(0, 1β). There is a finite number N k of such squares and we enumerate the corresponding points {z k 1 , . . . , z k N k For i = 1, . . . , N k , we let

C k i = [(θε ′ k (z k i + (0, 1) n-1 )) × R] ∩ B(0, 1) , C ′ i k = (θε ′ k (z k i + (0, 1) n-1 )) × {0} .
We then let (4.12)

a k i = C k i χ E k -χ {yn≤0} dy ≤ 2(θε ′ k ) n-1
and δ k = N k i=1 a k i : from (4.10) we know that δ k → 0 as k → ∞. We then consider

Z k = {i = 1, . . . , N k : a k i ≤ δ k (ε ′ k ) n-1 }, Z ′ k = {1, . . . , N k } \ Z k . It follows that δ k ≥ √ δ k (ε ′ k ) n-1 #Z ′ k and then (4.13) (ε ′ k ) n-1 #Z ′ k ≤ δ k
which gives a control on the "bad" surface, of the cylinders C k i where the integral a k i is "large". On all the other cylinders, if we blow-up the coordinates at scale ε ′ k we will still have that E k is close, in some sense, to {y n ≤ 0}.

For each i = 1, . . . , N k , we have

(4.14) 1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy = 1 ε ′ k C ′ i k √ 1-y ′2 - √ 1-y ′2 χ E k +ε ′ k B(0,b) -χ E k dy n dy ′ ≥ b y ′ ∈ C ′ i k : H 1 (({y ′ } × R) ∩ (B(0, 1) ∩ E k )) > 0, H 1 (({y ′ } × R) ∩ (B(0, 1) \ E k )) ≥ ε ′ k b since clearly, each time a point (y ′ , y n ) ∈ E k , then (y ′ , y n + s) ∈ E k + ε ′ k B(0, b) for |s| ≤ ε ′ k b.

We denote by D k

i the set in the right-hand side of (4.14). For

y ′ ∈ D k i , √ 1-y ′2 - √ 1-y ′2 χ E k -χ {yn≤0} dy ≥ β -ε ′ k b ≥ √ β 2
as soon as ε ′ k ≤ √ β/(2b) (which we assume in the sequel). It follows that

|C ′ i k \D k i | ≤ 2a k i / √ β, hence if i ∈ Z k , so that a k i ≤ √ δ k (ε ′ k ) n-1 = √ δ k |C ′ i k |/θ n-1 , we get that (4.15) b|D k i | ≥ b|C ′ i k | 1 - 2 √ δ k θ n-1 √ β = b|C ′ i k | 1 -K δ k .
To sum up, (4.14) and (4.15) show that for any i Z k ,

1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy ≥ b|C ′ i k | 1 -K δ k .
In particular, it follows that (using (4.13))

(4.16) lim inf k→∞ i∈Z k 1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy ≥ b lim k→∞ N k i=1 C ′ i k -(θε ′ k ) n-1 #Z ′ k 1 -K δ k = α n b(1 -β) n-1
and together with (4.11) (which bounds the lim sup, for A = C(0, 1β)) we deduce that

δ ′ k := i∈Z k 1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy -b|C ′ i k | 1 -K δ k k→∞ -→ 0.

So now we introduce

Zk = i ∈ Z k : 1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy -b|C ′ i k | 1 -K δ k ≤ (ε ′ k ) n-1 δ ′ k ,
and its complement Z′ k = Z k \ Zk . Then as before, one sees that

δ ′ k ≥ δ ′ k (ε ′ k ) n-1 # Z′ k and consequently (4.17) (ε ′ k ) n-1 # Z′ k ≤ δ ′ k .
This controls the total surface of the squares

C ′ i k such that in the corresponding cylinder C k i , the measure of E k + ε ′ k B(0, b) \ E k is far from the measure of a perfectly straight strip of width ε ′ k b.
In the other cylinders, we will be able to show that the boundary of E k is almost flat. We see at this point that (4.16) still holds if Z k is replaced with Zk , and

Z ′ k with Z ′ k ∪ Z′ k . Together with (4.11) (with again A = C(0, 1 -β)) it follows that lim sup k→∞ 1 ε ′ k C(0,1-β)\ i∈ Zk C k i χ E k +ε ′ k B(0,b) -χ E k dy = 0 ,
and as a consequence

(4.18) lim sup k→∞ 1 ε ′ k C(0,1-β)\ i∈ Zk C k i χ E k +ε ′ k C -χ E k dy = 0 .
We now need to estimate the quantity

(1/ε ′ k ) C k i | χ E k +ε ′ k C -χ E k | dy for i ∈ Zk , hence when (4.19) b|C ′ i k | 1 -K δ k ≤ 1 ε ′ k C k i χ E k +ε ′ k B(0,b) -χ E k dy ≤ b|C ′ i k | 1 -K δ k + δ ′ k bθ n-1
and (from (4.15)) (4.20)

|C ′ i k \ D k i | ≤ 2|C ′ i k | √ δ k θ n-1 √ β .
The estimate will rely on the fact that, whenever (4.19)-(4.20) hold, the boundary of E k must be flat enough so that we can control also the volume of

(E k + ε ′ k C) \ E k .
We choose k ∈ N and i ∈ Zk so that (4.19) and (4.20) hold, and consider the change of variable

y = z k i + ε ′ k ŷ. We let F = (E k -z k i )/ε ′ k , Q = (C k i -z k i )/ε ′ k ⊃ (0, θ) n-1 × (- √ β/ε ′ k , √ β/ε ′ k ), D = (D k i -z k i )/ε ′ k . We find that (4.21) Q χ F +B(0,b) -χ F dŷ ≤ bθ n-1 1 -K δ k + δ ′ k bθ n-1 , (4.22) 
(0,θ) n-1 × - √ β ε ′ k , √ β ε ′ k χ F -χ {ŷn≤0} dŷ ≤ a k i (ε ′ k ) -n ≤ √ δ k ε ′ k , while (4.20) yields (4.23) 
|(0, θ) n-1 \ D| ≤ 2 δ k β ,
where we recall that

D = ŷ′ ∈ (0, θ) n-1 : H 1 (({ŷ ′ } × R) ∩ Q ∩ F ) > 0 , H 1 (({ŷ ′ } × R) ∩ Q \ F ) ≥ b . Let us set F b = F + B(0, b) = {ŷ ∈ R n : dist(ŷ, F ) ≤ b}, and 
F s = {ŷ ∈ F b : dist(ŷ, ∂F b ) ≥ b -s}.
We observe that F ⊂ F s for any s ∈ [0, b]. By construction, given any point ŷ ∈ ∂F s , there is a ball B(ẑ, bs) such that B(ẑ, bs) ∩ F s = ∅ and ŷ ∈ ∂B(ẑ, bs). Formally, it means that the curvature of ∂F s is less than 1/(bs). However, a similar inner ball condition (with radius s) is not guaranteed. We introduce the set Fs , which is the union of all balls of radius s which are contained in F s . We have for s ∈ (0, b)

(4.24) F + B(0, s) = {ŷ ∈ R n : dist(ŷ, F ) ≤ s} ⊆ Fs ⊆ F s .
We will show that if k is large enough, the boundary of F s is essentially flat inside Q. Let us first establish that the boundary ∂F s crosses "most" of the vertical lines in the cylinder (0, θ) n-1 × R. We let:

D ′ = ŷ′ ∈ (0, θ) n-1 : H 1 (({ŷ ′ } × R -) ∩ Q ∩ F ) = 0 , D ′′ = ŷ′ ∈ (0, θ) n-1 : ({ŷ ′ } × R + ) ∩ Q ⊂ F b , D ′′′ = ŷ′ ∈ (0, θ) n-1 : H 1 (({ŷ ′ } × R) ∩ Q ∩ (F b \ F )) ≥ 2b . The definition of D ensures that if ŷ′ ∈ D, |({ŷ ′ } × R) ∩ Q ∩ (F b \ F )| ≥ b.
From (4.21) and (4.23), we have that

bθ n-1 + δ ′ k ≥ b|D \ D ′′′ | + 2b|D ′′′ | ≥ b|D| + b|D ′′′ | ≥ bθ n-1 + b|D ′′′ | -2b δ k β , hence (4.25) |D ′′′ | ≤ 1 b δ ′ k + 2 δ k β .
We easily deduce from (4.22) that both |D ′ | and |D ′′ \ D ′′′ | are bounded by a constant times

√ δ k : indeed, if ŷ′ ∈ D ′′ \ D ′′′ , |(ŷ ′ × R + ) ∩ Q \ F | ≤ 2b so that (F △{ŷ n ≤ 0}) ∩ |ŷ n | ≤ √ β ε ′ k ≥ √ β ε ′ k -2b ,

and (4.22) yields

|D ′′ \ D ′′′ | ≤ √ δ k ε ′ k ε ′ k √ β -2bε ′ k ≤ 2 δ k β as soon as ε ′ k ≤ √ β/4b
). The estimate for |D ′ | is even simpler. It follows from this and (4.25) that there exists a constant K ′ (still depending on θ, β) such that (4.26)

|D ′ ∪ D ′′ | ≤ |D ′ | + |D ′′ \ D ′′′ | + |D ′′′ | ≤ K ′ δ k + δ ′ k .
Now, each time ŷ′ ∈ (0, θ) n-1 \ (D ′ ∪ D ′′ ), one can find in ({ŷ ′ } × R -) ∩ Q points which belong to F (hence to F s or Fs for all s ∈ [0, b]), and in ({ŷ ′ }×R + )∩Q, points which are not in F b : as a consequence there are also, in ({ŷ ′ } × R) ∩ Q, points in ∂F s or ∂ Fs , for any s ∈ [0, b], with the set F s or Fs "below" the point (or the normal, if it exists, pointing upwards). It follows that (4.27)

H n-1 (∂F s ∩ Q) ≥ θ n-1 -K ′ δ k + δ ′ k ,
and (applying the coarea formula to the distance function to ∂F b ) that

(4.28) |(F b \ F 0 ) ∩ Q| = b 0 H n-1 (∂F s ∩ Q) ds ≥ bθ n-1 -bK ′ δ k + δ ′ k .
Inequalities (4.21) and (4.28) yield that (here the constant K ′ may vary from line to line, keeping the same kind of dependency in the parameters)

(4.29) |(F 0 \ F ) ∩ Q| ≤ bK ′ δ k + δ ′ k .
Let us choose η > 0, small, and observe that (using (4.27) and (4.21)) (4.30)

2η η H n-1 (∂F s ∩ Q) ds = |(F b \ F 0 ) ∩ Q| - (0,b)\(η,2η) H n-1 (∂F s ∩ Q) ds ≤ bθ n-1 + δ ′ k -(b -η) θ n-1 -K ′ δ k + δ ′ k ≤ ηθ n-1 + K ′ δ k + δ ′ k so that there exists s ∈ [η, 2η] with (4.31) H n-1 (∂F s ∩ Q) ≤ θ n-1 + K ′ η δ k + δ ′ k .
The surface ∂F s is "almost" like a C 1,1 graph, and converges to a flat surface, with convergence of its measure as k → ∞. If it were a graph, it would be easy to deduce uniform convergence. Let us show that in this setting, it must also be essentially flat. More precisely, we will establish it for ∂ Fs .

Consider first a point ŷ ∈ ∂F s ∩ ∂ Fs , that is, where F s has both an outer ball condition with radius (bs) and an inner ball condition with radius s. In particular, there are at ŷ two tangent balls to ∂F s of radius η inside and outside the set. The common normal to these balls is normal to ∂F s (and ∂ Fs ) and we denote it ν. Given ζ > 0, let us assume that |ν • ν| ≤ 1ζ.

Then, for t small, we consider the ball B(ŷ, tηζ) (which we assume is in Q, and we let r := tηζ). The surface ∂F s passes, in B(ŷ, r) in between two spherical caps of radius η, which are tangent in ŷ and normal at that point to ν. We call S the subset of B(ŷ, r) bounded by these two caps (see Figure 1). A simple calculation shows that the trace of these spherical caps on the sphere ∂B(ŷ, r) is given by the intersection of this sphere with the hyperplanes {(yŷ) • ν = ± tζ 2 r} (hence, S ⊂ B(ŷ, r) ∩ {|(yŷ) • ν| < tζ 2 r}). In particular, the surface H n-1 (∂F s ∩ B(ŷ, r)) can be estimated from below with the surface of the corresponding discs, that is,

α n r n-1 1 -t 2 ζ 2 /4 n-1 .
Let us now estimate from below the surface H n-1 (∂F s ∩ Q \ B(ŷ, r)). Since we know that given any ŷ′ ∈ (0, θ

) n-1 \ (D ′ ∪ D ′′ ), ∂F s ∩ ({ŷ ′ } × R) ∩ Q = ∅,
it is enough to estimate from above the projection of S onto (0, θ) n-1 , which we denote by Π ν (S ). This, in turn, is bounded by the projection of

B(ŷ, r) ∩ y : |(y -ŷ) • ν| < tζ 2 r = ŷ + r(sν + ξ) : |s| < tζ 2 , |ξ| ≤ 1 -s 2 , ξ • ν = 0 .
Now, this projection is a subset of the vertical projection of the diameter of B(ŷ, r) perpendicular to ν, that is, ∆ = {ŷ + rξ : |ξ| ≤ 1 , ξ • ν = 0}, plus the disk Π ν (B(0, rtζ/2)). It follows (see the expansion of the volume of Minkowski sums of convex sets in [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF],

cf Remark 3.7) that |Π ν (S )| ≤ |Π ν (∆)| + Per(Π ν (∆)) rtζ 2 + o(rtζ) .
Here, If the normal at ŷ to ∂F s is away from ν, then its surface must exceed θ n-1 by some quantity which is estimated. would be largest for ν = ν. Now, since Per(Π ν (∆)) ≤ H n-2 (∂∆) = (n -1)α n r n-2 , we obtain that

Per(Π ν (∆)) is the (n -2)-dimensional perimeter of Π ν (∆) in (0, θ) n-1 ,
|Π ν (S )| ≤ |ν • ν|α n r n-1 + 2(n -1)α n r n-2 rtζ 2 ≤ α n r n-1 (1 -(1 -(n -1)t)ζ)
if t is small enough. It follows (4.32)

H n-1 (∂F s ∩Q) ≥ θ n-1 -K ′ ( δ k + δ ′ k )+α n r n-1 1 - t 2 ζ 2 4 n-1 -1 + (1 -(n -1)t)ζ .
For t = 0, the quantity between the right-hand side parentheses is ζ > 0, and it decreases with t. It follows that one can find t > 0 (depending only on n and ζ) such that (4.32) reads

H n-1 (∂F s ∩ Q) ≥ θ n-1 -K ′ ( δ k + δ ′ k ) + α n ( tηζ) n-1 ζ 2 .
Together with (4.31), it follows that if k is large enough (depending on K ′ , η, ζ), we get a contradiction, and therefore |ν • ν| > 1ζ, provided ŷ is at distance at least tηζ from ∂Q.

We must observe at this point that we also have ν • ν ≥ 0. Indeed, the same proof will show that if, for instance, ν • ν ≤ -1/2, then for k large enough, (4.31) cannot hold. Indeed, in this case, thanks to (4.22), the surface of ∂F s near ŷ, which is of order η n-1 , has to be added to a surface of ∂F s ∩ Q (out of (D ′ ∪ D ′′ ) × R) already of order θ n-1 , a contradiction if k is large enough. It follows than when k is large, one must have ν • ν > 1ζ, at any ŷ ∈ ∂F s ∩ ∂ Fs ∩ Q, at distance at least tηζ from ∂Q.

We can deduce that ∂ Fs is almost flat. The reason is the following: given B(ŷ, s) ⊂ Fs , if we translate this ball in any direction We deduce that there exists a value σ such that (4.33)

∂ Fs ∩ Q ζ ⊂ {ŷ ∈ Q : σ ≤ ŷ • ν ≤ σ + 2 ζθ}
for k large enough, with moreover

F ∩ Q ζ ⊂ Fs ∩ Q ζ ⊂ {ŷ ∈ Q ζ : ŷ • ν ≤ σ + 2 √ ζθ}.
In particular, it follows that (( ∪ ((((

F ∩ Q ζ ) + C) ∩ Q ζ ⊂ {ŷ • ν ≤ h C (ν) + σ + 2 √ ζθ}.
F ∩ Q ζ ) + C) \ F s) ∩ Q ζ ⊆ ((F s \ F ) ∩ Q) ∪ ((F b \ F s) ∩ Q) \ ((2b, θ -2b) n-1 × R)) ∪ ŷ ∈ Q ζ : σ ≤ ŷ • ν ≤ σ + 2 ζθ + h C (ν) .
The last set in the right-hand side has volume bounded by θ n-1 (h C (ν) + 2 √ ζθ), which is the desired order, and we need to show that the two other sets are much smaller. To estimate the volume of the second set, we first check that exactly for the same reasons for which (4.27) holds, we have for s ∈ [0, b]

H n-1 (∂F s ∩ Q ∩ ((2b, θ -2b) n-1 × R)) ≥ (θ -4b) n-1 -K ′ δ k + δ ′ k ,
so that, still integrating from 0 to b and using the coarea formula,

|(F b \ F 0 ) ∩ Q ∩ ((2b, θ -2b) n-1 × R)| ≥ b(θ -4b) n-1 -bK ′ δ k + δ ′ k .
Hence, using again (4.21), we find

(4.35) |(F b \ F 0 ) ∩ Q \ ((2b, θ -2b) n-1 × R)| ≤ bθ n-1 + δ ′ k -b(θ -4b) n-1 + bK ′ δ k + δ ′ k . ≤ 4(n -1)b 2 θ n-2 + K ′′ δ k + δ ′ k .
Exactly in the same way as (4.30) we also see that

|(F s \ F 0 ) ∩ Q| ≤ sθ n-1 + K ′ δ k + δ ′ k ,
which combined with (4.29) yields

|(F s \ F ) ∩ Q| ≤ 2ηθ n-1 + (b + 1)K ′ δ k + δ ′ k .
This and (4.35) show that (4.34) can be estimated as follows:

|((F + C) \ F ) ∩ Q| ≤ θ n-1 (2 ζθ + h C (ν)) + 2ηθ n-1 + 4(n -1)b 2 θ n-2 + R k
where R k is a rest which goes to zero with δ k and δ ′ k , and does not depend on the particular cylinder C k i we were examining. Returning to the original sets C k i , we find that if k, i ∈ Zk k is large enough, (4.36)

1 ε ′ k C k i | χ E k +ε ′ k C -χ E k | dy ≤ |C ′ i k | h C (ν) + 2 ζθ + 2η + 4(n -1)b 2 θ + 1 θ n-1 R k .
Together with (4.18), (4.36) yields that lim sup 
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  (1ζ)eζ(2ζ)ν, for e a unit horizontal vector (normal to ν), then it will never touch ∂F s, at least until it reaches a distance tηζ to ∂Q. Otherwise, necessarily, it would touch at some point where ν• [(1ζ)eζ(2ζ)ν] ≥ 0, which yields ν • ν ≤ 1ζ. We denote Q ζ = {ŷ ∈ Q : dist(ŷ, ∂Q) ≥ tηζ} .Since by construction each point in ∂ Fs belongs to the boundary of a ball B(ŷ, s) ⊂ Fs , we find as a consequence (taking also into account (4.21) and (4.22)) that in Q ζ , Fs is the subgraph {ŷ n ≤ u(ŷ ′ )} of a Lipschitz function u, with Lipschitz constant ζ(2ζ)/(1ζ) ≤ 2 √ ζ(since ζ is small).

  Observe however that this does not control the volume of the possible points in(F + C) ∩ Q which could come from (F \ Q ζ ) + C. Since C ⊂ B(0, b) and we can assume tηζ ≤ b, these points are outside of (2b, θ -2b) n-1 × R, so that (4.34) ((F + C) \ F ) ∩ Q ⊆ ((F s \ F ) ∩ Q) ∪ (((F + C) \ F s) ∩ Q) ⊆ ((F s \ F ) ∩ Q) ∪ ((F b \ F s) ∩ Q) \ ((2b, θ -2b) n-1 × R))

χ

  E k +ε ′ k C -χ E k dy ≤ α n (1-β) n-1 h C (ν) + 2 ζθ + 2η + 4(n -1)b 2 θ .Sending first ζ, then η to zero and eventually θ to +∞, and using (4.8) and (4.11), we deduceα n g(x) = lim k→0 1 ε ′ k B(0,1) χ E k +ε ′ k C -χ E k dy ≤ bα n (1 -(1β) n-1 ) + α n (1β) n-1 h C (ν) ,and letting then β → 0 yields the desired inequality.

Observe that with this classical but not so natural choice, we have Per h C (E) = Ω hC (-D χ E ).