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The ultrametric corona problem

by Alain Escassut and Nicolas Mäınetti

Abstract Let K be a complete ultrametric algebraically closed field and let A be the
Banach K-algebra of bounded analytic functions in the ”open” unit disk D of K provided
with the Gauss norm. Let Mult(A, ‖ . ‖) be the set of continuous multiplicative semi-
norms of A provided with the topology of simple convergence, let Multm(A, ‖ . ‖) be the
subset of the φ ∈Mult(A, ‖ . ‖) whose kernel is a maximal ideal and let Multa(A, ‖ . ‖) be
the subset of the φ ∈Mult(A, ‖ . ‖) whose kernel is a maximal ideal of codimension 1. For
every maximal ideal M, there exist ultrafilters U on D such that M is the set of functions
f ∈ A vanishing along U and there exists at least one ψ ∈ Multm(A, ‖ . ‖) of kernel M
equal to a limit of |f(x)| along U . Certain ultrafilters define a unique ψ ∈Multm(A, ‖ . ‖).
If every maximal ideal is the kernel of only one ψ ∈Multm(A, ‖ . ‖), then Multa(A, ‖ . ‖)
is dense in Multm(A, ‖ . ‖). This is the case when K is strongly valued or spherically
complete. Given a continuous multiplicative norm ψ on A other than the Gauss norm, ψ
is defined by a circular filter on D of diameter r < 1. If K is of characteristic zero, the
algebra A admits proper closed prime ideals that are neither zero nor maximal ideals.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10

Introduction.

Let K be an algebraically closed field complete with respect to an ultrametric absolute
value | . |. Given a ∈ K and r > 0, we denote by d(a, r) the disk {x ∈ K | |x− a| ≤ r},
by d(a, r−) the disk {x ∈ K | |x− a| < r}, by C(a, r) the circle {x ∈ K | |x− a| = r} and
set D = d(0, 1−). Let A be the K-algebra of bounded power series converging in D which

is complete with respect to the Gauss norm defined as
∥∥

∞∑

n=1

anx
n
∥∥ = sup

n∈ IN
|an|: we know

that this norm actually is the norm of uniform convergence on D [6], [16].

In [19] the Corona problem was considered in a similar way as it is on the field lC [3],
[15]: the author asked the question whether the set of maximal ideals of A defined by the
points of D (which are well known to be of the form (x − a)A) is dense in the whole set
of maximal ideals with respect to the so-called ”Gelfand Topology”. In fact, this makes
no sense because the maximal ideals which are not of the form (x − a)A are of infinite
codimension [11]. Consequently, a Corona problem should be defined in a different way.

Given a commutative K-algebra B with unity, provided with a K-algebra norm ‖ . ‖,
the set of continuous multiplicative K-algebra semi-norms of B was studied in many
works [1], [5], [6], [9] and is usually denoted by Mult(B, ‖ . ‖) [5], [6], [9]. For each
φ ∈ Mult(B, ‖ . ‖), we denote by Ker(φ) the closed prime ideal of the f ∈ B such that
φ(f) = 0. The set of the φ ∈ Mult(B, ‖ . ‖) such that Ker(φ) is a maximal ideal is de-
noted by Multm(B, ‖ . ‖), the set of the φ ∈Mult(B, ‖ . ‖) such that Ker(φ) is a maximal
ideal of codimension 1 is denoted by Multa(B, ‖ . ‖) and here, the set of the continuous
multiplicative norms of A will be denoted by Mult0(B, ‖ . ‖).
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We know that sup{φ(f) | φ ∈ Mult(B, ‖ . ‖)} = limn→∞(‖fn‖)
1

n ∀f ∈ B [7], [8],
[13], [14]. On the other hand, Mult(B, ‖ . ‖) is provided with the topology of simple
convergence and is compact in this topology.

We know that for every M ∈Max(B), there exists at least one φ ∈Multm(B, ‖ . ‖)
such thatKer(φ) = M but in certain cases, there exist infinitely many φ ∈Multm(B, ‖ . ‖)
such that Ker(φ) = M [4], [7], [8]. A maximal ideal M of B is said to be univalent if
there is only one φ ∈ Multm(B, ‖ . ‖) such that Ker(φ) = M and the algebra B is said
to be multbijective if every maximal ideal is univalent (so, non-multbijective commutative
Banach K-algebras with unity do exist).

Thus, the ultrametric Corona problem may be viewed at two levels:
1) Is Multa(A, ‖ . ‖) dense in Multm(A, ‖ . ‖) (with respect to the topology of simple
convergence)?
2) Is Multa(A, ‖ . ‖) dense in Mult(A, ‖ . ‖) (with respect to the same topology )?

Actually, this way to set the Corona problem on an ultrametric field is not really
different from the original problem once considered on lC because on a commutative lC-
Banach algebra with unity, all continuous multiplicative semi-norms are known to be of
the form |χ| where χ is a character of A. Thus the Corona problem was equivalent to show
that the set of multiplicative semi-norms defined by points of the open disk was dense
inside the whole set of continuous multiplicative semi-norms, with respect to the topology
of simple convergence.

Remark: Given a filter G, if for every f ∈ A, |f(x)| admits a limit ϕG(f) along G, the
function ϕG obviously belongs to Mult(A, ‖ . ‖). Moreover, it clearly lies in the closure of
Multa(A, ‖ . ‖). Consequently, if we can prove that every element of Multm(A, ‖ . ‖) is of
the form ϕG , with G a certain filter on D, Question 1) is solved. And similarly, if we could
prove that every element of Mult(A, ‖ . ‖) is of the form ϕG , Question 2) would be solved.

Studying such problems first requires to know the nature of continuous multiplicative
semi-norms on A.

Definitions and notation: Let a ∈ D and let R ∈]0, 1]. Given r, s ∈ IR such that
0 < r < s we set Γ(a, r, s) = {x ∈ K |r < |x− a| < s}.

We call circular filter of center a and diameter R on D the filter F which admits as
a generating system the family of sets Γ(α, r′, r′′) ∩D with α ∈ d(a,R), r′ < R < r′′, i.e.

F is the filter which admits for basis the family of sets of the form D ∩
( q⋂

i=1

Γ(αi, r
′
i, r

′′
i )

)

with αi ∈ d(a,R), r′i < R < r′′i (1 ≤ i ≤ q , q ∈ IN).

Recall that the field K is said to be spherically complete if every decreasing sequence
of disks has a non-empty intersection (it is known that lCp is not spherically complete but
it has a spherical completion).

In a field which is not spherically complete, one has to consider decreasing sequences of
disks (Dn) with an empty intersection. We call circular filter with no center, of canonical
basis (Dn) the filter admitting for basis the sequence (Dn) and the number lim

n→∞
diam(Dn)

is called diameter of the filter.
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Finally the filter of neighborhoods of a point a ∈ D is called circular filter of the
neighbourhoods of a on D and its diameter is 0. Given a circular filter F , its diameter is
denoted by diam(F).

Here, we shall denote by W the circular filter on D of center 0 and diameter 1. A filter
F on D will be called a coroner filter if it is thinner than W. Similarly, a sequence (an) on
D will be called a coroner sequence if its filter is a coroner filter, i.e. if limn→+∞ |an| = 1.
An ultrafilter U on D will be called coroner ultrafilter if it is thinner than W.

Let ψ ∈ Mult(A, ‖ . ‖). Then ψ is said to be coroner if its restriction to K[x] equal
to ‖ . ‖.

Let (an)n∈ IN be a coroner sequence in D. The sequence is called a regular sequence

if inf
j∈ IN

∏

n∈ IN

n 6=j

|an − aj | > 0.

An ultrafilter U is said to be regular if it is thinner than a regular sequence. Thus, by
definition, a regular ultrafilter is a coroner ultrafilter.

Two coroner ultrafilters F , G are said to be contiguous if for every subsets F ∈ F , G ∈
G of D the distance from F to G is null.

Let f ∈ A. Recall that f is said to be quasi-invertible if it factorizes in A in the form
f = Pg with P ∈ K[x] and g an invertible element of A.

On K[x], circular filters on K are known to characterize multiplicative semi-norms by
associating to each circular filter F the multiplicative semi-norm ϕF defined as ϕF (f) =
limF |f(x)| [5], [6], [7], [12].

We know that every f ∈ A is an analytic element in each disk d(a, r) whenever
a ∈ D, r ∈]0, 1[ [6]. Consequently, by classical results [6], several properties of polynomials
have continuation to A.

Remark: A regular sequence is an idempotent polar sequence which and is not a T -
polar sequence [18]. However, a polar sequence which and is not a T -polar sequence is not
necessarily a regular sequence.

The paper is aimed at showing that in at least when the field K satisfies certain
hypotheses, A is multbijective and therefore Multa(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).
On the other hand, we will examine relations between closed prime ideals, maximal ideals
and multiplicative semi-norms.

Basic results

Describing problems and results requires to state a lot of basic results (some of them
are well known by specialists). Theorems 1, 2, 3 are immediate:

Theorem 1: For every f ∈ A, ‖f‖ = lim
Y

|f(x)|.

Theorem 2: Every element of A is uniformly continuous in D.
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Corollary 2.1: Let U1,U2 be two coroner contiguous ultrafilters on D. Then J (U1) =
J (U2).

Remark: An interesting question is whether two coroner ultrafilters U1 and U2 such that
J (U1) = J (U2) are contiguous. The problem is partially solved in Theorem 24.

Theorem 3: Let U be an ultrafilter on D. For every f ∈ A, |f(x)| admits a limit
ϕU (f) along U . Moreover, the mapping ϕU from A to IR+ belongs to Mult(A, ‖ . ‖) and
Ker(ϕU ) = J (U). Given two contiguous ultrafilters U1, U2 on D, ϕU1

= ϕU2
.

Theorem 4: For every circular filter F secant with D, of diameter r < 1, ϕF has
continuation to an element of Mult(A, ‖ . ‖).

Theorem 5 also is classical [9]:

Theorem 5: An element f ∈ A is not quasi-invertible if and only if it has infinitely
many zeros. If f is not quasi-invertible, its set of zeros is a coroner sequence (an).

Theorems 6, 7 and 9, 10, 11, 12 may be found in [6].

Theorem 6: Let I be an ideal of A. The following two statements are equivalent:
i) I is generated by a polynomial whose zeros lie in D,
ii) I contains a quasi-invertible element.

Theorem 7: Let M be a principal maximal ideal of A. Then there exists a ∈ D such
that M = (x− a)A.

Concerning maximal ideals, Theorem 8 is proved in [9].

Theorem 8: Let M be a non-principal maximal ideal of A. Then M is not of finite
type.

Corollary 8.1: The mapping from D to Max(A) associating to each point a of D the
maximal ideal (x− a)A is a bijection from D onto the set of principal maximal ideals.

Theorem 9: Non-principal maximal ideals of A are of infinite codimension. [9]

Theorem 10: Let M be a maximal ideal of A. The following statements are equivalent:
i) M is of finite type,
ii) M is principal,
iii) there exists a ∈ D such that M = (x− a)A
iv) M is of codimension 1.

Corollary 10.1: An element φ of Mult(A, ‖ . ‖) belongs to Multa(A, ‖ . ‖) if and only
if there exists a ∈ D such that φ(f) = |f(a)|, ∀f ∈ A.
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In order to understand the way to prove the main theorems, it is indispensable to
define sets D(h, ǫ).

Notation: Let h ∈ A, ǫ > 0. We set D(h, ǫ) = {x ∈ D | |h(x)| ≤ ǫ}.

Theorem 11: Let P be a prime non-principal ideal of A. Let r ∈]0, 1[ and ǫ ∈]0, 1[.
There exists h ∈ P such that D(h, ǫ) ⊂ Γ(0, r, 1).

Theorem 12: Let M be a non-principal maximal ideal of A and let
ψ ∈ Multm(A, ‖ . ‖) satisfy Ker(ψ) = M. Every quasi-invertible element f ∈ A satisfies
ψ(f) = lim

W
|f(x)| = ‖f‖.

Theorem 13 is shown in [19] and is a Bezout-like theorem:

Theorem 13: Let f1, ..., fq ∈ A satisfy ‖fj‖ < 1 ∀j = 1, ..., q and

inf{ max
j=1,...,q

(|fj(x)|)
∣∣ x ∈ D} = ω > 0. There exist g1, ..., gq ∈ A such that

q∑

j=1

gjfj = 1

and max
j=1,...,q

‖gj‖ < ω−2.

Corollary 13.1: Let I be an ideal of A different from A. The family of sets D(f, ǫ), f ∈
I, ǫ > 0, makes a system of generators of a filter on D.

Notation: Let I be an ideal of A different from A. We will denote by GI the filter
generated by the sets D(f, ǫ), f ∈ I, ǫ > 0. By definition, GI is minimal, with respect to
the relation of thinness, among the filters H such that limH f(x) = 0 ∀f ∈ I.

As a corollary of Theorem 11 and Corollary 13.1, we have Corollary 13.2

Corollary 13.2: Let P be a non-principal prime ideal of A. Then GP is coroner.

Corollary 13.3: Let M be a non-principal maximal ideal of A. Then GM is coroner
and M = J (GM). Moreover, for every ultrafilter U thinner than GM, then J (U) = M.

Corollary 13.4: Let M be a non-principal maximal ideal of A and let U be an ultrafilter
thinner than GM. Then ϕU belongs to the closure of Multa(A, ‖ . ‖) in Multm(A, ‖ . ‖).

Corollary 13.5: Let M be a univalent non-principal maximal ideal of A and let φ ∈
Multm(A, ‖ . ‖) satisfy Ker(φ) = M. Then φ is of the form φ(f) = lim

U
|f(x)| with

U a coroner ultrafilter such that J (U) = M. Moreover, φ belongs to the closure of
Multa(A, ‖ . ‖) in Multm(A, ‖ . ‖).

Corollary 13.6: Suppose A is multbijective. Then every multiplicative semi-norm φ ∈
Multm(A, ‖ . ‖) \ Multa(A, ‖ . ‖) is of the form φ(f) = lim

U
|f(x)| with U a coroner

ultrafilter such that J (U) = M. Moreover, Multa(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).
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Definition: The field K is said to be strongly valued if at least one of the following sets
is not countable: the set of values of K = { |x| | x ∈ K} and the residue class field of K.

Let us recall the following Theorem [5], [7]:

Theorem 14: Suppose K is strongly valued. Every commutative K-Banach algebra is
multbijective.

Corollary 14.1: Suppose K is strongly valued. Then every multiplicative semi-norm
φ ∈ Multm(A, ‖ . ‖) \Multa(A, ‖ . ‖) is of the form φ(f) = lim

U
|f(x)| with U a coroner

ultrafilter such that J (U) = M. Moreover, Multa(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).

Multbijectivity in a spherically complete field

Theorem 18 is proved with help of Propositions 15,16,17. The hypothesisK spherically
complete is essential in Proposition 17 because if the field K is not spherically complete,
we can’t factorize h as done in Proposition 16.

Proposition 15: Let (B, ‖ . ‖) be a commutative ultrametric K-Banach algebra with
unity. Suppose there exist f ∈ B , φ, ψ ∈Mult(B, ‖ . ‖) such that ψ(f) < φ(f), sp(f) ∩
Γ(0, ψ(f), φ(f)) = ∅ and there exists ǫ ∈]0, φ(f) − ψ(f)[ satisfying further ‖(f − a)−1‖ ≤
M ∀a ∈ Γ(0, ψ(f), φ(f)− ǫ). Then there exists γ ∈ B such that ψ(γ) = 1, φ(γ) = 0.

Proposition 16: Let M be a non-principal maximal ideal of A and let U be an ultrafilter
on D such that M = J (U). Let f ∈ A \M be not invertible in A and let g ∈ A, h ∈ M
such that fg = 1 + h. Let λ = ϕU (f), let ǫ ∈]0,min(λ, 1)[ and let
Λ = {x ∈ D

∣∣ |f(x)g(x)| − 1|∞ < ǫ, | |f(x)| − λ|∞ < ǫ}.

Suppose that there exist a function h ∈ A admitting for zeroes in D the zeroes of h
in D \ Λ and a function ĥ ∈ A admitting for zeroes the zeroes of h in Λ, each counting

multiplicities, so that h = hĥ. Then |h(x)| has a strictly positive lower bound in Λ and ĥ
belongs to M.

Moreover, there exists ω ∈]0, λ[ such that ω ≤ inf{max(|f(x)|, |ĥ(x)|)
∣∣ x ∈ D}.

Further, for every a ∈ d(0, (λ− ǫ)), we have ω ≤ inf{max(|f(x) − a|, |ĥ(x)|)
∣∣ x ∈ D}.

Proposition 17: Suppose K is spherically complete. Let M be a non-principal maximal
ideal of A and let U be an ultrafilter on D such that M = J (U). Let f ∈ A \ M satisfy
‖f‖ < 1, let λ = ϕU (f) and let ǫ ∈]0, λ[. There exists ω > 0 such that, for every a ∈
d(0, λ− ǫ), there exists ga ∈ A satisfying (f − a)ga − 1 ∈ M and ‖ga‖ ≤ ω−2.

Now, we can conclude when K is spherically complete:

Theorem 18: If K is spherically complete, then A is multbijective.

The proof of Theorem 18 consists of assuming that there exists ψ, φ ∈Multm(A, ‖ . ‖)
satisfying ψ(P ) = φ(P ) = ‖P‖ ∀P ∈ K[x] Ker(ψ) = Ker(φ) and ψ(f) < φ(f) for certain
f ∈ A. Using the ultrametric holomorphic functional calculus and Propositions 15, 16, 17
we can construct a function g satisfying ψ(g) = 0, φ(g) > 0, a contradiction.
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Corollary 18.1: If K is spherically complete, then for every φ ∈Multm(A, ‖ . ‖) there
exists a coroner ultrafilter U such that φ = ϕU .

Corollary 18.2: If K is spherically complete, then Multa(A, ‖ . ‖) is dense inMultm(A, ‖ . ‖).

Regular maximal ideals

Regular coroner ultrafilters give a very nice representation of certain maximal ideals.
We will first recall links with bounded sequences [19].

Definitions and notation: Let B( IN, K) be the K-Banach algebra of bounded se-
quences of K provided with the usual laws of K-algebra and with the usual norm defined
as ‖(an)n∈ IN‖

′ = sup{|an| | n ∈ IN}. For every ultrafilter G on IN we will denote by Θ(G)
the ideal of B( IN, K) consisting of sequences (an) such that lim

G
an = 0.

Let S = (an)n∈ IN be a coroner sequence. We will denote by Σ(S) the set of ultrafilters
thinner than S, by I(S) the ideal of the f ∈ A such that f(an) = 0 ∀n ∈ IN.

Recall that an ultrafilter G is said to be principal if
⋂

F∈G

F is a singleton.

Theorem 19 is classical:

Theorem 19: Θ is a bijection from the set of ultrafilters on IN onto Max(B( IN, K)).
The restriction of Θ to the subset of non-principal ultrafilters on IN is a bijection from
this set onto the set of non-principal maximal ideals of B( IN, K). Moreover, a maximal
ideal of B( IN, K) is principal if and only it is of codimension 1.

Theorem 20: Let M be a non-principal maximal ideal of B( IN, K) and let U = Θ−1(M).

Let θ be the canonical surjection from B( IN, K) onto the field L =
B( IN, K)

M
. Let ‖ . ‖M

be the K-algebra quotient norm of L. Then, every sequence (an)n∈ IN ∈ B( IN, K) satisfies
‖(an)‖M = lim

U
|an|.

Corollary 20.1: B( IN, K) is multbijective. Let M be a principal maximal ideal of

B( IN, K). The K-Banach algebra quotient norm of the field
B( IN, K)

M
is multiplicative.

Definitions and notation: Let S = (an)n∈ IN be a coroner sequence. We will denote
by I(S) the ideal of the f ∈ A such that f(an) = 0 ∀n ∈ IN. We will denote by TS the

mapping from A into B( IN, K) which associates to each f(x) =
∞∑

n=0

anx
n the sequence

(f(an)n∈ IN).

Remark: Given a regular maximal ideal M = J (U) where U is thinner than a regular
sequence S, then M contains I(S).

From [19], (4.6), we have the following theorem:
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Theorem 21: Let S be a coroner sequence. Then TS is surjective on B( IN, K) if and
only if the sequence S is regular.

Theorem 22: Let S be a regular sequence and let M be a maximal ideal of A. The
following two statements are equivalent:
i) I(S) ⊂ M
ii) There exists an ultrafilter U thinner than S such that M = J (U).

Moreover, the mapping Ψ which associates to each ultrafilter U thinner than S the
ideal J (U) is a bijection from Σ(S) onto the set of maximal ideals of A containing I(S).

By Theorems 21 and 22 we have Corollary 22.1

Corollary 22.1: Let S be a regular sequence. For every maximal ideal M containing

I(S), the field
A

M
is isomorphic to

B( IN, K)

TS(M)
.

Theorem 23: Let S be a regular sequence. For every maximal ideal M of A contain-

ing I(S), the K-Banach algebra quotient norm of
A

M
is equivalent to an absolute value

extending this of K.

Corollary 23.1: For every regular ultrafilter U , J (U) is a univalent maximal ideal.

Remark: Consider a maximal ideal M of A and suppose that there exists
φ ∈Multm(A, ‖ . ‖) which does not lie in the closure of Multa(A, ‖ . ‖) (which obviously
implies that K is not spherically complete). Then M is not univalent and therefore the

K-Banach algebra quotient norm of the field
A

M
is not equivalent to its norm ‖ . ‖si.

Theorem 24: Let U1, U2 be two regular ultrafilters. Then J (U1) = J (U2) if and only if
U1 and U2 are contiguous.

Corollary 24.1: The relation R on regular ultrafilters defined as U1RU2 if U1 and U2 are
contiguous is an equivalence relation whose classes are in bijection with the set of regular
maximal ideals of A.

Remark: In the general case, Relation R is not an equivalence relation on a set of filters
in K. Example: consider a sequence (an)n∈ IN such that |an| < |an+1| ∀n, put bn = a2n,
cn = a2n+1 and consider the filters F ,G,H associated to these sequences, respectively.
Clearly, both G and H are contiguous to F but G is not contiguous to H.

Multiplicative norms on A

In order to study more carefully certain multiplicative semi-norms and closed prime
ideals, we have to notice a basic theorem:
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Notation: Let F be a field, let R be a commutative F -algebra with unity and let D be
a derivation on R. Given an ideal J of R, we will denote by J̃ the set of f ∈ R such that
D(n)(f) ∈ J ∀n ∈ IN.

Let ψ ∈Mult(A, ‖ . ‖). We set Subker(ψ) = ˜Ker(ψ).

Theorem 25: Let F be a field, let R be a commutative F -algebra with unity and let D

be a derivation on R. Let J be an ideal of R. Then J̃ is an ideal of R and (̃J̃) = J̃.

Moreover, if F is of characteristic 0 and if J is prime, then so is J̃.

Since ‖f ′‖ ≤ ‖f‖ ∀f ∈ A, we can derive Corollary 25.1:

Corollary 25.1: Suppose K is of characteristic zero. Let P be a prime ideal of A. Then

P̃ is a prime ideal of A such that (̃P̃) = P̃. Moreover, if P is closed, then so is P̃.

Corollary 25.2: Suppose K is of characteristic zero. Let ψ ∈ Mult(A, ‖ . ‖). Then
Subker(ψ) is a prime closed ideal .

Theorem 26 shows that Subker(ψ) is not equal to Ker(ψ) in the general case. Recall
that, given a strictly increasing sequence (rn) of limit 1 such that

∏∞

n=0 > 0, it is always
possible to construct a function f ∈ A having exactly one zero (of order 1) in the circle
C(0, rn) and no other zero. However, due to Lazard’s problem, if K is not spherically
complete, we can’t control the place of these zeroes. With such an element f , it is easily
proved that f ′ has no zero in the class of C(0, rn). Theorem 26 is proved by using this
property.

Theorem 26: There exist regular maximal ideals M of A and f ∈ M, having a sequence
of zeroes of order 1 and no other zeroes, such that f ′ /∈ M.

In the particular case when K is spherically complete, we can get a more general
statement:

Theorem 27: Suppose K is spherically complete and let M be a regular maximal ideal
of A. There exists f ∈ M, having a sequence of zeroes of order 1 and no other zeroes,
such that f ′ /∈ M.

Remark: When K is not spherically complete, Theorem 26 is less general than Theorem
27 because of Lazard’s problem on zeroes of an analytic function [17].

Now we may notice that when the field is of characteristic 2, it is easy to show that
for certain maximal ideals M of A, M̃ is not prime. Indeed, by Theorem 26, there exists
a coroner maximal ideal M and f ∈ M such that f ′ /∈ M. Then f does not belong to
M̃. Now consider g = f2. Then g′ = 2ff ′ = 0 hence g(n) ∈ M ∀n ∈ IN. If K is of
characteristic 3, we can also construct a similar but less simple counter-example.

Let ψ ∈ Mult(A, ‖ . ‖) be such that ψ(P ) = ϕF (P ) ∀P ∈ K[x], with F a circular
filter on D of diameter r < 1. In [10] it is shown that ψ has a unique continuation to A
defined in the same way as ψ(f) = ϕF (f) ∀f ∈ A.
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Theorem 28: Let ψ ∈ Mult(A, ‖ . ‖) satisfy ψ(P ) = ϕF (P ) ∀P ∈ K[x], with F a
circular filter on D of diameter r < 1. Then ψ(f) = ϕF (f) ∀f ∈ A.

Consequently, all multiplicative norms whose restrictions to polynomials are not the
Gauss norm ‖ . ‖ are defined by the circular filters on D of diameter < 1 and therefore the
problem of characterizing continuous multiplicative norms of A only concerns the various
continuations of the Gauss norm to A.

Theorem 29 shows lets us characterize all continuous multiplicative norms of A

Theorem 29: Let ψ ∈Mult(A, ‖ . ‖) be coroner. Then Subker(ψ) is not null. Moreover,
if K is spherically complete, then, for every f ∈ A such that ψ(f) < ‖f‖, there exists
g ∈ Subker(ψ) admitting no zero which is not a zero of f (the zero of f eventually having
a smaller order).

When K is spherically complete, we can adjust the order of zeroes in order that they
have slowly increasing orders (in the wide sense), so that the new function we make remains
bounded. But any derivation will admit the zeroes of f after certain rank. When the field
is not spherically complete, we try to follow a similar way by using Theorem 25.5 [6] in
order to obtain a function having some more zeroes than we ask but ”the work ” of the
additional zeroes remains bounded.

Corollary 29.1: Let ψ ∈Mult(A, ‖ . ‖) be coroner. Then ψ is not a norm.

Corollary 29.2: Let ψ ∈ Mult(A, ‖ . ‖) be a norm. If ψ is not ‖ . ‖, there exists a
circular filter F on D, of diameter r < 1, such that ψ = ϕF .

Corollary 29.3: Let ψ ∈ Mult(A, ‖ . ‖) be a norm. If ψ is not ‖ . ‖, there exists a
circular filter F on D, of diameter r < 1, such that ψ = ϕF .

On the other hand, each coroner maximal ideal is the kernel of some coroner continuous
multiplicative semi-norm of A. Consequently:

Corollary 29.4: Let M be a coroner maximal ideal of A. Then M̃ is not null.

Concerning the Corona Problem, we may notice this:

Corollary 29.5: Mult0(A, ‖ . ‖) is included in the closure of Multa(A, ‖ . ‖).

On the other hand, using Theorems 27 and 29, we can prove Theorem 30:

Theorem 30: Let K be spherically complete and M be a regular coroner maximal ideal.
Then M̃ is neither null nor equal to M.

Corollary 30.1: Suppose K is of characteristic zero. Then A admits prime closed ideals
that are neither null nor maximal ideals. Moreover, if K is spherically complete, then every
regular coroner maximal ideal M of A contains a prime closed ideal M̃ that is neither null
nor equal to M.
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Remark: The prime closed ideal we construct, which is neither null nor maximal, does
not seem to be the kernel of an element of Mult(A, ‖ . ‖). Recall that in [2] an example of
a Banach-K-algebra of analytic elements with no divisors of zero, admitting no continuous
multiplicative norm, was constructed.

Now, supposeK is spherically complete. IfMult(A, ‖ . ‖) only consists ofMult0(A, ‖ . ‖)
and Multm(A, ‖ . ‖), then Multa(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖). Actually, this situa-
tion seems much likely.
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