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A REMARK ON THE ANISOTROPIC OUTER MINKOWSKI CONTENT

ANTONIN CHAMBOLLE, STEFANO LISINI, AND LUCA LUSSARDI

Abstract. We study an anisotropic version of the outer Minkowski content of a closed

set in R
n. In particular, we show that it exists on the same class of sets for which the

classical outer Minkowski content coincides with the Hausdorff measure, and we give

its explicit form.
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1. Introduction

As it is well known, the classical Minkowski content of a closed set S ⊂ R
n is defined by

(1.1) M(S) := lim
ε→0+

|{x ∈ R
n : dist(x, S) ≤ ε}|

2ε

whenever the limit in (1.1) exists and is finite; here | · | denotes the Lebesgue measure in R
n.

The quantity M measures the area of “(n − 1)-dimensional sets”, and it is an alternative to

the more classical Hausdorff measure H n−1. With the role of surface measure, the Minkowski

content turns out to be important in many problems arising from real applications: for instance

M is related to evolution problems for closed sets [1, 10, 13].

Clearly, it poses as natural problems its existence and comparison with H n−1. Let us

mention some known results in this direction. In [9, p. 275] the author proves that M(S) exists

and coincides with H n−1(S) whenever S is compact and (n− 1)-rectifiable, i.e.S = f(K) for

some K ⊂ R
n−1 compact and f : Rn−1 → R

n Lipschitz. A generalization of this result is

contained in [4, p. 110]. Here, the authors consider countable H n−1-rectifiable compact sets

in R
n, i.e. sets which can be covered by a countable family of sets Sj , with j ∈ N, such that S0

is H n−1-negligible and Sj is a (n − 1)-dimensional surface in R
n of class C1, for any j > 0.

In this case, M(S) exists and coincides with H n−1(S) if a further density assumption on S

holds: more precisely there must exist γ > 0 and η a probability measure on R
n satisfying

η(B(x, r)) ≥ γrn, for each r ∈ (0, 1) and for each x ∈ S, where B(x, r) is the open ball

centered in x of radius r. Counterexamples [4, p. 109] show that the countable rectifiability

is indeed not sufficient to ensure the existence of M.

More recently [2], motivated by problems in stochastic geometry, a generalization of the

Minkowski content has been introduced, the so-called outer Minkowski content SM, which is
1
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defined by

(1.2) SM(E) := lim
ε→0+

|{x ∈ R
n : dist(x,E) ≤ ε} \ E|

ε
, E ⊂ R

n compact.

In [2] the authors investigate general conditions ensuring the existence of SM: in particular,

they prove that if E is a set with finite perimeter and M(∂E) exists and coincides with the

perimeter of E, then also SM(E) exists and coincides with the perimeter of E (in Ω).

Now, notice that the quantity which appears in the argument of the limit in (1.2) can be

rewritten as (provided the set E is “nice” enough)

1

ε
(|E + εB(0, 1)| − |E|).

We consider in this short note a variant of this content, which is an anisotropic outer

Minkowski content. The idea is to study the limit, as ε → 0+, of

(1.3)
1

ε
(|E + εC| − |E|),

where C ⊂ R
n is a closed convex body. It is standard that if E is convex, then |E + εC| is a

polynomial in ε (of degree n) whose coefficient of the first degree term (see also Remark 3.6

below) is precisely the anisotropic perimeter

(1.4)

∫

∂E
hC(νE) dH

n−1 ,

where hC is the support function of C, defined by hC(ν) = supx ∈ Cx · ν, and νE the outer

normal to ∂E, see [11] for details. The convergence of (1.3) to (1.4) follows for convex sets E

and can be easily extended to (very) smooth sets.

We show here two (expected) results: first, as a functional defined on sets, (1.3) Γ-converges

to the natural limit (1.4) as ε → 0.

Second, we show in Theorem 3.4 that given any set for which the (classical) outer Minkowski

content equals the perimeter, then the limit of (1.3), as ε → 0+, coincides with (1.4).

The proof of Theorem 3.4 is quite technical, because we wanted to work under the only

assumption of the convergence of the classical content. We show that this convergence implies

that the boundary is flat enough in a relatively uniform way, so that the convergence of (1.3)

holds. It would be easy to adapt our proof to get, in Theorem 3.4, an “if and only if”, under

the additional assumption, though, that C is elliptic and regular in some appropriate sense,

we leave this to the reader.

Eventually, we also deduce a Γ-convergence result (see [5, 7] for details) for functionals of

the type

(1.5)
1

ε

∫

(

ess sup
x−εC

u− u(x)
)

dx

which coincides with (1.3) on characteristic functions of sets. The limit is (quite obviously)

given by
∫

Ω hC(−Du) (where the minus signs accounts for the fact that the outer normal was
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appearing in (1.4), and not the inner normal which corresponds more naturally to the gradient

of the characteristic function χE)

As a simple corollary, one, if wants, is able to approximate functionals of the type
∫

∂E
φ(νE) dH

n−1,

for φ a positively one-homogenous convex function φ : Rn → [0,+∞) (and positive away from

0). Indeed, it suffices to choose the convex body

C := {x ∈ R
n : x · ν ≤ φ(ν) ∀ ν}

and apply our results.

The paper is organized as follows: in section 3 we define the setting and we state the

results, then in section 4 we prove the Γ-convergence result for (1.5), and then the pointwise

convergence result for (1.3).

2. Notation and preliminaries

2.1. Notation. Let n ≥ 1 be integer. Given a measurable set A ⊂ R
n, we will denote by |A|

its Lebesgue measure. If k ∈ {0, . . . , n}, the k-dimensional Hausdorff measure of S ⊂ R
n will

be denoted by H k(S). We will use the notation x · y for the standard scalar product in R
n

between x and y, B(x, r) for the open ball of radius r centered in x. Finally, here convergence

in L1
loc(Ω) means convergence in L1(B ∩ Ω) for any ball B.

We say that a sequence of sets Ej ⊂ R
n converges to E ⊂ R

n in L1
loc(Ω) as j → +∞, if χEj

converges to χE in L1
loc(Ω) as j → +∞, where χS denotes the characteristic function of the

set S.

2.2. Geometric measure theory. In this paragraph we recall with some basic notions of

geometric measure theory we will need; for an exhaustive treatment of the subject we refer

the reader to [12].

Let n ≥ 1 be integer and let k ∈ N with k ≤ n. We say that S ⊂ R
n is H k-rectifiable if

S can be covered by a countable family of sets Sj, with j ∈ N, such that S0 is H k-negligible

and Sj is a k-dimensional surface in R
n of class C1, for any j > 0.

Let E ⊂ R
n be a measurable set and Ω ⊂ R

n be an open domain. We say that E has finite

perimeter in Ω if the distributional derivative of χE is a real Radon measure on Ω; we will

denote Per(E; Ω) := |DχE|(Ω). The upper and lower n-dimensional densities of E at x are

respectively defined by

Θ∗
n(E, x) := lim sup

rց0

|E ∩B(x, r)|
αnrn

, Θ∗n(E, x) := lim inf
rց0

|E ∩B(x, r)|
αnrn

,

where αn is the volume of the (n − 1)-dimensional unit disc (the diameter of the unit ball).

If Θ∗
n(E, x) = Θ∗n(E, x) their common value is denoted by Θn(E, x). For every t ∈ [0, 1] we
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define

(2.1) Et := {x ∈ R
n : Θn(E, x) = t}.

The essential boundary of E is the set ∂∗E := R
n \ (E0 ∪E1). It turns out that if E has finite

perimeter in Ω, then H n−1(∂∗E \ E1/2) = 0, and Per(E; Ω) = H n−1(∂∗E ∩ Ω).

Moreover, one can define a subset of E1/2 as the set of points x where there exists a unit

vector νE(x) such that:

E − x

ρ
→ {y ∈ R

n : y · νE(x) ≤ 0}, as ρ → 0 in L1
loc(R

n),

and which is referred to as the outer normal to E at x. The set where νE(x) exists is called

the reduced boundary and is denoted by ∂∗E. One can show that H n−1(∂∗E \ ∂∗E) = 0,

moreover, one has the decomposition DχE = (−νE)H
n−1 ∂∗E.

3. Statement of the results

Let us assume that C is a closed convex body, that is, bounded and with 0 in its interior.

We denote its support function by hC(ν) = supx∈C x · ν, and its polar function is h◦C(x) :=

suphC(ν)≤1 x · ν. It is well known, then, that both hC and h◦C are convex, one-homogeneous

and Lipschitz functions, moreover C = {h◦C ≤ 1}.
By assumptions, there also exists a, b with 0 < a < b such that B(0, a) ⊆ C ⊆ B(0, b), in

particular, we have for all ν, x ∈ R
n

(3.1) a|ν| ≤ hC(ν) ≤ b|ν| , 1

b
|x| ≤ h◦C(x) ≤ 1

a
|x| .

Let Ω ⊂ R
n be an open domain. Given a Lebesgue measurable set E ⊂ Ω, we introduce

the outer ε, C-Minkowski content,

(3.2) SM0
ε,C(E; Ω) :=

1

ε
(|Ω ∩ (E + εC)| − |E|) .

Actually, this definition is not very practical, since it can change drastically with Lebesgue-

negligible changes of the set E. For this reason, we introduce the functional, defined for a

measurable function u:

(3.3) Fε,C(u; Ω) :=
1

ε

∫

Ω

(

ess sup
Ω∩(x−εC)

u− u(x)
)

dx

which takes values in [0,+∞]. Notice that one can check easily (using Fatou’s lemma) that

Fε,C is l.s.c. in L1
loc(Ω). We then define

(3.4) SMε,C(E; Ω) := Fε,C(χE ; Ω) .

It is also easy to check that the definition coincides with SM0
ε,C on smooth sets, and in general

for a measurable set E we have

SMε,C(E; Ω) = min
|E′△E|=0

SM0
ε,C(E

′; Ω) = SM0
ε,C(E

1; Ω) = SM0
ε,C(Ω \ E0; Ω)
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where E1 (resp., E0) is the set of points of Lebesgue density 1 (resp., 0) in Ω (see (2.1)),

and △ denotes the symmetric difference. Eventually, one can check easily that Fε satisfies a

generalized coarea formula [14, 6]: for any function u ∈ L1
loc(Ω),

(3.5) Fε,C(u; Ω) =

∫ ∞

−∞
SMε,C({u > s}; Ω) ds .

Moreover, one can show that for any measurable sets, E and F ,

SMε,C(E ∪ F ; Ω) + SMε,C(E ∩ F ; Ω) ≤ SMε,C(E; Ω) + SMε,C(F ; Ω)

from which it follows that Fε is convex on L1
loc(Ω), see [6] for details.

Before to state our results we say that a family of functionals Gε defined on the Lebesgue

measurable subsets of Rn Γ-converges to G in L1
loc(Ω) as ε → 0 if

• for any Lebesgue measurable set E, and for any family of Lebesgue measurable sets

Eε → E in L1
loc(Ω) as ε → 0, we have

G(E) ≤ lim inf
ε→0

Gε(Eε) ,

• for any Lebesgue measurable set E, there exist a family of Lebesgue measurable sets

Eε such that Eε → E in L1
loc(Ω) as ε → 0 and

lim sup
ε→0

Gε(Eε) ≤ G(E).

In the same way, we say that a family of functionals Fε defined on L1
loc(Ω) Γ-converges to

F in L1
loc(Ω) as ε → 0 if

• for any u ∈ L1
loc(Ω), and for any family of elements of L1

loc(Ω) such that uε → u in

L1
loc(Ω) as ε → 0, we have

F (u) ≤ lim inf
ε→0

Fε(uε) ,

• for any u ∈ L1
loc(Ω), there exist a family of elements of L1

loc(Ω) uε such that uε → u

in L1
loc(Ω) as ε → 0 and

lim sup
ε→0

Fε(uε) ≤ F (u).

We will show the following result:

Theorem 3.1. As ε → 0, SMε,C and SM0
ε,C Γ–converge to

(3.6) PerhC
(E) :=







∫

∂∗E
hC(νE(x)) dH

n−1(x) if E has finite perimeter ,

+∞ else

in L1
loc(Ω), where here, we let νE(x) be the outer1 normal to ∂∗E at x. Moreover, if {Eε}ε>0

are sets with locally finite measure and supε>0 SMε,C(Eε; Ω) < ∞, then, up to subsequences,

Eε converge to some set E in L1
loc(Ω).

1Observe that with this classical but not so natural choice, we have PerhC
(E) =

∫
Ω
hC(−DχE).
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In particular, we deduce from [6]:

Corollary 3.2. As ε → 0, Fε,C Γ–converges to

TV−C(u; Ω) :=







∫

Ω
hC(−Du) if u ∈ BV (Ω) ,

+∞ else

in L1
loc(Ω), where hC(−Du) stands for hC

(

− dDu
d|Du|

)

d|Du| [8]. Moreover, if {uε}ε>0 are

functions in L1
loc(Ω) with supε Fε,C(uε; Ω) < ∞, then {uε}ε>0 is precompact in L1

loc(Ω).

For any measurable set E we can also consider

Mε,C(E; Ω) := (SMε,C(E; Ω) + SMε,C(Ω \ E; Ω))/2.

From Theorem 3.1 the following Corollary follows easily:

Corollary 3.3. As ε → 0, Mε,C Γ–converges to (PerhC
(E) + PerhC

(Ω \ E))/2 in L1
loc(Ω).

Concerning the pointwise convergence of SM0
ε,C , we also have the following interesting

result, from which the Γ-lim sup inequality in Theorem 3.1 follows in a straightforward way.

Theorem 3.4. Assume that the set E is a finite-perimeter set such that

(3.7) lim
ε→0

SM0
ε,B(0,1)(E; Ω) = Per(E; Ω) .

Then,

(3.8) lim
ε→0

SM0
ε,C(E; Ω) = PerhC

(E; Ω) .

Remark 3.5. The sets which satisfy (3.7) are studied in [2]. A sufficient condition is that the

Minkowski content of the reduced boundary coincides with its (n − 1)–dimensional measure,

that is,

lim
ε→0

|{x ∈ Ω : dist(x, ∂∗E) ≤ ε}|
2ε

= Per(E; Ω) .

The proof is quite elementary (see [2, Thm 13]): in that case, we can introduce, for x ∈ Ω,

the signed distance function

dE(x) := dist(x,E) − dist(x,Ω \ E)

and we have that (thanks to the co-area formula)

1

2ε
|{x ∈ Ω : dist(x, ∂∗E) ≤ ε}| ≥ 1

2ε
|{x ∈ Ω : |dE(x)| ≤ ε}|

=
1

2ε

∫ ε

−ε
Per({dE < s}; Ω) ds =

1

2

∫ 1

−1
Per({dE < εs}; Ω) ds .

In particular, since

Per(E; Ω) ≤ lim inf
ε→0

Per({dE < εs}; Ω)
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for all s, by Fatou’s lemma, we find that also

(3.9) lim
ε→0

1

2ε
|{x ∈ Ω : |dE(x)| ≤ ε}| = Per(E; Ω),

while (for the same reasons)

(3.10)
Per(E; Ω) ≤ lim inf

ε→0

1

ε
|{x ∈ Ω : 0 < dE(x) ≤ ε}|,

Per(E; Ω) ≤ lim inf
ε→0

1

ε
|{x ∈ Ω : 0 < −dE(x) ≤ ε}|.

It follows from (3.9) and (3.10) that the inequality in (3.10) must in fact be an equality, and

the lim inf a lim. In particular, we deduce (3.7).

Remark 3.6. In case E is a convex body, then it is well known that (see [11])

|E + εC| = |E|+ εPerhC
(E; Ω) +O(ε2) .

Also, if ∂E is compact and rectifiable (that is, included in the image of a Lipschitz map

from R
n−1 to R

n), and H n−1(∂E \ ∂∗E) = 0, then the Minkowski content coincides with the

perimeter, see [9, Thm 3.2.39 p. 275]. It is easy to build examples, though, where this is not

true and still, (3.8) holds, see again [2].

As before, for any measurable set E ⊂ Ω we let

M0
ε,C(E; Ω) := (SM0

ε,C(E; Ω) + SM0
ε,C(Ω \E; Ω))/2.

Then the following pointwise convergence result holds.

Theorem 3.7. Assume that the set E is a finite-perimeter set such that

lim
ε→0

M0
ε,B(0,1)(E; Ω) = Per(E; Ω) .

Then,

lim
ε→0

M0
ε,C(E; Ω) = (PerhC

(E; Ω) + PerhC
(Ω \ E; Ω))/2 .

In particular, we get

lim
ε→0

M0
ε,C(E; Ω) =

∫

∂∗E

hC(νE(x)) + hC(−νE(x))

2
dH n−1(x).

4. Proof of the results

4.1. Proof of Theorem 3.1. First, the compactness statement is proved as follows. Notice

that for any E measurable we can rewrite Fε,C(χE ; Ω) as

(4.1) Fε,C(χE ; Ω) :=
1

ε

∫

Ω
ess sup

Ω∩(x−εC)
|χE − χE(x)| dx.

By assumption the family {Eε}ε>0 satisfies Fε,C(χEε ; Ω) ≤ c for some c > 0. Let σ > 0 and

let

Ωσ = {x ∈ Ω ∩B(0, 1/σ) : d(x, ∂Ω) > σ};
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of course we have Ωσ ⊂⊂ Ω. Since B(0, a) ⊆ C, there exists r > 0 such that for any ξ ∈ R
n

with |ξ| ≤ 1 and any ε < ε0, for ε0 sufficiently small, it holds, using the form (4.1) for Fε,C ,
∫

Ωσ

|χEε(x+ rεξ)− χEε(x)|
ε|ξ| dx ≤ Fε,C(χEε ; Ω) ≤ c

and thus

sup
ε<ε0, |ξ|=1

∫

Ωσ

|χEε(x+ rεξ)− χEε(x)|
ε|ξ| dx ≤ c.

Since obviously ||χEε ||L1(Ωσ) is bounded, we are in position to apply Riesz-Frechét-Kolmogorov

compactness Theorem in L1(Ωσ), and then we find a positive infinitesimal sequence εj such

that Eεj converges to some measurable set E in L1(Ωσ). Now it is easy to conclude applying

a diagonal argument.

To extend this compactness result to Corollary 3.2, one can consider for each δ > 0 and

function uε a function

uδε =
∑

k∈Z

skχ{sk+1≥uε>sk},

where sk ∈ (kδ, (k + 1)δ) is a level appropriately chosen so that

SMε,C({uε > sk}; Ω) ≤ (1 + sup
ε>0

Fε,C(uε; Ω))/δ.

Then, the previous compactness result (and a diagonal argument) shows that there exists a

a positive infinitesimal sequence εk such that u
1/n
εk converges to some u1/n in L1

loc(Ω), for all

n ≥ 1. Since ‖u1/mεk − u
1/n
εk ‖∞ ≤ 2/min{m,n} and ‖u1/m − u1/n‖∞ ≤ 2/min{m,n} for all

m,n, k, we easily deduce that (up to a subsequence), there exists u such that uεk → u in

L1
loc(Ω).

In order to prove the Γ–convergence, we must show that for any E,

• if Eε → E in L1
loc(Ω), then

(4.2) PerhC
(E; Ω) ≤ lim inf

ε→0
SMε,C(Eε; Ω) ,

• and that there exists Eε → E with

(4.3) lim sup
ε→0

SMε,C(Eε; Ω) ≤ PerhC
(E; Ω).

As it is standard that one can approximate any set E with finite perimeter by means

of (almost) smooth sets such that Per(Ek; Ω) → Per(E; Ω) (for instance, minimizers of

Per(F ; Ω) + k|E△E′|) then (4.3) will follow, using a diagonal argument and Remark 3.5,

from Theorem 3.4 (which we will prove later on).

Hence, we focus on the proof of (4.2). Let us introduce the anisotropic (essential) distance

function to a set E:

distC(x,E) := ess inf
y∈E

h◦C(x− y) .
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(Equivalently, this is the h◦C -distance to the set E1 of points where the Lebesgue density of E

is 1, or to the complement of E0.) Then, distC(x,E) < ε if and only if there exists a set of

positive measure in E of points y with h◦C(x−y) < ε, or, in other words, such that x−y ∈ εC,

which is equivalent to say that x ∈ E1 + εC. In particular, it follows that

(E1 + εC \ E1) ∩ Ω = {x ∈ Ω \E1 : distC(x,E) < ε}.
On the other hand, if one lets d(x) := distC(x,E), it is standard that d is Lipschitz and that

hC(∇d) = 1 a.e. in {d > 0}, and 0 a.e. in {d = 0} ⊃ E1. The proof follows the same lines as

in [3]. First, for any x, y ∈ Ω, if δ > 0, one can find a set with positive measure in E of point

y′ with d(y) ≤ h◦C(y − y′) ≤ d(y) + δ. Then, for these points,

(4.4) d(x)− d(y) ≤ h◦C(x− y′)− h◦C(y − y′) + δ ≤ h◦C(x− y) + δ

and sending δ to zero and using (3.1), it follows that d is Lipschitz. Moreover, ∇d = 0 a.e.

in {d = 0}. Now, from (4.4) we also see that d(x+ tz)− d(x) ≤ th◦C(z) for all z; therefore, if

d is differentiable at x it follows that ∇d(x) · z ≤ 1 for all z ∈ C, hence hC(∇d(x)) ≤ 1.

We show the reverse inequality for points x where d(x) > 0: for such a point, there exists

y ∈ E1 with d(x) = h◦C(x − y). For each x′ ∈ (y, x] (which means that x′ 6= y and x′ lies on

the line segment with extreme points y and x), one has d(x′) = h◦C(x
′ − y) > 0, otherwise

there would exist y′ with h◦C(x
′ − y′) < h◦C(x

′ − y), but then, it would follow that

h◦C(x− y′) ≤ h◦C(x− x′) + h◦C(x
′ − y′) < h◦C(x− x′) + h◦C(x

′ − y) = h◦C(x− y)

since x′ ∈ (y, x], a contradiction. It follows that for z = x− y, t ∈ (0, 1),

d(x− tz) = h◦C(x− tz − y) = (1− t)d(x),

and if in addition x is a point of differentiability, it follows that

−∇d(x) · z = −d(x) = −h◦C(z).

But since hC(∇d(x)) ≤ 1 and z/h◦C(z) ∈ C, it follows that hC(∇d(x)) = 1. If moreover h◦C
is differentiable as well in x − y, we find in addition that ∇d(x) = ∇h◦C(x − y). If hC is

differentiable in ∇d(x), we find that y = x− d(x)∇hC(∇d(x)) and in particular, in that case,

the projection y must be unique. For a general convex set C this might not be the case, even

at points of differentiability.

Now, let {Eε}ε>0 be a family of sets, with |(Eε△E) ∩ Ω| → 0 as ε → 0, and assume that

lim infε→0 SMε,C(Eε; Ω) < +∞. We consider a subsequence Ek := Eεk such that this lim inf

is in fact a limit. We have

((E1
k + εkC) \ E1

k) ∩ Ω ⊇ {x ∈ Ω : 0 < distC(x,Ek) < εk}
(the difference being the possible set of points x 6∈ E1

k with distC(x,Ek) = 0). It follows,

letting dk(x) := max{distC(x,Ek)/εk, 1},

SMεk,C(Ek; Ω) ≥ 1

εk

∫

{0<distC(·,Ek)<εk}
hC(∇distC(x,Ek)) dx =

∫

Ω
hC(∇dk(x)) dx .
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In particular, (dk)k≥1 have equibounded total variation: we may assume that a subsequence

(not relabelled) converges to some limit d, with values in [0, 1], in L1
loc(Ω). (And, in fact, we

may even assume that the convergence is pointwise, out of a negligible set.)

By assumption, |{0 < dk < 1}| ≤ cεk, in particular we deduce that d ∈ {0, 1} a.e. in Ω.

Observe also that (Xc denoting here the complement of X in Ω, that is Ω \X), if B is a ball

in R
n,

|B ∩ {dk < εk}△E| = |B ∩ {dk < εk} ∩ Ec|+ |B ∩ {dk < εk}c ∩ E|
= |B ∩ {dk < εk} ∩ E1

k ∩ Ec|+ |B ∩ {dk < εk} ∩ (E1
k)

c ∩ Ec|
+ |B ∩ {dk < εk}c ∩E1

k ∩ E|+ |B ∩ {dk < εk}c ∩ (E1
k)

c ∩ E|
≤ |B ∩ (Ek△E)|+ |{dk < εk} \ E1

k|.

As |B ∩ (Ek△E)| → 0 (by assumption), while |{dk < εk} \ E1
k | ≤ cεk, we deduce that

{dk < εk} → E in L1
loc(Ω). It follows that {d = 1} = Ω \ E, hence dk → 1 − χE as k → ∞.

Thanks to Reshetniak’s lower semicontinuity Theorem, we deduce that

∫

Ω
hC(−DχE) ≤ lim inf

k→∞

∫

Ω
hC(∇dk(x)) dx ≤ lim

k→∞
SMεk,C(Ek; Ω) .

Since
∫

Ω hC(−DχE) = PerhC
(E), (4.2) follows.

As already mentioned, the proof of (4.3) will follow from Theorem (3.4), which is given in

the next Section.

4.2. Proof of Theorem 3.4. Now, we consider a set E ⊂ Ω such that (3.7) holds. We

will identify E with the set of points where its Lebesgue density is 1, moreover, a necessary

condition for (3.7) is that E =
⋂

ε>0E + B(0, ε) coincides with E up to a negligible set, in

other words, |E \ E| = 0.

A first remark is that, clearly, using (3.1),

aSMaε,B(0,1)(E; Ω) ≤ SMε,C(E; Ω) ≤ bSMbε,B(0,1)(E; Ω)

hence any limit of SMε,C(E; Ω) is in between aPer(E; Ω) and bPer(E; Ω). In particular, we

can introduce the measures

µε :=
1

ε
(χE+εC − χE)

which are equibounded. Then, up to a subsequence, we have µεk
∗
⇀ µ as measures in Ω, with

aH n−1 ∂∗E ≤ µ ≤ bH n−1 ∂∗E. We introduce the Besicovitch derivative g(x) ∈ [a, b] of

the measure µ w.r. H n−1 ∂∗E, defined by

g(x) = lim
ρ→0

µ(B(x, ρ))

H n−1(∂∗E ∩B(x, ρ))
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and which is defined H n−1–a.e. on Ω∩∂∗E. Moreover, since ∂∗E is rectifiable, it is also given

by

(4.5) g(x) = lim
ρ→0

µ(B(x, ρ))

αnρn−1
.

(We recall αn is the diameter of the unit disc.)

Theorem 3.4 will follow if we can show that g(x) = hC(νE(x)) for H n−1–a.e. x ∈ ∂∗E. We

fix from now on a point x̄ ∈ ∂∗E where (4.5) exists. Observe that from (4.2), it follows that

g(x) ≥ hC(νE(x)) H n−1-a.e. in ∂∗E, so that we need to show that g(x̄) ≤ hC(νE(x̄)). We

recall that

lim
ρ→0

H n−1(∂∗E ∩B(x̄, ρ))

αnρn−1
= 1

and

lim
ρ→0

∫

B(0,1)

∣

∣

∣

χE−x̄
ρ

− χ
{y : y·νE(x̄)≤0}

∣

∣

∣
dy = 0

hold. We denote ν = νE(x̄) and without loss of generality we will assume that it is the

direction of the last coordinate xn. We will use the notation x = (x′, xn) ∈ R
n−1 × R to

distinguish between the component x′ ⊥ ν and xn (along ν) of a point x ∈ R
n.

We also introduce the measures

λε :=
1

ε

(

χ
E+εB(0,b) − χE

)

≥ µε ,

the main assumption of Theorem 3.4 ensures that these measures converge weakly-∗ to λ =

bH n−1 ∂∗E as ε → 0. Now we use a classical procedure: since for a.e. ρ > 0,

µεk(B(x, ρ)) → µ(B(x, ρ)) and λεk(B(x, ρ)) → λ(B(x, ρ)),

we can build a sequence (ρk)k∈N with ε′k = εk/ρk → 0 such that

lim
k→∞

µεk(B(x̄, ρk))

αnρ
n−1
k

= g(x̄)

and

lim
k→∞

λεk(B(x̄, ρk))

αnρ
n−1
k

= b.

In fact, the rest of the proof would be relatively easy if we could ensure that εk ∼ ρk as

k → ∞, using then a blow-up argument. However, this is not clear in general, and we need

to consider the situation where εk = o(ρk), hence ε′k → 0. As is usual, we do a blow-up using

the change of variables x = x̄+ ρky. We let Ek = (E − x̄)/ρk, and we observe that

lim
k→∞

1

αnε
′
k

∫

B(0,1)
(χEk+ε′

k
C − χEk

) dy = g(x̄),(4.6)

lim
k→∞

1

αnε′k

∫

B(0,1)
(χEk+ε′

k
B(0,b) − χEk

) dy = b,(4.7)

lim
k→∞

∫

B(0,1)

∣

∣χEk
− χ

{y : y·ν≤0}

∣

∣ dy = 0.(4.8)
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Moreover, for any β > 0 (small), one can check easily that if we replace in (4.7) and (4.8)

B(0, 1) with B(0, 1− β), or even with C(0, 1− β) := {(y′, yn) ∈ B(0, 1) : |y′| ≤ 1− β}, (4.8)

still holds and the right-hand side in (4.7) is replaced with b(1 − β)n−1. Indeed, it follows

from (4.2) (with C = B(0, b)) and (4.8) that for any open set A ⊆ B(0, 1),

bH n−1(A ∩ {y · ν = 0}) ≤ lim inf
k→∞

1

ε′k

∫

A
(χEk+ε′

k
B(0,b) − χEk

) dy .

Together with (4.7), we deduce that as soon as H n−1(∂A ∩ {y · ν = 0}) = 0,

(4.9) bH n−1(A ∩ {y · ν = 0}) = lim
k→∞

1

ε′k

∫

A
(χEk+ε′

k
B(0,b) − χEk

) dy .

We fix a (small) value of β > 0. Then, we choose a value θ > 10b and we consider the points

z ∈ Z
n−1 such that the hypersquares (θε′k(z + (0, 1)n−1))× {0} are contained in B(0, 1 − β).

There is a finite number Nk of such squares and we enumerate the corresponding points

{zk1 , . . . , zkNk
}. For i = 1, . . . , Nk, we let

Ck
i = [(θε′k(z

k
i + (0, 1)n−1))× R] ∩B(0, 1) , C ′

i
k

= (θε′k(z
k
i + (0, 1)n−1))× {0} .

We then let

(4.10) aki =

∫

Ck
i

∣

∣χEk
− χ

{yn≤0}

∣

∣ dy ≤ 2(θε′k)
n−1

and δk =
∑Nk

i=1 a
k
i : from (4.8) we know that δk → 0 as k → ∞. We then consider

Zk = {i = 1, . . . , Nk : aki ≤
√

δk(ε
′
k)

n−1},
Z ′
k = {1, . . . , Nk} \ Zk. It follows that

(4.11) δk ≥
√

δk(ε
′
k)

n−1#Z ′
k ⇒ (ε′k)

n−1#Z ′
k ≤

√

δk

which gives a control on the “bad” surface, of the cylinders Ck
i where the integral aki is “large”.

For each i = 1, . . . , Nk, we have

(4.12)
1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy =

1

ε′k

∫

C′
i
k

∫

√
1−y′2

−
√

1−y′2

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dyndy

′

≥ b
∣

∣

∣

{

y′ ∈ C ′
i
k
: |({y′} × R) ∩ (B(0, 1) ∩ Ek)| > 0, |({y′} × R) ∩ (B(0, 1) \ Ek)| ≥ ε′kb,

}
∣

∣

∣

since clearly, each time a point (y′, yn) ∈ Ek, then (y′, yn + s) ∈ Ek + ε′kB(0, b) for |s| ≤ ε′kb.

We denote by Dk
i the set in the right-hand side of (4.12). For y′ 6∈ Dk

i ,

∫

√
1−y′2

−
√

1−y′2

∣

∣χEk
− χ

{yn≤0}

∣

∣ dy ≥
√

β − ε′kb ≥
√
β

2

as soon as ε′k ≤ √
β/(2b). It follows that |C ′

i
k \ Dk

i | ≤ 2aki /
√
β, hence if i ∈ Zk, so that

aki ≤ √
δk(ε

′
k)

n−1 =
√
δk|C ′

i
k|/θn−1, we get that (4.12) bounds

(4.13) b|Dk
i | ≥ b|C ′

i
k|
(

1− 2
√
δk

θn−1
√
β

)

= b|C ′
i
k|
(

1−K
√

δk

)

.
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To sum up, (4.12) and (4.13) show that for any i ∈ Zk,

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy ≥ b|C ′

i
k|
(

1−K
√

δk

)

.

In particular, it follows that (using (4.11))

(4.14) lim inf
k→∞

∑

i∈Zk

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy

≥ b lim
k→∞

(
∣

∣

∣

∣

∣

Nk
⋃

i=1

C ′
i
k

∣

∣

∣

∣

∣

− (θε′k)
n−1#Z ′

k

)

(

1−K
√

δk

)

= αnb(1− β)n−1

and together with (4.9) (with A = C(0, 1− β)) we deduce that

δ′k :=
∑

i∈Zk

(

1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy − b|C ′

i
k|
(

1−K
√

δk

)

)

k→∞−→ 0.

So now we introduce

Z̃k =

{

i ∈ Zk :
1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy − b|C ′

i
k|
(

1−K
√

δk

)

≤ (ε′k)
n−1
√

δ′k

}

,

and its complement Z̃ ′
k = Zk \ Z̃k. Then as before, one sees that

(4.15) δ′k ≥
√

δ′k(ε
′
k)

n−1#Z̃ ′
k ⇒ (ε′k)

n−1#Z̃ ′
k ≤

√

δ′k .

We see at this point that (4.14) still holds if Zk is replaced with Z̃k, and Z ′
k with Z ′

k ∪ Z̃ ′
k.

Together with (4.9) (with again A = C(0, 1− β)) it follows that

lim sup
k→∞

1

ε′k

∫

C(0,1−β)\
⋃

i∈Z̃k
Ck

i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy = 0 ,

and as a consequence

(4.16) lim sup
k→∞

1

ε′k

∫

C(0,1−β)\
⋃

i∈Z̃k
Ck

i

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy = 0 .

We now need to estimate the quantity (1/ε′k)
∫

Ck
i
|χEk+ε′

k
C −χEk

| dy for i ∈ Z̃k, hence when

(4.17)

b|C ′
i
k|
(

1−K
√

δk

)

≤ 1

ε′k

∫

Ck
i

∣

∣

∣

χ
Ek+ε′

k
B(0,b) − χEk

∣

∣

∣
dy ≤ b|C ′

i
k|
(

1−K
√

δk +

√

δ′k
bθn−1

)

and

(4.18) |C ′
i
k \Dk

i | ≤ 2|C ′
i
k|

√
δk

θn−1
√
β
.
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We choose k, i ∈ Z̃k so that (4.17) and (4.18) hold, and consider the change of variable

y = zki + ε′kŷ. We let F = (Ek − zki )/ε
′
k, Q = (Ck

i − zki )/ε
′
k ⊃ (0, θ)n−1 × (−√

β/ε′k,
√
β/ε′k),

D = (Dk
i − zki )/ε

′
k. We find that

(4.19)

∫

Q

∣

∣χ
F+B(0,b) − χF

∣

∣ dŷ ≤ bθn−1

(

1−K
√

δk +

√

δ′k
bθn−1

)

,

(4.20)

∫

(0,θ)n−1×

(

−
√
β

ε′
k

,
√
β

ε′
k

)

∣

∣χF − χ
{ŷn≤0}

∣

∣ dŷ ≤ θn−1

√
δk
ε′k

,

while (4.18) yields

(4.21) |(0, θ)n−1 \D| ≤ 2

√

δk
β

.

Let us set Fb = F +B(0, b) = {ŷ ∈ R
n : dist(ŷ, F ) ≤ b}, and

Fs = {ŷ ∈ Fb : dist(ŷ, ∂Fb) ≥ b− s}.

We observe that F ⊂ Fs for any s ∈ [0, b]. It is well known that if 0 < s < b, the boundaries

∂Fs are C1,1, with curvatures between −1/(b− s) and 1/s. We want to show that for k large

enough, these boundaries are essentially flat inside Q. Let now

D′ =
{

ŷ′ ∈ (0, θ)n−1 : |({ŷ′} × R) ∩Q ∩ F | = 0
}

,

D′′ =
{

ŷ′ ∈ (0, θ)n−1 : ({ŷ′} × R) ∩Q ⊂ Fb

}

,

D′′′ =
{

ŷ′ ∈ (0, θ)n−1 : |({ŷ′} × R) ∩Q ∩ (Fb \ F )| ≥ 2b
}

.

The definition of D ensures that if ŷ′ ∈ (0, θ)n−1 \ D, |({ŷ′} × R) ∩ Q ∩ (Fb \ F )| ≥ b.

From (4.19) and (4.21), we have that

bθn−1 +
√

δ′k ≥ b|((0, θ)n−1 \D) \D′′′|+ 2b|D′′′| ≥ bθn−1 + b|D′′′| − 2

√

δk
β

,

hence

(4.22) |D′′′| ≤ 1

b

(

√

δ′k + 2

√

δk
β

)

.

Now, we easily deduce from (4.20) that both |D′| and |D′′ \D′′′| are bounded by a constant

(multiple of θn−1/
√
β) times

√
δk. It follows that there exists a constant K ′ (still depending

on θ, β) such that

(4.23) |D′ ∪D′′| ≤ K ′
(

√

δk +
√

δ′k

)

.
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Now, each time ŷ′ ∈ (0, θ)n−1 \ (D′ ∪D′′), in ({ŷ′} ×R) ∩Q one can find points which are

in F (hence in Fs for all s ∈ [0, b]), points which are not in Fb, and as a consequence there are

also points in ∂Fs, for any s ∈ [0, b]. It follows that

(4.24) H
n−1(∂Fs ∩Q) ≥ θn−1 −K ′

(

√

δk +
√

δ′k

)

,

and as a consequence, also (from the coarea formula applied to the distance function to ∂Fb),

(4.25) |(Fb \ F0) ∩Q| =

∫ b

0
H

n−1(∂Fs ∩Q) ds ≥ bθn−1 − bK ′
(

√

δk +
√

δ′k

)

.

Inequalities (4.19) and (4.25) yield that (here the constant K ′ may vary from line to line,

keeping the same kind of dependency in the parameters)

(4.26) |(F0 \ F ) ∩Q| ≤ bK ′
(

√

δk +
√

δ′k

)

.

Let us choose η > 0, small, and observe that (using (4.24) and (4.19))

∫ 2η

η
H

n−1(∂Fs ∩Q) ds

≤ |(Fb \ F0) ∩Q| − (b− η)
(

θn−1 −K ′
(

√

δk +
√

δ′k

))

≤ ηθn−1 +K ′
(

√

δk +
√

δ′k

)

so that there exists s̄ ∈ [η, 2η] with

(4.27) H
n−1(∂Fs̄ ∩Q) ≤ θn−1 +

K ′

η

(

√

δk +
√

δ′k

)

.

We recall that ∂Fs̄ has a (1/η)-Lipschitz normal, by construction. Eventually, we deduce that

∂Fs̄ must be almost flat if k is large enough: indeed, fix ζ > 0 and assume there is a point

ŷ ∈ ∂Fs̄ ∩ Q with, |ν∂Fs̄
(ŷ) · ν| ≤ 1 − ζ. We let ν̄ = ν∂Fs̄

(ŷ). Then, for t small, we consider

the ball B(ŷ, tηζ) (which we assume is in Q, and we let r = tηζ). The regularity of ∂Fs̄ yields

that, in that ball, it consists (at least) of a C1,1 graph which passes in between two spherical

caps of radius η, which are tangent in ŷ and normal at that point to ν̄. We call S the subset

of B(ŷ, r) bounded by these two caps (see Figure 1). A simple calculation shows that the

trace of these spherical caps on the sphere ∂B(ŷ, r) is given by the intersection of this sphere

with the hyperplanes {(y − ŷ) · ν̄ = ± tζ
2 r} (hence, S ⊂ B(ŷ, r) ∩ {|(y − ŷ) · ν̄| < tζ

2 r}). In

particular, the surface H n−1(∂Fs̄ ∩B(ŷ, r)) can be estimated from below with the surface of

the corresponding discs, that is, αnr
n−1
√

1− t2ζ2/4
n−1

.

Let us now estimate from below the surface H n−1(∂Fs̄ ∩Q \B(ŷ, r)). Since we know that

given any ŷ′ ∈ (0, θ)n−1 \ (D′ ∪ D′′), ∂Fs̄ ∩ ({ŷ′} × R) ∩ Q 6= ∅, it is enough to estimate

from above the projection of S onto (0, θ)n−1, which we denote by Πν(S ). This, in turn, is

bounded by the projection of

B(ŷ, r) ∩
{

y : |(y − ŷ) · ν̄| < tζ

2
r

}

=

{

ŷ + r(sν̄ + ξ) : |s| < tζ

2
, |ξ| ≤

√

1− s2 , ξ · ν̄ = 0

}

.
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ν̄

The surface in the ball is at least this diameter

The surface out of the ball projects at

B(ŷ, tηζ)

∂Fs̄

ŷ

S

least on this shaded region

ν

Figure 1. If the normal at ŷ to ∂Fs̄ is away from ν, then its surface must

exceed θn−1 by some quantity which is estimated.

Now, this projection is a subset of the vertical projection of the diameter of B(ŷ, r) perpen-

dicular to ν̄, that is, ∆ = {ŷ+rξ : |ξ| ≤ 1 , ξ · ν̄ = 0}, plus the disk Πν(B(0, rtζ/2)). It follows

(see the expansion of the volume of Minkowski sums of convex sets in [11], cf Remark 3.6)

that

|Πν(S )| ≤ |Πν(∆)| + Per(Πν(∆))
rtζ

2
+ o(rtζ) .

Here, Per(Πν(∆)) is the (n − 2)-dimensional perimeter of Πν(∆) in (0, θ)n−1, and a simple

scaling argument shows that o(rtζ) is of the form rn−1o(tζ), where the latter “o” depends only

on the geometry of the vertical projection of the unit ball, that is, on ν · ν̄ — and, in fact,

would be largest for ν = ν̄. Now, since Per(Πν(∆)) ≤ H n−2(∂∆) = (n−1)αnr
n−2, we obtain

that

|Πν(S )| ≤ (ν · ν̄)αnr
n−1 + 2(n− 1)αnr

n−2 rtζ

2
≤ αnr

n−1(1− (1− (n− 1)t)ζ)

if t is small enough. It follows

(4.28)

H
n−1(∂Fs̄∩Q) ≥ θn−1−K ′(

√

δk+
√

δ′k)+αnr
n−1

(
√

1− t2ζ2

4

n−1

− 1 + (1− (n− 1)t)ζ

)

.

For t = 0, the quantity between the right-hand side parentheses is ζ > 0, and it decreases

with t. It follows that one can find t̄ > 0 (depending only on n and ζ) such that (4.28) reads

H
n−1(∂Fs̄ ∩Q) ≥ θn−1 − K ′(

√

δk +
√

δ′k) + αn(t̄ηζ)
n−1 ζ

2
.
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Together with (4.27), it follows that if k is large enough (depending on K ′, η, ζ), we get a

contradiction, and therefore ν∂Fs̄
(ŷ) · ν ≥ 1 − ζ for any ŷ ∈ ∂Fs̄ ∩Q at distance at least t̄ηζ

from ∂Q. (The normal cannot be reverted, nor can ŷ be close to the boundary ∂Q∩ ∂B(0, 1),

because of (4.20).)

We deduce that there exists a value σ such that

∂Fs̄ ∩Q ⊂ {ŷ ∈ Q : σ ≤ ŷ · ν ≤ σ + 2ζθ}

for k large enough, with moreover F ∩Q ⊂ Fs̄∩Q ⊂ {ŷ ∈ Q : ŷ ·ν ≤ σ+2ζθ}. In particular,

it follows that (F ∩Q) + C ⊂ {ŷ · ν ≤ φ(ν) + σ + 2ζθ}. A consequence is that

((F + C) \ F ) ∩Q ⊆ ((Fs̄ \ F ) ∩Q) ∪ ((Fb \ F ) ∩Q) \ ((b, θ − b)n−1 × R))

∪ {ŷ ∈ Q : σ ≤ ŷ · ν ≤ σ + 2ζθ + φ(ν)} .

Now, using again (4.21) we can show that

|((Fb \ F ) ∩Q) \ ((b, θ − b)n−1 × R))| ≤ 2nb2θn−2 + 2b

√

δk
β

,

while, using (4.26) and (4.27),

|(Fs̄ \ F ) ∩Q| ≤ 2ηθn−1 + (b+ 2)K ′
(

√

δk +
√

δ′k

)

.

We deduce that

|((F + C) \ F ) ∩Q| ≤ θn−1(2ζθ + φ(ν)) + 2ηθn−1 + 2nb2θn−2 + Rk

where Rk is a rest which goes to zero with δk and δ′k. Returning to the original sets Ck
i , we

find that if k, i ∈ Z̃k and k is large enough,

(4.29)
1

ε′k

∫

Ck
i

|χEk+ε′
k
C − χEk

| dy ≤ |C ′
i
k|
(

φ(ν) + 2ζθ + 2η +
2nb2

θ
+

1

θn−1
Rk

)

.

Together with (4.16), (4.29) yields that

lim sup
k→0

1

ε′k

∫

C(0,1−β)

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy ≤ αn(1− β)n−1

(

φ(ν) + 2ζθ + 2η +
2nb2

θ

)

.

Sending first ζ, then η to zero and eventually θ to +∞, and using (4.6) and (4.9), we deduce

g(x̄) = lim
k→0

1

ε′k

∫

B(0,1)

∣

∣

∣

χ
Ek+ε′

k
C − χEk

∣

∣

∣
dy ≤ bαn(1− (1− β)n−1) + αn(1− β)n−1φ(ν) ,

and letting then β → 0 yields the desired inequality.
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