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A REMARK ON THE ANISOTROPIC OUTER MINKOWSKI CONTENT

ANTONIN CHAMBOLLE, STEFANO LISINI, AND LUCA LUSSARDI

Abstract. We study an anisotropic version of the outer Minkowski content of a closed

set in R
n. In particular, we show that it exists on the same class of sets for which the

classical outer Minkowski content coincides with the Hausdorff measure, and we give

its explicit form.
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1. Introduction

As it is well known, the classical Minkowski content of a closed set S ⊂ R
n is defined by

(1.1) M(S) := lim
ε→0+

|{x ∈ R
n : dist(x, S) ≤ ε}|

2ε

whenever the limit in (1.1) exists and is finite; here | · | denotes the Lebesgue measure in R
n.

The quantity M measures the area of “(n − 1)-dimensional sets”, and it is an alternative to

the more classical Hausdorff measure H n−1. With the role of surface measure, the Minkowski

content turns out to be important in many problems arising from real applications: for instance

M is related to evolution problems for closed sets [1, 10, 13].

Clearly, it poses as natural problems its existence and comparison with H n−1. Let us

mention some known results in this direction. In [9, p. 275] the author proves that M(S) exists

and coincides with H n−1(S) whenever S is compact and (n− 1)-rectifiable, i.e.S = f(K) for

some K ⊂ R
n−1 compact and f : Rn−1 → R

n is Lipschitz. A generalization of this result is

contained in [4, p. 110]. Here, the authors consider countably H n−1-rectifiable compact sets

in R
n, i.e. sets which can be covered by a countable family of sets Sj , with j ∈ N, such that S0

is H n−1-negligible and Sj is a (n − 1)-dimensional surface in R
n of class C1, for any j > 0.

In this case, M(S) exists and coincides with H n−1(S) if a further density assumption on S

holds: more precisely there must exist γ > 0 and η a probability measure on R
n satisfying

η(B(x, r)) ≥ γrn, for each r ∈ (0, 1) and for each x ∈ S, where B(x, r) is the open ball

centered in x of radius r. Counterexamples [4, p. 109] show that the countable rectifiability

is indeed not sufficient to ensure the existence of M.

More recently in [2], motivated by problems in stochastic geometry, a generalization of

the Minkowski content has been introduced, the so-called outer Minkowski content, which is
1
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defined by

(1.2) SM(E) := lim
ε→0+

|{x ∈ R
n : dist(x,E) ≤ ε} \ E|

ε
, E ⊂ R

n compact.

In [2] the authors investigate general conditions ensuring the existence of SM: in particular,

they prove that if E is a set with finite perimeter and M(∂E) exists and coincides with the

perimeter of E, then also SM(E) exists and coincides with the perimeter of E (in Ω).

Now, notice that the quantity which appears in the argument of the limit in (1.2) can be

rewritten as (provided the set E is “nice” enough)

1

ε
(|E + εB(0, 1)| − |E|).

We consider in this short note a variant of this content, which is an anisotropic outer

Minkowski content. The idea is to study the limit, as ε → 0+, of

(1.3)
1

ε
(|E + εC| − |E|),

where C ⊂ R
n is a closed convex body. It is standard that if E is convex, then |E + εC| is a

polynomial in ε (of degree n) whose coefficient of the first degree term (see also Remark 3.7

below) is precisely the anisotropic perimeter

(1.4)

∫

∂E
hC(νE) dH

n−1 ,

where hC is the support function of C, defined by hC(ν) = supx∈C x · ν, and νE the outer

normal to ∂E, see [11] for details. The convergence of (1.3) to (1.4) follows for convex sets E

and can be easily extended to (very) smooth sets.

We show here two (expected) results: first, as a functional defined on sets, (1.3) Γ-converges

to the natural limit (1.4) as ε → 0.

Second, we show in Theorem 3.4 that given any set for which the (classical) outer Minkowski

content equals the perimeter, then the limit of (1.3), as ε → 0+, coincides with (1.4).

The proof of Theorem 3.4 is quite technical, because we wanted to work under the only

assumption of the convergence of the classical content. We show that this convergence implies

that the boundary is flat enough in a relatively uniform way, so that the convergence of (1.3)

holds.

Eventually, we also deduce a Γ-convergence result (see [5, 7] for details) for functionals of

the type

(1.5)
1

ε

∫

(

ess sup
x−εC

u− u(x)
)

dx

which coincides with (1.3) on characteristic functions of sets. The limit is (quite obviously)

given by
∫

Ω hC(−Du) (where the minus sign accounts for the fact that the outer normal was

appearing in (1.4), and not the inner normal which corresponds more naturally to the gradient

of the characteristic function χE)



THE ANISOTROPIC OUTER MINKOWSKI CONTENT 3

As a simple corollary, one is able to approximate functionals of the type

∫

∂E
φ(νE) dH

n−1,

for φ a positively one-homogenous convex function φ : Rn → [0,+∞) (and positive away from

0). Indeed, it suffices to choose the convex body

C := {x ∈ R
n : x · ν ≤ φ(ν) ∀ ν ∈ R

n}

and apply our results.

The paper is organized as follows: in section 3 we define the setting and we state the

results, then in section 4 we prove the Γ-convergence result for (1.5), and then the pointwise

convergence result for (1.3).

2. Notation and preliminaries

2.1. Notation. Let n ≥ 1 be integer. Given a measurable set A ⊂ R
n, we will denote by

|A| its Lebesgue measure. If k ∈ {0, . . . , n}, the k-dimensional Hausdorff measure of S ⊂ R
n

will be denoted by H k(S). We will use the notation x · y for the standard scalar product

in R
n between x and y, B(x, r) for the closed ball of radius r centered in x. Finally, here

convergence in L1
loc(Ω) means convergence in L1(B ∩Ω) for any ball B. (Strictly speaking, it

is thus the convergence in L1
loc(R

n) of the functions extended with the value 0 outside of Ω.)

We say that a sequence of sets Ej ⊂ R
n converges to E ⊂ R

n in L1
loc(Ω) as j → +∞, if χEj

converges to χE in L1
loc(Ω) as j → +∞, where χS denotes the characteristic function of the

set S.

2.2. Geometric measure theory. In this paragraph we recall some basic notions of geo-

metric measure theory we will need; for an exhaustive treatment of the subject we refer the

reader to [12].

Let n ≥ 1 be integer and let k ∈ N with k ≤ n. We say that S ⊂ R
n is countably H k-

rectifiable if S can be covered by a countable family of sets Sj , with j ∈ N, such that S0 is

H k-negligible and Sj is a k-dimensional surface in R
n of class C1, for any j > 0.

Let E ⊂ R
n be a measurable set and Ω ⊂ R

n be an open domain. We say that E

has finite perimeter in Ω if the distributional derivative of χE, denoted by DχE, is a R
n-

valued Radon measure on Ω with finite total variation; the perimeter of E in Ω is defined

by Per(E; Ω) := |DχE |(Ω), where |DχE| denotes the total variation of DχE. The upper and

lower n-dimensional densities of E at x are respectively defined by

Θ∗
n(E, x) := lim sup

rց0

|E ∩B(x, r)|
ωnrn

, Θ∗n(E, x) := lim inf
rց0

|E ∩B(x, r)|
ωnrn

,
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where ωn is the volume of the n-dimensional unit ball. If Θ∗
n(E, x) = Θ∗n(E, x) their common

value is denoted by Θn(E, x). For every t ∈ [0, 1] we define

(2.1) Et := {x ∈ R
n : Θn(E, x) = t}.

The essential boundary of E (or measure-theoretic boundary) is the set ∂∗E := R
n\(E0∪E1).

It turns out that if E has finite perimeter in Ω, then H n−1(∂∗E \E1/2) = 0, and Per(E; Ω) =

H n−1(∂∗E ∩ Ω).

Moreover, one can define a subset of E1/2 as the set of points x where there exists a unit

vector νE(x) such that:

E − x

r
→ {y ∈ R

n : y · νE(x) ≤ 0}, in L1
loc(R

n) as r → 0,

and which is referred to as the outer normal to E at x. The set where νE(x) exists is called

the reduced boundary and is denoted by ∂∗E. One can show that H n−1(∂∗E \ ∂∗E) = 0,

moreover, one has the decomposition DχE = (−νE)H
n−1 ∂∗E.

3. Statement of the results

Let us assume that C ⊂ R
n is a closed convex body, that is, bounded and with 0 in its

interior. We denote its support function by hC(ν) = supx∈C x · ν, and its polar function is

h◦C(x) := suphC(ν)≤1 x · ν. It is well known, then, that both hC and h◦C are convex, one-

homogeneous and Lipschitz functions, moreover C = {h◦C ≤ 1}.
By assumptions, there also exist a, b with 0 < a < b such that B(0, a) ⊆ C ⊆ B(0, b), in

particular, we have for all ν, x ∈ R
n

(3.1) a|ν| ≤ hC(ν) ≤ b|ν| , 1

b
|x| ≤ h◦C(x) ≤ 1

a
|x| .

Let Ω ⊂ R
n be an open domain. Given a Lebesgue measurable set E ⊂ Ω, we introduce

the outer ε, C-Minkowski content,

(3.2) SM0
ε,C(E; Ω) :=

1

ε
(|Ω ∩ (E + εC)| − |E|) .

Actually, this definition is not very practical, since it can change drastically with Lebesgue-

negligible changes of the set E. For this reason, we introduce the functional, defined for a

measurable function u:

(3.3) Fε,C(u; Ω) :=
1

ε

∫

Ω

(

ess sup
Ω∩(x−εC)

u− u(x)
)

dx

which takes values in [0,+∞]. Notice that one can check easily (using Fatou’s lemma) that

Fε,C is l.s.c. in L1
loc(Ω). We then define

(3.4) SMε,C(E; Ω) := Fε,C(χE ; Ω) .
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It is also easy to check that the definition coincides with SM0
ε,C on smooth sets, and in general

for a measurable set E we have

SMε,C(E; Ω) = min
|E′△E|=0

SM0
ε,C(E

′; Ω) = SM0
ε,C(E

1; Ω) = SM0
ε,C(Ω \ E0; Ω)

where E1 (resp., E0) is the set of points of Lebesgue density 1 (resp., 0) in Ω (see (2.1)), and

A△B denotes the symmetric difference (A \ B) ∪ (B \ A) of the sets A and B. Eventually,

one can check easily that Fε,C satisfies a generalized coarea formula [14, 6]: for any function

u ∈ L1
loc(Ω),

(3.5) Fε,C(u; Ω) =

∫ ∞

−∞
SMε,C({u > s}; Ω) ds .

Indeed, for any integer k and a.e. x ∈ Ω with u(x) > −k,
(

ess sup
Ω∩(x−εC)

u

)

+ k =

∫ +∞

−k
ess sup

Ω∩(x−εC)

χ{u>s} ds

so that

ess sup
Ω∩(x−εC)

u− u(x) =

∫ +∞

−k
ess sup

Ω∩(x−εC)

χ{u>s} − χ{u>s}(x) ds ,

and sending k → +∞ we deduce (3.5).

Eventually, one can show that for any measurable sets, E and F ,

SMε,C(E ∪ F ; Ω) + SMε,C(E ∩ F ; Ω) ≤ SMε,C(E; Ω) + SMε,C(F ; Ω)

from which it follows that Fε is convex on L1
loc(Ω), see [6] for details.

Before stating our results we recall the following definition: we say that a family of func-

tionals (Gε)ε>0 defined on the Lebesgue measurable subsets of Rn Γ-converges to G in L1
loc(Ω)

as ε → 0 if

• for any Lebesgue measurable set E, and for any family (Eε)ε>0 of Lebesgue measurable

sets Eε → E in L1
loc(Ω) as ε → 0, we have

G(E) ≤ lim inf
ε→0

Gε(Eε) ,

• for any Lebesgue measurable set E, there exists a family of Lebesgue measurable sets

(Eε)ε>0 such that Eε → E in L1
loc(Ω) as ε → 0 and

lim sup
ε→0

Gε(Eε) ≤ G(E).

In the same way, we say that a family of functionals (Fε)ε>0 defined on L1
loc(Ω) Γ-converges

to F in L1
loc(Ω) as ε → 0 if

• for any u ∈ L1
loc(Ω), and for any family (uε)ε>0 of elements of L1

loc(Ω) such that uε → u

in L1
loc(Ω) as ε → 0, we have

F (u) ≤ lim inf
ε→0

Fε(uε) ,
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• for any u ∈ L1
loc(Ω), there exists a family (uε)ε>0 of elements of L1

loc(Ω) such that

uε → u in L1
loc(Ω) as ε → 0 and

lim sup
ε→0

Fε(uε) ≤ F (u).

We will show the following result:

Theorem 3.1. As ε → 0, SMε,C and SM0
ε,C Γ–converge to

(3.6) PerhC
(E; Ω) :=







∫

∂∗E∩Ω
hC(νE(x)) dH

n−1(x) if E has finite perimeter in Ω ,

+∞ else

in L1
loc(Ω), where νE(x) is the outer1 normal to ∂∗E at x. Moreover, if {Eε}ε>0 are sets with

locally finite measure and supε>0 SMε,C(Eε; Ω) < +∞, then, up to subsequences, E1
ε converge

to some set E in L1
loc(Ω).

In particular, we deduce from [6, Prop. 3.5]:

Corollary 3.2. As ε → 0, Fε,C Γ–converges to

TV−C(u; Ω) :=







∫

Ω
hC(−Du) if u ∈ BV (Ω) ,

+∞ else

in L1
loc(Ω), where hC(−Du) stands for hC

(

− dDu
d|Du|

)

d|Du| [8]. Moreover, if {uε}ε>0 are

functions in L1
loc(Ω) with supε Fε,C(uε; Ω) < +∞, then {uε}ε>0 is precompact in L1

loc(Ω).

Indeed, Proposition 3.5 in [6] shows that for functionals such as Fε,C which satisfy (3.5), the

Γ-convergence of the functionals restricted to characteristics functions of sets to some limit

(Theorem 3.1) is sufficient to imply the Γ-convergence of the full functionals to a limit which

is precisely the extension by co-area formula of the previous limit (here TV−C is the extension

of (3.6)). The compactness is shown in Section 4.1.

For any measurable set E we can also consider

Mε,C(E; Ω) := (SMε,C(E; Ω) + SMε,C(Ω \ E; Ω))/2.

From Theorem 3.1 the following Corollary follows easily:

Corollary 3.3. As ε → 0, Mε,C Γ–converges to (PerhC
(E) + PerhC

(Ω \ E))/2 in L1
loc(Ω).

Concerning the pointwise convergence of SM0
ε,C , we also have the following interesting

result, from which the Γ-lim sup inequality in Theorem 3.1 follows in a straightforward way.

1Observe that with this classical but not so natural choice, we have PerhC
(E) =

∫
Ω
hC(−DχE).
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Theorem 3.4. Assume that the set E is a finite-perimeter set such that

(3.7) lim
ε→0

SM0
ε,B(0,1)(E; Ω) = Per(E; Ω) .

Then,

(3.8) lim
ε→0

SM0
ε,C(E; Ω) = PerhC

(E; Ω) .

Remark 3.5. If we assume moreover that C is C1,1 and “elliptic” (precisely: that h2C/2 is both

uniformly convex and with Lipschitz gradient), then the two assertions in Theorem 3.4 should

in fact be equivalent. To check this, it requires to adapt the proof by replacing the Euclidean

ball and distance with C and the corresponding anisotropic (nonsymmetric) distance. The

smoothness and ellipticity are required because, in the proof, we use the ellipticity of the

distance to control the difference of measure between a flat surface, orthogonal to a given

vector ν, and a slanted C1,1 surface with at least a point with normal ν̄ 6= ν, see Fig. 1 and

the proof of (4.32) for details.

Remark 3.6. The sets which satisfy (3.7) are studied in [2]. A sufficient condition is that the

Minkowski content of the reduced boundary coincides with its (n − 1)–dimensional measure,

that is,

(3.9) lim
ε→0

|{x ∈ Ω : dist(x, ∂∗E) ≤ ε}|
2ε

= Per(E; Ω) .

The proof is quite elementary (see [2, Thm 5]). Indeed, we observe first that (3.9) implies

that {dist(·, ∂∗E) = 0} has zero Lebesgue measure. Then, we can introduce for x ∈ Ω the

(essential) signed distance function

dE(x) := dist(x,E1)− dist(x,E0)

to the boundary. If dist(x,E1) > 0 then clearly x is in the interior of E0, in the same way if

dist(x,E0) > 0, x is in the interior of E1. Hence |dE(x)| = dist(x,E1) + dist(x,E0), and in

particular dE(x) = 0 if and only if for any ρ > 0, B(x, ρ) contains points of both E0 and E1,

which in turn is equivalent to dist(x, ∂∗E) = 0. It follows that |dE(x)| = dist(x, ∂∗E) (and,

by (3.9) {dE = 0} is negligible, showing also that dE is the classical signed distance function

to ∂E1 in Ω). Thanks to the co-area formula and the fact that |∇dE | = 1 a.e., we have both

1

ε
|{x ∈ Ω : 0 < dE(x) < ε}| =

∫ 1

0
Per({dE < εs}; Ω) ds ,

1

ε
|{x ∈ Ω : −ε < dE(x) < 0}| =

∫ 0

−1
Per({dE < εs}; Ω) ds .

Now for any s, {dE < εs} goes to either {dE < 0} (if s < 0) or {dE ≤ 0} (if s > 0) as ε → 0,

which both coincide to E up to a negligible set. Hence by Fatou’s lemma,

(3.10)
Per(E; Ω) ≤ lim inf

ε→0

1

ε
|{x ∈ Ω : 0 < dE(x) < ε}|,

Per(E; Ω) ≤ lim inf
ε→0

1

ε
|{x ∈ Ω : 0 < −dE(x) < ε}|.
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Together with (3.9), it follows that the inequalities in (3.10) must in fact be equalities, and

the lim infs are limits. In particular, we deduce (3.7).

If ∂E is compact and rectifiable (that is, included in the image of a Lipschitz map from R
n−1

to R
n), and H n−1(∂E \ ∂∗E) = 0, then the Minkowski content coincides with the perimeter,

see [9, Thm 3.2.39 p. 275], and the previous analysis applies. It is easy to build examples,

though, where this is not true and still, (3.8) holds, see again [2].

Remark 3.7. In case E is a convex body, then it is well known that (see [11])

|E + εC| = |E|+ εPerhC
(E; Ω) +O(ε2) .

As before, for any measurable set E ⊂ Ω we let

M0
ε,C(E; Ω) := (SM0

ε,C(E; Ω) + SM0
ε,C(Ω \E; Ω))/2.

Then the following pointwise convergence result holds.

Theorem 3.8. Assume that the set E is a finite-perimeter set such that

lim
ε→0

M0
ε,B(0,1)(E; Ω) = Per(E; Ω) .

Then,

lim
ε→0

M0
ε,C(E; Ω) = (PerhC

(E; Ω) + PerhC
(Ω \ E; Ω))/2 .

In particular, we get

lim
ε→0

M0
ε,C(E; Ω) =

∫

∂∗E

hC(νE(x)) + hC(−νE(x))

2
dH n−1(x).

4. Proof of the results

4.1. Proof of Theorem 3.1. In order to prove the Γ–convergence, we must show that for

any E,

• if Eε → E in L1
loc(Ω), then

(4.1) PerhC
(E; Ω) ≤ lim inf

ε→0
SMε,C(Eε; Ω) ,

• and that there exists Eε → E with

(4.2) lim sup
ε→0

SMε,C(Eε; Ω) ≤ PerhC
(E; Ω).

As it is standard that one can approximate any set E with finite perimeter by means

of smooth (enough) sets such that Per(Ek; Ω) → Per(E; Ω) (for instance, minimizers of

minF Per(F ; Ω) + k|E△F | will have a C1 boundary, up to a compact singular set of small di-

mension) then (4.2) will follow, using a diagonal argument and Remark 3.6, from Theorem 3.4

(which we will prove later on).
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Hence, we focus on the proof of (4.1). We will also prove, simultaneously, the last claim

of the theorem, which is the compactness of a family (Eε) with equibounded energies. Let us

introduce the anisotropic (essential) distance function to a set E:

distC(x,E) := ess inf
y∈E

h◦C(x− y) .

(Equivalently, this is the h◦C -distance to the set E1 of points where the Lebesgue density of E

is 1, or to the complement of E0.) Then, distC(x,E) < ε if and only if there exists a set of

positive measure in E of points y with h◦C(x−y) < ε, or, in other words, such that x−y ∈ εC,

which is equivalent to say that x ∈ E1 + εC. In particular, it follows that

(E1 + εC \ E1) ∩ Ω = {x ∈ Ω \E1 : distC(x,E) < ε}.

On the other hand, if one lets d(x) := distC(x,E), it is standard that d is Lipschitz and that

hC(∇d) = 1 a.e. in {d > 0}, and hC(∇d) = 0 a.e. in {d = 0} ⊃ E1. The proof of this fact

follows the same lines as in [3]: first, for any x, y ∈ Ω, if δ > 0, one can find a set with positive

measure in E of points y′ with d(y) ≤ h◦C(y − y′) ≤ d(y) + δ. Then, for these points,

(4.3) d(x)− d(y) ≤ h◦C(x− y′)− h◦C(y − y′) + δ ≤ h◦C(x− y) + δ

and sending δ to zero and using (3.1), it follows that d is Lipschitz. Moreover, ∇d = 0 a.e.

in {d = 0}. Now, from (4.3) we also see that d(x+ tz)− d(x) ≤ th◦C(z) for all z; therefore, if

d is differentiable at x it follows that ∇d(x) · z ≤ 1 for all z ∈ C, hence hC(∇d(x)) ≤ 1.

We show the reverse inequality for points x where d(x) > 0: for such a point, there exists

y ∈ E1 with d(x) = h◦C(x − y). For each x′ ∈ (y, x] (which means that x′ 6= y and x′ lies on

the line segment with extreme points y and x), one has d(x′) = h◦C(x
′ − y) > 0, otherwise

there would exist y′ with h◦C(x
′ − y′) < h◦C(x

′ − y), but then, it would follow that

h◦C(x− y′) ≤ h◦C(x− x′) + h◦C(x
′ − y′) < h◦C(x− x′) + h◦C(x

′ − y) = h◦C(x− y)

since x′ ∈ (y, x], a contradiction. It follows that for z = x− y, t ∈ (0, 1),

d(x− tz) = h◦C(x− tz − y) = (1− t)d(x),

and if in addition x is a point of differentiability, it follows that

−∇d(x) · z = −d(x) = −h◦C(z).

But since hC(∇d(x)) ≤ 1 and z/h◦C(z) ∈ C, it follows that hC(∇d(x)) = 1. If moreover h◦C
is differentiable as well in x − y, we find in addition that ∇d(x) = ∇h◦C(x − y). If hC is

differentiable in ∇d(x), we find that y = x− d(x)∇hC(∇d(x)) and in particular, in that case,

the projection y must be unique. For a general convex set C this might not be the case, even

at points of differentiability.

Let us now show (4.1) and the compactness. We let {Eε}ε>0 be a family of sets, with

lim infε→0 SMε,C(Eε; Ω) < +∞. We consider a subsequence Ek := Eεk such that this lim inf
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is in fact a limit. We will show both that, up to subsequences, it converges to a set E in

L1
loc(Ω) and that (4.1) holds. We have

((E1
k + εkC) \ E1

k) ∩ Ω ⊇ {x ∈ Ω : 0 < distC(x,Ek) < εk}

(the difference being the possible set of points x 6∈ E1
k with distC(x,Ek) = 0). It follows,

letting dk(x) := min{distC(x,Ek)/εk, 1},

SMεk,C(Ek; Ω) ≥ 1

εk

∫

{0<distC(·,Ek)<εk}
hC(∇distC(x,Ek)) dx =

∫

Ω
hC(∇dk(x)) dx .

In particular, (dk)k≥1 have equibounded total variation: we may assume that a subsequence

(not relabelled) converges to some limit d, with values in [0, 1], in L1
loc(Ω). (And, in fact, we

may even assume that the convergence is pointwise, out of a negligible set.)

By assumption, |{0 < dk < 1}| ≤ |{dk < 1} \E1
k | ≤ cεk, in particular we deduce easily that

d ∈ {0, 1} a.e. in Ω (for instance, by checking that dk(1− dk) → 0). We call E = {d = 0}. In

particular, χE = 1− d. Observe that if B is a ball in R
n,

∫

B
|χEk

− χE| dx

=

∫

B∩E1
k

|dk − d| dx +

∫

B∩({dk<1}\E1
k
)
|χE | +

∫

B∩{dk=1}
|dk − d| dx

≤ ‖dk − d‖L1(B∩Ω) + cεk → 0

as k → ∞, so that Ek → E in L1
loc(B), hence showing the compactness.

Thanks to Reshetniak’s lower semicontinuity Theorem, it follows from the L1
loc-convergence

of dk to 1− χE that
∫

Ω
hC(−DχE) ≤ lim inf

k→∞

∫

Ω
hC(∇dk(x)) dx ≤ lim

k→∞
SMεk,C(Ek; Ω) .

Since
∫

Ω hC(−DχE) = PerhC
(E; Ω), (4.1) follows.

To extend the compactness result to Corollary 3.2, one can consider for each δ > 0 and

function uε a function

uδε =
∑

k∈Z
skχ{sk+1≥uε>sk},

where sk ∈ (kδ, (k + 1)δ) is a level appropriately chosen so that

SMε,C({uε > sk}; Ω) ≤ (1 + sup
ε>0

Fε,C(uε; Ω))/δ.

Then, the previous compactness result (and a diagonal argument) shows that there exists a

a positive infinitesimal sequence εk such that u
1/n
εk converges to some u1/n in L1

loc(Ω), for all

n ≥ 1. Since ‖u1/mεk − u
1/n
εk ‖∞ ≤ 2/min{m,n} and ‖u1/m − u1/n‖∞ ≤ 2/min{m,n} for all

m,n, k, we easily deduce that (up to a subsequence), there exists u such that uεk → u in

L1
loc(Ω).
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As already mentioned, the proof of (4.2) will follow from Theorem 3.4, which is proved in

the next Section.

4.2. Proof of Theorem 3.4. Now, we consider a set E ⊂ Ω such that (3.7) holds. We

will identify E with the set of points where its Lebesgue density is 1, moreover, a necessary

condition for (3.7) is that E =
⋂

ε>0E + B(0, ε) coincides with E up to a negligible set, in

other words, |E \ E| = 0.

A first remark is that, clearly, using (3.1),

aSM0
aε,B(0,1)(E; Ω) ≤ SM0

ε,C(E; Ω) ≤ bSM0
bε,B(0,1)(E; Ω)

hence any limit of SM0
ε,C(E; Ω) is in between aPer(E; Ω) and bPer(E; Ω). In particular, we

can introduce the non-negative measures

µε :=
1

ε
(χE+εC − χE)H

n

which are equibounded, since by definition µε(Ω) = SM0
ε,C(E; Ω). Then, up to a subsequence,

we have µεk
∗
⇀ µ as measures in Ω, with aH n−1 ∂∗E ≤ µ ≤ bH n−1 ∂∗E. In order to

prove the result, we need to show that µ is equal to hC(νE)H
n−1 ∂∗E.

For this purpose, we introduce the Besicovitch derivative g of the measure µ w.r.t. H n−1 ∂∗E,

defined by

g(x) = lim
ρ→0

µ(B(x, ρ))

H n−1(∂∗E ∩B(x, ρ))

(observe that g(x) ∈ [a, b]) and which is defined for H n−1–a.e. x ∈ Ω ∩ ∂∗E. Moreover, since

∂∗E is rectifiable, it is also given a.e. by

(4.4) g(x) = lim
ρ→0

µ(B(x, ρ))

αnρn−1

where αn = ωn−1 is the measure of the n− 1 dimensional unit ball.

As mentioned, Theorem 3.4 will follow if we can show that g(x) = hC(νE(x)) for H n−1–

a.e. x ∈ ∂∗E. Observe that from (4.1), it follows that g(x) ≥ hC(νE(x)) for H n−1-a.e. x ∈
∂∗E, so that we just need to show that g(x) ≤ hC(νE(x)) for H n−1-a.e. x ∈ ∂∗E.

A first step, which is classical, is to blow-up the space around a point x̄ where the Besicovitch

derivative exists, and by a diagonal argument, to consider the situation where the set is close

to a half space, orthogonal to νE(x̄). We thus fix from now on a point x̄ ∈ ∂∗E where (4.4)

holds.

We recall that

lim
ρ→0

H n−1(∂∗E ∩B(x̄, ρ))

αnρn−1
= 1

and

(4.5) lim
ρ→0

∫

B(0,1)

∣

∣

∣

χE−x̄
ρ

− χ{y : y·νE(x̄)≤0}
∣

∣

∣
dy = 0
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hold. We denote ν = νE(x̄) and without loss of generality we will assume that it is the

direction of the last coordinate xn. We will use the notation x = (x′, xn) ∈ R
n−1 × R to

distinguish between the component x′ ⊥ ν and xn (along ν) of a point x ∈ R
n.

We also introduce the measures

λε :=
1

ε

(

χ
E+εB(0,b) − χE

)

H
n ≥ µε ,

the main assumption of Theorem 3.4 ensures that these measures converge weakly-∗ to λ =

bH n−1 ∂∗E as ε → 0. Now we use a classical procedure: since for a.e. ρ > 0,

µεk(B(x̄, ρ)) → µ(B(x̄, ρ)) and λεk(B(x̄, ρ)) → λ(B(x̄, ρ)),

(see [4] Proposition 1.62 and Example 1.63) we can build an infinitesimal sequence (ρk)k∈N
with ε′k = εk/ρk → 0 as k → ∞ such that

(4.6) lim
k→∞

µεk(B(x̄, ρk))

αnρ
n−1
k

= g(x̄)

and

(4.7) lim
k→∞

λεk(B(x̄, ρk))

αnρ
n−1
k

= b.

The rest of the proof would be relatively easy if we could ensure that εk ∼ ρk as k → ∞,

using then a blow-up argument. The reason is that in this case, at the scale ρk, the set E

would look like a half-space while (E+bB(0, εk))\E would look like a strip, of constant width

∼ b(εk/ρk). The fact that the volume of this strip goes precisely to the volume of a straight

strip (which (4.7) tells us) would then imply that it is essentially straight, up to a small error.

This would, in particular, show that at the scale εk, ∂E is almost flat and we would be able

to estimate precisely the volume of (E + εkC) \ E.

However, this is not clear in general, and we need to consider the general situation, where

εk = o(ρk), hence ε′k → 0. The workaround will be to consider, after a blow-up at scale ρk, a

covering of the (flat) limit surface with cubic regions of scale ε′k and show that “most of” these

regions are good, meaning that they can be roughly analyzed at scale ε′k with the arguments

previously mentioned, while the other regions are not enough to contribute significantly to the

limit.

As is usual, we do a blow-up using the change of variables x = x̄ + ρky. We let Ek =

(E − x̄)/ρk, and we observe that from (4.6), (4.7) and (4.5),

lim
k→∞

1

αnε
′
k

∫

B(0,1)
(χEk+ε′

k
C − χEk

) dy = g(x̄),(4.8)

lim
k→∞

1

αnε′k

∫

B(0,1)
(χEk+ε′

k
B(0,b) − χEk

) dy = b,(4.9)

lim
k→∞

∫

B(0,1)

∣

∣χEk
− χ{y : y·ν≤0}

∣

∣ dy = 0.(4.10)
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Moreover, for any β > 0 (small), one can check easily that if we replace in (4.9) and (4.10)

B(0, 1) with B(0, 1−β), or even with C(0, 1−β) := {(y′, yn) ∈ B(0, 1) : |y′| ≤ 1−β}, (4.10)

still holds and the right-hand side in (4.9) is replaced with b(1 − β)n−1. Indeed, it follows

from (4.1) (with C = B(0, b)) and (4.10) that for any open set A ⊆ B(0, 1),

bH n−1(A ∩ {y · ν = 0}) ≤ lim inf
k→∞

1

ε′k

∫

A
(χEk+ε′

k
B(0,b) − χEk

) dy .

Together with (4.9), we deduce that as soon as H n−1(∂A ∩ {y · ν = 0}) = 0,

(4.11) bH n−1(A ∩ {y · ν = 0}) = lim
k→∞

1

ε′k

∫

A
(χEk+ε′

k
B(0,b) − χEk

) dy .

We fix a (small) value of β > 0. Then, we choose a value θ > 10b and we consider the points

z ∈ Z
n−1 such that the hypersquares (θε′k(z + (0, 1)n−1))× {0} are contained in B(0, 1 − β).

There is a finite number Nk of such squares and we enumerate the corresponding points

{zk1 , . . . , zkNk
}. For i = 1, . . . , Nk, we let

Ck
i = [(θε′k(z

k
i + (0, 1)n−1))× R] ∩B(0, 1) , C ′

i
k

= (θε′k(z
k
i + (0, 1)n−1))× {0} .

We then let

(4.12) aki =

∫

Ck
i

∣

∣χEk
− χ{yn≤0}

∣

∣ dy ≤ 2(θε′k)
n−1

and δk =
∑Nk

i=1 a
k
i : from (4.10) we know that δk → 0 as k → ∞. We then consider

Zk = {i = 1, . . . , Nk : aki ≤
√

δk(ε
′
k)

n−1},

Z ′
k = {1, . . . , Nk} \ Zk. It follows that δk ≥ √

δk(ε
′
k)

n−1#Z ′
k and then

(4.13) (ε′k)
n−1#Z ′

k ≤
√

δk

which gives a control on the “bad” surface, of the cylinders Ck
i where the integral aki is “large”.

On all the other cylinders, if we blow-up the coordinates at scale ε′k we will still have that Ek

is close, in some sense, to {yn ≤ 0}.
For each i = 1, . . . , Nk, we have

(4.14)
1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy =

1

ε′k

∫

C′
i
k

∫

√
1−y′2

−
√

1−y′2

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dyndy

′

≥ b
∣

∣

∣

{

y′ ∈ C ′
i
k
: H

1(({y′} × R) ∩ (B(0, 1) ∩Ek)) > 0,H 1(({y′} ×R) ∩ (B(0, 1) \Ek)) ≥ ε′kb
}∣

∣

∣

since clearly, each time a point (y′, yn) ∈ Ek, then (y′, yn + s) ∈ Ek + ε′kB(0, b) for |s| ≤ ε′kb.

We denote by Dk
i the set in the right-hand side of (4.14). For y′ 6∈ Dk

i ,

∫

√
1−y′2

−
√

1−y′2

∣

∣χEk
− χ{yn≤0}

∣

∣ dy ≥
√

β − ε′kb ≥
√
β

2
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as soon as ε′k ≤ √
β/(2b) (which we assume in the sequel). It follows that |C ′

i
k\Dk

i | ≤ 2aki /
√
β,

hence if i ∈ Zk, so that aki ≤ √
δk(ε

′
k)

n−1 =
√
δk|C ′

i
k|/θn−1, we get that

(4.15) b|Dk
i | ≥ b|C ′

i
k|
(

1− 2
√
δk

θn−1
√
β

)

= b|C ′
i
k|
(

1−K
√

δk

)

.

To sum up, (4.14) and (4.15) show that for any i ∈ Zk,

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy ≥ b|C ′

i
k|
(

1−K
√

δk

)

.

In particular, it follows that (using (4.13))

(4.16) lim inf
k→∞

∑

i∈Zk

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy

≥ b lim
k→∞

(
∣

∣

∣

∣

∣

Nk
⋃

i=1

C ′
i
k

∣

∣

∣

∣

∣

− (θε′k)
n−1#Z ′

k

)

(

1−K
√

δk

)

= αnb(1− β)n−1

and together with (4.11) (which bounds the lim sup, for A = C(0, 1 − β)) we deduce that

δ′k :=
∑

i∈Zk

(

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy − b|C ′

i
k|
(

1−K
√

δk

)

)

k→∞−→ 0.

So now we introduce

Z̃k =

{

i ∈ Zk :
1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy − b|C ′

i
k|
(

1−K
√

δk

)

≤ (ε′k)
n−1
√

δ′k

}

,

and its complement Z̃ ′
k = Zk \ Z̃k. Then as before, one sees that δ′k ≥

√

δ′k(ε
′
k)

n−1#Z̃ ′
k and

consequently

(4.17) (ε′k)
n−1#Z̃ ′

k ≤
√

δ′k .

This controls the total surface of the squares C ′
i
k such that in the corresponding cylinder Ck

i ,

the measure of Ek+ε′kB(0, b)\Ek is far from the measure of a perfectly straight strip of width

ε′kb. In the other cylinders, we will be able to show that the boundary of Ek is almost flat.

We see at this point that (4.16) still holds if Zk is replaced with Z̃k, and Z ′
k with Z ′

k ∪ Z̃ ′
k.

Together with (4.11) (with again A = C(0, 1− β)) it follows that

lim sup
k→∞

1

ε′k

∫

C(0,1−β)\⋃
i∈Z̃k

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy = 0 ,

and as a consequence

(4.18) lim sup
k→∞

1

ε′k

∫

C(0,1−β)\
⋃

i∈Z̃k
Ck

i

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy = 0 .
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We now need to estimate the quantity (1/ε′k)
∫

Ck
i
|χEk+ε′

k
C −χEk

| dy for i ∈ Z̃k, hence when

(4.19)

b|C ′
i
k|
(

1−K
√

δk

)

≤ 1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy ≤ b|C ′

i
k|
(

1−K
√

δk +

√

δ′k
bθn−1

)

and (from (4.15))

(4.20) |C ′
i
k \Dk

i | ≤ 2|C ′
i
k|

√
δk

θn−1
√
β
.

The estimate will rely on the fact that, whenever (4.19)-(4.20) hold, the boundary of Ek must

be flat enough so that we can control also the volume of (Ek + ε′kC) \ Ek.

We choose k ∈ N and i ∈ Z̃k so that (4.19) and (4.20) hold, and consider the change

of variable y = zki + ε′kŷ. We let F = (Ek − zki )/ε
′
k, Q = (Ck

i − zki )/ε
′
k ⊃ (0, θ)n−1 ×

(−√
β/ε′k,

√
β/ε′k), D = (Dk

i − zki )/ε
′
k. We find that

(4.21)

∫

Q

∣

∣χ
F+B(0,b) − χF

∣

∣ dŷ ≤ bθn−1

(

1−K
√

δk +

√

δ′k
bθn−1

)

,

(4.22)

∫

(0,θ)n−1×
(

−
√

β

ε′
k

,
√
β

ε′
k

)

∣

∣χF − χ{ŷn≤0}
∣

∣ dŷ ≤ aki (ε
′
k)

−n ≤
√
δk
ε′k

,

while (4.20) yields

(4.23) |(0, θ)n−1 \D| ≤ 2

√

δk
β

,

where we recall that

D =
{

ŷ′ ∈ (0, θ)n−1 : H
1(({ŷ′} × R) ∩Q ∩ F ) > 0 ,H 1(({ŷ′} × R) ∩Q \ F ) ≥ b

}

.

Let us set Fb = F +B(0, b) = {ŷ ∈ R
n : dist(ŷ, F ) ≤ b}, and

Fs = {ŷ ∈ Fb : dist(ŷ, ∂Fb) ≥ b− s}.

We observe that F ⊂ Fs for any s ∈ [0, b].

By construction, given any point ŷ ∈ ∂Fs, there is a ball B(ẑ, b − s) such that B(ẑ, b −
s) ∩ Fs = ∅ and ŷ ∈ ∂B(ẑ, b − s). Formally, it means that the curvature of ∂Fs is less than

1/(b − s). However, a similar inner ball condition (with radius s) is not guaranteed. We

introduce the set F̃s, which is the union of all balls of radius s which are contained in Fs. We

have for s ∈ (0, b)

(4.24) F +B(0, s) = {ŷ ∈ R
n : dist(ŷ, F ) ≤ s} ⊆ F̃s ⊆ Fs .

We will show that if k is large enough, the boundary of Fs is essentially flat inside Q. Let

us first establish that the boundary ∂Fs crosses “most” of the vertical lines in the cylinder
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(0, θ)n−1 × R. We let:

D′ =
{

ŷ′ ∈ (0, θ)n−1 : H
1(({ŷ′} × R−) ∩Q ∩ F ) = 0

}

,

D′′ =
{

ŷ′ ∈ (0, θ)n−1 : ({ŷ′} × R+) ∩Q ⊂ Fb

}

,

D′′′ =
{

ŷ′ ∈ (0, θ)n−1 : H
1(({ŷ′} × R) ∩Q ∩ (Fb \ F )) ≥ 2b

}

.

The definition of D ensures that if ŷ′ ∈ D, |({ŷ′} × R) ∩Q ∩ (Fb \ F )| ≥ b. From (4.21)

and (4.23), we have that

bθn−1 +
√

δ′k ≥ b|D \D′′′|+ 2b|D′′′| ≥ b|D|+ b|D′′′| ≥ bθn−1 + b|D′′′| − 2b

√

δk
β

,

hence

(4.25) |D′′′| ≤ 1

b

√

δ′k + 2

√

δk
β

.

We easily deduce from (4.22) that both |D′| and |D′′ \D′′′| are bounded by a constant times√
δk: indeed, if ŷ′ ∈ D′′ \D′′′, |(ŷ′ × R+) ∩Q \ F | ≤ 2b so that

∣

∣

∣
(F△{ŷn ≤ 0}) ∩

{

|ŷn| ≤
√
β

ε′
k

}
∣

∣

∣
≥

√
β

ε′k
− 2b ,

and (4.22) yields

|D′′ \D′′′| ≤
√
δk
ε′k

ε′k√
β − 2bε′k

≤ 2

√

δk
β

as soon as ε′k ≤ √
β/4b). The estimate for |D′| is even simpler. It follows from this and (4.25)

that there exists a constant K ′ (still depending on θ, β) such that

(4.26) |D′ ∪D′′| ≤ |D′|+ |D′′ \D′′′|+ |D′′′| ≤ K ′
(

√

δk +
√

δ′k

)

.

Now, each time ŷ′ ∈ (0, θ)n−1 \ (D′ ∪ D′′), one can find in ({ŷ′} × R−) ∩ Q points which

belong to F (hence to Fs or F̃s for all s ∈ [0, b]), and in ({ŷ′}×R+)∩Q, points which are not in

Fb: as a consequence there are also, in ({ŷ′}×R)∩Q, points in ∂Fs or ∂F̃s, for any s ∈ [0, b],

with the set Fs or F̃s “below” the point (or the normal, if it exists, pointing upwards). It

follows that

(4.27) H
n−1(∂Fs ∩Q) ≥ θn−1 −K ′

(

√

δk +
√

δ′k

)

,

and (applying the coarea formula to the distance function to ∂Fb) that

(4.28) |(Fb \ F0) ∩Q| =

∫ b

0
H

n−1(∂Fs ∩Q) ds ≥ bθn−1 − bK ′
(

√

δk +
√

δ′k

)

.

Inequalities (4.21) and (4.28) yield that (here the constant K ′ may vary from line to line,

keeping the same kind of dependency in the parameters)

(4.29) |(F0 \ F ) ∩Q| ≤ bK ′
(

√

δk +
√

δ′k

)

.
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Let us choose η > 0, small, and observe that (using (4.27) and (4.21))

(4.30)

∫ 2η

η
H

n−1(∂Fs ∩Q) ds = |(Fb \ F0) ∩Q| −
∫

(0,b)\(η,2η)
H

n−1(∂Fs ∩Q) ds

≤ bθn−1 +
√

δ′k − (b− η)
(

θn−1 −K ′
(

√

δk +
√

δ′k

))

≤ ηθn−1 +K ′
(

√

δk +
√

δ′k

)

so that there exists s̄ ∈ [η, 2η] with

(4.31) H
n−1(∂Fs̄ ∩Q) ≤ θn−1 +

K ′

η

(

√

δk +
√

δ′k

)

.

The surface ∂Fs̄ is “almost” like a C1,1 graph, and converges to a flat surface, with con-

vergence of its measure as k → ∞. If it were a graph, it would be easy to deduce uniform

convergence. Let us show that in this setting, it must also be essentially flat. More precisely,

we will establish it for ∂F̃s̄.

Consider first a point ŷ ∈ ∂Fs̄ ∩ ∂F̃s̄, that is, where Fs̄ has both an outer ball condition

with radius (b− s̄) and an inner ball condition with radius s̄. In particular, there are at ŷ two

tangent balls to ∂Fs̄ of radius η inside and outside the set. The common normal to these balls

is normal to ∂Fs (and ∂F̃s) and we denote it ν̄. Given ζ > 0, let us assume that |ν̄ ·ν| ≤ 1− ζ.

Then, for t small, we consider the ball B(ŷ, tηζ) (which we assume is in Q, and we let

r := tηζ). The surface ∂Fs̄ passes, in B(ŷ, r) in between two spherical caps of radius η, which

are tangent in ŷ and normal at that point to ν̄. We call S the subset of B(ŷ, r) bounded by

these two caps (see Figure 1). A simple calculation shows that the trace of these spherical

caps on the sphere ∂B(ŷ, r) is given by the intersection of this sphere with the hyperplanes

{(y − ŷ) · ν̄ = ± tζ
2 r} (hence, S ⊂ B(ŷ, r) ∩ {|(y − ŷ) · ν̄| < tζ

2 r}). In particular, the surface

H n−1(∂Fs̄∩B(ŷ, r)) can be estimated from below with the surface of the corresponding discs,

that is, αnr
n−1
√

1− t2ζ2/4
n−1

.

Let us now estimate from below the surface H n−1(∂Fs̄ ∩Q \B(ŷ, r)). Since we know that

given any ŷ′ ∈ (0, θ)n−1 \ (D′ ∪ D′′), ∂Fs̄ ∩ ({ŷ′} × R) ∩ Q 6= ∅, it is enough to estimate

from above the projection of S onto (0, θ)n−1, which we denote by Πν(S ). This, in turn, is

bounded by the projection of

B(ŷ, r) ∩
{

y : |(y − ŷ) · ν̄| < tζ

2
r

}

=

{

ŷ + r(sν̄ + ξ) : |s| < tζ

2
, |ξ| ≤

√

1− s2 , ξ · ν̄ = 0

}

.

Now, this projection is a subset of the vertical projection of the diameter of B(ŷ, r) perpen-

dicular to ν̄, that is, ∆ = {ŷ+rξ : |ξ| ≤ 1 , ξ · ν̄ = 0}, plus the disk Πν(B(0, rtζ/2)). It follows

(see the expansion of the volume of Minkowski sums of convex sets in [11], cf Remark 3.7)

that

|Πν(S )| ≤ |Πν(∆)| + Per(Πν(∆))
rtζ

2
+ o(rtζ) .

Here, Per(Πν(∆)) is the (n − 2)-dimensional perimeter of Πν(∆) in (0, θ)n−1, and a simple

scaling argument shows that o(rtζ) is of the form rn−1o(tζ), where the latter ‘o’ depends only

on the geometry of the vertical projection of the unit ball, that is, on ν · ν̄ — and, in fact,
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ν̄

The surface in the ball is at least this diameter

The surface out of the ball projects at

B(ŷ, tηζ)

∂Fs̄

ŷ

S

least on this shaded region

ν

Figure 1. If the normal at ŷ to ∂Fs̄ is away from ν, then its surface must

exceed θn−1 by some quantity which is estimated.

would be largest for ν = ν̄. Now, since Per(Πν(∆)) ≤ H n−2(∂∆) = (n−1)αnr
n−2, we obtain

that

|Πν(S )| ≤ |ν · ν̄|αnr
n−1 + 2(n− 1)αnr

n−2 rtζ

2
≤ αnr

n−1(1− (1− (n− 1)t)ζ)

if t is small enough. It follows

(4.32)

H
n−1(∂Fs̄∩Q) ≥ θn−1−K ′(

√

δk+
√

δ′k)+αnr
n−1

(
√

1− t2ζ2

4

n−1

− 1 + (1− (n− 1)t)ζ

)

.

For t = 0, the quantity between the right-hand side parentheses is ζ > 0, and it decreases

with t. It follows that one can find t̄ > 0 (depending only on n and ζ) such that (4.32) reads

H
n−1(∂Fs̄ ∩Q) ≥ θn−1 − K ′(

√

δk +
√

δ′k) + αn(t̄ηζ)
n−1 ζ

2
.

Together with (4.31), it follows that if k is large enough (depending on K ′, η, ζ), we get a

contradiction, and therefore |ν̄ · ν| > 1− ζ, provided ŷ is at distance at least t̄ηζ from ∂Q.

We must observe at this point that we also have ν̄ ·ν ≥ 0. Indeed, the same proof will show

that if, for instance, ν̄ · ν ≤ −1/2, then for k large enough, (4.31) cannot hold. Indeed, in this

case, thanks to (4.22), the surface of ∂Fs̄ near ŷ, which is of order ηn−1, has to be added to a

surface of ∂Fs̄ ∩Q (out of (D′ ∪D′′)× R) already of order θn−1, a contradiction if k is large

enough. It follows than when k is large, one must have ν̄ ·ν > 1− ζ, at any ŷ ∈ ∂Fs̄∩∂F̃s̄∩Q,

at distance at least t̄ηζ from ∂Q.
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We can deduce that ∂F̃s̄ is almost flat. The reason is the following: given B(ŷ, s̄) ⊂ F̃s̄, if

we translate this ball in any direction (1 − ζ)e −
√

ζ(2− ζ)ν, for e a unit horizontal vector

(normal to ν), then it will never touch ∂Fs̄, at least until it reaches a distance t̄ηζ to ∂Q.

Otherwise, necessarily, it would touch at some point where ν̄ · [(1 − ζ)e −
√

ζ(2− ζ)ν] ≥ 0,

which yields ν̄ · ν ≤ 1− ζ. We denote

Qζ = {ŷ ∈ Q : dist(ŷ, ∂Q) ≥ t̄ηζ} .

Since by construction each point in ∂F̃s̄ belongs to the boundary of a ball B(ŷ, s̄) ⊂ F̃s̄, we find

as a consequence (taking also into account (4.21) and (4.22)) that in Qζ , F̃s̄ is the subgraph

{ŷn ≤ u(ŷ′)} of a Lipschitz function u, with Lipschitz constant
√

ζ(2− ζ)/(1 − ζ) ≤ 2
√
ζ

(since ζ is small).

We deduce that there exists a value σ such that

(4.33) ∂F̃s̄ ∩Qζ ⊂ {ŷ ∈ Q : σ ≤ ŷ · ν ≤ σ + 2
√

ζθ}

for k large enough, with moreover F ∩ Qζ ⊂ F̃s̄ ∩ Qζ ⊂ {ŷ ∈ Qζ : ŷ · ν ≤ σ + 2
√
ζθ}. In

particular, it follows that ((F ∩Qζ)+C)∩Qζ ⊂ {ŷ ·ν ≤ hC(ν)+σ+2
√
ζθ}. Observe however

that this does not control the volume of the possible points in (F +C)∩Q which could come

from (F \Qζ) +C. Since C ⊂ B(0, b) and we can assume t̄ηζ ≤ b, these points are outside of

(2b, θ − 2b)n−1 × R, so that

(4.34) ((F + C) \ F ) ∩Q ⊆ ((Fs̄ \ F ) ∩Q) ∪ (((F + C) \ Fs̄) ∩Q)

⊆ ((Fs̄ \ F ) ∩Q) ∪ ((Fb \ Fs̄) ∩Q) \ ((2b, θ − 2b)n−1 × R))

∪ ((((F ∩Qζ) + C) \ Fs̄) ∩Qζ

⊆ ((Fs̄ \ F ) ∩Q) ∪ ((Fb \ Fs̄) ∩Q) \ ((2b, θ − 2b)n−1 × R))

∪
{

ŷ ∈ Qζ : σ ≤ ŷ · ν ≤ σ + 2
√

ζθ + hC(ν)
}

.

The last set in the right-hand side has volume bounded by θn−1(hC(ν) + 2
√
ζθ), which is

the desired order, and we need to show that the two other sets are much smaller. To estimate

the volume of the second set, we first check that exactly for the same reasons for which (4.27)

holds, we have for s ∈ [0, b]

H
n−1(∂Fs ∩Q ∩ ((2b, θ − 2b)n−1 × R)) ≥ (θ − 4b)n−1 −K ′

(

√

δk +
√

δ′k

)

,

so that, still integrating from 0 to b and using the coarea formula,

|(Fb \ F0) ∩Q ∩ ((2b, θ − 2b)n−1 × R)| ≥ b(θ − 4b)n−1 − bK ′
(

√

δk +
√

δ′k

)

.
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Hence, using again (4.21), we find

(4.35) |(Fb \ F0) ∩Q \ ((2b, θ − 2b)n−1 × R)|

≤ bθn−1 +
√

δ′k − b(θ − 4b)n−1 + bK ′
(

√

δk +
√

δ′k

)

.

≤ 4(n − 1)b2θn−2 +K ′′
(

√

δk +
√

δ′k

)

.

Exactly in the same way as (4.30) we also see that

|(Fs̄ \ F0) ∩Q| ≤ s̄θn−1 + K ′
(

√

δk +
√

δ′k

)

,

which combined with (4.29) yields

|(Fs̄ \ F ) ∩Q| ≤ 2ηθn−1 + (b+ 1)K ′
(

√

δk +
√

δ′k

)

.

This and (4.35) show that (4.34) can be estimated as follows:

|((F + C) \ F ) ∩Q| ≤ θn−1(2
√

ζθ + hC(ν)) + 2ηθn−1 + 4(n − 1)b2θn−2 + Rk

where Rk is a rest which goes to zero with δk and δ′k, and does not depend on the particular

cylinder Ck
i we were examining. Returning to the original sets Ck

i , we find that if k, i ∈ Z̃k

and k is large enough,

(4.36)
1

ε′k

∫

Ck
i

|χEk+ε′
k
C − χEk

| dy ≤ |C ′
i
k|
(

hC(ν) + 2
√

ζθ + 2η +
4(n − 1)b2

θ
+

1

θn−1
Rk

)

.

Together with (4.18), (4.36) yields that

lim sup
k→0

1

ε′k

∫

C(0,1−β)

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy ≤ αn(1−β)n−1

(

hC(ν) + 2
√

ζθ + 2η +
4(n− 1)b2

θ

)

.

Sending first ζ, then η to zero and eventually θ to +∞, and using (4.8) and (4.11), we deduce

αng(x̄) = lim
k→0

1

ε′k

∫

B(0,1)

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy ≤ bαn(1− (1− β)n−1) + αn(1− β)n−1hC(ν) ,

and letting then β → 0 yields the desired inequality.
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